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ABSTRACT 

Simulation of wildfire spread remains to be a challenging 

task. In previous work, a cellular space fire spread simula-

tion model has been developed based on the Discrete Event 

System Specification (DEVS) formalism. There is a need 

to improve simulation performance of this model for simu-

lating large scale wildfires. This paper develops a partial-

modular implementation of the DEVS-based cellular space 

model that eliminates the large number of inter-cell mes-

sage exchanges for improving simulation performance. 

Both the modular and partial-modular approaches are pre-

sented and experiment results are provided. The results 

show that the partial-modular implementation can signifi-

cantly improve simulation performance of the cellular 

space wildfire spread model.  

1 INTRODUCTION 

Simulation of forest fire spread remains to be a challenging 

task due to factors such as complex fire behavior, dynami-

cal weather condition, and large spatial area that needs to 

be modeled. In previous work (Natimo, Hu, and Sun), a 

discrete event forest fire spread simulation model was de-

veloped. This model uses a cellular space to model a forest 

and each cell corresponds to a sub-area of the forest. Fire 

spreading is a propagation process that burning cells ignite 

their unburned neighbor cells. This model is based on the 

Discrete Event System Specification (DEVS) (Zeigler, 

Kim, and Praehofer 2000) formalism. 

The DEVS formalism is derived from generic dynamic 

systems theory and provides a formal modeling and simu-

lation (M&S) framework. One of the main features of 

DEVS-based modeling is that it emphasizes modular (and 

hierarchical) model construction, where each model is a 

component with input/output ports and supports well-

defined concepts of coupling of components. These cou-

plings allow models to send messages to each other 

through their input/output ports. The modular model con-

struction of DEVS brings major advantages such as model 

interoperability and reuse, multi-formalism capability, and 

dynamic structure change of models. An important type of 

DEVS model is the cellular space model, which is com-

monly used to model complex dynamical systems with 

spatial-temporal behaviors and interactions among their 

subcomponents. A cellular space model includes a grid of 

cells where each cell’s state can affect and be affected by 

its neighbors. Formal specifications of DEVS-based cellu-

lar space models were also developed. For example, Cell-

DEVS (Wainer and Giambiasi 2002) is a specification that 

extended the DEVS formalism to improve the definition of 

cellular space models where each cell is defined as an 

atomic model using transport or inertial delays, and a cou-

pled model that includes a group of these cells constitutes a 

cellular space model. Gabriel (Wainer 2004) introduced the 

main characteristics of Cell-DEVS, showing how to model 

complex cell spaces in an asynchronous environment. Ex-

amples of DEVS-based cellular space modeling and simu-

lation include flow injection simulation (Troccoli et al.), 

traffic control simulation (Davidson and Wainer 2000), 

forest fire spread simulation (see e.g., Natimo, Hu, and 

Sun, Wainer 2006), and fire containment simulation (Hu, 

Muzy, and Ntaimo 2005), just to name a few.  

To simulate large scale spatial systems such as forest 

fire, a cellular space model needs to include a large number 

of cells. The large number of cells poses a challenge from 

the simulation performance point of view. In particular, the 

huge number of inter-cell message exchanges that are typi-

cal for large scale cellular space models have a major ef-

fect on simulation performance. In a discrete event simula-

tion such as DEVS, each message is an event and triggers a 

new simulation cycle (also called simulation iteration, see 

the DEVS simulation protocol in Section 3.4 for more de-

tails) for the event handling. The large number of message 

exchanges (referred to as message passing in this paper) 

thus results in a large number of simulation cycles. Fur-

thermore, in DEVS-based modeling, because of the modu-

lar model construction, each cell is an atomic model and 

cell-to-cell communications can happen only through (indi-

rect) message passing. This slows down the simulation fur-

ther because of the overhead of message passing and mes-

sage handling at the model level. Based on the above 
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observations, this paper exploits the pattern of cell-to-cell 

message passing to improve simulation performance from 

two aspects: 1) reduce the number of simulation cycles 

caused by inter-cell message passing; 2) remove the over-

head of message passing between cellular DEVS models. 

