
The Journal of Supercomputing
https://doi.org/10.1007/s11227-018-2682-1

PSML: parallel systemmodeling and simulation language
for electronic system level

Alireza Poshtkohi1 ·M. B. Ghaznavi-Ghoushchi1 · Kamyar Saghafi1

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
System-level description languages in electronic system level are domain-specific
sequential simulation languages using the shared-everything model in discrete-event
modeling and simulation terminology. They implement sequential process-interaction
worldview to take advantage of event partitioning for ease of programming and mod-
ularity. Therefore, their reference simulators can only be executed on a single physical
core. Fast and accurate simulation is highly desirable for efficient and effective system
design due to the ever-increasing complexity of embedded and cyber physical systems.
Parallel discrete-event simulation (PDES) is the main technique to solve this problem
for large-scale system-level models. PDES works based on state space partitioning
by using the so-called logical process worldview. This paper proposes parallel system
modeling and simulation language (PSML), along with its formalized distributed par-
allel simulation kernel, that provides execution of hardwaremodels in order to improve
simulation speed significantly. It will be shown that the proposed framework results
in linear, super-linear speedups ranging from 11× to 32× for large-scale, complex
PSMLmodels in comparison with the SystemC reference simulator on a 12-core host.

Keywords Parallel discrete-event simulation (PDES) · Parallel simulation languages
(PSLs) · System-level description languages (SLDLs) · SystemC · Transaction-level
modeling (TLM) · Embedded systems

B M. B. Ghaznavi-Ghoushchi
ghaznavi@shahed.ac.ir

Alireza Poshtkohi
arp@poshtkohi.ir

Kamyar Saghafi
saghafi@shahed.ac.ir

1 Department of Electrical Engineering, Shahed University, Tehran 3319118651, Iran

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2682-1&domain=pdf

A. Poshtkohi et al.

1 Introduction

The large size and complexity of the modern digital hardware impose great challenges
to design and validation. Today, computer simulation is a well-accepted technique
to verify Hardware (HW)/Software (SW) embedded systems. System-level design
addresses the complexity issue of embedded systems by raising the level of abstrac-
tion [1]. This complexity imposes significant challenges for modeling, verification
and synthesis in digital hardware design. Moving to higher abstraction levels through
system-level languages allows designers to describe hardware and software compo-
nents based on the same level or mixed levels. Hardware models are usually written in
C/C++-based System-Level Description Languages (SLDLs). According to the trends
in integrating more cores into a single chip and the steady growth in system size and
complexity, simulation time has greatly increased and so costs and verification time
have risen. The main technique to solve this problem is parallel and distributed simu-
lation (PADS) [2–5]. SLDLs rely on sequential discrete-event simulation (DES) and
are of sequential simulation languages using the shared-everything model [6]. They
implement sequential process-interaction worldview to take advantage of event par-
titioning for ease of programming and modularity.

PDES exploits the natural parallelism in simulation models to improve simulation
speed substantially. The advent of multi-core and many-core architectures provides
new opportunities to revisit fine-grained applications like PDES. There are differ-
ent sequential simulation languages (SSLs) to model digital systems. They differ in
usability due to their underlying semantic models. PDES works reliant on the so-
called logical process (LP) worldview [2]. This formalism cannot be applied directly
to SLDLs because they are SSLs. There are two key features for the LP pattern that
are shared by all PDES platforms: state space partitioning and event scheduling. A
novel formalism is required to specify these characteristics in electronic system level
(ESL). PDES is entirely and fundamentally different from sequential DES, and thus,
a domain-specific PDES-compliant simulation language for HW systems must be
developed with its own theory and life cycle largely independent of DES.

In summary, the key contributions of this paper are as follows:

• It proposes parallel systemmodeling and simulation language (PSML) forESL.This
language can be directly used as either a new parallel SLDL to model digital hard-
ware or an intermediate language in order to map other SLDLs by using common
compiler techniques. This avoids repetition of basic discoveries when parallelizing
the existing SLDLs and Hardware Description Languages (HDLs).

• It formally defines PSML parallel execution semantics on a PDES abstract machine
which is consistent with different PDES algorithms (conservative or optimistic).

• A proof-of-concept implementation of the PSML execution semantics is presented
in a highly extensible and optimized parallel environment.

• It proposes a new timing model for the semantics of event ordering to tackle the
problem of simultaneous events for deterministic parallel simulation of SLDLs.

The rest of the paper is organized as follows. In Sect. 2, we study some fundamental
concepts, and the factors that motivated us to propose PSML language. Section 2 also
focuses on the related works published so far for parallel simulation in the context of

123

PSML: parallel systemmodeling and simulation language…

this article. PSML language is introduced in Sect. 3. Section 4mainly discusses PSML
simulation semantics and implementation of its PDES-compliant simulation kernel.
Some PSML experimental studies are described in Sect. 5. Section 6 concludes the
paper and presents our future schedule to extend PSML framework.

2 Basic concepts andmotivation

2.1 PDES fundamentals

In distributed simulation or PDES, the entire simulation state is divided into a collection
of smaller non-overlapping states managed by subtasks referred to as LPs, and each of
them is executed by a processor or node [5]. These LPs communicate with each other
by exchanging timestamped event messages in simulated time. These events are used
to synchronize the execution of LPs in parallel. An event refers to an update to system
state at a particular instant in simulation time. LPs do not share any state variables and
solely communicate through these timestamped messages. Synchronization between
LPs is violated when one of the LPs receives an out-of-order event. To overcome this
problem, a lot of synchronization protocols have been proposed that havemainly fallen
into synchronous and asynchronous category. In synchronous simulation, all the LPs
see a single clock and synchronizewith one another through an expensive global barrier
mechanism after processing events in current simulation time, where parallelism can
only be exploited if a model contains simultaneous events. A shared memory (multi-
core) synchronous implementation of a DES program does not need any knowledge
of the LP worldview. In asynchronous algorithms, LPs process events at different
times, namely different local clocks. Asynchronous conservative algorithms strictly
avoid causality violations, such as CMB, by blocking on input channels and provide
mechanisms to resolve deadlocks: deadlock avoidance by null messages and deadlock
recovery by deadlock detection. Optimistic protocols allow violations and provide
mechanisms to recover. Undoing modification of state variables can be accomplished
by taking a snapshot of the state of each LP prior to processing each event. One of the
central issues in Time Warp synchronization is how to support fast state restoration
with low-overhead checkpointing [2]. Asynchronous synchronization is much more
complicated than synchronous ones, but reaches much higher speed and strong scaling
[7] because processors process events with different timestamp and the properties of
pipeline execution are seen.Both conservative andoptimistic variants assumeall events
in the simulation have unique timestamps and so they guarantee deterministic parallel
simulation and reproducible results. Therefore, simultaneous events must be treated
precisely for those applications that generate them, including HDLs and SLDLs.

2.2 Problem definition

Standardized IEEE HDLs and SLDLs—including VHDL, Verilog, SystemC, Sys-
temVerilog and SpecC [8–12]—allow hardware designers to describe parallel com-
ponents of an electronic system and concurrent interactions between them. They are

123

A. Poshtkohi et al.

actually domain-specific sequential simulation languages for hardware design in terms
of modeling and simulation, because sequential simulation languages are based on the
process-interaction approach and routinely use the shared-everything model [6]. The
simulation of a hardware model is full of simultaneous events that are handled by
on the well-known delta cycles. This technique imposes a partial order on simultane-
ous events for sequential deterministic execution. These languages take advantage of
co-routine semantics (suspend and resume) invented in Simula simulation language
[13] by wait expression to provide concurrent simulation of simultaneous events.
Every (simulation) language that makes use of co-routines is also called a concurrent
language. Due to existence of simultaneous events, legacy hardware languages can
be easily accelerated by synchronous parallelization approaches and protecting the
shared state on shared memory machines; however, they are not efficient because of
the lockstep execution and low degree of parallelism. Parallel simulation languages
(PSLs) work reliant on the state space partitioning by logical process worldview [2,
14] for parallelism purposes while a sequentially process-oriented simulation lan-
guage takes advantage of event partitioning. PDES has recently gained extensive
attention for parallelizing sequential SLDLs due to the ever-increasing complexity
of embedded and cyber physical systems and pervasive availability of the multi-core
hosts within exascale era. In this paper, we look at the main problem from a radically
different angle and propose a new parallel simulation language—or more precisely a
PDES language—called PSML to model and simulate hardware systems. In PSML,
the modeler is provided by an abstract view of a model of computation (MoC) for
PDES that hides the underlying complex synchronization so that he can benefit from
an explicit PSL to leverage maximum efficiency of the parallel execution. The defined
abstractions let PSML developers extend the language and its simulation semantics
with minimum knowledge of PDES. Additionally, they allow PDES kernel developers
to optimize the underlying synchronization algorithms to meet the demands of PSML
kernel with little expertise in SLDLs. Based on the above goals, we propose PSML
conceptual framework in Fig. 1, which is aimed at the following main characteristics:

• PSML parallel programming model It should fully inherit SLDL features such
as modular design, synchronization, flexible timing, and so forth. A key princi-
ple in PSML was to make everything explicit to the designer except for PDES
synchronization. It shall support parallel programming primitives available in tra-
ditional parallel programming languages by explicit means of host parallelism,
model decomposition, processor mapping and communication. Because parallelism
is explicit, programmer can write an efficient program and tune it for peak perfor-
mance. LPs must be able to directly address each other through ports. This helps the
designer have full access to communication details of the design at runtime in order
to effectively partition the model and map the LPs to processors. The control of
granularity is given to user as the outcome of explicit parallelism, because it has an
important impact on parallel simulation speed. Users should be able to take control
of shared variables without knowledge of the principles in distributed shared mem-
ory (DSM) consistency protocols. Language features must facilitate distributed and
optimistic executability.

123

PSML: parallel systemmodeling and simulation language…

LP5 LP8

LP7
LP6

Comp. BComp. A
LP1

LP3

LP2

Hierarchical PSML User LP Network

LP4

Parallel Computing Platform

Comp. A

Proxy
Sub-comp.

LP ref.

