
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/235917340

Presentation TaxonomyOfDEVS2011

Data · March 2013

CITATIONS

0

READS

16

1 author:

Moon Ho Hwang

Dassault Systemes America Corp.

25 PUBLICATIONS   153 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Moon Ho Hwang on 26 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/235917340_Presentation_TaxonomyOfDEVS2011?enrichId=rgreq-915317dc530e26a9deb3b7ba13ea10dc-XXX&enrichSource=Y292ZXJQYWdlOzIzNTkxNzM0MDtBUzoxMDEwOTQxMzkxMDUyODZAMTQwMTExNDEyOTUxNg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/235917340_Presentation_TaxonomyOfDEVS2011?enrichId=rgreq-915317dc530e26a9deb3b7ba13ea10dc-XXX&enrichSource=Y292ZXJQYWdlOzIzNTkxNzM0MDtBUzoxMDEwOTQxMzkxMDUyODZAMTQwMTExNDEyOTUxNg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-915317dc530e26a9deb3b7ba13ea10dc-XXX&enrichSource=Y292ZXJQYWdlOzIzNTkxNzM0MDtBUzoxMDEwOTQxMzkxMDUyODZAMTQwMTExNDEyOTUxNg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Moon_Ho_Hwang?enrichId=rgreq-915317dc530e26a9deb3b7ba13ea10dc-XXX&enrichSource=Y292ZXJQYWdlOzIzNTkxNzM0MDtBUzoxMDEwOTQxMzkxMDUyODZAMTQwMTExNDEyOTUxNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Moon_Ho_Hwang?enrichId=rgreq-915317dc530e26a9deb3b7ba13ea10dc-XXX&enrichSource=Y292ZXJQYWdlOzIzNTkxNzM0MDtBUzoxMDEwOTQxMzkxMDUyODZAMTQwMTExNDEyOTUxNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Moon_Ho_Hwang?enrichId=rgreq-915317dc530e26a9deb3b7ba13ea10dc-XXX&enrichSource=Y292ZXJQYWdlOzIzNTkxNzM0MDtBUzoxMDEwOTQxMzkxMDUyODZAMTQwMTExNDEyOTUxNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Moon_Ho_Hwang?enrichId=rgreq-915317dc530e26a9deb3b7ba13ea10dc-XXX&enrichSource=Y292ZXJQYWdlOzIzNTkxNzM0MDtBUzoxMDEwOTQxMzkxMDUyODZAMTQwMTExNDEyOTUxNg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Taxonomy of DEVS Subclasses for Standardization

Moon Ho Hwang

ACIMS
University of Arizona

Tucson, AZ 48326, USA

April 6, 2011



Trajectories Timed Event Systems DEVS & CDEVS DEVS Subclasses Conclusion References

Background

• Schedule-Preserving DEVS (SPDEVS) is a subclass of Finite&
Deterministic DEVS (FDDEVS). [6][5]

• FDDEVS is a subclass of Alur’s Timed Automaton (TA) [4].

• Some papers have attempted to convert DEVS into TA for
verification [2], [3], [1]

• Q1. Is this conversion DEVS into TA always possible?

• Q2. What are subclasses, super-classes or equivalent classes?

• Q3. Which classes are sub, super, or equivalent classes of
DEVS?

• By answering these questions, this paper enables us to
standardize DEVS classes.
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Contents I

Figure 1: Presentation Organization



Trajectories Timed Event Systems DEVS & CDEVS DEVS Subclasses Conclusion References

1.1 Example of Toaster Trajectories

Figure 2: Trajectories of a Toaster (a) A Toaster, (b) Piecewise Linear
Trajectory, (c) Piecewise Constant Trajectory, (d) Event Trajectory
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1.2 Event Segments

• A timed event: (z , t) of z ∈ Z , t ∈ T.

• The null event segment: ǫ[tl ,tu ] where ǫ 6∈ Z and [tl , tu] ⊆ T.