We achieve this goal by turning the  modular implementa-

tion of DEVS into a partial-modular DEVS. The partial-

modular DEVS not only removes the overhead of message 

passing, but also significantly reduces the number of simu-

lation cycles for event handling. We carry out this work 

based on the specific application of forest fire spread simu-

lation (Natimo, Hu, and Sun). However, the main idea of 

this approach could be adapted to other DEVS-based cellu-

lar space applications.  

The remainder of this paper is organized as follows. In 

section 2, the background and related work is presented. 

Section 3 presents the modular DEVS and partial-modular 

DEVS implantations of the forest fire model. Section 4 

presents the experiment results and performance analysis. 

The conclusion and future work are given in section 5. 

2 BACKGROUND AND RELATED WORK 

The DEVS (Zeigler, Kim, and Praehofer 2000) formalism 

is derived from generic dynamic systems theory and has 

been applied to both continuous and discrete phenomena. It 

provides a formal modeling and simulation (M&S) frame-

work with well-defined concepts of coupling of compo-

nents, and hierarchical modular model construction. These 

features of DEVS bring advantages to modeling and simu-

lation such as easy experimentation, easy testing, and easy 

maintenance. The cellular space DEVS modeling approach 

divides the spatial space into cells where local computa-

tions are done in each cell. A cell is implemented as an 

atomic DEVS model that performs the local computations 

internally based on its own state as well as the neighbor 

states that are received through the external ports. The cell 

space is implemented as a coupled DEVS model that con-

tains a number of cells. The neighbor rule followed in a 

specific application determines the couplings between 

cells. Cellular space DEVS is a special case of conven-

tional DEVS and follows the same structure of DEVS 

framework, e.g., external, internal and output transition 

functions. As discussed before, it suffers the problem of 

performance when a large number of inter-cell communi-

cations exist. This performance issue is significant for 

large cellular space models. 

For DEVS-based simulation, different techniques have 

been researched to improve simulation performance. The 

Dynamic Structure DEVS (DSDEVS) (Barros 2005) is a 

specification for dynamic structure modeling based on the 

DEVS formalism (Zeigler, Kim, and Praehofer 2000). It is 

shown that dynamic structure modeling can potentially im-

prove simulation performance for large scale cellular space 

models (Sun and Hu 2006). Dynamical structure modeling 

changes models’ structure (e.g., adding/removing models) 

and their couplings as a simulation proceeds. It can im-

prove the simulation performance because 1) it reduces the 

initialization time because it does not load all cells at the 

beginning of a simulation; 2) it speeds up the execution 

time of each simulation cycle because it makes a simula-

tion focus only on the “active” cells (non-active cells are 

either unloaded or removed).  On the negative size, dy-

namic structure modeling brings some overhead. More de-

tails can be found  in (Sun and Hu 2006). Several efforts 

developed advanced simulation algorithms for improving 

simulation performance. Examples of such work can be 

found in (Muzy and Nutaro 2005; Hu and Zeigler 2004; 

Wainer and Giambiasi 2001) where the basic DEVS simu-

lation engine was improved to handle messages and cell 

activity scanning in more efficient manner. Other related 

works include the quantized DEVS approach (Kofman and 

Junco 2001, Beltrame and Cellier. 2006), which shows that 

quantization helps in improving the performance of DEVS-

based simulations by reducing the number of state transi-

tions as well as the number of messages while introducing 

acceptable errors. Efficient implementation of DEVS-

based models is also studied for the purpose of improving 

performance. One such work is reported in (Hall, Venkate-

san, and Wood 2003), where the authors enhance the im-

plementation by applying techniques such as pre-

computing message destinations, and using a priority 

queue to sort models to achieve performance improvement 

for the Joint MEASURE simulation environment. Another 

technique to improve performance of DEVS models is us-

ing non-modular form that combines multiple cells into 

one for faster simulation. The work (Shiginah and Zeigler 

2006) proposed a non-modular formalism using closure 

under coupling property of DEVS to ensure equivalency of 

the models to their modular counterparts in parallel DEVS. 

The speedup was gained through efficient scanning of ac-

tive cells and combining multiple cells into one atomic 

model.  