Events
Port

Static
sensitivity

Delay

State vars

Shared
vars

Connector

/In
terfa

ce

PSML Simulation Kernel

Model Partitioning and Mapping

LP8

LP5

LP1

LP6

LP4

LP3

LP7

LP2

PDES Wrapper

PDES Simulation Kernel

Clustered Kernel LP Network

PSML
Compiler

Designer

PSML
Developer

PDES
Developer

P3

LVT, Tie
Breaker

State
vars
Future

Event List
Unsent scheduled

event list

Neighbors Map

PSML as a Parallel Intermediate Language
SystemC, SystemVerilog,SpecC Verilog,VHDL

Fig. 1 PSML conceptual framework

• PSML parallel execution semantics Simulation execution semantics shall be for-
malized on a generalized PDES abstract machine that complies with the LP-based
event-scheduling worldview. This implicitly states that many advantages can be
brought from PDES literature to PSML. For example, the language can be easily
implemented on sharedmemory (SM) and distributed sharedmemory (DSM) archi-
tectures by various PDES algorithms whether conservative or optimistic. Dynamic
load-balancing techniques through process migration or adaptive PDES strategies
become seamlessly straightforward. PDES algorithms are complex. To make the
complexity of PSMLkernelmanageable, separation of concerns shall be considered.
For instance, language constructs that generate PDES events should be classified,
and execution semantics is defined separately for each one. Deterministic simulation
must be guaranteed under execution of different PDES algorithms (such as CMB
and Time Warp) by defining a concise timing model for event ordering. It should
introduce possible system-level optimizations for simulation speed, including effi-
cient communication and dynamic memory management.

123

A. Poshtkohi et al.

PSML System
Specification

C++ Code with
Only Trigger

Points

C++
Intermediat

e Code

C++ Compiler (GCC,
LLVM/Clang, VC++, ...)

PSML Simulation
Kernel

Composite Type
System

Partitioner
Lib.

Mapper Lib.

Parvicursor
Framework

Profiler Lib.

Parvicursor Simulation
System (PS2)

PDES-Agnostic PS2
Wrapper Library

Simultaneous Event
Handling Lib.

Parallel
Simulation
Executable

Sequential Simulation
Executable Containing
the Only Trigger Points

PSML Simulation Dispatcher

Elaboration Phase

Partitioning and Mapping Phase

Parallel and Distributed
Simulation

Abstract Syntax Tree

PSML Transformation
Compiler

PSML
Grammar

Parser

P
S

M
L

 C
o

m
p

ile
r

S
u

it
e

PSML Runtime Framework Suite

Fig. 2 The PSML tool flow: PSML compiler suite and parallel execution framework

• PDES synchronization Execution semantics must be implemented finally by a
system-level simulation kernel. We shall determine the requirements of this ker-
nel for how to interface with PDES layer and specify its properties. In this paper,
we define a wrapper facade to address this problem. The opportunity for possible
optimizations in PDES layer should be investigated. This key metric is examined
from scalability’s point of view in context of a new PDES simulation kernel built
for PSML.

Figure 2 shows the PSML tool flow and parallel execution toolset. A PSML model
is first compiled and then executed on top of the parallel computing platform. There
are several tools, components and runtime libraries, which are studied in this paper.

2.3 Related work

Several formalisms and sequential languages exist to specify discrete-event systems,
including HDLs, SLDLs, DEVS, Statecharts, Simula, CSIM, DFSS [15], and so on.
In hardware design, PDES has predominantly been used for parallel simulation of
gate-level logic circuits expressed by netlists due to its simplicity. Numerous works
explore different conservative and optimistic protocols along with partitioning and
load balancing algorithms at Gate Level (GL) [16–21]. PDES has also applied to a
limited synthesizable subset of HDLs that are close to GL using PDES [22–24]. In the
realm of SLDLs, there are some works to parallelize SpecC and SystemC while Sys-
temVerilog has not yet been taken into consideration. Because SLDLs usually support
different abstraction levels and are very complex, the majority of reported works only
consider a single abstraction level for parallel simulation. Also, most works make use
of synchronous PDES algorithms on multi-core systems. In other words, there are
many restrictions toward them that they cannot even be used with distributed asyn-
chronous algorithms. All these techniques directly parallelize the reference simulation
kernel which may not work on new kernel releases.

123

PSML: parallel systemmodeling and simulation language…

In [25, 26], SpecC models are executed in parallel using an improved version of the
synchronous PDES algorithm applied to the sequential simulation kernel on multi-
core machines. In [27–29], SystemC kernel is modified to allow parallel simulation on
multi-core and GPU systems at Register Transfer Level (RTL). Other works have been
reported toward SystemC kernel parallelization for transaction-level modeling (TLM)
simulation that are also implemented atop synchronous PDES [30–38], a complete
survey can be found in [39]. There are also a number of distributed synchronous
implementations by modifying the SystemC kernel at RTL [40, 41]. As a whole, all
the fully fledged parallelization works of hardware-specific SLDLs (i.e., SystemC,
SystemVerilog and SpecC) benefit from synchronous PDES approaches, because this
model is inherently compatible with SSLs. Instead, asynchronous PDES is widely
used in PADS community and all the PSLs had been implemented atop these two
protocols.

As identified by Fujimoto [3], one of the six major research challenges in PADS
is to make it widely accessible to the general Modeling and Simulation (M&S) com-
munity by simplifying the development of simulation models. Three main approaches
used to address this problem are: (1) PDES kernel libraries; (2) development of auto-
matic parallelizationmethods for sequential simulation languages; and (3) newparallel
simulation languages. To date, progress has been made greatly in areas (1) and (2).
Since programming with PDES libraries is cumbersome for modelers unaccustomed
to PDES and they do not support modular design, a few of PSLs were created in
the 1990s. However, their development was abandoned because they did not cover
the broad requirements of underlying parallel processing and fully fledged object-
oriented programming constructs available in languages like C++ and Java. If they
resolved these problems, it would be greatly favorable to convert SSLs, such as Sys-
temC, DEVS, etc., into those PSLs. For example, parallelization techniques of all the
hardware languages either use a third-party PDES library or extend their kernel relied
on conservative PDES. Therefore, new domain-specific modeling languages coupled
with mechanisms to automatically translate modeling abstractions to efficient parallel
simulation code are an important avenue for M&S community. Suitable intermediate
representations are needed to provide descriptive yet precise specifications of model
state and behavior [3]. PSML is an essential attempt to develop a new PDES language
for ESL in this regard, of course, PSML defines a powerful programming interface
that can be used to model other DES problems like large-scale networked systems
[42]. PSLs were usually built by adding primitives or library functions to a sequential
simulation language to specify parallel execution. However, PSML has been designed
from the ground up with the aim of exposing explicit parallelism in mind.

Objected-oriented (OO) PSLs only supports a very basic part of OO concepts, in
which each entity contains a set of processes communicating by exchanging mes-
sages. They are deficient in common OO concepts such as templates, virtual methods,
operator overloading, polymorphism, abstract classes, etc., which are compulsory for
system-level design. They need a PDES-aware compiler that is used to generate the
underlying LP code atop a typical PDES library written in a language like C or C++.
Consequently, the user is prohibited from low-level access to PDES engine if he is
willing to make changes for performance optimization. Provided that the intermediate
code is available, it is difficult to be understood and modified (because the user has

123

A. Poshtkohi et al.

no knowledge of its execution semantics). They lack a model elaboration phase, and
so we call them as static languages. This exposes the limitation on the models that
cannot be created dynamically at runtime. This feature is essential for reusing third-
party model libraries and design space exploration (e.g., an NoC to be reconfigured at
runtime). The granularity of these languages is at the entity level in which an entire
entity is mapped to an LP, and thus, they can dramatically reduce the degree of par-
allelism in hierarchical models. They hand the model-to-processor mapping over to
the user (due to lack of an elaboration phase, he is made to map entities to processors
manually, which is a very time-consuming task for large-scale models) or use the
round-robin algorithm of the underlying PDES simulator. APOSTLE and Parsec lan-
guages extended the C language [43], while TeD was a domain-specific language for
telecommunication networks and used a mixture of the two VHDL and C languages
[44] (which was problematic for the user, because two different languages must be
learnt and used to write structures and behaviors of the models).

The PSML language also targets the above issues directly. PSML is a fully fledged
object-oriented language (with a dedicated elaboration phase) and has a PDES-aware
syntax and therefore can be compiled by a PDES-unaware compiler. PSML takes
advantage of a profile-driven sequential execution for partitioning purposes. The struc-
ture of a model is accessible to the modelers and PSML kernel as a weighted PSML
graph (WPG) in elaboration phase, which is used to implement automatic and manual
partitioning algorithms reliant on the weight information of graph nodes. This map-
ping is performed at the granularity of process level not PSML components. PSML,
in addition to being a general-purpose PDES language, provides a broad spectrum
of language constructs for ESL, including parallel hardware execution semantics,
hardware-specific data types, hardware timing models, and interfaces. Furthermore,
powerful PSML primitives allow the programmer to use the facilities present in com-
mon parallel programming languages like MPI [45, 46]—including, data marshaling
for distributed execution, processor mapping, parallel execution statistics, memory
coherence protocols, etc. As a whole, there should be a parallel simulation language
for digital electronic systems, which supports HDL/SLDL features, rather than seek-
ing how to parallelize existing languages separately. Such a PSL allows us to easily
implement compilation tools in order to convert those languages to our PSL and avoid
basic discoveries.

3 PSML language

3.1 The language

PSML design is inspired by parallel Parvicursor infrastructure [47] and the success-
ful, objected-oriented language C# that is being widely used in the software industry.
Parvicursor.NET Framework allows developers to implement C#-based.NET ECMA
programs directly in native code. One of the primary goals of PSML language is to
enable asynchronous, explicitly parallel system-level modeling—that is, real parallel
modeling of systems above the RTL that might be implemented in hardware, software
or a combination of the two. Of course, RTL and GL modeling are also possible in

123

PSML: parallel systemmodeling and simulation language…

PDES Simulation Kernel
 (Parvicurosr Simulation System)

PSML Simulation Kernel

User Logical
Processes:
Stateless

and Stateful

Components,
Hierarchy, Modularity,
Proxies, Connectors,

Inheritance, ...

Composite Data
Type System

PSML Simulation Kernel

PSML Compiler

Parser Frontend

PSML IR

C++ Backend

Parallel Execution Semantics

LP-State Specification and
Management: Physical Interfaces

and State Variables

Distributed
Events and
Notification

Ports: Input
and Output

Model
Partitioning

and Processor
Mapping

PDES orientation

La
ye

r 3
La

ye
r 2

La
ye

r 1
SLDL orientation

SimulationElaboration

Shared,
Distributed and

Optimistic
Execution
Semantics

Fig. 3 PSML architecture and its orientation between an SLDL and PDES

PSML. PSML framework is completely built on top of the Parvicursor. PSML com-
piler emits native Parvicursor-compliant codes that can be compiled by any existing
C++compiler. Figure 3 portrays PSML architecture inside a two-dimensional coordi-
nate system with the goal of visualizing the orientation between a SLDL and a PDES
language. Those that need special attention for parallel execution are located in the
direction of PDES orientation axis.

