See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/235917340

Presentation TaxonomyOfDEVS2011

Data • March 2013

CITATIONS	READS
0	16

1 author:
Moon Ho Hwang
Dassault Systemes America Corp
25 PUBLICATIONS 153 CITATIONS
SEE PROFILE

Taxonomy of DEVS Subclasses for Standardization

Moon Ho Hwang

ACIMS
University of Arizona
Tucson, AZ 48326, USA

April 6, 2011

Background

- Schedule-Preserving DEVS (SPDEVS) is a subclass of Finite\& Deterministic DEVS (FDDEVS). [6][5]
- FDDEVS is a subclass of Alur's Timed Automaton (TA) [4].
- Some papers have attempted to convert DEVS into TA for verification [2], [3], [1]
- Q1. Is this conversion DEVS into TA always possible?
- Q2. What are subclasses, super-classes or equivalent classes?
- Q3. Which classes are sub, super, or equivalent classes of DEVS?
- By answering these questions, this paper enables us to standardize DEVS classes.

Contents I

Figure 1: Presentation Organization

1.1 Example of Toaster Trajectories

Figure 2: Trajectories of a Toaster (a) A Toaster, (b) Piecewise Linear Trajectory, (c) Piecewise Constant Trajectory, (d) Event Trajectory

1.2 Event Segments

- A timed event: (z, t) of $z \in Z, t \in \mathbb{T}$.
- The null event segment: $\epsilon_{\left[t, t_{u}\right]}$ where $\epsilon \notin Z$ and $\left[t_{l}, t_{u}\right] \subseteq \mathbb{T}$.
- An unit event segment is either a timed event or a null event segment.
- A multi-event segment $\left(z_{1}, t_{1}\right)\left(z_{2}, t_{2}\right) \ldots\left(z_{n}, t_{n}\right)$ over Z and $\left[t_{l}, t_{u}\right] \subseteq \mathbb{T}$ is concatenations of unit event segments $\epsilon_{\left[t, t_{1}\right]},\left(z_{1}, t_{1}\right), \epsilon_{\left[t_{1}, t_{2}\right]},\left(z_{2}, t_{2}\right), \ldots,\left(z_{n}, t_{n}\right)$ and $\epsilon_{\left[t_{n}, t_{u}\right]}$ where $t_{l} \leq t_{1} \leq t_{2} \ldots \leq t_{n-1} \leq t_{n} \leq t_{u}$.
- Example: $\omega_{[0,120]}=(?$ push,25)(!pop,50)(?push,80)(!pop,105).

1.3 Universal Timed Language

Definition 1 (Universal Timed Language)

The universal timed language over an event set Z and a time interval $\left[t_{l}, t_{u}\right] \subseteq \mathbb{T}$, is denoted by $\Omega_{Z,\left[t, t_{u}\right]}$, and is defined as the set of all possible event segments. Formally,

$$
\Omega_{z,\left[t, t_{u}\right]}=\left\{(z, t)^{*}: z \in Z \cup\{\epsilon\}, t \in\left[t_{l}, t_{u}\right]\right\}
$$

where $(z, t)^{*}$ denotes a none or multiple concatenations of null or timed events.

- Note that if L is a language over Z and $\left[t_{l}, t_{u}\right]$, then $L \subseteq \Omega_{Z,\left[t, t_{u}\right]}$.

2.1 Timed Event Systems

Definition 2 (TES)

$$
G=\left(Z, Q, q_{0}, Q_{A}, \Delta\right)
$$

- Z is the set of events;
- Q is the set of states;
- $q_{0} \in Q$ is the initial state variable;
- $Q_{A} \subseteq Q$ is the set of accept states;
- $\Delta: Q \times \Omega_{Z, \mathbb{T}} \rightarrow Q$ is the state trajectory function that defines how a state q changes to another q^{\prime} along with an event segment $\omega \in \Omega_{Z, \mathbb{T}}$.