Other works use parallel and distributed approaches to 

improve the performance of DEVS based simulation. Vari-

ous DEVS-based distributed simulation environments have 

been developed such as DEVS/CORBA (Zeigler and Sar-

joughian 1999), DEVS/RMI (Zhang, Zeigler, and 

Hammonds 2006), DEVS/HLA (Zeigler, Kim, and Buck-

ley 1999). These distributed DEVS frameworks typically 

involve a  large computation overhead. Some recent tech-

niques (Zacharewicz, Giambiasi, and Frydman 2005, 

Glinsky and Wainer 2005) are used to reduce the overhead 

of distributed DEVS techniques. 

3 MODULAR AND PARTIAL-MODULAR 

APPROACHES 

This section first gives an overview of the forest fire spread 

model, then presents the modular and partial-modular im-
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plementations of the model, and finally gives an brief per-

formance analysis of the two approaches.  

3.1 Overview of the forest fire spread model 

In the cellular space forest fire spread model, a forest is 

modeled as a two-dimensional cell-space composed of in-

dividual forest cells coupled together according to their 

relative physical geometric locations. Each cell represents 

a sub-area in the forest and is implemented as a DEVS 

atomic model. A cell is coupled to its eight neighbors cor-

responding to the N, NE, E, SE, S, SW, W, and NW direc-

tions respectively. Accordingly, for each cell, eight fire 

spreading directions are defined. Fire spreading is modeled 

as a propagation process as burning cells ignite their un-

burned neighbor cells. Each cell can be in one of the fol-

lowing six states: unburn, burning, burned, unburn-wet, 

burning-wet, and burned-wet, where the -wet states model 

fire suppression and not used in this paper. When a cell is 

ignited, the maximum fire spread speed and direction of a 

cell is calculated using Rothermel’s semi-empirical model 

(Rothermel 1972) that takes into account factors such as 

fuel model, slope, and wind speed and direction. This 

maximum rate of spread is then decomposed along the 

eight spreading directions according to an ellipse shape. 

Figure 1 shows a snapshot of a simulation using real GIS 

data with 200x200 cells. In the figure, the red cells are 

burning; the black cells are burned out; all other cells are 

unburned with the different colors representing different 

fuel models. More descriptions of this model and the initial 

conditions of simulation can be found in (Natimo, Hu and 

Sun). 

 

 

 
 

Figure 1: Fire spreading under GIS data 

 

From the above description, one can see that the forest 

cell space model is composed of a large number of atomic 

forest cell models. Each cell executes its internal tasks and 

communicates with other neighboring cells by message 

passing through inter-connected ports. The process of fire 

spreading for both the modular and partial-modular im-

plementations is that a cell (referred to as the source cell), 

once ignited, will need to schedule the time for igniting its 

eight neighbors (refers to as the destination cells). In the 

modular implementation, eight time points are scheduled 

and kept in the source cell, which sends out igniting mes-

sages at the appropriate time based on the schedule. This 

means for a source cell to ignite its eight neighbors, eight 

messages are needed (thus eight simulation cycles). The 

design motivation of the partial-modular implementation is 

that: the source cell does not keep the time to ignite its 

neighbors. Instead, it sets the time to its neighbors and asks 

them (the destination cells) to keep track of their own time-

to-burning. This “time setting” happens right after a source 

cell is ignited and is realized through function call instead 

of messaging passing (each cell has its eight neighboring 

cells’ object references). The partial-modular implementa-

tion brings two advantages from the simulation perform-

ance point of view: first, it reduces the message passing 

overhead between cells; second and more importantly, be-

cause a source cell sets all its neighboring cells’ time-to-

burn in one step (right after the source cell is ignited), it 

reduces the number of simulation cycles that is needed in 

the discrete event simulation. These result in simulation 

performance improvement. It is worthy to point out that the 

change from modular to partial-modular relies on an im-

plementation that allows a cell to directly modify the state 

of its neighbor  cells (instead of using message passing). 

Thus it breaks the modular property of DEVS models. Be-

low we describe these two implementations in detail.  