• An unit event segment is either a timed event or a
null event segment.

• A multi-event segment (z1, t1)(z2, t2) . . . (zn, tn) over Z and
[tl , tu] ⊆ T is concatenations of unit event segments
ǫ[tl ,t1], (z1, t1), ǫ[t1,t2], (z2, t2), . . . , (zn, tn) and ǫ[tn,tu] where
tl ≤ t1 ≤ t2 . . . ≤ tn−1 ≤ tn ≤ tu.

• Example: ω[0,120]=(?push,25)(!pop,50)(?push,80)(!pop,105).
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1.3 Universal Timed Language

Definition 1 (Universal Timed Language)

The universal timed language over an event set Z and a time
interval [tl , tu] ⊆ T, is denoted by ΩZ ,[tl ,tu], and is defined as the
set of all possible event segments. Formally,

ΩZ ,[tl ,tu ] = {(z , t)∗ : z ∈ Z ∪ {ǫ}, t ∈ [tl , tu]}

where (z , t)∗ denotes a none or multiple concatenations of null or
timed events.

• Note that if L is a language over Z and [tl , tu], then
L ⊆ ΩZ ,[tl ,tu ].
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2.1 Timed Event Systems

Definition 2 (TES)

G = (Z ,Q, q0,QA,∆)

• Z is the set of events;

• Q is the set of states;

• q0 ∈ Q is the initial state variable;

• QA ⊆ Q is the set of accept states;

• ∆ : Q × ΩZ ,T → Q is the state trajectory function that
defines how a state q changes to another q′ along with an
event segment ω ∈ ΩZ ,T. �

If ω is concatenation of two event segments, i.e. ω = ω1ω2, then
∆(q, ω) = ∆(∆(q, ω1), ω2). In general if ω is concatenation of
n-event segments, i.e. ω = ω1ω2 . . . ωn, where n > 1 then

∆(q, ω) = ∆(. . .∆(∆(q, ω1), ω2) . . .), ωn) (1)
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2.2 Determinism and Nondeterminism of Timed Event
Systems

Example 1 (Deterministic and Nondeterministic Functions)

For example, assume that A and B are real numbers, then
f (a) = a + 5 is deterministic. Given two sets A ={coin, dice} and
B={head, tail, 1,2,3,4,5,6}, if the function f indicates outcomes of
tossing a coin or a dice, f is non-deterministic. If r ∈ {head , tail}
represents the outcome of tossing coin, r is a nondeterministic (or
random) variable.

Definition 3 (Deterministic and Non-Deterministic TESs)

A TES G = (Z ,Q, q0,QA,∆) is deterministic if (1) q0 is a
constant variable, and (2) ∆ is deterministic. Otherwise, G is
non-deterministic. �
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2.3 L(G ): Behaviors of a TES G

Definition 4 (Non-infinite length language)

If 0 ≤ t <∞, t-length observation language of G , L(G , t), is

L(G , t) = {ω ∈ ΩZ ,[0,t] : ∃ the case : ∆(q0, ω) ∈ QA}. (2)

Definition 5 (Infinite length language)

The infinite length observation language of G , L(G ,∞) is

L(G ,∞) = {ω ∈ lim
t→∞

ΩZ ,[0,t] : ∃ the case s.t. inf (∆(q0, ω)) ⊆ QA}.

(3)
where inf (∆(q0, ω)) ⊆ Q denotes the states where ω visits
infinitely many times or stays infinitely long.

We would use just L(G ) instead of L(G , t) or L(G ,∞) if t is not
important.
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2.4 E (A): Expressiveness of a formalism A

Given a formalism A that is a subclass of TES, it’s expressiveness
is denoted by E (A).

Definition 6 (Expressiveness Inclusion)

Suppose that A and B are two TES classes.

• E (A) ⊆ E (B), if for a given instance a of A, ∃ an instance b

of B : L(a) = L(b).