If ω is concatenation of two event segments, i.e. $\omega=\omega_{1} \omega_{2}$, then $\Delta(q, \omega)=\Delta\left(\Delta\left(q, \omega_{1}\right), \omega_{2}\right)$. In general if ω is concatenation of n-event segments, i.e. $\omega=\omega_{1} \omega_{2} \ldots \omega_{n}$, where $n>1$ then

$$
\begin{equation*}
\left.\Delta(q, \omega)=\Delta\left(\ldots \Delta\left(\Delta\left(q, \omega_{1}\right), \omega_{2}\right) \ldots\right), \omega_{n}\right) \tag{1}
\end{equation*}
$$

2.2 Determinism and Nondeterminism of Timed Event

 Systems
Example 1 (Deterministic and Nondeterministic Functions)

For example, assume that A and B are real numbers, then $f(a)=a+5$ is deterministic. Given two sets $A=\{$ coin, dice $\}$ and $B=\{$ head, tail, $1,2,3,4,5,6\}$, if the function f indicates outcomes of tossing a coin or a dice, f is non-deterministic. If $r \in\{$ head, tail $\}$ represents the outcome of tossing coin, r is a nondeterministic (or random) variable.

Definition 3 (Deterministic and Non-Deterministic TESs)
A TES $G=\left(Z, Q, q_{0}, Q_{A}, \Delta\right)$ is deterministic if $(1) q_{0}$ is a constant variable, and (2) Δ is deterministic. Otherwise, G is non-deterministic.

2.3 $L(G)$: Behaviors of a TES G

Definition 4 (Non-infinite length language)

If $0 \leq t<\infty, t$-length observation language of $G, L(G, t)$, is

$$
\begin{equation*}
L(G, t)=\left\{\omega \in \Omega_{Z,[0, t]}: \exists \text { the case }: \Delta\left(q_{0}, \omega\right) \in Q_{A}\right\} . \tag{2}
\end{equation*}
$$

Definition 5 (Infinite length language)

The infinite length observation language of $G, L(G, \infty)$ is
$L(G, \infty)=\left\{\omega \in \lim _{t \rightarrow \infty} \Omega_{z,[0, t]}: \exists\right.$ the case s.t. $\left.\inf \left(\Delta\left(q_{0}, \omega\right)\right) \subseteq Q_{A}\right\}$.
where $\inf \left(\Delta\left(q_{0}, \omega\right)\right) \subseteq Q$ denotes the states where ω visits infinitely many times or stays infinitely long.

We would use just $L(G)$ instead of $L(G, t)$ or $L(G, \infty)$ if t is not important.

2.4 $E(A)$: Expressiveness of a formalism A

Given a formalism A that is a subclass of TES, it's expressiveness is denoted by $E(A)$.

Definition 6 (Expressiveness Inclusion)

Suppose that A and B are two TES classes.

- $E(A) \subseteq E(B)$, if for a given instance a of A, \exists an instance b of $B: L(a)=L(b)$.
- $E(A) \subset E(B)$, if $E(A) \subseteq E(B)$ but for a given instance b of B, \nexists an instance a of $A: L(a)=L(b)$.
- $E(A)=E(B)$, if $E(A) \subseteq E(B)$ and $E(B) \subseteq E(A)$.

We use this expressiveness inclusion when showing $E(T A) \subset E(D E V S)$, and
$E(F D E V S) \subset E(F G D E V S) \subseteq E(F C D E V S)$.

2.5 Hierarchy of Formalisms

The hierarchy of difference formalism can be defined based on their expressiveness.

Definition 7 (Subclass, Equivalent class, and Superclass)

Suppose that A and B are two TES classes. Then

- A is called a subclass of B and B is called a superclass of A if $E(A) \subset E(B)$.
- A is called a subclass or equivalent class of B and B is called a superclass or equivalent class of A if $E(A) \subseteq E(B)$.
- A and B are called the equivalent classes if $E(A)=E(B)$.

2.6 Homomorphic Timed Event Systems

Figure 3: H is called a homomorphic system of G if such a mapping f exists. If H is a homomorphic system of $G, L(G) \subseteq L(H)$. We use this property when showing $\mathrm{E}(\mathrm{DEVS})=\mathrm{E}(\mathrm{CDEVS})$.

3.1 Discrete Event System Specification(DEVS)

Definition 8 (DEVS)

$$
M=\left(X, Y, S, s_{0}, t a, \delta_{e x t}, \delta_{i n t}, \lambda\right)
$$

- X and Y are the set of input events and the set of output events, respectively;
- S is the set of states; $s_{0} \in S$ is the initial state variable;
- ta : $S \rightarrow \mathbb{T}^{\infty}$ is the time advance function;
- $\delta_{\text {ext }}: Q \times X \rightarrow S$ is the external transition function where $Q=\{(s, e) \in Q, e \in(\mathbb{T} \cap[0, \operatorname{ta}(s)])\}$ is the set of total states, and e is the piecewise linear elapsed time since last event;
- $\delta_{\text {int }}: S \rightarrow S$ is the internal transition function;
- $\lambda: S \rightarrow Y^{\phi}$ is the output function where $Y^{\phi}=Y \cup\{\phi\}$ and $\phi \notin Y$ is a silent event or an unobservable event.