As a simple example, let’s examine modeling the c17 circuit and show its structure
and semantics in PSML as illustrated in Figs. 4, 5, 6 and 7. In Fig. 5, implementation
begins by inheriting from the class psml_component. Proxies are used to connect
different components to each other (lines 3 and 4). The gate LP is declared as stateless
because it has no explicit state (line 14). Input and output ports are separately defined
for LPs (lines 6 and 7). Here, all proxies and ports host the interface psml_wire.

Proxies and LPs are registered to LP ports and components, respectively, in class
constructors (lines 13–14). Ports along with their sensitivity list are registered to LP
handles (lines 15–16). A LP always sees its reference. In Fig. 6, the driver LP is stateful
and explicitly stores its state variables in a class derived from psml_state class (defined
in lines 2 through 5, and used in lines 13–19). A customized model partitioner and
process mapper is implemented to assign the processes of a model to processors by
the user (lines 14 and 15). Simulation runs on 4 cores (lines 16–19). Figure 8 presents
PSML parallel execution flow. At runtime, the model is elaborated in four individual
phases and transformed into a network of logical processes. A PSMLmodel has a hier-
archical, object-oriented, modular and component-based structure. Unlike all existing
serial SLDLs where ports are defined just for modules, in PSML, ports are defined for
processes inside a component and components are linked together through a type of
connectors called proxies. In the third phase, the modeler can implement two types
of fine-grained and coarse-grained partitioning algorithms for his/her design. After

123

A. Poshtkohi et al.

Fig. 4 The gate-level model of
the c17 circuit

n 1 n 2

n 3 n 4

n 5 n 6

w 6 w 7

w 8 w 9

w 1
0

w 1
1

w 1 w 2 w 3 w 4 w 5

Driver

Monitor

Fig. 5 A NAND gate in PSML 1 class nand2 : public psml_component {
 2 // Proxy declarations
 3 public psml_proxy<psml_wire<bool> > x0_, x1_;
 4 public psml_proxy<psml_wire<bool> > y0_;
 5 // Port declarations
 6 private psml_inport<psml_wire<bool> > x0, x1;
 7 private psml_outport<psml_wire<bool> > y0;
 8 private psml_ulp lp;
 9 private psml_time wire_delay(1, PSML_NS);
10 // Constructor
11 public nand2(System.String name) {
12 set_name(name);
13 register_proxy(x0, x0_); ...
14 lp = register_user_lp(ulp, false, "ulp");
15 lp.register_port(x0); ...
16 lp.register_sensitivity(x0); ...
17 }
18 // Stateless PSML User LP
19 private void ulp(psml_ulp owner) {
20 while(true) {
21 bool Y = !(x0.fetch() & x1.fetch());
22 y0.put(Y, wire_delay, owner);
23 psml_wait(delay, owner);
24 }
25 }
26 }

partitioning, we obtain a clustered network of logical processes. Parallel simulation
phase is responsible for deterministic execution of PSML models based on PSML
parallel simulation semantics.

123

PSML: parallel systemmodeling and simulation language…

A driver component.
1 class driver : public psml_component {
2 class state : public psml_state {
3 public Int32 i = 0;
4 public Int counter = 0;
5 }
6 private state s = new state();
7 private psml_time wd(0, PSML_NS);
8 private psml_time delay(5, PSML_NS);
9 psml_vector patterns[5] = {"10001", ...};

10 // Stateful PSML User LP
11 private void ulp(psml_ulp owner) {
12 while(true) {
13 x0.put(patterns[s.i].get(0), wd, owner);
14 x1.put(patterns[s.i].get(1), wd, owner);
15 Console.Wrie("@time {0}", psml_sim_time(owner));
16 Console.WriteLine(" x0 x1 x2 x3 x4 {0}{1}{2}{3}{4}", x0, x1, x2, x3, x4);
17 psml_wait(delay, owner);
18 if(s.i ++ == 5) s.i = 0;
19 s.counter++;
20 }
21 }
22 }

Fig. 6 A driver component

c17 model representation.
1 using Parvicursor.psml;
2 using Parvicursor.PS2
3 void Main(System.String[] args) {
4 // Sets simulation time resolution
5 psml_set_time_resolution(1, PSML_NS);
6 // Instantiation
7 nand2 n1("n1");
8 driver d("d"); …
9 // Connectivity

10 psml_connector c1, c2, ...;
11 psml_wire<bool> w1, w2, ...;
12 n1.x0_.bind(c1, w1); …
13 // Simulation
14 psml_ partitioner par = new psml_partitioner(“rb”);
15 psml_mapper map = new psml_mapper(“rb”);
16 UInt32 cores = 4;
17 psml_simulator sim = new psml_simulator(cores, par, map);
18 psml_time t(1000, PSML_NS);
19 sim.start(t);
20 }

Fig. 7 c17 model representation

3.2 PDES-specific constructs in PSML

Designing a PSL involves balancing the aims of performance and elegance while
accommodating the distributed nature of parallel simulation and the underlying syn-
chronization mechanism. Because parallel simulations are intended to be run on
distributed multiprocessor architectures, the design of the PSML must ensure the lan-
guage features scale easily on them and do not rely on shared memory or centralized

123

A. Poshtkohi et al.

PSML Model Description

Elaboration Phase I - Hierarchy Construction

Hierarchical PSML LP Network (LPN)

Elaboration Phase II – LP Mapping

Elaboration Phase III – User-Defined
Fine/Coarse-Grained Partitioning

Clustered Kernel LP Network (CLPN)

LP1
LP2

LP4 LPn

LP5LP3

Cluster 1

LP1
LP2

LP4 LPn

LP5LP3

Cluster m

Elaboration Phase IV – User-Defined
Processor Mapping

PSML Parallel Simulation Phase

Parallel Simulation
Semantics

Simultaneous
Event Manager

Translating PSML Kernel API Calls
 into PS2 Wrapper API Calls

PDES Executive –
PS2 Simulation Kernel

Parallel Hardware Platform
 (HPC, Many-Core, Cloud, ...)

Core 1

Core 4

Core 7

Core 2

Core 5

...

Core 3

Core 6

Core n

ClusterPSML User LPComponent Kernel LP

Fig. 8 Parallel PSML execution flow for simulation of SLDL models

(synchronous) synchronization. One important design issue in PSML was to choose
a loosely coupled process computation model in that LPs only communicate by mes-
sage passing and generally do not share read/write memory. This model is consistent
with many parallel simulation protocols, including CMB and Time Warp [1]. PSML
presents the user with a different clock in each LP, and each event has a timestamp
and other LP-related information with it. In fact, PSML is a hierarchical, modular
LP-based PSL, or more precisely an objected-oriented PDES language, that supports
general-purpose discrete -event simulation semantics and domain-specific language
(DSL) constructs for HW systems. Table 1 shows differences and similarities between
PSML and the de-facto SLDLs.

• Language support for PDES-aware HW specification The atomic element of a
PSML model is a user logical process (ULP). ULPs are connected to each other
through ports and connectors.ULPs can be embedded in components and a reference
to each ULP is returned to the modeler by PSML for future uses within the model,
while it is not a necessity and themodeler can construct his model only by ULPs and
connectors. Each component can also host a number of sub-components to build a
hierarchy of components. PSML implements a concept referred to as proxy software
design pattern to connect components and sub-components to one another and
support modular design. EachULP has a set of state variables thatmust be registered
to the kernel. Since each ULP is sequentially executed, we suggest two simulation

123

PSML: parallel systemmodeling and simulation language…

Ta
bl
e
1
C
om

pa
ri
so
n
an
d
m
ap
pi
ng

be
tw

ee
n
PS

M
L
an
d
di
ff
er
en
tS

L
D
L
co
ns
tr
uc
ts

Fe
at
ur
e

Sy
st
em

-l
ev
el
de
sc
ri
pt
io
n
la
ng
ua
ge
s

PS
M
L

Sy
st
em

C
Sy

st
em

V
er
ilo

g

O
O
P
st
yl
es

Fu
lly

in
he
ri
te
d
fr
om

C
#

Fu
lly

im
pl
em

en
te
d
in

C
+
+

C
la
ss
es
,s
in
gl
e
in
he
ri
ta
nc
e,

po
ly
m
or
ph

is
m
,…

H
ie
ra
rc
hy
/m

od
ul
ar
ity

ps
m
l_
co
m
po

ne
nt

SC
_M

O
D
U
L
E

m
od

ul
e

(L
og
ic
al
)
pr
oc
es
se
s

ps
m
l_
ul
p
ul
p
=
re
gi
st
er
_u
se
r_
lp
(m

et
ho
d,
m
od
e,
na
m
e)

SC
_M

E
T
H
O
D
/S
C
_T

H
R
E
A
D

Se
qu
en
tia
la
nd

pa
ra
lle
lb

lo
ck
s,

an
d
bl
oc
ki
ng

,n
on

-b
lo
ck
in
g
an
d

co
nt
in
uo

us
as
si
gn

m
en
ts

Po
rt
s/
pr
ox
ie
s

ps
m
l_
in
po

rt
,p
sm

l_
ou

tp
or
t,
ps
m
l_
co
nn

ec
to
r,
ps
m
l_
pr
ox
y

sc
_i
n,

sc
_o

ut
,s
c_
po

rt
in
pu

t,
ou

tp
ut

In
te
rf
ac
es
/c
ha
nn
el
s

ps
m
l_
no
m
in
al
_i
nt
er
fa
ce

(p
sm

l_
w
ir
e)
:
cr
ea
te
_i
ns
ta
nc
e,

de
st
ro
y_
in
st
an
ce
,c
lo
ne
,c
op

y,
co
m
m
it
,d

el
et
e

sc
_s
ig
na

l,
sc
_p

ri
m
_c
ha

nn
el
,s
c_
fif
o,

sc
_s
em

ap
ho
re
,s
c_
m
ut
ex

w
ir
e,
re
g,
in
te
rf
ac
e

Sy
st
em

-l
ev
el

sy
nc
hr
on

iz
at
io
n

Se
ri
al
iz
ab
le
di
st
ri
bu
te
d
PD

E
S
ev
en
ts
:p

sm
l_
ev
en
t

(r
eg
is
te
r_
in
it
ia
to
r,
re
gi
st
er
_s
ub
sc
ri
be
r,
ps
m
l_
w
ai
t,

ps
m
l_
no
ti
fy
),
se
ns
it
iv
it
y
li
st
(r
eg
is
te
r_
se
ns
it
iv
it
y)

sc
_e
ve
nt

(w
ai
t,
no

ti
fy
),
se
ns
it
iv
it
y
li
st

ev
en
t
(w

ai
t,
tr
ig
ge
r)
,s
en
si
ti
vi
ty

li
st
(@

)

