
Proceedings of the 2008 Winter Simulation Conference

S. J. Mason, R. Hill, L. Moench, and O. Rose, eds.

PARTIAL-MODULAR DEVS FOR IMPROVING PERFORMANCE OF CELLULAR SPACE WILDFIRE

SPREAD SIMULATION

Yi Sun

Xiaolin Hu

Dept. of Computer Science Dept. of Computer Science

Georgia State University Georgia State University

34 Peachtree Street, Suite 1450, Atlanta, GA 30303, USA 34 Peachtree Street, Suite 1450, Atlanta, GA 30303, USA

ABSTRACT

Simulation of wildfire spread remains to be a challenging

task. In previous work, a cellular space fire spread simula-

tion model has been developed based on the Discrete Event

System Specification (DEVS) formalism. There is a need

to improve simulation performance of this model for simu-

lating large scale wildfires. This paper develops a partial-

modular implementation of the DEVS-based cellular space

model that eliminates the large number of inter-cell mes-

sage exchanges for improving simulation performance.

Both the modular and partial-modular approaches are pre-

sented and experiment results are provided. The results

show that the partial-modular implementation can signifi-

cantly improve simulation performance of the cellular

space wildfire spread model.

1 INTRODUCTION

Simulation of forest fire spread remains to be a challenging

task due to factors such as complex fire behavior, dynami-

cal weather condition, and large spatial area that needs to

be modeled. In previous work (Natimo, Hu, and Sun), a

discrete event forest fire spread simulation model was de-

veloped. This model uses a cellular space to model a forest

and each cell corresponds to a sub-area of the forest. Fire

spreading is a propagation process that burning cells ignite

their unburned neighbor cells. This model is based on the

Discrete Event System Specification (DEVS) (Zeigler,

Kim, and Praehofer 2000) formalism.

The DEVS formalism is derived from generic dynamic

systems theory and provides a formal modeling and simu-

lation (M&S) framework. One of the main features of

DEVS-based modeling is that it emphasizes modular (and

hierarchical) model construction, where each model is a

component with input/output ports and supports well-

defined concepts of coupling of components. These cou-

plings allow models to send messages to each other

through their input/output ports. The modular model con-

struction of DEVS brings major advantages such as model

interoperability and reuse, multi-formalism capability, and

dynamic structure change of models. An important type of

DEVS model is the cellular space model, which is com-

monly used to model complex dynamical systems with

spatial-temporal behaviors and interactions among their

subcomponents. A cellular space model includes a grid of

cells where each cell’s state can affect and be affected by

its neighbors. Formal specifications of DEVS-based cellu-

lar space models were also developed. For example, Cell-

DEVS (Wainer and Giambiasi 2002) is a specification that

extended the DEVS formalism to improve the definition of

cellular space models where each cell is defined as an

atomic model using transport or inertial delays, and a cou-

pled model that includes a group of these cells constitutes a

cellular space model. Gabriel (Wainer 2004) introduced the

main characteristics of Cell-DEVS, showing how to model

complex cell spaces in an asynchronous environment. Ex-

amples of DEVS-based cellular space modeling and simu-

lation include flow injection simulation (Troccoli et al.),

traffic control simulation (Davidson and Wainer 2000),

forest fire spread simulation (see e.g., Natimo, Hu, and

Sun, Wainer 2006), and fire containment simulation (Hu,

Muzy, and Ntaimo 2005), just to name a few.

To simulate large scale spatial systems such as forest

fire, a cellular space model needs to include a large number

of cells. The large number of cells poses a challenge from

the simulation performance point of view. In particular, the

huge number of inter-cell message exchanges that are typi-

cal for large scale cellular space models have a major ef-

fect on simulation performance. In a discrete event simula-

tion such as DEVS, each message is an event and triggers a

new simulation cycle (also called simulation iteration, see

the DEVS simulation protocol in Section 3.4 for more de-

tails) for the event handling. The large number of message

exchanges (referred to as message passing in this paper)

thus results in a large number of simulation cycles. Fur-

thermore, in DEVS-based modeling, because of the modu-

lar model construction, each cell is an atomic model and

cell-to-cell communications can happen only through (indi-

rect) message passing. This slows down the simulation fur-

ther because of the overhead of message passing and mes-

sage handling at the model level. Based on the above

Sun and Hu

observations, this paper exploits the pattern of cell-to-cell

message passing to improve simulation performance from

two aspects: 1) reduce the number of simulation cycles

caused by inter-cell message passing; 2) remove the over-

head of message passing between cellular DEVS models.

We achieve this goal by turning the modular implementa-

tion of DEVS into a partial-modular DEVS. The partial-

modular DEVS not only removes the overhead of message

passing, but also significantly reduces the number of simu-

lation cycles for event handling. We carry out this work

based on the specific application of forest fire spread simu-

lation (Natimo, Hu, and Sun). However, the main idea of

this approach could be adapted to other DEVS-based cellu-

lar space applications.