3.2 Behaviors of the DEVS class

Let $M=\left(X, Y, S, s_{0}\right.$, ta $\left., \delta_{\text {ext }}, \delta_{\text {int }}, \lambda\right)$ be a DEVS model. Then the behavior of M is explained by a TES $G(M)=\left(Z, Q, q_{0}, Q_{A}, \Delta\right)$ where the event set $Z=X \cup Y^{\phi}$; The state set $Q=Q_{A} \cup Q_{\bar{A}}$ where $Q_{A}=M . Q$ and $Q_{\bar{A}}=\{\bar{s} \notin S\}$ is called the non-accept state in which \bar{s} is piecewise constant.
The initial state variable $q_{0}=\left(s_{0}, 0\right) \in Q_{A}$.
The state trajectory function $\Delta: Q \times \Omega_{Z, \mathbb{T}} \rightarrow Q$ is defined for a total state $q=(s, e) \in Q$ at time $t \in \mathbb{T}$ and an event segment $\omega \in \Omega_{Z,[t, t+d t]}, d t \in \mathbb{T}$ as follows.
For a null event segment, i.e. $\omega=\epsilon_{[t, t+d t]}$,

$$
\Delta(q, \omega)=q \oplus d t= \begin{cases}(s \oplus d t, e+d t) & \text { if } q \in Q_{A} \tag{4}\\ \bar{s} & \text { otherwise }\end{cases}
$$

which is a timed passage.

For a timed input event, i.e. $\omega=(x, t)$ where $x \in X$

$$
\Delta(q, \omega)= \begin{cases}\left(\delta_{e x t}(s, e, x), 0\right) & \text { if } q \in Q_{A} \tag{5}\\ \bar{s} & \text { otherwise }\end{cases}
$$

For a timed output or silent event, i.e. $\omega=(y, t)$ where $y \in Y^{\phi}$

$$
\Delta(q, \omega)= \begin{cases}\left(\delta_{\text {int }}(s), 0\right) & \text { if } q \in Q_{A}, \underline{e=\operatorname{ta}(s)}, \underline{y=\lambda(s)} \tag{6}\\ \bar{s} & \text { otherwise }\end{cases}
$$

If ω is a multi-event segment, we can apply Equation (1) using above three primitive cases described in Equations (4), (5), and (6).

3.3 Definition of Clock-based DEVS Structure

Definition 9 (CDEVS)

$$
M_{C}=\left(X, Y, S, s_{0}, \delta_{x}, \delta_{y}\right)
$$

- X and Y are the input and output events sets, respectively.
- $S=S_{d} \times \prod_{c \in C}\left(\mathbb{T}^{\infty} \times \mathbb{T}\right)_{c}$ is the set of states that consists of two disjoint sets
- S_{d} is the set of piecewise constant states which is called the set of discrete states.
- C is the set of clock names. Each clock $c \in C$ has two clock variables
- $\sigma_{c} \in \mathbb{T}^{\infty}$: the schedule of clock $c \in C$, which is piecewise constant.
- $e_{c} \in \mathbb{T} \cap\left[0, \sigma_{c}\right]$: the elapsed time of clock $c \in C$, which is piecewise linear.
Thus $s=\left(s_{d}, \ldots, \sigma_{c}, e_{c}, \ldots\right)$ denotes at phase $s_{d} \in S_{d}$, each clock c 's schedule σ_{c} and the elapsed time e_{c}.

3.3 Definition of Clock-based DEVS Structure

Definition 10 (CDEVS (continued))

$$
M_{C}=\left(X, Y, S, s_{0}, \delta_{x}, \delta_{y}\right)
$$

- $s_{0}=\left(s_{d 0}, \ldots, \sigma_{0 c}, 0, \ldots\right) \in S$ is the initial state variable
- $\delta_{x}: S \times X \rightarrow S$ is the external transition function.
- $\delta_{y}: S \rightarrow Y^{\phi} \times S$ is the output and internal transition function;

Let the remaining time function tr $: S \rightarrow \mathbb{T}^{\infty}$ be

$$
\begin{equation*}
\operatorname{tr}\left(s_{d}, \ldots, \sigma_{c}, e_{c}, \ldots\right)=\min _{c \in C}\left\{\sigma_{c}-e_{c}\right\} \tag{7}
\end{equation*}
$$

for $\left(s_{d}, \ldots, \sigma_{c}, e_{c}, \ldots\right) \in S$.