• E (A) ⊂ E (B), if E (A) ⊆ E (B) but for a given instance b of
B , ∄ an instance a of A: L(a) = L(b).

• E (A) = E (B), if E (A) ⊆ E (B) and E (B) ⊆ E (A).

We use this expressiveness inclusion when showing
E (TA) ⊂ E (DEVS), and
E (FDEVS) ⊂ E (FGDEVS) ⊆ E (FCDEVS).
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2.5 Hierarchy of Formalisms

The hierarchy of difference formalism can be defined based on their
expressiveness.

Definition 7 (Subclass, Equivalent class, and Superclass)

Suppose that A and B are two TES classes. Then

• A is called a subclass of B and B is called a superclass of A if
E (A) ⊂ E (B).

• A is called a subclass or equivalent class of B and B is called
a superclass or equivalent class of A if E (A) ⊆ E (B).

• A and B are called the equivalent classes if E (A) = E (B). �
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2.6 Homomorphic Timed Event Systems

Figure 3: H is called a homomorphic system of G if such a mapping f

exists. If H is a homomorphic system of G , L(G) ⊆ L(H). We use this
property when showing E(DEVS)=E(CDEVS).
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3.1 Discrete Event System Specification(DEVS)

Definition 8 (DEVS)

M = (X ,Y ,S , s0, ta, δext , δint , λ)

• X and Y are the set of input events and the set of output

events, respectively;

• S is the set of states; s0 ∈ S is the initial state variable;

• ta : S → T∞ is the time advance function;

• δext : Q × X → S is the external transition function where
Q = {(s, e) ∈ Q, e ∈ (T∩ [0, ta(s)])} is the set of total states,
and e is the piecewise linear elapsed time since last event;

• δint : S → S is the internal transition function;

• λ : S → Y φ is the output function where Y φ = Y ∪ {φ} and
φ 6∈ Y is a silent event or an unobservable event. �
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3.2 Behaviors of the DEVS class

Let M = (X ,Y ,S , s0, ta, δext , δint , λ) be a DEVS model. Then the
behavior of M is explained by a TES G (M) = (Z ,Q, q0,QA,∆)
where the event set Z = X ∪ Y φ; The state set Q = QA ∪ QĀ

where QA = M.Q and QĀ = {s 6∈ S} is called the non-accept state
in which s is piecewise constant.
The initial state variable q0 = (s0, 0) ∈ QA.
The state trajectory function ∆ : Q × ΩZ ,T → Q is defined for a
total state q = (s, e) ∈ Q at time t ∈ T and an event segment
ω ∈ ΩZ ,[t,t+dt], dt ∈ T as follows.
For a null event segment, i.e. ω = ǫ[t,t+dt],

∆(q, ω) = q ⊕ dt =

{

(s ⊕ dt, e + dt) if q ∈ QA

s otherwise
(4)

which is a timed passage.
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For a timed input event, i.e. ω = (x , t) where x ∈ X

∆(q, ω) =

{

(δext(s, e, x), 0) if q ∈ QA,

s otherwise.
(5)

For a timed output or silent event, i.e. ω = (y , t) where y ∈ Y φ

∆(q, ω) =

{

(δint(s), 0) if q ∈ QA, e = ta(s), y = λ(s)

s otherwise.
(6)

If ω is a multi-event segment, we can apply Equation (1) using
above three primitive cases described in Equations (4), (5), and
(6).
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3.3 Definition of Clock-based DEVS Structure

Definition 9 (CDEVS)

MC = (X ,Y ,S , s0, δx , δy )

• X and Y are the input and output events sets, respectively.

• S = Sd ×
∏

c∈C

(T∞ × T)c is the set of states that consists of

two disjoint sets
• Sd is the set of piecewise constant states which is called the

set of discrete states.
• C is the set of clock names. Each clock c ∈ C has two clock

variables

• σc ∈ T∞: the schedule of clock c ∈ C , which is piecewise

constant.
• ec ∈ T ∩ [0, σc ]: the elapsed time of clock c ∈ C , which is

piecewise linear.