3.2 Modular Implementation 

The modular implementation of forest fire spread simula-

tion is based on the classic DEVS framework. A forest cell 

model in forest cell space interacts with its neighbor cells 

through couplings between cells’ input/output ports. A cell 

affects its eight neighbor cells through eight output ports: 

outN, outNE, outE, outSE, outS, outSW, outW, and outNW, 

which represent eight fire spreading directions correspond-

ing to azimuth (degrees measured clockwise from the 

north) of 0, 45, 90, 135, 180, 225, 270, and 315 degrees, 

respectively. Accordingly a cell is affected by its eight 

neighbor cells through eight input ports: inN, inNE, inE, 

inSE, inS, inSW, inW, and inNW (see Natimo, Hu and Sun 

for more details). Figure 2 shows the structure of message 

passing from a forest cell to its eight neighbor cells. The 

dash line in the figure means using message passing to in-

voke a neighbor cell’s external transition functions. The 

message passing is handled by the DEVS simulation en-

gine, which invokes a destination cell’s external transition 

function at that simulation cycle. In general, messages 

passing to eight neighbors need up to eight simulation cy-

cles. 
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Figure 2: Modular implementation 

Below is an informal description of the fire spreading 

scenario using the cellular space model. 

1. Initially a cell is ignited by an igniter atomic mod-

el. If its fire line intensity is over the ignition  

threshold, it begins to burn. Otherwise, it remains 

unburned. 

2. Once a cell is burning, the fire starts to spread to 

eight neighbor cells as shown in Figure 3. 

3. An unburn cell will become burning if it receives 

a fire ignition message from a neighbor cell (if the 

fire line intensity is over ignition threshold as 

mentioned earlier). Similarly, once this cell starts 

to burn, it begins to spread fire to eight neighbor 

cells. This process repeats for all cells in the cell 

space during the whole simulation. 

4. If a burning cell receives an input of wind speed 

and direction, the cell re-calculates its remaining 

fire spread delays and re-sends spreading mes-

sages to the neighbor cells. 

 

Implementation of a forest cell’s external, internal 

transition functions and output functions are listed below. 

As mentioned before, the modular implementation follows 

DEVS model’s specification and executes the external, 

internal and output functions for handling external 

message, internal time event, and generate output. The ad-

vantage of the modular implementation is simple structure 

and easy to implement. However, in large cellular space 

model, all cells communicate with neighbor cells fre-

quently by a lot of message passing. This increases the 

computation time from two aspects. One is increased 

computation for external transition functions. For each cell, 

it sends out eight messages to its neighbors and receives 

eight external messages from its neighbors as well. So to-

tally there are 8xN (N is the number of forest cells in the 

cell space) external transition functions being executed in a 

transition functions being executed in a complete simula-

tion process. For example, if the cell space size is 100*100, 

the number of external transition functions being executed 

is 80000 if the fire spreads to the entire cell space. The 

other aspect is the large number of simulation cycles in the 

simulation engine. Since one cell sends out eight fire igni-

tion messages to its neighbor cells at different time, the 

simulation cycles are large. The larger the number of simu-

lation cycles, the more execution time is needed to run the 

simulation. 

 

Pseudo code for a cell’s external transition function 

 

 

Pseudo code for a cell’s internal transition function 

 

Pseudo code for devs output function 

 
 

3.3 Partial-Modular Implementation 

The partial-modular implementation updates a cell’s state 

not through message passing. The structure of the partial-

modular implementation is shown in Figure 3. In the fig-

ure, a cell updates a neighbor cell’s state and sigma di-

rectly (using function call) and all eight neighbor cells’ 

state (including sigma) updates are accomplished in a sin-

gle simulation cycle. Compared with the modular imple-

deltext(double e, message x)  

  if (receive weather change && state is “burn-

ing”)  

re-calculate fire spread delay {di} to the eight 

neighbors {ci} i=1,..,8;  

cself.state = burning; 

cself.spread_delay = smallest {di} 

 if (receive ignition message from neighbor cells) 

if(cself.state = unburn){ 

 calculate fire line intensity; 

        if (fire line intensity > threshold)  

 calculate fire spread delay {di} to

 the eight  neighbors {ci} i=1,..,8; 

      cself.state = burning;  

      cself.spread_delay = smallest {di} 

deltint()  

   if (state is burning && ! {di} is not empty)  

 remove smallest di from {di} 

 cself.state = burning; 

cself.spread_delay = next smallest di    

   if (state is burning and allNeighborCellBurned)  

  cself.state = burned; 

out() 

  if (state is burning)  

    send message to the corresponding neighbor 

cell; 
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mentation’s eight simulation cycles, the partial-modular 

implementation can reduce the simulation cycles up to 

eight times. 
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Figure 3: Partial-modular implementation 

The fire spreading scenario using the partial-modular 

implementation is stated as follows. 