3.4 A Example of CDEVS Toaster

Figure 4: A Toaster CDEVS Model where $t \in[20,30]$

3.5 Behaviors of the CDEVS class

Given a CDEVS $M_{C}=\left(X, Y, S, s_{0}, \delta_{x}, \delta_{y}\right)$, there exists a TES $G\left(M_{C}\right)=\left(Z, Q, Q_{A}, q_{0}, \Delta\right)$ defining the behavior of M_{C} as follows. The set of events is $Z=X \cup Y$. The set of states is $Q=Q_{A} \cup Q_{\bar{A}}$ where $Q_{A}=\left\{\left(s, t_{s}, t_{e}\right): s \in S, t_{s} \in \mathbb{T}^{\infty}, t_{e} \in \mathbb{T} \cap\left[0, t_{s}\right]\right\}$ and $Q_{\bar{A}}=\{\bar{s} \notin S\}$ in which t_{s} and \bar{s} is piecewise constant, and t_{e} is piecewise linear.
The initial state variable is given

$$
q_{0}=\left(s_{0}, t_{s 0}, t_{e 0}\right)=\left(\left(s_{d 0}, \ldots, \sigma_{0 c}, 0, \ldots\right), \operatorname{tr}\left(s_{0}\right), 0\right) .
$$

The state trajectory function $\Delta: Q \times \Omega_{Z, \mathbb{T}} \rightarrow Q$ is given for $q \in Q$ and an unit segment ω as below.
For a null segment $\omega=\epsilon_{[t, t+d t]}$ and $t, d t \in \mathbb{T}$,

$$
\Delta(q, \omega)= \begin{cases}\left(\left(s_{d}, \ldots, \sigma_{c}, e_{c}+d t, \ldots\right), t_{s}, t_{e}+d t\right) & \text { if } q \in Q_{A} \tag{8}\\ \bar{s} & \text { otherwise }\end{cases}
$$

3.5 Behaviors of the CDEVS class

For a timed input event $\omega=(x, t), x \in X$, and $t \in \mathbb{T}$,

$$
\Delta(q, \omega)= \begin{cases}\left(\delta_{x}(s, x), \operatorname{tr}\left(\delta_{x}(s, x)\right), 0\right) & \text { if } q \in Q_{A} \tag{9}\\ \bar{s} & \text { otherwise }\end{cases}
$$

For a timed output event $\omega=(y, t), y \in Y^{\phi}$, and $t \in \mathbb{T}$,

$$
\Delta(q, \omega)= \begin{cases}\left(s^{\prime}, \operatorname{tr}\left(s^{\prime}\right), 0\right) & \text { if } \frac{t_{e}=t_{s}}{}, \delta_{y}(s)=\left(y, s^{\prime}\right) \tag{10}\\ \bar{s} & \text { otherwise }\end{cases}
$$

3.6 $\mathrm{E}(\mathrm{DEVS})=\mathrm{E}(\mathrm{CDEVS})$

Theorem $1(E(D E V S)=E(C D E V S))$

DEVS and CDEVS are equivalent classes to each other.

$\mathrm{L}(\mathrm{CDEVS})=\mathrm{L}(\mathrm{DEVS})$
Figure 5: Proof of $\mathrm{E}(\mathrm{DEVS})=\mathrm{E}(\mathrm{CDEVS})$ is available at https://sites.google.com/site/moonhohwang/publications

4.1 Finite Clock-based DEVS(FCDEVS)

Definition 11 (FCDEVS)

A Finite CDEVS (FCDEVS) is a subclass of CDEVS
$M_{F C}=\left(X, Y, S, s_{0}, \delta_{x}, \delta_{y}\right)$ where the sets of X, Y, S_{d}, and C are
finite. Note that $S=S_{d} \times \prod_{c \in C}\left(\mathbb{T}^{\infty} \times \mathbb{T}\right)_{c}$