The remainder of this paper is organized as follows. In

section 2, the background and related work is presented.

Section 3 presents the modular DEVS and partial-modular

DEVS implantations of the forest fire model. Section 4

presents the experiment results and performance analysis.

The conclusion and future work are given in section 5.

2 BACKGROUND AND RELATED WORK

The DEVS (Zeigler, Kim, and Praehofer 2000) formalism

is derived from generic dynamic systems theory and has

been applied to both continuous and discrete phenomena. It

provides a formal modeling and simulation (M&S) frame-

work with well-defined concepts of coupling of compo-

nents, and hierarchical modular model construction. These

features of DEVS bring advantages to modeling and simu-

lation such as easy experimentation, easy testing, and easy

maintenance. The cellular space DEVS modeling approach

divides the spatial space into cells where local computa-

tions are done in each cell. A cell is implemented as an

atomic DEVS model that performs the local computations

internally based on its own state as well as the neighbor

states that are received through the external ports. The cell

space is implemented as a coupled DEVS model that con-

tains a number of cells. The neighbor rule followed in a

specific application determines the couplings between

cells. Cellular space DEVS is a special case of conven-

tional DEVS and follows the same structure of DEVS

framework, e.g., external, internal and output transition

functions. As discussed before, it suffers the problem of

performance when a large number of inter-cell communi-

cations exist. This performance issue is significant for

large cellular space models.

For DEVS-based simulation, different techniques have

been researched to improve simulation performance. The

Dynamic Structure DEVS (DSDEVS) (Barros 2005) is a

specification for dynamic structure modeling based on the

DEVS formalism (Zeigler, Kim, and Praehofer 2000). It is

shown that dynamic structure modeling can potentially im-

prove simulation performance for large scale cellular space

models (Sun and Hu 2006). Dynamical structure modeling

changes models’ structure (e.g., adding/removing models)

and their couplings as a simulation proceeds. It can im-

prove the simulation performance because 1) it reduces the

initialization time because it does not load all cells at the

beginning of a simulation; 2) it speeds up the execution

time of each simulation cycle because it makes a simula-

tion focus only on the “active” cells (non-active cells are

either unloaded or removed). On the negative size, dy-

namic structure modeling brings some overhead. More de-

tails can be found in (Sun and Hu 2006). Several efforts

developed advanced simulation algorithms for improving

simulation performance. Examples of such work can be

found in (Muzy and Nutaro 2005; Hu and Zeigler 2004;

Wainer and Giambiasi 2001) where the basic DEVS simu-

lation engine was improved to handle messages and cell

activity scanning in more efficient manner. Other related

works include the quantized DEVS approach (Kofman and

Junco 2001, Beltrame and Cellier. 2006), which shows that

quantization helps in improving the performance of DEVS-

based simulations by reducing the number of state transi-

tions as well as the number of messages while introducing

acceptable errors. Efficient implementation of DEVS-

based models is also studied for the purpose of improving

performance. One such work is reported in (Hall, Venkate-

san, and Wood 2003), where the authors enhance the im-

plementation by applying techniques such as pre-

computing message destinations, and using a priority

queue to sort models to achieve performance improvement

for the Joint MEASURE simulation environment. Another

technique to improve performance of DEVS models is us-

ing non-modular form that combines multiple cells into

one for faster simulation. The work (Shiginah and Zeigler

2006) proposed a non-modular formalism using closure

under coupling property of DEVS to ensure equivalency of

the models to their modular counterparts in parallel DEVS.

The speedup was gained through efficient scanning of ac-

tive cells and combining multiple cells into one atomic

model.

Other works use parallel and distributed approaches to

improve the performance of DEVS based simulation. Vari-

ous DEVS-based distributed simulation environments have

been developed such as DEVS/CORBA (Zeigler and Sar-

joughian 1999), DEVS/RMI (Zhang, Zeigler, and

Hammonds 2006), DEVS/HLA (Zeigler, Kim, and Buck-

ley 1999). These distributed DEVS frameworks typically

involve a large computation overhead. Some recent tech-

niques (Zacharewicz, Giambiasi, and Frydman 2005,

Glinsky and Wainer 2005) are used to reduce the overhead

of distributed DEVS techniques.

3 MODULAR AND PARTIAL-MODULAR

APPROACHES

This section first gives an overview of the forest fire spread

model, then presents the modular and partial-modular im-

Sun and Hu

plementations of the model, and finally gives an brief per-

formance analysis of the two approaches.