Thus s = (sd , . . . , σc , ec , . . .) denotes at phase sd ∈ Sd , each
clock c ’s schedule σc and the elapsed time ec .
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3.3 Definition of Clock-based DEVS Structure

Definition 10 (CDEVS (continued))

MC = (X ,Y ,S , s0, δx , δy )

• s0 = (sd0, . . . , σ0c , 0, . . .) ∈ S is the initial state variable

• δx : S × X → S is the external transition function.

• δy : S → Y φ × S is the output and internal transition

function; �

Let the remaining time function tr : S → T∞ be

tr(sd , . . . , σc , ec , . . .) = min
c∈C

{σc − ec} (7)

for (sd , . . . , σc , ec , . . .) ∈ S .



Trajectories Timed Event Systems DEVS & CDEVS DEVS Subclasses Conclusion References

3.4 A Example of CDEVS Toaster

Figure 4: A Toaster CDEVS Model where t ∈ [20, 30]
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3.5 Behaviors of the CDEVS class

Given a CDEVS MC = (X ,Y ,S , s0, δx , δy ), there exists a TES
G (MC ) = (Z ,Q,QA, q0,∆) defining the behavior of MC as follows.
The set of events is Z = X ∪ Y . The set of states is Q = QA ∪QĀ

where QA = {(s, ts , te) : s ∈ S , ts ∈ T∞, te ∈ T ∩ [0, ts ]} and
QĀ = {s̄ 6∈ S} in which ts and s̄ is piecewise constant, and te is
piecewise linear.
The initial state variable is given

q0 = (s0, ts0, te0) = ((sd0, . . . , σ0c , 0, . . .), tr(s0), 0).

The state trajectory function ∆ : Q × ΩZ ,T → Q is given for
q ∈ Q and an unit segment ω as below.
For a null segment ω = ǫ[t,t+dt] and t, dt ∈ T,

∆(q, ω) =

{

((sd , . . . , σc , ec + dt, . . .), ts , te + dt) if q ∈ QA

s̄ otherwise

(8)
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3.5 Behaviors of the CDEVS class

For a timed input event ω = (x , t), x ∈ X , and t ∈ T,

∆(q, ω) =

{

(δx(s, x), tr(δx (s, x)), 0) if q ∈ QA

s̄ otherwise.
(9)

For a timed output event ω = (y , t), y ∈ Y φ, and t ∈ T,

∆(q, ω) =

{

(s ′, tr(s ′), 0) if te = ts , δy (s) = (y , s ′)

s̄ otherwise.
(10)
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3.6 E(DEVS)=E(CDEVS)

Theorem 1 (E(DEVS)=E(CDEVS))

DEVS and CDEVS are equivalent classes to each other.

Figure 5: Proof of E(DEVS)=E(CDEVS) is available at
https://sites.google.com/site/moonhohwang/publications
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4.1 Finite Clock-based DEVS(FCDEVS)

Definition 11 (FCDEVS)

A Finite CDEVS (FCDEVS) is a subclass of CDEVS
MFC = (X ,Y ,S , s0, δx , δy ) where the sets of X ,Y ,Sd , and C are
finite. Note that S = Sd ×

∏

c∈C

(T∞ × T)c �
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4.2 Timed Automaton(TA)

Definition 12 (Timed Automaton(TA))

TA = (Z ,C ,P , p0, I ,T )

• Z and C are the finite sets of events and the finite set of

clocks, respectively.

• P and p0 ∈ P are the finite set of phases which are piecewise
constant, and the initial phase variable, respectively.

• I : P → Φ(C ) is the phase clock-constraint function where
Φ(C ) = {C → IQ} is the set of partial clock constraints.