4.2 Timed Automaton(TA)

Definition 12 (Timed Automaton(TA))

$$
T A=\left(Z, C, P, p_{0}, I, T\right)
$$

- Z and C are the finite sets of events and the finite set of clocks, respectively.
- P and $p_{0} \in P$ are the finite set of phases which are piecewise constant, and the initial phase variable, respectively.
- I : P $\rightarrow \Phi(C)$ is the phase clock-constraint function where $\Phi(C)=\left\{C \rightarrow \mathbb{I}_{Q}\right\}$ is the set of partial clock constraints.
- $T \subseteq P \times Z^{\phi} \times \Phi(C) \times \mathcal{P}(C) \times P$ is a set of transitions. A transition $\left(p, z, \varphi, C_{R}, p^{\prime}\right) \in T$ can be also inter-changeably represented by the notation $p^{z,\{(c, i n v(c))\}, C_{R}} p^{\prime}$, requires the enabling condition of $I(p)$ and φ as a precondition, and the resetting clocks in C_{R} as a postcondition.

4.3 A Example of TA Toaster

Figure 6: A Toaster TA Model

4.4 Behaviors of the TA class

Given a TA $A=\left(Z, C, P, p_{0}, I, T\right)$, there exists a corresponding FCDEVS $B=\left(X, Y, S, s_{0}, \delta\right)$ that defines the behavior of A. We consider all events in Z of A as output events of B so $X=\varnothing$ and $Y=Z$. The state set $S=P \times \prod_{c \in C}\left(\mathbb{T}^{\infty} \times \mathbb{T}\right)_{c}$.
The initial state variable $s_{0}=\left(p_{0}, \ldots, s u\left(p_{0}, c\right), 0, \ldots\right)$ where su : $P \times C \times \mathbb{T} \rightarrow \mathbb{T}^{\infty}$ is called the clock-schedule update function that is given for a phase $p \in P$ and a clock $c \in C$

$$
\begin{gather*}
s u(p, c)=\min \left\{t_{S}\left(\left.(M(I(p)) \cap M(\varphi))\right|_{c} \cap\left[e_{c}, \infty\right)\right)\right. \\
\left.:\left(p, z, \varphi, C_{R}, p^{\prime}\right) \in T\right\} \tag{11}
\end{gather*}
$$

where M is defined in Equation (??) and $t_{S}: \mathcal{P}\left(\mathbb{T}^{\infty}\right) \rightarrow \mathbb{T}^{\infty}$ is the sampling function that is given for a set of time values $\mathbf{t} \subseteq \mathbb{T}^{\infty}$ which can be an time interval,

$$
t_{S}(\mathbf{t})= \begin{cases}\infty & \text { if } \mathbf{t}=\varnothing \tag{12}\\ t & \text { otherwise } t \in \mathbf{t}\end{cases}
$$

4.4 Behaviors of the TA class (continued)

The output and internal transition function $\delta_{y}: S \rightarrow Y^{\phi} \times S$ is given for $s=\left(p, \ldots, \sigma_{c}, e_{c}, \ldots\right), y \in Y^{\phi}:$ If $\exists\left(p, y, \varphi, C_{R}, p^{\prime}\right) \in T$, then

$$
\delta_{y}(s)=\left(p^{\prime}, \ldots, \sigma_{c}^{\prime}, e_{c}^{\prime}, \ldots\right)
$$

where $e_{c}^{\prime}=t_{R}\left(c, C_{R}\right)$ where $t_{R}: C \times \mathcal{P}(C) \rightarrow \mathbb{T}$ is called the resting function that is defined for $c \in C$ and $C_{R} \subseteq C$,

$$
t_{R}\left(c, C_{R}\right)= \begin{cases}0 & \text { if } c \in C_{R} \tag{13}\\ e_{c} & \text { otherwise }\end{cases}
$$

and $\sigma_{c}^{\prime}=s u\left(p^{\prime}, c\right)$.
If $\nexists\left(p, y, \varphi, C_{R}, p^{\prime}\right) \in T$, then nothing changes because there is no such a transition from p, thus $\delta_{y}(s)=\left(p, \ldots, \sigma_{c}, e_{c}, \ldots\right)$.

Proposition $1(E(T A) \subset E(F C D E V S))$

$E(F C D E V S) \nsubseteq E(T A)$ because TA does not allow clock boundaries of real numbers which are allowed by FCDEVS.