1. Initially a cell is ignited by an igniter atomic 

model and the state becomes “schedule_to_burn”.  

2. When a cell is in “schedule_to_burn” state, it cal-

culates fire line intensity. If the intensity is over 

threshold, the cell begins to burn. Otherwise, it 

remains unburned. 

3. Once a cell begins to burn, its state becomes 

“burned”. Before that it calculates the fire spread 

delay to eight neighbor cells and then updates 

their states to “schedule_to_burn” with the associ-

ated sigma being the delay time (referred to as 

time_to_burn afterwards). For each neighbor cell, 

it  uses a variable “ignitionSet” to remember all 

the cells that want to ignite this cell and the corre-

sponding fire delay for later weather update pur-

pose. Multiple cells may try to ignite the same 

cell. If that happens, the cell’s time_to_burn is 

updated only when the new calculated spread de-

lay is smaller than the existing time_to_burn. 

When a cell’s time_to_burn is updated, its tN is 

updated by the simulator correspondingly and the 

simulator is added to global simulation engine’s 

imminent set. This allows the new updated 

time_to_burn to be treated properly by the simula-

tion engine. Specifically, in the simulation proc-

ess, the simulation engine updates its data struc-

ture based on the imminents set and gets the 

smallest tN from them in each simulation cycle. 

Step 2 and step 3 repeat for all cells in the cell 

space during the whole simulation process.  

4. If a burned cell receives an input of wind speed 

and direction, and has more than one neighbor 

cells unburned, it re-calculates the fire spread de-

lays. For each unburned neighbor cell, it compares 

the new fire delay with all those that want to ig-

nite this neighbor cell (excluding the cell itself) 

and selects the smallest one as the new 

time_to_burn. 

 

The pseudo codes of the partial-modular implementa-

tion’s external and internal transition functions are listed 

below.  

Pseudo code for a cell’s external transition function 

 

 

 

 

 

 

Pseudo code for a cell’s internal transition function 

 
 

 

 

This implementation eliminates the frequent commu-

nications between neighbor cells. Compared to the modular 

implementation, the partial-modular implementation re-

duces the execution time from two aspects. On one hand, it 

deltint()  

if (state is schedule_to_burn)  

    calculate fire line intensity;  

    if (fire line intensity < threshold) 

        cself.state = unburned  

      else if (fire line intensity >= threshold)  

         cself.state = burned 

 calculate fire spread delay {di} to the  

        eight neighbors {ci} i=1,..,8; 

 for (each neighbor cell ci && ci.state  !=  

         burned) 

     ci.ignitionSet.add(cself , di)  

     if(di < ci.time_to_burn) 

  ci.time_to_burn = di 

  ci.state = schedule_to_burn   

  update the simulator by adding ci as         

                 an imminent; 

     

deltext(double e, message x)  

 if (receive ignition message) 

  cself.state = schedule_to_burn 

if (receive weather change)  

   if(state is burned && at least one neighbor  

    is not ignited)  

re-calculate fire spread delay {di} to the 

eight neighbors {ci} i=1,..,8 

for (each neighbor cell ci && ci.state!= 

burned)  

ci.time_to_burn = exclusive_min(di, 

min(ci.ignitionSet.delay)  //reschedule 

time to burn 

ci.ignitionSet.add(ci, cself)  
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reduces the execution time of external transition functions. 

On the other hand, it reduces the number of simulation cy-

cles in simulation engine. The second aspect is more sig-

nificant (see section 3.4 for more details). From perform-

ance point of view, the major difference lies in that partial-

modular implementation eliminates the frequent execution 

of the external transition functions triggered by inter-cell 

message passing and thus reduces the number of simula-

tion cycles. A brief comparison and analysis about the exe-

cution time is provided next. 