3.1 Overview of the forest fire spread model

In the cellular space forest fire spread model, a forest is

modeled as a two-dimensional cell-space composed of in-

dividual forest cells coupled together according to their

relative physical geometric locations. Each cell represents

a sub-area in the forest and is implemented as a DEVS

atomic model. A cell is coupled to its eight neighbors cor-

responding to the N, NE, E, SE, S, SW, W, and NW direc-

tions respectively. Accordingly, for each cell, eight fire

spreading directions are defined. Fire spreading is modeled

as a propagation process as burning cells ignite their un-

burned neighbor cells. Each cell can be in one of the fol-

lowing six states: unburn, burning, burned, unburn-wet,

burning-wet, and burned-wet, where the -wet states model

fire suppression and not used in this paper. When a cell is

ignited, the maximum fire spread speed and direction of a

cell is calculated using Rothermel’s semi-empirical model

(Rothermel 1972) that takes into account factors such as

fuel model, slope, and wind speed and direction. This

maximum rate of spread is then decomposed along the

eight spreading directions according to an ellipse shape.

Figure 1 shows a snapshot of a simulation using real GIS

data with 200x200 cells. In the figure, the red cells are

burning; the black cells are burned out; all other cells are

unburned with the different colors representing different

fuel models. More descriptions of this model and the initial

conditions of simulation can be found in (Natimo, Hu and

Sun).

Figure 1: Fire spreading under GIS data

From the above description, one can see that the forest

cell space model is composed of a large number of atomic

forest cell models. Each cell executes its internal tasks and

communicates with other neighboring cells by message

passing through inter-connected ports. The process of fire

spreading for both the modular and partial-modular im-

plementations is that a cell (referred to as the source cell),

once ignited, will need to schedule the time for igniting its

eight neighbors (refers to as the destination cells). In the

modular implementation, eight time points are scheduled

and kept in the source cell, which sends out igniting mes-

sages at the appropriate time based on the schedule. This

means for a source cell to ignite its eight neighbors, eight

messages are needed (thus eight simulation cycles). The

design motivation of the partial-modular implementation is

that: the source cell does not keep the time to ignite its

neighbors. Instead, it sets the time to its neighbors and asks

them (the destination cells) to keep track of their own time-

to-burning. This “time setting” happens right after a source

cell is ignited and is realized through function call instead

of messaging passing (each cell has its eight neighboring

cells’ object references). The partial-modular implementa-

tion brings two advantages from the simulation perform-

ance point of view: first, it reduces the message passing

overhead between cells; second and more importantly, be-

cause a source cell sets all its neighboring cells’ time-to-

burn in one step (right after the source cell is ignited), it

reduces the number of simulation cycles that is needed in

the discrete event simulation. These result in simulation

performance improvement. It is worthy to point out that the

change from modular to partial-modular relies on an im-

plementation that allows a cell to directly modify the state

of its neighbor cells (instead of using message passing).

Thus it breaks the modular property of DEVS models. Be-

low we describe these two implementations in detail.

3.2 Modular Implementation

The modular implementation of forest fire spread simula-

tion is based on the classic DEVS framework. A forest cell

model in forest cell space interacts with its neighbor cells

through couplings between cells’ input/output ports. A cell

affects its eight neighbor cells through eight output ports:

outN, outNE, outE, outSE, outS, outSW, outW, and outNW,

which represent eight fire spreading directions correspond-

ing to azimuth (degrees measured clockwise from the

north) of 0, 45, 90, 135, 180, 225, 270, and 315 degrees,

respectively. Accordingly a cell is affected by its eight

neighbor cells through eight input ports: inN, inNE, inE,

inSE, inS, inSW, inW, and inNW (see Natimo, Hu and Sun

for more details). Figure 2 shows the structure of message

passing from a forest cell to its eight neighbor cells. The

dash line in the figure means using message passing to in-

voke a neighbor cell’s external transition functions. The

message passing is handled by the DEVS simulation en-

gine, which invokes a destination cell’s external transition

function at that simulation cycle. In general, messages

passing to eight neighbors need up to eight simulation cy-

cles.

Sun and Hu

 outN W

outNE

outN

outW

outSW

outS

outSE

outE

Message passing to invoke
neighbor cell’s external
tra n sition functions

Up to eight simulation cycles for
passing message s to eight
neighbor cells

send

message

Figure 2: Modular implementation

Below is an informal description of the fire spreading

scenario using the cellular space model.

1. Initially a cell is ignited by an igniter atomic mod-

el. If its fire line intensity is over the ignition

threshold, it begins to burn. Otherwise, it remains

unburned.

2. Once a cell is burning, the fire starts to spread to

eight neighbor cells as shown in Figure 3.

3. An unburn cell will become burning if it receives

a fire ignition message from a neighbor cell (if the

fire line intensity is over ignition threshold as

mentioned earlier). Similarly, once this cell starts

to burn, it begins to spread fire to eight neighbor

cells. This process repeats for all cells in the cell

space during the whole simulation.