• T ⊆ P × Zφ × Φ(C ) × P(C ) × P is a set of transitions. A

transition (p, z, ϕ,CR , p
′) ∈ T can be also inter-changeably

represented by the notation p
z,{(c,inv(c))},CR
−−−−−−−−−−−−→p′, requires the enabling

condition of I (p) and ϕ as a precondition, and the resetting clocks

in CR as a postcondition. �
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4.3 A Example of TA Toaster

Figure 6: A Toaster TA Model



Trajectories Timed Event Systems DEVS & CDEVS DEVS Subclasses Conclusion References

4.4 Behaviors of the TA class

Given a TA A = (Z ,C ,P , p0, I ,T ), there exists a corresponding FCDEVS
B = (X ,Y , S , s0, δ) that defines the behavior of A. We consider all
events in Z of A as output events of B so X = ∅ and Y = Z . The state
set S = P ×

∏

c∈C

(T∞ × T)c .

The initial state variable s0 = (p0, . . . , su(p0, c), 0, . . .) where
su : P ×C ×T → T∞ is called the clock-schedule update function that is
given for a phase p ∈ P and a clock c ∈ C

su(p, c) = min{tS((M(I (p)) ∩ M(ϕ))|c ∩ [ec ,∞))

: (p, z, ϕ,CR , p
′) ∈ T}

(11)

where M is defined in Equation (??) and tS : P(T∞) → T∞ is the
sampling function that is given for a set of time values t ⊆ T∞ which can
be an time interval,

tS(t) =

{

∞ if t = ∅

t otherwise t ∈ t.
(12)
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4.4 Behaviors of the TA class (continued)

The output and internal transition function δy : S → Y φ × S is given for
s = (p, . . . , σc , ec , . . .), y ∈ Y φ: If ∃(p, y , ϕ,CR , p

′) ∈ T , then

δy (s) = (p′, . . . , σ′
c , e

′
c , . . .)

where e ′c = tR(c ,CR) where tR : C × P(C ) → T is called the resting

function that is defined for c ∈ C and CR ⊆ C ,

tR(c ,CR) =

{

0 if c ∈ CR

ec otherwise.
(13)

and σ′
c = su(p′, c).

If ∄(p, y , ϕ,CR , p
′) ∈ T , then nothing changes because there is no such a

transition from p, thus δy (s) = (p, . . . , σc , ec , . . .). �

Proposition 1 (E (TA) ⊂ E (FCDEVS))

E (FCDEVS) 6⊆ E (TA) because TA does not allow clock boundaries of
real numbers which are allowed by FCDEVS.
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4.5 Finite-Graph DEVS

Definition 13 (FGDEVS)

MFG = (X ,Y ,S , s0, δ)

• X ,Y and S are the same as those of CDEVS but they are
finite sets; and s0 ∈ S is the initial state.

• δ ⊆ Sd × Zφ × Ψ(C ) × P(C ) × Sd is the finite set of

transition relations where Z = X ∪ Y φ. A transition
(sd , z , ψ,CR , s

′
d) or its graphical notation s

z ,ψ,CR
−−−−→s ′ denotes

that the discrete state changes sd to s ′d associated with an
event z , together with two post-conditions: updating the
schedule σc = ψ(c) if ψ(c) is defined for a clock c ∈ C , and
resetting the elapsed time ec of each clock c ∈ CR . �
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4.6 A Example of FGDEVS Toaster

Figure 7: A Toaster FGDEVS Model where t ∈ [20, 30]
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4.7 Behavior of FGDEVS

The behaviors of an FGDEVS MFG = (X ,Y , S , s0, δ) model are given
through an FCDEVS MFC = (X ,Y , S , s0, δx , δy ) as follows.
The initial state variable is s0 = (sd0, . . . , σ0c , 0, . . .).
The external transition function δx : S × X → S is given for

s = (sd , . . . , σc , ec , . . .) ∈ S and x ∈ X , if ∃sd
x,ψ,CR
−−−−→sd

′ ∈ δ, then

δx(s, x) = (s ′d , . . . , σ
′
c , e

′
c , . . .)