Si
m
ul
at
io
n

ps
m
l_
si
m
ul
at
or
(s
ta
rt
,s
to
p)

sc
_s
ta
rt
,s
c_
st
op
,s
c_
pa
us
e

$s
to
p,
$fi
ni
sh

M
od

el
pa
rt
iti
on

in
g/
pr
oc
es
so
r

m
ap
pi
ng

W
ei
gh
te
d
PS

M
L
G
ra
ph
:
ps
m
l_
pa
rt
it
io
ne
r,

ps
m
l_
m
ap
pe
r

–
–

Sh
ar
ed

m
em

or
y
ex
ec
ut
io
n

se
m
an
tic
s

M
em

or
y
co
he
re
nc
e
pr
ot
oc
ol
s:
sh
ar
ed

ke
yw

or
d
fo
r

sh
ar
ed

va
ri
ab
le
s

C
oo

pe
ra
tiv

e
Sc

he
du

lin
g

C
oo

pe
ra
tiv

e
Sc

he
du

lin
g

D
is
tr
ib
ut
ed

sh
ar
ed

m
em

or
y
ex
ec
ut
io
n

se
m
an
tic
s

Se
ri
al
iz
ab
le
co
m
po
si
te
da
ta
ty
pe

sy
st
em

(s
er
ia
li
ze
,

de
se
ri
al
iz
e,
cl
on

e,
co
py
,d
el
et
e)
,i
nt
er
fa
ce

fu
nc
tio

n
ca
lls

–
–

O
pt
im

is
tic

ex
ec
ut
io
n

se
m
an
tic
s

re
gi
st
er
_s
ta
te
_v
ar
,p

or
t-
bo
un
d
ph
ys
ic
al
in
te
rf
ac
es

–
–

D
yn

am
ic
m
em

or
y

al
lo
ca
tio

n
ps
m
l_
pd
es
_m

em
or
y_
m
an
ag
er

(p
sm

l_
ne
w
,p

sm
l_
de
le
te
)

–
–

123

A. Poshtkohi et al.

worldviews to be used by each ULP: process interaction and event scheduling.
ULPs communicate with each other by exchanging explicit PDES events (which
can be used by psml_notify, and psml_wait) or sensible ports. A system-level PDES
event, which is a serializable object to be transferred on the network by PDES layer,
has a number of registered initiators and subscribers. Notification of a PDES event
by an initiator means explicit delivery of its effect to subscribers. Communication
through a port is intercepted by its bound pair of nominal interface (NI) and physical
connector (PC). A NI is only used for decision-making by PSML kernel when a
communication is requested by a sender ULP, because two different ULPs may
reside on different processors or computer nodes. A physical interface (PI) instance
is attached to every input/output of eachULP; this is done by calling create_instance
method, which must be implemented by the user for new interfaces, at elaboration
phase.

Each interface like psml_wire in PSMLmust implement a number of methods such
as put (to buffer a new value to PSML kernel), fetch (to read current value of the
interface), serialize/deserialize (for data marshaling over a network), copy (to copy a
new content into the data of an interface when receiving), commit (for intra-cluster
zero-copy communication), clone (to duplicate from the contents of an interface for
sending), delete (to free a memory buffer allocated by clone), etc.; in fact, these
methods make it possible for PSML kernel to manage data transfer between ULPs’
ports. Prototype of eachULP looks similar to voidmy_name(psml_ulp owner). Stateful
ULPs are those that must explicitly define and manually manage their own state; of
course, PSML transparently monitors the state of input ports for this type of ULPs to
ease programming. Context switches through psml_wait statement is supported in both
types of ULPs. PSML takes advantage of the shared-nothing but some shared state
principle in PSLs for allowing distributed simulation and different PDES protocols
such as conservative (CMB), optimistic (TimeWarp) and adaptive. The facility of some
shared state, which can be declared by the keyword shared in a model, only provides
a basic means of shared variables for HW systems. This is necessary because PDES
algorithms cannot work with the shared-everything coding styles used in traditional
sequential simulation languages. If ULPs are using shared variables, PSML compiler
emits an additional set of port/NI declarationswithout being registered in the sensitivity
list, and the read/write calls are explicitly performed through these ports instead of
the original variables. In principle, shared variables are supported by duplicating the
shared information in PSML processes that need it. Because a shared variable can
be modified, a protocol is required to ensure coherence among different copies of the
shared state. Reads are satisfied immediately by returning the current value of the local
copy while updates are broadcast to all processes through the assigned ports. Since
PSML kernel makes use of a total causal event ordering mechanism as discussed in
Sect. 4.3, this coherence protocol whose update events have unique timestamps is
consistent with the virtual time and satisfies the exact causal ordering of updates to
the shared variables.

Transaction-level modeling (TLM) with its well-known definition [10] cannot be
used for distributed simulation in a PDES language like PSML. We believe that future
hardware languages, new languages for standardization or parallel language extensions

123

PSML: parallel systemmodeling and simulation language…

to legacy HW languages, must adopt this strategy and redefine the semantics of the
shared state such as TLM interfaces. To facilitate a basic TLM coding style in PSML,
we propose the concept of transactional PDES events (TPEs), in which a master ULP
hosts a TLM-like interface and other ULPs can query the master by exchanging TPEs.
TPE is a generalization of PDES events that contains an additional data payload, which
can be used to exchange any desired data and implement high-level message-based
transactions. As seen, PSML tries to construct an object-oriented logical process MoC
that has some language similaritieswith existing SLDLs andHDLs, but it is onlymeant
to facilitate the learning process of a new user to the PDES world. PSML supports the
notion of sensitivity lists thatmust explicitly be registered toULPs.Because distributed
simulation means communication between processors that may be on different nodes
in a network, PSML defines its own composite data type system. All non-primitive
PSML data types must inherit from serializable_object and implement a number of
methods such as serialize, deserialize, clone, copy and delete. PSML implements a
broad range of HW data types on top of this system such as 32, 64 and 512 bit integers.

• Language support for efficient PDES execution Generally, PDES execution is well
suited for fine-grained applications; however, very fine granularity may reduce
performance significantly in some scenarios. PSML language and its kernel imple-
ment a unified interface for giving the capability of model partitioning, processor
mapping, and extraction of runtime information for efficient partitioning to the pro-
grammer. After PSML elaboration phase, PSML constructs a network of LPs as
a WPG by the port/proxy-based software design pattern. A user can implement
different static partitioners (fine-grained and coarse-grained) which are available
in the theory of general-purpose parallel computing and PDES. PSML records a
large number of useful information at runtime for sequential or parallel simulation,
such as communication pattern of the LPs and processor cores, the number of roll-
backs and deadlocks, memory usage, etc. Then, the user can use this information
to update WPG and implement a user-defined partitioner to partition the model.
A similar technique is used to develop the processor mapper to map partitions to
processors; this new graph contains the distance of cores as well. PSML is based
on LPs, and there is no constraint for this pattern. Furthermore, PSML provides
an API for dynamic load-balancing techniques to migrate LPs across processors
based on runtime statistics information by the modeler. This extension is only sup-
ported by optimistic protocols. Because the underlying parallel simulation is based
on the message passing between PSML ULPs, which reside on different cores, it is
necessary to support efficient memory allocation. A single unified multi-threaded
memory allocator should be accessible to the system-level modelers, who make use
of that to extend either the composite data type system or perform high-level trans-
actions between processes, and PSML kernel as well. This functionality is provided
by psml_new and psml_delete keywords. The underlying allocator implements two
types of memory pools: one used for intra-cluster and another for inter-cluster com-
munication. It is aware of the sender and receiver ULPs through the API. Therefore,
each cluster has a local pool and a shared remote-access pool. Because multiple
PSML ULPs usually reside on a single cluster, the first memory pool provides a
lockless, fast access to the pool. Spin locks are used for the second type of the pool

123

A. Poshtkohi et al.

in order to protect concurrent access to it, where a sender ULP allocates a chunk of
the memory and a receiver ULP frees it in another processor. Both pools are imple-
mented based on stacks to improve cache reuse. Each pool itself is a hierarchical
pool of memory pools where each sub-pool maintains a separate free list for each
size memory block used for different hardware data types.

• Language support for LP state specification and management Unlike legacy PSLs
and like low-level PDES libraries, PSMLgives full control over statemanagement to
the programmer. Since an efficient optimistic execution of a model requires proper
model state management, PSML takes this important issue into consideration. As
there are many state-saving schemas, PSML must introduce a tradeoff between
ease of programming and performance. Giving the explicit control of state saving
to the user has the potential for maximum simulation performance. An explicit
state can be defined for a stateful ULP by inheriting from psml_state. The user
must override copy_state, clone_state and delete_statemethods of this class. PSML
kernel makes use of these methods to support different state-saving schemas in
optimistic simulations.

4 PSML parallel execution semantics and its implementation

In this section, we first formally define the simulation semantics of PSML and then
discuss its real implementation.

4.1 Parallel simulation execution semantics

This section defines a parallel software-based abstract machine for PSML execution.
This model represents an abstract view for parallel execution of HW languages, which
works on LP pattern with asynchronous PDES protocols. This machine is made up of
two parts: (1) the static part, determining the components of PSML language and its
LP states, and (2) the dynamic part, which formalizes behavior of the abstract machine
in two sub-layers of the PSML execution semantics (PSML abstract kernel) and LP
worldview (PDES abstract machine). The behavior of the abstract machine relies on
some operations that operate over the static components.

Definition A.1 (PSML user logical process)
ULP � 〈S, T , M , XSet , Y Set , ESet , f p, f iber , K LP , D〉, where

• S is the set of state variables.
• T ∈ {State f ul, Stateless} stands for ULP type.
• M ∈ {WithNoArgWait , WithT imedWait , WithEventWait} stands for mode
that shows to which type of psml_wait the ULP has suspended itself.

• XSet and Y Set are a set of input and output ports. After elaboration phase, an
instance of an appropriate pair of connector/interface is associated with each port.
ULP can be set to be sensitive to XSet.

• ESet is a set of PSML events registered by psml_wait(eventList) which express the
dynamic sensitivity of ULP.

• f p is the address of a method to theULP behavior extracted by the PSML compiler.

123

PSML: parallel systemmodeling and simulation language…

• K LP is a PDES kernel logical process associated with a ULP .
• f iber is a continuation storage stored in LIFO order that is used to suspend and
restore ULP . This is typically implemented by fiber of execution.

• D stands for delay registered for ULP .

Based on Definition A.1, we can also define a hierarchical Modelpsml as a set of
components and proxies where each component may contain a set of sub-components.
We omit to give it due to space limitation.

Definition A.2 (Kernel logical process)
K LP �

〈
StateSet , Event Set , LV T , ϕS , ϕβ , I N I T

〉
, where

• StateSet is a set of state variables.
• Event Set is a set of event types associated with the ULP .
• LV T is the local virtual time.
• ϕS stands for state transition function.
• ϕβ is event-scheduling function.
• I N I T stands for initial configuration of StateSet , port/interface binding to the
ULP , and initialization of the interfaces.