4. If a burning cell receives an input of wind speed

and direction, the cell re-calculates its remaining

fire spread delays and re-sends spreading mes-

sages to the neighbor cells.

Implementation of a forest cell’s external, internal

transition functions and output functions are listed below.

As mentioned before, the modular implementation follows

DEVS model’s specification and executes the external,

internal and output functions for handling external

message, internal time event, and generate output. The ad-

vantage of the modular implementation is simple structure

and easy to implement. However, in large cellular space

model, all cells communicate with neighbor cells fre-

quently by a lot of message passing. This increases the

computation time from two aspects. One is increased

computation for external transition functions. For each cell,

it sends out eight messages to its neighbors and receives

eight external messages from its neighbors as well. So to-

tally there are 8xN (N is the number of forest cells in the

cell space) external transition functions being executed in a

transition functions being executed in a complete simula-

tion process. For example, if the cell space size is 100*100,

the number of external transition functions being executed

is 80000 if the fire spreads to the entire cell space. The

other aspect is the large number of simulation cycles in the

simulation engine. Since one cell sends out eight fire igni-

tion messages to its neighbor cells at different time, the

simulation cycles are large. The larger the number of simu-

lation cycles, the more execution time is needed to run the

simulation.

Pseudo code for a cell’s external transition function

Pseudo code for a cell’s internal transition function

Pseudo code for devs output function

3.3 Partial-Modular Implementation

The partial-modular implementation updates a cell’s state

not through message passing. The structure of the partial-

modular implementation is shown in Figure 3. In the fig-

ure, a cell updates a neighbor cell’s state and sigma di-

rectly (using function call) and all eight neighbor cells’

state (including sigma) updates are accomplished in a sin-

gle simulation cycle. Compared with the modular imple-

deltext(double e, message x)

 if (receive weather change && state is “burn-

ing”)

re-calculate fire spread delay {di} to the eight

neighbors {ci} i=1,..,8;

cself.state = burning;

cself.spread_delay = smallest {di}

 if (receive ignition message from neighbor cells)

if(cself.state = unburn){

 calculate fire line intensity;

 if (fire line intensity > threshold)

 calculate fire spread delay {di} to

 the eight neighbors {ci} i=1,..,8;

 cself.state = burning;

 cself.spread_delay = smallest {di}

deltint()

 if (state is burning && ! {di} is not empty)

 remove smallest di from {di}

 cself.state = burning;

cself.spread_delay = next smallest di

 if (state is burning and allNeighborCellBurned)

 cself.state = burned;

out()

 if (state is burning)

 send message to the corresponding neighbor

cell;

Sun and Hu

mentation’s eight simulation cycles, the partial-modular

implementation can reduce the simulation cycles up to

eight times.

 NW

NE

 N

 W

 SW

 S

SE

E

Update neighbor cell’s state
and sigma

One simulation cycle for
updating eight neighbor cells’
state and sigma

update state
and sigma

Figure 3: Partial-modular implementation

The fire spreading scenario using the partial-modular

implementation is stated as follows.

1. Initially a cell is ignited by an igniter atomic

model and the state becomes “schedule_to_burn”.

2. When a cell is in “schedule_to_burn” state, it cal-

culates fire line intensity. If the intensity is over

threshold, the cell begins to burn. Otherwise, it

remains unburned.

3. Once a cell begins to burn, its state becomes

“burned”. Before that it calculates the fire spread

delay to eight neighbor cells and then updates

their states to “schedule_to_burn” with the associ-

ated sigma being the delay time (referred to as

time_to_burn afterwards). For each neighbor cell,

it uses a variable “ignitionSet” to remember all

the cells that want to ignite this cell and the corre-

sponding fire delay for later weather update pur-

pose. Multiple cells may try to ignite the same

cell. If that happens, the cell’s time_to_burn is

updated only when the new calculated spread de-

lay is smaller than the existing time_to_burn.

When a cell’s time_to_burn is updated, its tN is

updated by the simulator correspondingly and the

simulator is added to global simulation engine’s

imminent set. This allows the new updated

time_to_burn to be treated properly by the simula-

tion engine. Specifically, in the simulation proc-

ess, the simulation engine updates its data struc-

ture based on the imminents set and gets the

smallest tN from them in each simulation cycle.

Step 2 and step 3 repeat for all cells in the cell

space during the whole simulation process.

4. If a burned cell receives an input of wind speed

and direction, and has more than one neighbor

cells unburned, it re-calculates the fire spread de-

lays. For each unburned neighbor cell, it compares

the new fire delay with all those that want to ig-

nite this neighbor cell (excluding the cell itself)

and selects the smallest one as the new

time_to_burn.

The pseudo codes of the partial-modular implementa-

tion’s external and internal transition functions are listed

below.