where

σ′
c =

{

tS (ψ(c)) if ψ(c) is defined

σc otherwise,

and tS is the sampling function defined in Equation (12), and

e ′c = tR(c ,CR)

where tR(c ,CR) is the resetting function defined Equation (13). If

∄sd
x,ψ,CR
−−−−→sd

′ ∈ δ, nothing changes by x , thus
δx(s, x) = (sd , . . . , σc , ec , . . .).
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4.7 Behavior of FGDEVS (continued)

The output and internal transition function δy : S → Y φ × S is given for

s = (sd , . . . , σc , ec , . . .) ∈ S and y ∈ Y φ, if ∃sd
y,ψ,CR
−−−−→sd

′ ∈ δ, then

δy (s) = (y , (s ′d , . . . , σ
′
c , e

′
c , . . .))

where σ′
c = ψ(c) if ψ(c) is defined, otherwise,σ′

c = σc ; and

e ′c = tR(c ,CR). If ∄sd
y,ψ,CR
−−−−→sd

′ ∈ δ, nothing changes by an internal
transition from s so δy (s) = (φ, (sd , . . . , σc , ec , . . .)). �

Proposition 2 (E (FGDEVS) ⊆ E (FCDEVS))

It is given by the definition. We still don’t know if
E (FCDEVS) ⊆ E (FGDEVS) so E (FGDEVS) = E (FCDEVS).
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4.8 Finite & Deterministic DEVS (FDDEVS)

Definition 14 (FDDEVS)

MFD = (X ,Y ,S , s0, τ, δx , δy )

• X and Y are the same as those of FCDEVS.

• S is the finite discrete states which are piecewise constant.

• s0 ∈ S is the constant initial state.

• τ : S → Q[0,∞) is the time schedule function where Q[0,∞) is
the none negative rational numbers plus infinity.

• δx : S × X → S × {0, 1} is the external transition function.

• δy : S → Y φ × S is the output and internal transition

function.

As the name explains, τ, δx and δy of FDDEVS are deterministic.
�
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4.9 Behavior of FDDEVS

Given an FDDEVS model MFD = (X ,Y ,S , s0, τ, δx , δy ), there is a
corresponding FGDEVS MFG = (X ,Y ,SG , s0G , δ) can describe the
behavior of the original model MFD as follows. The events sets of
MFG are the same those of MFD . The state set of
SG = {(s, σc , ec ) : s ∈ S , c ∈ C} where C={‘c ’}. The initial state
s0G = (s0, τ(s0), 0). The state transition relation δ of MFG is
defined corresponding to each state transition.

δx(s, x) = (s ′, 0) implies s
x ,∅,∅
−−−→s ′ ∈ δ,

δx(s, x) = (s ′, 1) implies s
x ,{(c,τ(s′))},{c}
−−−−−−−−−−−−→s ′ ∈ δ,

δy (s) = (y , s ′) implies s
y ,{(c,τ(s′))},{c}
−−−−−−−−−−−−→s ′ ∈ δ.

�



Trajectories Timed Event Systems DEVS & CDEVS DEVS Subclasses Conclusion References

5.1 Contributions

• Provided a formal framework that clarifies expressiveness of
different formalisms.

• Expressive inclusion among DEVS equivalent and subclasses:
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5.2 Future Directions

• The question whether E (FCDEVS) ⊆ (FGDEVS) or not is
still an open problem.

• In addition to TA, expressiveness comparison among other
popular formalisms like Colored (timed) Petri-Nets, UML
Start-Charts are possible in the same way of timed language
approaches.

• Similarity (or Distance) of Two models: Given two DEVS
instances M1 and M2, the distance of M1 and M2 can be done
by their (1) event segments, or (2) states. Then we will have
a metric space of discrete event systems using DEVS. That
may be answer of simulation model validity for closeness or
similarity of two given systems (one can be a target system,
the other its simulation model).
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