The above definition is consistent with themajority of existing asynchronous PDES
platforms where LPs don’t share state variables and assume state space partitioning.
Each LP processes one or more event(s) by ϕS and generates new event(s) by ϕβ .
PSML abstract kernel performs the execution of a system-level model under two
phases: PDES-aware elaboration and parallel simulation. Elaboration phase checks
PSML model syntactics and constructs the design hierarchy and data structures that
are needed for parallel execution atop PDES abstract machine. In elaboration phase,
PSML logical process network (LPN) is created by traversing the model hierarchy
through ports and proxies with the help of connectors. Then, each ULP is mapped to
a KULP, and LPN partitioning into clusters is performed.

Definition A.3 PSML logical process network (LPN) and extended LP network
(LPN)

A.3.1 LPN � β
(
Modelpsml

) � {ULP1, . . . , ULPn} � G(V , E), where β is the
first stage of elaboration phase, n � |LPN |,G is the resultant graph ofULPs in
which V is a set of PSML processes, and E is set of a pair of target/destination
ports where each port stores its process reference and its type.

A.3.2 LPN � γ (LPN) � {
K LP1, . . . , K LPn

}
, K LPi � 〈K LPi , ULPi 〉,

where γ is the second stage of elaboration phase to generate LP network.

A.3.3 Spsml � SLPN �
{
sULP1 , . . . , sULPn

}
, SLPN �

{
sKLP1 , . . . , sKLPn

}
,

where S is state space.

Examples of sULP are content of physical interfaces and state of a stateful ULP. A
sK LP stores the variables that are used by PSML kernel to manage the execution, for
instance, the type of a ULP or to which psml_wait the ULP was registered to suspend
itself. After preparing the necessary underlying environment for parallel simulation
throughmapping the model hierarchy into the PDES elements, PSML kernel performs
the simulation execution phase. Execution phase consists of three distributed stages

123

A. Poshtkohi et al.

of initialization, parallel simulation and cleanup. We formalize the semantics of the
PSML execution phase by using the structural operational semantics (SOS) of a PSML
model. It is defined on the parallel abstract machine by an extended version of the
labeled-transition system (LTS).

Definition A.4 (Timed LTS)
T LT S � 〈S, S0, L , →〉, where S is a set of state spaces, S0 ∈ S is initial state,

L is a set of actions related to event types (EventSet), and →⊆ S × (L × T ime) × S
is the transition relation with delay. An action a ∈ L is defined as the triplet a �〈
et , ϕs

et , ϕ
β
et

〉
where et stands for event type. A typical timed state transition of the

system is expressed by S
a, delay−→ S′ ≡ 〈

S, (a, delay), S′〉 ∈→.
Now, SOS rules are derived for execution of the PSML abstract kernel.

Definition A.5 (The SOS of a PSML Model)
T LT S(PSML) � T LT S

(
LPN

)
� 〈System, System0, L , →〉, where

• System � 〈S, LV T , Δ, ∇, Mode〉
1. S � [s1 . . . sn]T : si is the state space of K LPi .

2. LV T � [lvt1 . . . lvtn]T : lvti is the local virtual time of K LPi . The simulated
time of the entire system can be computed as T ime � Mini∈n(lvti) at any
moment in time.

3. Δ � [Δ1 . . . Δn]T : Δi is the future event list (FEL) of K LPi . Δi .min means
the event with minimum timestamp in Δi . Δi .min.T ype stands for event type
and Δi .min.id is the receiver LP.

4. ∇ � [∇1 . . . ∇n]T :∇i is the unsent scheduled event list of K LPi that is sorted
in FIFO order.

5. Mode � [m1 . . .mn]T :mi ∈ {I ni tiali zing, Processing, Scheduling}
denotes the next expected mode of an K LPi after current mode.

• System0 � [I N I T1 . . . I N I Tn]T is the initial state of all K LPs.
• L � {L1, . . . , Ln}: Ln is a set of actions that is defined for each event type in
EventSet.

• The transition relationship → is defined by the following semantics:

1. Event processing at K LPi

(modei � Processing)Λ(Δi .min.T ype ∈ Event Set)Λ(Δi .min.id � i)

〈si , lvti , Δi , ∇i , mi 〉(et ,ϕ
s
et)−→ 〈

s′
i , lvt

′
i , Δ′

i , ∇′
i , m

′
i

〉

where (s′
i � ϕs

Δi .min.T ype(si), lvt
′
i � Δi .min.timestamp, Δ′

i � Δi − Δi .min,
∇′
i � G(ULPi)|t�lvti , m

′
i � Scheduling).

G is a function that gathers the events generated during the execution of ULPi
by ϕs

Δi .min.T ype. The third term inside the premise is because multiple LPs may
reside on a single cluster and share the same FEL.

123

PSML: parallel systemmodeling and simulation language…

2. Event scheduling at K LPi

(modei � Scheduling)Λ(∇i �� ∅)

〈[
si
S∇i

]
,

[
lvti

LV T∇i

]
,

[
Δi
Δ∇i

]
, ∇i , mi

〉
(
et ,ϕβ

et , delay
)

−→
〈[

si
S∇i

]
,

[
lvti

LV T∇i

]
,

[
Δi
Δ′∇i

]

, ∇′
i , m

′
i

〉

where (∀x ∈ [0, |∇i | − 1] ⊆ N
0, Δ′∇i [x].id

� Δ∇i [x].id ∪ {ϕβ
∇i [x].T ype

,
lvti +̂delay >}; ∇′

i � ∅, m′
i � Processing).

Here, S∇ stands for the set of state spaces that are specified by the receipt LPs
in ∇, namely, S∇ � [∇[0].id.s . . . ∇[m − 1].id.s]T and m � |∇|. LV T∇ and
Δ∇ are defined similarly. To cope with simultaneous events lvti is defined as
a composite time and summed with the delay by the special operator +̂. The
notation +̂ will be derived in Sect. 5.3.

At last, we turn our attention to describe three remaining semantics for System0,ϕs
et

and ϕ
β
et . Initialization stage denoted by I N I Ti for each K LP is defined in Definition

A.6.

Definition A.6 The Rule for I N I Ti

(modei � I ni tiali zing)

〈si , lvti , Δi , ∇i , mi 〉 → 〈
s′
i , lvt

′
i , Δi , ∇′

i , m
′
i

〉

where s′
i � Swi tchT oFiber (ULPi . f iber)|s�si , lvt

′
i � 0, ∇′

i � G(ULPi)|t�0,
m′

i � Scheduling.

PSML kernel can switch between ULPs; however, the local state of a ULP must
be stored to switch between LPS. Fibers provide this feature. They are actually
lightweight, userspace threads of control that enjoy from cooperative multitasking.
There are two types of fibers: one for clusters and another for ULPs. For instance,
we can cooperatively come back to a cluster of the PSML kernel by using these two
fibers after transferring from a cluster to a ULP. At this stage, all logical processes
are executed once on all of the clusters by PDES abstract machine, and then, parallel
simulation begins. Simulation control is transferred from PSML kernel to the model
process by switching from the cluster fiber to that LP fiber.

After initialization, parallel simulation begins. PSMLparallel scheduling semantics
is presented in terms of the two functions ϕS and ϕβ . An LP receives and processes
three types of events in EventSet. Therefore, we define ϕS as ϕS � {

ϕS
1 , ϕS

2 , ϕS
3

}

shown in Fig. 9. The first event type is concerned with the data update of a port
connected to a PI instance that is recognized by the event PI_EVENT. Index of the
input port to the desired LPs is extracted from the field port of the input event which
is used to find the interface bound to the port. If the optimization of zero-copy intra-
cluster communication is enabled, the method commit is called for sender and receipt
processes that are on the same cluster.

The sender process does not directly update its internal contents that in turn are
committed by the receipt LP upon receiving its related event through this method.
Otherwise, the data contents inside the event are copied into the interface through

123

A. Poshtkohi et al.

ULPi registered with
which psml_wait?

psml_wait()

psml_wait(event)

Throw
execption

event.id == e.id?

No

Yes

PSML_EVENT

Receive an event e

Find the interface associated with e:
pif ULPi.Xset[e.port].interface

Inter-cluster
comm.?Commit pif

Copy e.data
to pif content

No

Yes
ULPi is sensitive

to e.port?

No

Yes

Throw
execption

Switch to
ULPi.fiber

What is the type of e?

PI_EVENT WAIT_SELF_EVENT

Switch to
ULPi.fiber

psml_wait(eventList)

Handle eventList

Is met?
Yes

Registered with
psml_wait(T)?

Yes

No

No

s
1

s
2

s
3

EventSet

Registered with
psml_wait()?

Yes

No

Fig. 9 Algorithm of the state transition function ϕS with respect to event types in Event Set

calling the method copy. All memory operations are performed through the memory
allocator discussed in Sect. 3.2. After preparing the content of the interface, if the ULP
is sensitive to the input port, the execution control is given to that systemULP based on
whether the ULP is stateful or stateless. This is a decentralized execution semantics as
opposed to the central evaluate/update paradigm inSLDLs. If theULPhas already been
registered to a psml_wait without any input argument, the kernel turns the execution
over the ULP to where it had previously suspended itself by switching to its fiber
and the LP execution is resumed. PSML kernel throws exceptions in encountering a
situation that is not defined by PSML execution semantics and its specification. The
second type of events is WAIT_SELF_EVENT , which is created merely by invoking
the timed function psml_wait(T). The third type of events is PSML system-level
event, namely, PDES event. For example, Fig. 9 shows operations that manage the
psml_wait on a single event issued through psml_wait(event). To take this event to
happen, in addition to the kind of the event, the identifier (ID) of received event must
be equal to the event ID that has previously been registered with the ULP. If these
conditions are met, the control of execution is transferred to it. For more complex
combinations of PSML events that are made up of multiple events, PSML implements
some similar functions to handle them. For instance, providing that a wait has been
issued on multiple concurrent events, a vector is created and registered with the ULP.
If an event is received and its ID is in the vector, a local counter associated with the
ULP and initially set to zero is incremented. Execution of a ULP (G) may generate
a set of events that are stored in ∇i , for example, writing to an interface or invoking
psml_wait and notify. ϕβ is defined for each type in EventSet.

For example, when awrite is issued atULPi ,G(ULPi) records generated events in
∇i based on receiver ULPs by input ports bound to the interface through its connector.
Definition A.7 shows the rules to prepare a PDES event for ∇i [x], where x is defined
in Definition A.5. Because both issuer and receipt ULPs may reside in a single cluster,
the algorithm takes advantage of the zero-copy intra-cluster communication.