Pseudo code for a cell’s external transition function

Pseudo code for a cell’s internal transition function

This implementation eliminates the frequent commu-

nications between neighbor cells. Compared to the modular

implementation, the partial-modular implementation re-

duces the execution time from two aspects. On one hand, it

deltint()

if (state is schedule_to_burn)

 calculate fire line intensity;

 if (fire line intensity < threshold)

 cself.state = unburned

 else if (fire line intensity >= threshold)

 cself.state = burned

 calculate fire spread delay {di} to the

 eight neighbors {ci} i=1,..,8;

 for (each neighbor cell ci && ci.state !=

 burned)

 ci.ignitionSet.add(cself , di)

 if(di < ci.time_to_burn)

 ci.time_to_burn = di

 ci.state = schedule_to_burn

 update the simulator by adding ci as

 an imminent;

deltext(double e, message x)

 if (receive ignition message)

 cself.state = schedule_to_burn

if (receive weather change)

 if(state is burned && at least one neighbor

 is not ignited)

re-calculate fire spread delay {di} to the

eight neighbors {ci} i=1,..,8

for (each neighbor cell ci && ci.state!=

burned)

ci.time_to_burn = exclusive_min(di,

min(ci.ignitionSet.delay) //reschedule

time to burn

ci.ignitionSet.add(ci, cself)

Sun and Hu

reduces the execution time of external transition functions.

On the other hand, it reduces the number of simulation cy-

cles in simulation engine. The second aspect is more sig-

nificant (see section 3.4 for more details). From perform-

ance point of view, the major difference lies in that partial-

modular implementation eliminates the frequent execution

of the external transition functions triggered by inter-cell

message passing and thus reduces the number of simula-

tion cycles. A brief comparison and analysis about the exe-

cution time is provided next.

3.4 Execution Time Analysis

To understand how the partial-modular implementation re-

duces the simulation time, it is necessary to look at the

simulation protocol of DEVS models. The modular imple-

mentation closely follows DEVS models’ external, internal

and output functions to simulate the forest fire spread

process. The partial-modular implementation directly up-

dates a cell’s state and sigma, and the corresponding simu-

lator’s next event time tN in the simulation engine. Both

these two implementations use the DEVS simulation pro-

tocol shown below. The simulation engine is a heap-based

coordinator.

 while (tN < predefined_fireSpreadTime){

imminents.tellAll("computeOutput“,tN)

imminents.tellAll("sendOutput")

imminents.tellAll("ApplyDelt“,tN)

 UpdateHeap();

 tN = Heap.getMin();

 }

In every simulation cycle, the simulation engine asks

all imminents (whose tN = global tN) to execute the com-

puteOutput, sendOutput and ApplyDelt functions. At the

end of the cycle, the coordinator lets all imminents update

their newest tNs in the heap and get the smallest tN for the

next simulation cycle.

Based on the above simulation protocol, the execution

time of the modular implementation is denoted by formula

(1).

 T = ∑
=

N

i

it
1

 (1)

Where T is the total execution time, N is the number

of simulation cycles, ti is the execution time at every simu-

lation cycle i. ti includes the time to execute output func-

tion, external and internal functions, as well as to find the

smallest tN.

The execution time T of the partial-modular imple-

mentation is denoted by formula (2).

 T = ∑
=

'

1

)'(
N

i

it (2)

Where N' is the number of simulation cycles in the

partial-modular implementation, ti' is the execution time at

each simulation cycle i. Based on the previous analysis, N'

is less than N and the ratio of N/N' can reaches 8 (the exact

ratio will depend on the specific model behavior). On aver-

age, ti' is larger than ti. This is because the partial-modular

implementation accomplishes fire spread operation in one

cycle, which means every simulation cycle involves com-

putation of Rothermel’s fire behavior model. However, in

the modular implementation, some of the cycles does not

need to compute Rothermel’s fire behavior model (e.g.,

when an already ignited cell receives an ignition message).

Therefore the partial-modular implementation’s execution

time in one cycle is larger. But overall the execution time

of the partial-modular method is less than the modular me-

thod as shown by the experiment results next.

4 EXPERIMENT RESULTS AND ANALYSIS

To compare the simulation performance between the

modular and partial-modular approaches, two experiments

on forest fire spread model are conducted using different

measurements. The simulations were conducted on a To-

shiba laptop with Intel Celeron (M) 1.6GHZ processor,

1.2G memory, and Windows XP OS running DEVSJAVA

version 3.0. The experiments are based on the forest fire

model that uses a dynamically structure implementation

(see Natimo, Hu and Sun for more details) and a Heap

based simulation engine. The same model parameters are

used in both experiments. The first experiment is con-

ducted to compare the execution time for different cell

space size. The second one compares the execution time

for multiple ignitions behavior.