4.5 Finite-Graph DEVS

Definition 13 (FGDEVS)

$$
M_{F G}=\left(X, Y, S, s_{0}, \delta\right)
$$

- X, Y and S are the same as those of CDEVS but they are finite sets; and $s_{0} \in S$ is the initial state.
- $\delta \subseteq S_{d} \times Z^{\phi} \times \Psi(C) \times \mathcal{P}(C) \times S_{d}$ is the finite set of transition relations where $Z=X \cup Y^{\phi}$. A transition $\left(s_{d}, z, \psi, C_{R}, s_{d}^{\prime}\right)$ or its graphical notation $s \xrightarrow{z, \psi, C_{R}} s^{\prime}$ denotes that the discrete state changes s_{d} to s_{d}^{\prime} associated with an event z, together with two post-conditions: updating the schedule $\sigma_{c}=\psi(c)$ if $\psi(c)$ is defined for a clock $c \in C$, and resetting the elapsed time e_{c} of each clock $c \in C_{R}$.

4.6 A Example of FGDEVS Toaster

Figure 7: A Toaster FGDEVS Model where $t \in[20,30]$

4.7 Behavior of FGDEVS

The behaviors of an FGDEVS $M_{F G}=\left(X, Y, S, s_{0}, \delta\right)$ model are given through an FCDEVS $M_{F C}=\left(X, Y, S, s_{0}, \delta_{x}, \delta_{y}\right)$ as follows.
The initial state variable is $s_{0}=\left(s_{d 0}, \ldots, \sigma_{0 c}, 0, \ldots\right)$.
The external transition function $\delta_{x}: S \times X \rightarrow S$ is given for $s=\left(s_{d}, \ldots, \sigma_{c}, e_{c}, \ldots\right) \in S$ and $x \in X$, if $\exists s_{d} \xrightarrow{x, \psi, C_{R}} s_{d}{ }^{\prime} \in \delta$, then

$$
\delta_{x}(s, x)=\left(s_{d}^{\prime}, \ldots, \sigma_{c}^{\prime}, e_{c}^{\prime}, \ldots\right)
$$

where

$$
\sigma_{c}^{\prime}= \begin{cases}t_{S}(\psi(c)) & \text { if } \psi(c) \text { is defined } \\ \sigma_{c} & \text { otherwise }\end{cases}
$$

and t_{S} is the sampling function defined in Equation (12), and

$$
e_{c}^{\prime}=t_{R}\left(c, C_{R}\right)
$$

where $t_{R}\left(c, C_{R}\right)$ is the resetting function defined Equation (13). If $\nexists s_{d} \xrightarrow{x, \psi, C_{R}} \boldsymbol{s}_{d}{ }^{\prime} \in \delta$, nothing changes by x, thus
$\delta_{x}(s, x)=\left(s_{d}, \ldots, \sigma_{c}, e_{c}, \ldots\right)$.

4.7 Behavior of FGDEVS (continued)

The output and internal transition function $\delta_{y}: S \rightarrow Y^{\phi} \times S$ is given for $s=\left(s_{d}, \ldots, \sigma_{c}, e_{c}, \ldots\right) \in S$ and $y \in Y^{\phi}$, if $\exists s_{d} \xrightarrow{{ }^{Y}, \psi, C_{R}} s_{d}{ }^{\prime} \in \delta$, then

$$
\delta_{y}(s)=\left(y,\left(s_{d}^{\prime}, \ldots, \sigma_{c}^{\prime}, e_{c}^{\prime}, \ldots\right)\right)
$$

where $\sigma_{c}^{\prime}=\psi(c)$ if $\psi(c)$ is defined, otherwise, $\sigma_{c}^{\prime}=\sigma_{c}$; and $e_{c}^{\prime}=t_{R}\left(c, C_{R}\right)$. If $\nexists s_{d} \xrightarrow{y, \psi, C_{R}} s_{d}{ }^{\prime} \in \delta$, nothing changes by an internal transition from s so $\delta_{y}(s)=\left(\phi,\left(s_{d}, \ldots, \sigma_{c}, e_{c}, \ldots\right)\right)$.

Proposition $2(E(F G D E V S) \subseteq E(F C D E V S))$

It is given by the definition. We still don't know if $E(F C D E V S) \subseteq E(F G D E V S)$ so $E(F G D E V S)=E(F C D E V S)$.