123

PSML: parallel systemmodeling and simulation language…

Definition A.7 Event-scheduling function
ϕβ for PI Eventsϕβ

∇i [x]
� 〈P I_EV ENT , Port , Data〉, where

• NSI_EV ENT indicates the type of an event generated by writing to a physical
interface.

• Port stands for identifier of the input port located at ∇i [x].receiver , Port �
∇i [x].receiver .port .

• Data is the content associated with ∇i [x].inter f ace. For intra-cluster commu-
nication (K LPi .cluster �� ∇i [x].receiver .cluster) → Data � ∅; for inter-
cluster communication (K LPi .cluster �� ∇i [x].receiver .cluster) → Data �
∇i [x].inter f ace.clone().

4.2 Implementation of the PSML parallel abstract machine

PSML kernel has been implemented atop a set of objected-pointed PDES-compliant
APIs that export a comprehensive, flexible and cross-platform pattern of logical pro-
cesses with event scheduling world view. It implements the PSML abstract kernel.
PSML compiler emits C++ description of a system-level model written in PSML lan-
guage that conforms with PDES methodology and PSML simulation kernel APIs.
PSML kernel is responsible for parallel execution of this native C++-based model.
The implementation of the PSML kernel is done on top of a general-purpose PDES
wrapper which works based on the LP pattern. This wrapper separates low-level PDES
details (e.g., synchronization algorithms, multi-core optimization techniques, and the
type of communication, including shared memory and message passing over a dis-
tributed network) from PSML kernel and allows it to get a notion of PSML model
of parallel computation. It defines the semantics of the PDES abstract machine. Fig-
ure 10 shows the PSML design class diagram. SLDL- and PDES-specific classes that
comprise the PSML syntactics are used to prepare the simulator internals. We have
developed a set of utilities for modelers by extending the PSML kernel APIs. The PS2
wrapper enables the PSML simulation kernel to seamlessly work with different PDES
simulation kernels. We have identified minimum requirements that allow PSML to
work on several PDES platforms. The top of Fig. 10 depicts this set. These features
are encapsulated by PS2 wrapper.

A simulation model compliant with this wrapper consists of three main classes of
logical process, state and event. Each logical process has a single state and interacts
with other LPs by consuming and generating events (GetNextEvent, and SendEvent,
which are used by ϕS and ϕβ) which have timestamps. This state must specifically be
used to interact with optimistic algorithms (AllocateState, GetState and CopyState).
An LP processes events (ExecuteProcess which is used by ϕS) and often modifies its
state based on that processed event. A simple time integer is not suitable for parallel
simulation of system-level models and SLDLs like PSML. For this purpose, the time
class provides a three-tuple representation of time as stated in Sect. 4.3 (PdesTime
class). This is used to construct a complex time model to implement PSML simulation
kernel semantics and to deal with the issue of simultaneous events. To effectively
partition the model, each LP should store its connections to the neighboring LPs in
a map, where it should not lose the SLDL structural information such as to which

123

A. Poshtkohi et al.

Fig. 10 UML class diagram of the PSML simulation kernel

process and component this LP belongs, and proxies and ports (NeighborsMap and
PartitionInfo classes). The wrapper uses theModelPartitioner and ProcessorMapper
classes to perform model partitioning and processor mapping prior to the mapping
of system-level LPs into the processing elements of the PDES kernel. It also should
facilitate PDES-aware elaboration phase of the SLDL kernel. A callback has to be
registered with the wrapper, when the partitioning is completed by the PDES kernel
so that it can be called to help build the internal data structures of the SLDL kernel
(OnPartitioningCallback). For example, it is essentially used by the PSML kernel for
decidingwhether to call create_instancemethod in order to instantiate new instances of
nominal interfaces for input ports that come fromother processors or not. Furthermore,
we employ it to prepare fibers of execution, which realize cooperative scheduling of
ULPs, for each partition. Parvicursor Simulation System (PS2) as shown in Fig. 11,
which is a new PDES framework, is implemented using multi-core services provided
by Parvicursor infrastructure and fully complies with the wrapper.

SimulationManager class was extended to implement an asynchronous conser-
vative simulation kernel that supports the deadlock detection and recovery (DDR)
algorithmonmulti-core andmany-core systems. Each cluster is assigned to oneworker
thread, and a controller thread is used to recover from deadlocks. Algorithm 1 shows
the main loop of each worker thread. PS2 lets the deadlocks occur and benefits from a
mechanism to detect them and to recover from them.Deadlocks are broken simply by a
global lock-free concurrent counter that is indicating the number of running processes
in shared memory architectures. This counter is decremented by one when a process
is going to block on an empty input channel and is incremented by one when a process
unblocks. At the beginning of simulation, this counter is set to the number of clusters
that are hosted by worker threads. When a cluster sees that the counter is zero, a global
deadlock is detected and the controller thread is awakened up. In this situation, the
controller finds those clusters that contain events with the global minimum timestamp,
and deadlock is recovered by allowing those clusters to process such events.

123

PSML: parallel systemmodeling and simulation language…

Computing Infrastructure (Many-Core, Cloud, Grid, HPC, Cluster...)

OS Layer Windows UNIXLinux …..

Parvicursor Platform & Runtime Services

PS2 Simulation Manager
Sequential DES and Asynchronous PDES Protocols

...

...

Input
Channels

Output
 Channels

C luster 1

LP 1
LP 2

LP 4
LP n

LP 5LP 3

Local Channel

...

...

Input
Channels

Output
 Channels

C luster n

LP 1
LP 2

LP 4
LP n

LP 5LP 3

Local Channel

...

Priority
Queues

Communication
Services

Scheduling
Services

Partitioning
Services

Memory Allocation
Services

Fig. 11 The general architecture of PS2 framework

Algorithm 1. Main loop of the worker threads in PS2.
Definitions:
1 Event:
2 PdesTime:
3 T is the amount of completion time. Each thread owns a local priority queue, a

number of input FIFO channels, and a set of mutexes and condition variables for
these channels.

The Algorithm:
4 Initialize all LPs belonging to current cluster.
5 Barrier
6 while do
7 .
8 for all do
9 Acquire .

10 If ch is empty, decrement global atomic counter; if counter is zero then wake
up the controller thread and put current thread into sleep by .

11 .
12 Release .

/* If e is related to a detected deadlock, we locally handle it for this cluster */
13 if e.type=DEADLOCK_DETECTED do
14 Fetch the event with minimum timestamp from ch reported

by controller.
15 Perform the actions in lines 17 to 19, and then go to line 6.
16 if e.receiveTime < nextEvent.receiveTime do
17
18

/* Process */
19
20 Barrier
21 Finalize all LPs belonging to current cluster.

No successful example has reported to speed up the simulation of digital systems
based on DDR protocol since the last 20 years. Because the LP graph resulting from
a digital system model is a directed graph, we can detect its cycles and significantly

123

A. Poshtkohi et al.

Build a directed graph G from
logical processes.

Detect topological cycles and
store them in the set C . Remove
any existing feedback path from

POs to PIs.

Name G to G D A G .

Topologically sort G D A G and store the
list in the set L .

Find strongly connected
components in G and
assign each of them to a
super LP. Name the new
graph to G D A G .

Divide L into n-1 equal subsets and assign
each set to a partition orderly. n is the
number of partitions requested.

A pipeline-style of
clustered partitions.

Partitions

P 0 P 1 P n-1

Any cycles

available?

No

Yes

Fig. 12 The PTS partitioning algorithm for DDR synchronization protocol in PS2

decrease the effect of topological deadlocks using a convenient partitioning of the
processes into clusters.Most partitioning algorithms have been proposed for optimistic
PDES protocols that cannot be used in DDR-based simulations due to the possible
creation of artificial topological deadlocks. Pipeline-Style Topological Sort (PTS)
algorithm is proposed to solve this problem. The main idea behind PTS algorithm is to
treat strongly connected components (SCCs) of an LPN as super LPs and to partition
the new graph by applying topological sorting of the reduced directed acyclic graph
(DAG). Figure 12 describes the algorithm in detail.

4.3 Simultaneous events and reproducibility problem

Simultaneous events, two or more events that are scheduled exactly to occur at the
same simulation time, cause many difficulties in sequential and parallel simulation.
The order of such events can dramatically affect the outcome of computations and
lead to logical validation errors in parallel simulation. We give a general solution
for PSML kernel. This problem is solved by a tie-breaking technique to extend the
timestamps to have an additional tag for sequential simulation. A global counter is
used and incremented by one when inserting an event into the simulator priority
queue. The value of this counter is copied into the tag and sorting is done through this
compound priority, which satisfies total insertion order. In parallel simulation where
LPs execute on different processors, we must consider a much more sophisticated
algorithm. Now, a distributed tie-breaking strategy is given that can be seamlessly
used with asynchronous distributed PDES protocols, conservative and optimistic. In
PSML kernel, the simulation time is defined as the triplet t � 〈T , LC , I D〉. T is
the same timestamp recognized by the system-level modeler as simulation time, LC
is Lamport logical clock [48], and ID is the identifier of an LP scheduling an event.
Based on this definition for time comparison of two events, we have:

t1 < t2 ⇔ T1 < T2
∨(

T1 � T2
∧

LC1 < LC2

)∨(
T1 � T2

∧
LC1 � LC2

∧
I D1 < I D2

)

123

PSML: parallel systemmodeling and simulation language…

When events are sorted reliant on this rule, sequential and parallel simulation results
are exactly alike and deterministic. LC is automatically computed in each LP when
scheduling new events through PS2 wrapper. The two flags of LC and ID are hidden
from the user but visible to the PSML kernel and PS2 wrapper. Each LP in PSML
kernel retrieves the transformed time through calling the functions of the simultaneous
event manager when new event(s) are sent from its surrounding LPs. LC is calculated
based on Lamport algorithm in which each LP before sending an event increments
a counter associated with the LP. When an LP sends an event, this value is attached
to the message. Upon receiving an event, the receipt LP updates its counter to the
maximum of its current counter and the received LC and then increments it by one.
Each LP has a unique identifier number. This technique is called total event ordering
or unique timestampswhich guarantees reproducibility in both parallel and sequential
PSML executions. However, if we are willing to see how the PSML simulation results
are compliant with existing sequential SLDL semantics, when we are using PSML as
a parallel intermediate language, a new algorithm should be developed, because this
technique is not necessarily related to the actual chronological order of events in the
model. Logical clocks only establish the happened-before relations, but LP IDs are
assigned by a simple counter when LPs are instantiated. Therefore, the new algorithm
should generate identifiers such that SLDL semantics are captured. This algorithm is
automatically performed in two steps to calculate IDs. (1) PSML compiler records
the order of the triggering points of the events, including writing to wire interfaces,
event notifications and psml_wait call expressions, in system-level PSML processes
by using static code analysis. Then, all expressions and statements with the exception
of these points are removed from the model code, and the final code is emitted by the
compiler. (2) The generated codes are compiled and linked with the PSML kernel and
necessary runtime libraries. Then, sequential simulation is done using a tie-breaking
method for simultaneous events with zero lookahead for all triggering points. During
simulation, null messages, instead of actual events originated from triggering points,
are generated and penetrate into the model execution. Using code instrumentation of
the execution, we assign a priority value as the identifier to each LP that is currently
executing. Processes that run earlier have lower IDs. Execution completes until all
LPs receive their own IDs.