4.1 Execution Time for Different Cell Space Size

Figure 4 shows the total execution time (in milliseconds)

for different cellular space models on a 40000 simulation

time. Performance results were collected based on every

2000 interval simulation time. The experimental results

were measured on different cellular space sizes from

100*100, 200*200, 500*500 to 1000*1000, which are dis-

played in the figure below. For each cell space size the left

diagram displays the execution time T and the number of

simulation cycles N for the both approaches. The right dia-

gram displays the ratio of T over N of the two approaches.

Sun and Hu

(a) 100*100 Cell Space Size

(b) 200*200 Cell Space Size

(c) 500*500 Cell Space Size

(d) 1000*1000 Cell Space Size

Figure 4: Execution time for different cell space size

The results displayed by the left diagrams in Figure 4

show one principle that the execution time has a positive

relationship with the number of simulation cycles, i.e., the

execution time increases with the increase of simulation

cycles. Note in Figure 4(a) 100*100 cell space, the execu-

tion time remains almost the same after around 22000

simulation time. This is because all cells in the cell space

are in burned state after that. The results displayed by the

right diagrams in Figure 4 show another principle that the

execution time in one simulation cycle (T/N) has the same

trend for the two approaches. When the simulation pro-

ceeds, the number of fire front cells increases, so the exe-

cution time in one simulation cycle increases as well (be-

cause there are more cells are involved in the simulation).

However the partial-modular approach uses more time per

cycle than the modular approach. This is consistent with

our discussion before.

The speedup of the partial-modular implementation

over the modular implementation is given in Table 1 for

the four cellular space sizes respectively. Overall the

speedups are significant and are around 4.7 times.

Table 1: Comparison of execution time of modular and

partial-modular implementations

T(s) 100*100 200*200 500*500 1000*1000

Modular 154.6 1088.2 1320.5 1337.6

Partial-

Modular

38.2 232.2 288.2 282.8

Speedup 4.0 4.7 4.6 4.7

4.2 Execution Time for Fire Spread Simulation

With Multiple Ignition Points

The first experiment shows that the number of iterations

(simulation cycles) affects the execution time. As the num-

ber of iterations increases, the execution time increases too.

Another important observation is that the number of ig-

nited cells (fire front cells) affects the average execution

time in each iteration. From Figure 4, one can see that for

both approaches, initially the number of ignited cells per

iteration (T/N) decreases. For example, the initially ignited

cell ignites 8 neighbor cells, while later on each cell only

ignites about 2 to 3 neighbor cells. At the beginning of the

simulation the number of burning cells is small, so the

number of ignited cells in each iteration decreases. But as

the simulation continues, the number of ignited cells in-

creases again. This is mainly because as the fire front in-

creases, the number of burning cells increases, so the total

ignited neighbor cells increases.

Based on these two observations, another experiment

with multiple ignitions is conducted to further support the

results in the first experiment. In this experiment, instead

of using one ignition point to start the fire spread simula-

tion. Forty randomly generated ignition points were used

and the experiment results are displayed in Figure 5. The

left diagram shows that the execution time increases with

the increase of iterations, but the increase rates in the early

stage were much larger than those in the late stage. This is

because in the early stage, a lot of cells are ignited at the

same time, but in the late stage most of the cells are al-

ready burned. In the right diagram, from tN=2000 to 4000,

each ignition cell ignites neighbor cells from initial 8 to

later average 2 to 3. From tN = 4000 the burning area of

each ignition cell overlaps to each other, so the average ig-

nited neighbor cells of each cell is less than 2. Therefore

the execution time of each iteration in right diagraph in-

creases initially and decreases later on.