3.4 Execution Time Analysis 

To understand how the partial-modular implementation re-

duces the simulation time, it is necessary to look at the 

simulation protocol of DEVS models. The modular imple-

mentation closely follows DEVS models’ external, internal 

and output functions to simulate the forest fire spread 

process. The partial-modular implementation directly up-

dates a cell’s state and sigma, and the corresponding simu-

lator’s next event time tN in the simulation engine. Both 

these two implementations use the DEVS simulation pro-

tocol shown below. The simulation engine is a heap-based 

coordinator. 

 while (tN < predefined_fireSpreadTime){ 

imminents.tellAll("computeOutput“,tN) 

imminents.tellAll("sendOutput") 

imminents.tellAll("ApplyDelt“,tN) 

    UpdateHeap(); 

    tN = Heap.getMin(); 

 } 

 

In every simulation cycle, the simulation engine asks 

all imminents (whose tN = global tN) to execute the com-

puteOutput, sendOutput and ApplyDelt functions. At the 

end of the cycle, the coordinator lets all imminents update 

their newest tNs in the heap and get the smallest tN for the 

next simulation cycle. 

Based on the above simulation protocol, the execution 

time of the modular implementation is denoted by formula 

(1). 

    T = ∑
=

N

i

it
1

           (1) 

Where T is the total execution time, N is the number 

of simulation cycles, ti is the execution time at every simu-

lation cycle i. ti includes the time to execute output func-

tion, external and internal functions, as well as to find the 

smallest tN.  

The execution time T of the partial-modular imple-

mentation is denoted by formula (2).  

    T = ∑
=

'

1

)'(
N

i

it          (2) 

Where N' is the number of simulation cycles in the 

partial-modular implementation, ti' is the execution time at 

each simulation cycle i. Based on the previous analysis, N' 

is less than N and the ratio of N/N' can reaches 8 (the exact 

ratio will depend on the specific model behavior). On aver-

age, ti' is larger than ti. This is because the partial-modular 

implementation accomplishes fire spread operation in one 

cycle, which means every simulation cycle involves com-

putation of Rothermel’s fire behavior model. However, in 

the modular implementation, some of the cycles does not 

need to compute Rothermel’s fire behavior model (e.g., 

when an already ignited cell receives an ignition message).   

Therefore the partial-modular implementation’s execution 

time in one cycle is larger. But overall the execution time 

of the partial-modular method is less than the modular me-

thod as shown by the experiment results next.  

4 EXPERIMENT RESULTS AND ANALYSIS 

To compare the simulation performance between the 

modular and partial-modular approaches, two experiments 

on forest fire spread model are conducted using different 

measurements. The simulations were conducted on a To-

shiba laptop with Intel Celeron (M) 1.6GHZ processor, 

1.2G memory, and Windows XP OS running DEVSJAVA 

version 3.0. The experiments are based on the forest fire 

model that uses a dynamically structure implementation 

(see Natimo, Hu and Sun for more details) and a Heap 

based simulation engine. The same model parameters are 

used in both experiments. The first experiment is con-

ducted to compare the execution time for different cell 

space size. The second one compares the execution time 

for multiple ignitions behavior. 

4.1 Execution Time for Different Cell Space Size 

Figure 4 shows the total execution time (in milliseconds) 

for different cellular space models on a 40000 simulation 

time. Performance results were collected based on every 

2000 interval simulation time. The experimental results 

were measured on different cellular space sizes from 

100*100, 200*200, 500*500 to 1000*1000, which are dis-

played in the figure below. For each cell space size the left 

diagram displays the execution time T and the number of 

simulation cycles N for the both approaches. The right dia-

gram displays the ratio of T over N of the two approaches.  
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(a) 100*100 Cell Space Size 

 

 

 

 

 

(b) 200*200 Cell Space Size 

 

 

 

 

 

(c) 500*500 Cell Space Size 

 

 

 

 

   

 

(d) 1000*1000 Cell Space Size 

Figure 4: Execution time for different cell space size 

The results displayed by the left diagrams in Figure 4 

show one principle that the execution time has a positive 

relationship with the number of simulation cycles, i.e., the 

execution time increases with the increase of simulation 

cycles. Note in Figure 4(a) 100*100 cell space, the execu-

tion time remains almost the same after around 22000 

simulation time. This is because all cells in the cell space 

are in burned state after that. The results displayed by the 

right diagrams in Figure 4 show another principle that the 

execution time in one simulation cycle (T/N) has the same 

trend for the two approaches. When the simulation pro-

ceeds, the number of fire front cells increases, so the exe-

cution time in one simulation cycle increases as well (be-

cause there are more cells are involved in the simulation). 