5 Experimental studies

We study the results of a set of experiments to evaluate the performance of PSML
framework. Tests were carried out on a 12-core machine operating at 2.67 GHz with
16 GB main memory and 12 MB L2 cache. Linux CentOS with kernel 2.6.32 was
installed on this machine. Tests are reported with respect to Accellera sequential ref-
erence and parallel SystemC simulators. Speedup is defined as the ratio of the wall
times of sequential and parallel execution. Most of the models are automatically par-
titioned based on PTS. All the tests are an average of 10 runs. High-level architecture
of benchmarks is shown in Figs. 13, 14, and 15.

123

A. Poshtkohi et al.

Server 1 Server 2 Server k...

Server 1 Server 2 Server k...

Server 1 Server 2 Server k...

...

SinkSource

Fig. 13 A pipelined clustered tandem queue

PE PE PE PE PEPEPE PE PE PE PEPE

PE PE PE PE PEPEPE PE PE PE PEPE

PE PE PE PE PEPEPE PE PE PE PEPE

PE PE PE PE PEPEPE PE PE PE PEPE

Work Pool Scheduler Mat. Mul. Kernel Equation Solver

Functional Processor
Local Memory

External
Memory

Fig. 14 A many-core model

5.1 System-level experiments

In the first evaluation, we developed three system-level models relied on the PSML
language: two pipeline and clustered tandem queues shown in Fig. 13, and a many-
core bus functional model (BFM) and TLM illustrated in Fig. 14. All nodes are
synchronized with each other through distributed PSML events. In the pipelined
experiment, there are 50 thousand servers that are executed along with the source
and sink nodes fed by 50,000 different generated patterns. In the clustered pipelined
scenario, there are 48 rows each of which have 1024 servers. In this network, 1024
patterns are generated once and circulated in the closed paths shown. Simulation
results are illustrated in Fig. 16 and Table 2. This diagram represents the speedups
depending on the number of logical OS kernel threads in the multi-level PSML thread
scheduling.

The many-core BFM architecture is organized as a 2D rectangular mesh of homo-
geneous cores shown. Each Processing Element (PE) consists mainly of a simple
processor and a local memory. The processor is modeled as a functional behavior
of a kernel solver such as matrix multiplication, Sobel and FIR filter, Adaptive
Differential Pulse-Code (ADPC), JPEG Encoder, and MD5. They are purely written
in C# methods in PSML as snippets of software embedded in the system-level model.

123

PSML: parallel systemmodeling and simulation language…

Table 2 Execution times for different benchmarks

Model Sequential
SystemC (s)

Sequential
PSML (s)

PSML parallel execution time (s) based on kernel
threads (KT)

8 KT 16 KT 24 KT 48 KT 138 KT

pipeline 745.78 820.23 212.45 104.16 76.34 51.13 40.81

clustered 26,304.12 29,971.92 3704.71 1814.59 1594.17 1453.95 1362.36

AES 826.15 853.78 155.16 92.85 77.37 50.49 36.17

QSORT 423.81 492.25 59.13 37.54 26.59 19..35 12.95

b18 5231.4 5848.172 951.19 601.41 528.93 337.38 208.12

s35932 220.37 241.68 45.83 27.2 24.74 16.34 9.9

b22 3713.56 3992.65 571.91 322.14 273.64 229.43 207.18

MatMul(48) 102.5 90.47 12.9 12.01 7.5 9.1 12.6

SOBEL 150.57 135.08 39.54 20.03 10.43 5.54 6.43

APDC 100.46 90.75 12.4 8.81 6.78 7.49 6.48

FIR 86.26 79.69 10.39 5.94 4.1 4.67 6.13

JPEG 674.32 664.93 192.66 89.9 49.81 30.23 45.16

MD5 243.19 236.51 26.14 19.30 15.4 16.65 18.29

Controller

Add
Key

Round
1

Round
10

Key 0 Key 1 Key 10

Mix
Column

Add
Round

Key

Shift
Row

Sub
Byte

Datain

Key

Dataout

Request
Queue

Internal
Memory

Core 1 Core 2 Core 3

Core 4 Core 5 Core 6

Core 7 ... Core 128

Fig. 15 A simplified multi-core AES accelerator

Communication between PEs is performed through bus channels as PSML wires,
which are cycle-accurate and pin-accurate. The estimated time of computation of each
functional processor is annotated into the code by inserting psml_wait statements. A
central PE, the work pool scheduler, controls the execution of other PEs. It distributes
the works among the computing kernels. Each kernel copies the information of it
assigned task from external memory to its local memory before executing the task.
Figure 17 illustrates the speedups for different deployments of the BFM models. A

123

A. Poshtkohi et al.

Fig. 16 The speedups of different benchmarks

Fig. 17 Speedups of the many-core BFM model

customized model partitioner was developed for this test, where a number of PEs is
assigned to a single partition. External memory and the master clock process are also
allocated to different partitions.

123

PSML: parallel systemmodeling and simulation language…

Fig. 18 Speedups of the many-core TLM model

To compare the performance of PSML and an existing parallel SystemC simulator,
we chose the work in [26, 33, 36–38, 49] called RISC, which is the only accessi-
ble parallel SystemC online. It implements an improved version of shared memory
synchronous PDES and protects shared variables such as TLM channels by mutexes.
Since RISC does not support a number of SystemC features such as the sensitivity
lists, we had to re-implement the many-core BFMmodel to work based on FIFO TLM
channels. In PSML due to asynchronous simulation, each FIFO interface is hosted by a
separate ULP and TPEs are used to communicate PEs with the FIFO ULPs. Figure 18
and Table 3 show the speedups, and compile and execution times for both platforms.
The underlying RISC synchronization algorithm benefits from a compile-time static
analysis phase to detect the events that have no interdependency, and to execute them
at runtime for improving the execution speed. For models with more processes, the
compile time grows exponentially by many hours.

5.2 Register transfer level experiments

In the second set of tests, we examine two developed RTL benchmarks. Two different
single-core models were translated manually from an existing codebase written in
Verilog into PSML, including a cryptography algorithm based on AES and a sorting
algorithm for integer lists. The AES model had been implemented as a pipeline IP
core. We extended it and developed a multi-core AES accelerator in PSML. Figure 15
illustrates the fully pipelined architecture of this accelerator with 128 cores. Figure 16
shows the performance of the circuits.

123

A. Poshtkohi et al.

Ta
bl
e
3
C
om

pa
ri
so
n
be
tw
ee
n
PS

M
L
pe
rf
or
m
an
ce

an
d
an

ex
is
tin

g
pa
ra
lle
lS

ys
te
m
C
im

pl
em

en
ta
tio

n
ca
lle
d
R
IS
C

M
od
el

C
om

pi
le
tim

e
(s
)

Se
qu
en
tia
l

Sy
st
em

C
(s
)

Se
qu
en
tia
l

PS
M
L
(s
)

Pa
ra
lle
le
xe
cu
tio

n
tim

e
(s
)

16
K
T

24
K
T

48
K
T

PS
M
L

R
IS
C

PS
M
L

R
IS
C

PS
M
L

R
IS
C

PS
M
L

R
IS
C

T
L
M

(4
8)

3
17

5
31

7
31

3
40

11
5

37
95

31
10

3

T
L
M

(3
6)

3
11

1
23

8
23

5
32

84
26

71
23

83

T
L
M

(2
4)

3
71

16
5

16
3

20
11

4
22

51
18

11
3

123

PSML: parallel systemmodeling and simulation language…

5.3 Gate-level experiments

In the last experiment, we evaluate GL tests. Figure 16 depicts the speedups of three
ISCAS (International Symposium onCircuits and Systems) benchmarkswith different
sizes and functionalities. The lookahead of all gates was set to one. In these tests, all
gates are modeled as stateless processes and the circuits are fed by a pattern generator
component.

5.4 Discussion on PSML simulation speedups

As the measurements promote super-linear speedups are dominant on 12 physical
cores. They are mainly due to the cache effect available in different memory hier-
archies. As seen, this effect discloses itself at high number of OS kernel threads for
most of the models. The main reason can be attributed to the granularity control, and
optimizations applied to both PSML and PS2 simulation kernels that in turn greatly
result in decreasing overhead and the idle time of physical cores. As stated earlier,
PS2 benefits from a decentralized (distributed event list management), peer-to-peer
architecture; namely, all components of the simulator are distributed over physical
cores, and the use of shared components is minimized. Each communication channel
has one lock and one condition variable, and they are also distributed in the entire
simulator. Load balancing is obtained by precise partitioning of the model. There-
fore, resource contention is avoided as much as possible. PSML simulation kernel
implements a multi-level multi-threading scheduler that allows multiple system-level
processes are assigned to a single cluster and each cluster is mapped onto a single OS
kernel thread. Each physical processor can thus host multiple kernel threads. In DDR
execution due to conservative nature, additional kernel threads can give rise to reduce
the blocking time of kernel threads on physical cores, because OS thread scheduler
switches between different threads and lets other threads (likely unblocked threads)
run on that core.

Addingmuchmore kernel threads have a significant negative effect on speed, which
indicates load imbalance, increase in context switches of kernel threads and cache pol-
lution due to aggregate thread stacks. The underlying PSML model of computation
facilitates extremely fine-grained partitioning at the level of process network at runtime
which lets the partitioner robustly provide load balancing of processes over cores. Our
measurements verify that increasing the number of logical threads in PSML reduces
deadlocks for larger models on each core. Optimized use of the memory management
has also other important impact on performance. Decentralized (distributed memory
management) architecture of the PSML memory allocator, like PS2, decreases mem-
ory contentions for allocating and releasing events dramatically, while intra-cluster
allocations are performed without lock synchronization. The memory usage is related
to the number of clusters, which is associated with the space required to maintain the
data structures of both simulation kernels as well as the stacks of OS kernel threads.
Each model itself consumes a constant amount of memory space proportional to the
total of PSML processes. Thewholemodels occupies up to 6% out of the total memory
partitioned by PTS. This signifies a good load balance is made by this partitioner. Dis-

123

A. Poshtkohi et al.

tributing an uneven number of processes to cores may cause a fast process to generate
events before others can execute them instantly; therefore, extra memory allocations
finally arrive at the lack of memory and termination of the simulator. Zero-copy com-
munication is also an important factor to exploit the locality of reference and cache
reuse. In PSML, processes residing on the same cluster have direct access to inter-
faces, where no copy of the interface content is performed when sending intra-cluster
events. In PS2 kernel, reference to a message is directly sent without any copy of
the original message. It is worth noting that for large-scale models like AES, sequen-
tial PSML execution time is slightly larger than sequential SystemC. This is because
PSML makes use of the sequential PS2 simulation manager that instead emulates the
execution of the LP-based model as an event list-based implementation. Since the
sequential simulator maintains additional data structures for the LP pattern, it cannot
benefit from cache locality on a single core.