1000*1000 Cell Space

0
2
4
6
8

10
12
14
16
18

tN
=2
00
0

tN
=6
00
0

tN
=1
00
00

tN
=1
40
00

tN
=1
80
00

tN
=2
20
00

tN
=2
60
00

tN
=3
00
00

tN
=3
40
00

tN
=3
80
00

Time

TModular/NMo

dular

TPartial-

Modular/NParti

al-Modular

1000*1000 Cell Space

0

20000

40000
60000

80000

100000

120000

140000

160000

tN
=2
00
0

tN
=6
00
0

tN
=1
00
00

tN
=1
40
00

tN
=1
80
00

tN
=2
20
00

tN
=2
60
00

tN
=3
00
00

tN
=3
40
00

tN
=3
80
00

Time

NModular

TModular

NPartial-

Modular
TPartial-

Modular

500*500 Cell Space

0
2
4
6
8

10
12
14
16
18

tN
=2
00
0

tN
=6
00
0

tN
=1
00
00

tN
=1
40
00

tN
=1
80
00

tN
=2
20
00

tN
=2
60
00

tN
=3
00
00

tN
=3
40
00

tN
=3
80
00

Time

TModular/NMo

dular

TPartial-

Modular/NParti

al-Modular

500*500 Cell Space

0

20000

40000

60000

80000

100000

120000

140000

tN
=2
00
0

tN
=6
00
0

tN
=1
00
00

tN
=1
40
00

tN
=1
80
00

tN
=2
20
00

tN
=2
60
00

tN
=3
00
00

tN
=3
40
00

tN
=3
80
00

Time

NModular

TModular

NPartial-

Modular
TPartial-

Modular

200*200 Cell Space

0

20000

40000

60000

80000

100000

120000

tN
=2
00
0

tN
=6
00
0

tN
=1
00
00

tN
=1
40
00

tN
=1
80
00

tN
=2
20
00

tN
=2
60
00

tN
=3
00
00

tN
=3
40
00

tN
=3
80
00

Time

NModular

TModular

NPartial-
Modular
TPartial-

Modular

200*200 Cell Space

0

2

4

6

8

10

12

14

16

tN
=2
00
0

tN
=6
00
0

tN
=1
00
00

tN
=1
40
00

tN
=1
80
00

tN
=2
20
00

tN
=2
60
00

tN
=3
00
00

tN
=3
40
00

tN
=3
80
00

Time

TModular/NM
odular

TPartial-
Modular/NPar

tial-Modular

100*100 Cell Space

0
1
2
3
4
5
6
7
8
9

tN
=2
00
0

tN
=6
00
0

tN
=1
00
00

tN
=1
40
00

tN
=1
80
00

tN
=2
20
00

tN
=2
60
00

tN
=3
00
00

tN
=3
40
00

tN
=3
80
00

Time

TModular/NMo

dular

TPartial-

Modular/NParti

al-Modular

100*100 Cell Space Size

0

5000

10000

15000

20000

25000

30000

35000

40000

tN
=2
00
0

tN
=6
00
0

tN
=1
00
00

tN
=1
40
00

tN
=1
80
00

tN
=2
20
00

tN
=2
60
00

tN
=3
00
00

tN
=3
40
00

tN
=3
80
00

Time

NModular

TModular

NPartial-

Modular
TPartial-
Modular

Sun and Hu

Figure 5: Execution time and iterations for sparse igni-

tions model

The results in Figure 5 point out the fact again that the

number of iterations (simulation cycles) affects the simula-

tion performance. By reducing the number of iterations and

then reducing the message passing, even though the execu-

tion time in each iteration is increased, the total execution

time is reduced.

5 CONCLUSIONS AND FUTURE WORK

The classic modular implementation of DEVS model does

not perform well in simulation speed for simulating large

cellular space application. In this paper, a partial-modular

approach is developed to improve simulation performance

by reducing message passing between cells. The reduction

of message passing decreases the execution time from two

aspects. One is decreasing the overhead time of message

passing and message handling in the model. The other is

reducing the number of simulation cycles. From the analy-

sis and the experiment results, the number of simulation

cycles affects the execution time significantly. For the ex-

periments carried out in this paper, the partial-modular im-

plementation reduces the simulation cycles up to 6-7 times,

correspondingly the speed up of execution time gets up to

4-5 times.

The partial-modular approach, although based on the

forest fire spread model in this paper, provides an example

for improving simulation performance for other types of

DEVS-based cellular space models. For the cases that in-

ter-cell messaging passing increases the simulation itera-

tions and thus reduces simulation performance, the ap-

proach of partial-modular implementation provides a way

for improving performance.

REFERENCES

Barros. F.J. “Modeling Formalisms for Dynamic Structure

Systems”. ACM Transactions on Modeling and Com-

puter Simulation, Vol. 7, No. 4, 501-515

Beltrame, T., and F. E. Cellier, "Quantised state system

simulation in Dymola/Modelica using the DEVS for-

malism," in Proceedings 5th International Modelica

Conference, 2006, pp. 73-82.

Davidson, A., and G. Wainer. “Specifying truck movement

in traffic models using Cell-DEVS”. In Proceedings of

the 33
rd

 Annual Symposium on Computer Simulation.

Washington, D.C. U.S.A. 2000

Glinsky, E. and G.A. Wainer, DEVStone: a Benchmarking

Technique for Studying Performance of DEVS Model-

ing and Simulation Environ-ments, 9-th IEEE Interna-

tional Symposium on Distributed Simulation and Real

Time Applications, (Montreal, Canada, 2005).

Hall, S. B., S. M. Venkatesan, and D. B. Wood, “A Faster

Implementation of DEVS in the Joint MEASURE

Simulation Environment”, in Proc. of Summer Com-

puter Simulation Conference, Montreal, July 2003

Hu, X., and B. P. Zeigler, "A high performance simulation

engine for large-scale cellular DEVS models," in High

Performance Computing Symposium (HPC'04), Ad-

vanced Simulation Technologies Conference, 2004.