4.8 Finite \& Deterministic DEVS (FDDEVS)

Definition 14 (FDDEVS)

$$
M_{F D}=\left(X, Y, S, s_{0}, \tau, \delta_{x}, \delta_{y}\right)
$$

- X and Y are the same as those of FCDEVS.
- S is the finite discrete states which are piecewise constant.
- $s_{0} \in S$ is the constant initial state.
- $\tau: S \rightarrow \mathbb{Q}_{[0, \infty)}$ is the time schedule function where $\mathbb{Q}_{[0, \infty)}$ is the none negative rational numbers plus infinity.
- $\delta_{x}: S \times X \rightarrow S \times\{0,1\}$ is the external transition function.
- $\delta_{y}: S \rightarrow Y^{\phi} \times S$ is the output and internal transition function.
As the name explains, τ, δ_{x} and δ_{y} of FDDEVS are deterministic.

4.9 Behavior of FDDEVS

Given an FDDEVS model $M_{F D}=\left(X, Y, S, s_{0}, \tau, \delta_{x}, \delta_{y}\right)$, there is a corresponding FGDEVS $M_{F G}=\left(X, Y, S_{G}, s_{0 G}, \delta\right)$ can describe the behavior of the original model $M_{F D}$ as follows. The events sets of $M_{F G}$ are the same those of $M_{F D}$. The state set of $S_{G}=\left\{\left(s, \sigma_{c}, e_{c}\right): s \in S, c \in C\right\}$ where $C=\left\{{ }^{\prime} c\right.$ ' $\}$. The initial state $s_{0 G}=\left(s_{0}, \tau\left(s_{0}\right), 0\right)$. The state transition relation δ of $M_{F G}$ is defined corresponding to each state transition.

$$
\begin{gathered}
\delta_{x}(s, x)=\left(s^{\prime}, 0\right) \text { implies } s \xrightarrow{x, \varnothing, \varnothing} s^{\prime} \in \delta, \\
\delta_{x}(s, x)=\left(s^{\prime}, 1\right) \text { implies } s \xrightarrow{x,\left\{\left(c, \tau\left(s^{\prime}\right)\right)\right\},\{c\}} s^{\prime} \in \delta, \\
\delta_{y}(s)=\left(y, s^{\prime}\right) \text { implies } s \xrightarrow{y,\left\{\left(c, \tau\left(s^{\prime}\right)\right)\right\},\{c\}} s^{\prime} \in \delta .
\end{gathered}
$$

5.1 Contributions

- Provided a formal framework that clarifies expressiveness of different formalisms.
- Expressive inclusion among DEVS equivalent and subclasses:

DEVS=CDEVS

FCDEVS

5.2 Future Directions

- The question whether $E(F C D E V S) \subseteq(F G D E V S)$ or not is still an open problem.
- In addition to TA, expressiveness comparison among other popular formalisms like Colored (timed) Petri-Nets, UML Start-Charts are possible in the same way of timed language approaches.
- Similarity (or Distance) of Two models: Given two DEVS instances M_{1} and M_{2}, the distance of M_{1} and M_{2} can be done by their (1) event segments, or (2) states. Then we will have a metric space of discrete event systems using DEVS. That may be answer of simulation model validity for closeness or similarity of two given systems (one can be a target system, the other its simulation model).

References I

L. Nigro F. Pupo F.Cicirelli, A. Furfaro.Temporal verification of RT-DEVS models with implementation aspects.
In Proceeding SpringSim '10 Proceedings of the 2010 Spring Simulation Multiconference, 2010.
(i) A. Furfaro and L. Nigro.

Embedded Control Systems Design based on RT-DEVS and temporal analysis using UPPAA.
In Proceedings of the International Multiconference on Computer Science and Information Technology, pages 601-608, 2008.

R
H. Saadawi and G. Wainer.

Rational Time-Advance DEVS (RTA-DEVS).
In Proceedings of 2010 Spring Simulation Multi-Conference:
Proceedings of 2010 DEVS Symposium, 2010.

References II

M. H. Hwang and B.P. Zeigler.

Expressiveness of Verifiable Hierarchical Clock Systems. International Journal of General Systems, 37(4):391-413, 2008.M.H. Hwang and B.P. Zeigler.

Reachability Graph of Finite \& Deterministic DEVS Networks.
IEEE Trans. on Automation Science and Engineering, 6(3):454-476, 2009.
(in Moon H. Hwang and B. P. Zeigler.
A Reachable Graph of Finite and Deterministic DEVS Networks.
In Proceedings of 2006 Spring Simulation Multi-Conference:
Proceedings of 2006 DEVS Symposium, pages 48-56, Huntsville, AL, Apr. 2-8 2006. SCS.