6 Conclusion and future directions

In this paper, we proposed a parallel simulation language for fast modeling and sim-
ulation of digital electronic systems. This language, along with the collection of
introduced tools, provides the ability to simulate models at different levels of abstrac-
tion by using a wide range of PDES synchronization protocols in order for the designer
to leverage the massive parallelism of today’s multi-core and many-core platforms. It
was shown that the introduced architecture improves simulation speed significantly
with linear, super-linear speedups ranging from 11× to 32× for large-scale, complex
PSML models on a 12-core host when being run by an optimally implemented asyn-
chronous PDES algorithm. We are implementing an optimistic simulation kernel for
PSML. Because PSML, as an intermediate language, is directly applicable to exist-
ing SLDLs and HDLs, we intend to develop a comprehensive compiler to transform
SystemC models into PSML. We plan to implement a distributed PDES kernel atop
many-core HPC clusters.

References

1. Sinaei S, Fatemi O (2018) Multi-objective algorithms for the application mapping problem in het-
erogeneous multiprocessor embedded system design. J Supercomput 1–27. https://doi.org/10.1007/
s11227-018-2442-2

2. Fujimoto RM (2000) Parallel and distributed simulation systems. Wiley, New York
3. Fujimoto RM (2016) Research challenges in parallel and distributed simulation. ACM Trans Model

Comput Simul (TOMACS) 26(4):22
4. Sang J et al (2018) Experiences with implementing parallel discrete-event simulation on GPU. J

Supercomput 1–18. https://doi.org/10.1007/s11227-018-2254-4
5. Jafer S, Liu Q, Wainer G (2013) Synchronization methods in parallel and distributed discrete-event

simulation. Simul Model Pract Theory 30:54–73
6. Bagrodia RL (1998) Parallel languages for discrete-event simulation models. IEEE Comput Sci Eng

5(2):27–38
7. Barnes Jr PD et al (2013) Warp speed: executing time warp on 1,966,080 cores. In: Proceedings of the

1st ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. ACM

123

https://doi.org/10.1007/s11227-018-2442-2
https://doi.org/10.1007/s11227-018-2254-4

PSML: parallel systemmodeling and simulation language…

8. Society IC (2008) IEEEStandard 1076-2008—IEEEStandard forVHDLLanguageReferenceManual.
IEEE

9. Society IC (2005) IEEE Standard 1364-2005—IEEE Standard for Verilog Hardware Description Lan-
guage. IEEE

10. Society IC (2011) IEEE Standard 1666-2011—IEEE Standard for SystemCLanguage ReferenceMan-
ual. IEEE

11. Society IC (2012)ANSI/IEEEStandard 1800-2012—IEEEStandard for SystemVerilog–UnifiedHard-
ware Design, Specification, and Verification Language. IEEE

12. Dömer R, Gerstlauer A, Gajski D (2002) SpecC language reference manual. In: SpecC technology
open consortium

13. Dahl O-J, Nygaard K (1966) SIMULA: an ALGOL-based simulation language. Commun ACM
9(9):671–678

14. Xia W, Yao Y, Mu X (2012) An extended event graph-based modelling method for parallel and dis-
tributed discrete-event simulation. Math Comput Model Dyn Syst 18(3):287–306

15. Barros FJ (2008)Modeling and simulation of parallel adaptive divide-and-conquer algorithms. J Super-
comput 43(3):241–255

16. Zhu L et al (2005) Parallel logic simulation of million-gate VLSI circuits. In: Modeling, analysis, and
simulation of computer and telecommunication systems, 2005. 13th IEEE international symposium
on. IEEE

17. Meraji S, Zhang W, Tropper C (2010) On the scalability and dynamic load-balancing of optimistic
gate level simulation. IEEE Trans Comput Aided Des Integr Circuits Syst 29(9):1368–1380

18. Zhu Y, Wang B, Deng Y (2011) Massively parallel logic simulation with GPUs. ACM Trans Des
Autom Electron Syst (TODAES) 16(3):29

19. Meraji S, Tropper C (2012) Optimizing techniques for parallel digital logic simulation. IEEE Trans
Parallel Distrib Syst 23(6):1135–1146

20. Bailey ML, Briner JV Jr, Chamberlain RD (1994) Parallel logic simulation of VLSI systems. ACM
Comput Surv (CSUR) 26(3):255–294

21. Gonsiorowski E, Lapre JM, Carothers CD (2017) Automatic model generation for gate-level circuit
PDES with reverse computation. ACM Trans Model Comput Simul (TOMACS) 27(2):12

22. Martin DE et al (2002) Analysis and simulation of mixed-technology VLSI systems. J Parallel Distrib
Comput 62(3):468–493

23. Li L,HuangH, TropperC (2003)DVS: an object-oriented framework for distributed verilog simulation.
In: Parallel and distributed simulation, 2003 (PADS 2003). proceedings. Seventeenth workshop on.
IEEE

24. Sato S, Kobayashi R, Kise K (2018) ArchHDL: a novel hardware RTL modeling and high-speed
simulation environment. IEICE Trans Inf Syst 101(2):344–353

25. ChenW et al (2014) Out-of-order parallel discrete event simulation for transaction level models. IEEE
Trans Comput Aided Des Integr Circuits Syst 33(12):1859–1872

26. Chen W, Han X, Dömer R (2012) Out-of-order parallel simulation for ESL design. In: Proceedings of
the Conference on Design, Automation and Test in Europe. EDA Consortium

27. SchumacherCet al (2010) parSC: synchronous parallel systemCsimulationonmulti-core host architec-
tures. In: Proceedings of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis. ACM

28. Vinco S et al (2012) SAGA: SystemC acceleration on GPU architectures. In: Design Automation
Conference (DAC), 2012 49th ACM/EDAC/IEEE. IEEE

29. Reder S et al (2015) Adaptive algorithm and tool flow for accelerating SystemC on many-core archi-
tectures. Microprocess Microsyst 39(8):1063–1075

30. Schmidt T, Cheng Z, Dömer R (2018) Port call path sensitive conflict analysis for instance-aware
parallel SystemC simulation. In: Design, automation and test in Europe. Dresden, Germany

31. Ventroux N, Sassolas T (2016) A new parallel SystemC kernel leveraging manycore architectures. In:
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2016. IEEE

32. Weinstock JH et al (2016) Parallel SystemC simulation for ESL design. ACM Trans Embed Comput
Syst (TECS) 16(1):27

33. Schmidt T, Liu G, Dömer R (2017) Exploiting thread and data level parallelism for ultimate parallel
SystemC simulation. In: Proceedings of the 54th Annual Design Automation Conference 2017. ACM

34. ChengZ, Schmidt T,DomerR (2018) SystemC coding guideline for faster out-of-order parallel discrete
event simulation. In: Proceedings of forum on specification and design languages. Munich, Germany

123

A. Poshtkohi et al.

35. Doemer R (2016) Seven obstacles in the way of standard-compliant parallel SystemC simulation. IEEE
Embed Syst Lett 8(4):81–84

36. Schmidt T (2018) A compiler infrastructure for static and hybrid analysis of discrete event system
models. Ph.D. Dissertation, University of California, Irvine

37. Liu G (2017) Optimizing many-threads-to-many-cores mapping in parallel electronic system level
simulation. Ph.D. Dissertation, University of California, Irvine

38. Dömer R, Liu G, Schmidt T (2017) Parallel simulation. In: Handbook of hardware/software codesign.
Springer, Berlin, pp 533–564

39. Becker D, Moy M, Cornet J (2015) Challenges for the parallelization of loosely timed SystemC
programs. In: IEEE international symposium on rapid system prototyping

40. Cox DR (2005) Ritsim: distributed systemC simulation. Department of Computer Engineering.
Rochester Institute of Technology

41. Chopard B, Combes P, Zory J (2006) A conservative approach to systemC parallelization. In: Compu-
tational science—ICCS 2006. Springer, Berlin, pp 653–660

42. MubarakM et al (2017) Enabling parallel simulation of large-scale HPC network systems. IEEE Trans
Parallel Distrib Syst 28(1):87–100

43. Low Y-H et al (1999) Survey of languages and runtime libraries for parallel discrete-event simulation.
Simulation 72(3):170–186

44. Perumalla K, Fujimoto R, Ogielski A (1998) TED—a language for modeling telecommunication
networks. ACM SIGMETRICS Perform Eval Rev 25(4):4–11

45. Arora R, Bangalore P,MernikM (2012) Raising the level of abstraction for developingmessage passing
applications. J Supercomput 59(2):1079–1100

46. Thoman P et al (2018) A taxonomy of task-based parallel programming technologies for high-
performance computing. J Supercomput 74(4):1422–1434

47. Poshtkohi A, Ghaznavi-Ghoushchi MB, Saghafi K (2017) The Parvicursor infrastructure to facilitate
the design of Grid and Cloud computing systems. Computing 99(10):979–1006

48. Lamport L (1978) Time, clocks, and the ordering of events in a distributed system. Commun ACM
21(7):558–565

49. Liu G et al (2017) RISC compiler and simulator, Release V0.4.0: out-of-order parallel simulatable
SystemC subset

123

	PSML: parallel system modeling and simulation language for electronic system level
	Abstract
	1 Introduction
	2 Basic concepts and motivation
	2.1 PDES fundamentals
	2.2 Problem definition
	2.3 Related work

	3 PSML language
	3.1 The language
	3.2 PDES-specific constructs in PSML

	4 PSML parallel execution semantics and its implementation
	4.1 Parallel simulation execution semantics
	4.2 Implementation of the PSML parallel abstract machine
	4.3 Simultaneous events and reproducibility problem

	5 Experimental studies
	5.1 System-level experiments
	5.2 Register transfer level experiments
	5.3 Gate-level experiments
	5.4 Discussion on PSML simulation speedups

	6 Conclusion and future directions
	References