Hu, X., A. Muzy and L. Ntaimo, A Hybrid Agent-Cellular

Space Modeling Approach for Fire Spread and Sup-

pression Simulation, Proceedings of 2005 Winter Si-

mulation Conference, December, 2005

Kofman, E., and S. Junco, "Quantized-state systems: a

DEVS Approach for continuous system simulation,"

Trans. Soc. Comput. Simul. Int., vol. 18, pp. 123-132,

2001.

Muzy A., and J. J. Nutaro, "Algorithms for efficient im-

plementations of the DEVS & DSDEVS abstract

simulators," in 1st Open International Conference on

Modeling & Simulation (OICMS), 2005.

Natimo, L., X. Hu, and Y. Sun, DEVS-FIRE: Towards an

Integrated Simulation Environment for Surface Wild-

fire Spread and Containment, submitted to

SIMULATION: Transactions of The Society for Mod-

eling and Simulation International.

Rothermel, R., “A mathematical model for predicting fire

spread in wildland fuels”. Research Paper INT-115.

Ogden, UT: U.S. Department of Agriculture, Forest

Service, Intermountain Forest and Range Experiment

Station, 1972

Shiginah, F. A., and B. P. Zeigler, "Transforming DEVS to

non-modular form for faster cellular space simula-

tion," in Proceedings of 2006 DEVS Symposium, 2006,

pp. 86-91.

Sun, Y., and X. Hu, Performance Measurement of DEVS

Dynamic Structure on Forest Fire Spread Simulation,

Proc.14th AI, Simulation and Planning in High

Autonomy Systems (AIS 2006), 2006 - 12

Troccoli, A., J. Ameghino, F. Inon, and G. Wainer. “A

flow injection model using Cell-DEVS”. In Proceed-

ings of the 35
th

 IEEE/SCS Annual Simulation Sympo-

sium. San Diego, CA. U.S.A.

Wainer G., and N. Giambiasi, "Application of the Cell-

DEVS Paradigm for Cell Spaces Modeling and Simu-

lation," Simulation, vol. 76, pp. 22-39, 2001.

Wainer, G., and N. Giambiasi. “N-Dimensional Cell-

Sparse Ignitions in 200*200 Cell

Space

0

50000

100000

150000

200000

250000

300000

350000

tN
=2
00
0

tN
=6
00
0

tN
=1
00
00

tN
=1
40
00

tN
=1
80
00

tN
=2
20
00

tN
=2
60
00

tN
=3
00
00

Time

NModula
r

TModular

NPartial-
Modular

TPartial-

Modular

Sparse Ignitions in 200*200

Cell Space

0
5

10
15
20
25
30
35
40
45

tN
=2
00
0

tN
=6
00
0

tN
=1
00
00

tN
=1
40
00

tN
=1
80
00

tN
=2
20
00

tN
=2
60
00

tN
=3
00
00

tN
=3
40
00

Time

TModular/N

Modular

TPartial-

Modular/NP

artial-

Modular

Sun and Hu

DEVS.” Discrete Events Systems: Theory and Appli-

cations 12, no. 1 (January 2002): 135–157 (Kluwer).

Wainer, G. A.. Modeling and simulation of complex sys-

tems with Cell-DEVS, Proceedings of the 36th confer-

ence on Winter simulation, 2004.

Wainer, G.. Applying Cell-DEVS Methodology for Model-

ing the Environment, SIMULATION, Vol. 82, No. 10,

635-660 (2006)

Zacharewicz, G., , N. Giambiasi, and C. Frydman. 2005.

Improving the Lookahead Computation in G-

DEVS/HLA Environment. Proceedings of the 9th

IEEE International Symposium on Distributed Simula-

tion and Real-Time Applications.

Zeigler, B., D. Kim, and S. Buckley. 1999. Distributed

supply chain simulation in a DEVS/CORBA execution

environment. In Pro-ceedings of the 1999 Winter

Simulation Conference, Phoenix, AZ.

Zeigler, B., and H. S. Sarjoughian. 1999. Support for hier-

archical modular component-based model construction

in DEVS/HLA. Simulation Interoperability Workshop,

Orlando, FL.

Zeigler, B.P., T.G. Kim, and H. Praehofer.: Theory of

Modeling and Simulation. 2 ed. 2000, New York, NY:

Academic Press

Zhang, M., B. Zeigler, and P. Hammonds. 2006.

DEVS/RMI – An auto-adaptive and reconfigurable

distributed simulation environment for engineering

studies. Spring Simulation Multiconference – DEVS

Integrative M&S Symposium, Huntsville, AL.

AUTHOR BIOGRAPHIES

YI SUN is a Ph.D. candidate in the Computer Science De-

partment at Georgia State University. Her research inter-

ests include performance improvement of discrete event

systems.

XIAOLIN HU is an assistant professor in the Computer

Science Department at Georgia State University. His re-

search interests include modeling and simulation, agents,

and simulation-based design.