However the partial-modular approach uses more time per 

cycle than the modular approach. This is consistent with 

our discussion before.  

The speedup of the partial-modular implementation 

over the modular implementation is given in Table 1 for 

the four cellular space sizes respectively. Overall the 

speedups are significant and are around 4.7 times.  

 

Table 1: Comparison of execution time of modular and 

partial-modular implementations 

 

T(s) 100*100 200*200 500*500 1000*1000 

Modular 154.6 1088.2 1320.5 1337.6 

Partial-

Modular 

38.2 232.2 288.2 282.8 

Speedup 4.0 4.7 4.6 4.7 

4.2 Execution Time for Fire Spread Simulation 

With Multiple Ignition Points 

The first experiment shows that the number of iterations 

(simulation cycles) affects the execution time. As the num-

ber of iterations increases, the execution time increases too. 

Another important observation is that the number of ig-

nited cells (fire front cells) affects the average execution 

time in each iteration. From Figure 4, one can see that for 

both approaches, initially the number of ignited cells per 

iteration (T/N) decreases. For example, the initially ignited 

cell ignites 8 neighbor cells, while later on each cell only 

ignites about 2 to 3 neighbor cells. At the beginning of the 

simulation the number of burning cells is small, so the 

number of ignited cells in each iteration decreases. But as 

the simulation continues, the number of ignited cells in-

creases again. This is mainly because as the fire front in-

creases, the number of burning cells increases, so the total 

ignited neighbor cells increases.  

Based on these two observations, another experiment 

with multiple ignitions is conducted to further support the 

results in the first experiment. In this experiment, instead 

of using one ignition point to start the fire spread simula-

tion. Forty randomly generated ignition points were used 

and the experiment results are displayed in Figure 5. The 

left diagram shows that the execution time increases with 

the increase of iterations, but the increase rates in the early 

stage were much larger than those in the late stage. This is 

because in the early stage, a lot of cells are ignited at the 

same time, but in the late stage most of the cells are al-

ready burned. In the right diagram, from tN=2000 to 4000, 

each ignition cell ignites neighbor cells from initial 8 to 

later average 2 to 3. From tN = 4000 the burning area of 

each ignition cell overlaps to each other, so the average ig-

nited neighbor cells of each cell is less than 2. Therefore 

the execution time of each iteration in right diagraph in-

creases initially and decreases later on.  
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Figure 5: Execution time and iterations for sparse igni-

tions model 

The results in Figure 5 point out the fact again that the 

number of iterations (simulation cycles) affects the simula-

tion performance. By reducing the number of iterations and 

then reducing the message passing, even though the execu-

tion time in each iteration is increased, the total execution 

time is reduced. 

5 CONCLUSIONS AND FUTURE WORK 

The classic modular implementation of DEVS model does 

not perform well in simulation speed for simulating large 

cellular space application. In this paper, a partial-modular 

approach is developed to improve simulation performance 

by reducing message passing between cells. The reduction 

of message passing decreases the execution time from two 

aspects. One is decreasing the overhead time of message 

passing and message handling in the model. The other is 

reducing the number of simulation cycles. From the analy-

sis and the experiment results, the number of simulation 

cycles affects the execution time significantly. For the ex-

periments carried out in this paper, the partial-modular im-

plementation reduces the simulation cycles up to 6-7 times, 

correspondingly the speed up of execution time gets up to 

4-5 times. 

The partial-modular approach, although based on the 

forest fire spread model in this paper, provides an example 

for improving simulation performance for other types of 

DEVS-based cellular space models. For the cases that in-

ter-cell messaging passing increases the simulation itera-

tions and thus reduces simulation performance, the ap-

proach of partial-modular implementation provides a way 

for improving performance. 
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