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Abstract: While the construction sector is a major consumer of new raw materials, it also contributes 
largely to waste generation. Therefore, improved estimates of demolition waste and the 
identification of components and materials for reuse or recycling are an important prerequisite for 
better waste management in the construction sector. The aim of this study is to investigate the 
differences and possibilities between static bottom-up models and parametric BIM-integrated 
bottom-up models for material flow analyses to predict the building material composition of 
historical building typologies. Findings are, when comparing the predictive capabilities of the pre-
audit model with a novel implementation of a generative parametric model, that we see a drastic 
improvement in the error-reduction. The test models and test cases are based on limited data but 
given the significance of the magnitude of variance between the two models, there is a strong 
indication that the most precise modelling approach is obtained when utilizing a parametric model 
based on historical building traditions. In contrast, the use of normal static prediction-based 
modelling is hard to justify since data on demolition waste is of poor quality. Combining the two 
modelling approaches might present a new alternative to reduce factor errors in predictions of 
demolition waste and create a foundation for better pre-demolition audits and BIM models for 
material passports. 
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1. Introduction 
The construction sector is one of the largest consumers of new raw materials, with a 

yearly depletion rate of 40% [1], but it is also responsible of a large share of the generation 
of waste, producing 34% of all waste in OECD countries [2]. In addition to its large-scale 
consumption of materials, the production of new building components also generates 
large CO2 emissions during production, which means that 11% of all anthropogenically 
created CO2 emissions can be related to the production of building components [3]. 
Construction is therefore an important focus area for the circular economy, where high 
rates of reuse and the recycling of building components and materials from the demolition 
of existing buildings can help reduce the need for new materials in the construction of 
new buildings [4]. The current reuse and recycling rates for construction waste vary 
widely from country to country. Some European countries have high recycling rates, but 
many of the heavy waste fractions such as concrete are still recycled to a low value, often 
being crushed as a base for roads or backfilling [5]. There are already many annual 
inventories of the historical production of waste from the demolition of buildings in the 
European Union, which are mainly driven by major international initiatives such as the 
70% recycling target in European waste legislation [6], but there is still a lack of knowledge 
about the materials stored in the existing building stock and that will become waste at 
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some point in the future. At the same time, embedded materials have the potential to be 
included in circular material flows when buildings are demolished in the future. Being 
able to calculate better estimates of future waste generation from the existing building 
stock is therefore an important prerequisite for improving waste management [7]. 

Material flow analysis (MFA) has been used for many years to determine the flows 
of materials in anthropogenic systems. If an MFA only covers a certain point in time, it is 
called a static MFA, whereas an MFA that considers a system over time is called a dynamic 
MFA. The materials embedded in a stock can be calculated using top-down or bottom-up 
approaches [8]. The bottom-up method considers the embedded materials in a limited 
part of the system and subsequently scales them up. The top-down method assesses the 
embedded materials by examining the difference between inflow and outflow in a system. 
In addition, MFA can be either retrospective by examining stocks and flows in the past 
based on historical data, or prospective by trying to predict developments in flows and 
stocks through historical data and extrapolation [9]. In terms of modelling resource flows, 
the retrospective top-down method is the most used [9,10], whereas the retrospective 
bottom-up approach is the most widely used to calculate stock flows, such as in buildings 
[8]. These bottom-up studies of the material composition of buildings often use a 
calculated material intensity, composition or mass flow for a particular typology of 
buildings, after which a retrospective assessment of the historical stock for that typology 
can be calculated, as demonstrated by [11–18]. Alternatively a prospective analysis can be 
added to predict future changes or outputs from that typology, as demonstrated by [19–
25]. However, several studies also use a top-down model to estimate materials in the 
building stock by examining either in- or out-flows of materials [13,26,27]. A better 
coupling of bottom-up and top-down approaches with better data on material intensities 
and component life times is needed to increase the reliability of stock and flow estimates 
[28]. 

Although more reliable data on material intensities for buildings are needed to make 
accurate material stock studies, these data are not available in most countries [29]. In 
addition, the integration of building information modelling (BIM) into MFA can 
contribute to a better handling and storage of material-specific data on buildings and 
thereby contribute to accurate estimates in terms of the volumes of building components 
and materials in existing buildings [30] and the recoverability of materials [31]. One of the 
advantages of applying BIM may be its ability to quantify material estimates based on 
volumes in early design [32], whereas traditional stock estimates are mainly based on m2 
floor area [33]. Given the innumerable parameters that can define a parametric model [34], 
it is relevant to describe links to the typology of the building to acquire a deeper 
understanding of building traditions for that given typology in a parametrical sense [35]. 
BIM models with material data also create a better foundation for making integrated BIM-
LCA calculations for assessing environmental impact of renovation of existing buildings 
[36,37]. Attempts to model historic buildings with BIM and parametric tools have been 
made in recent studies e.g., [38]. However, previous work in integrated material 
estimations in BIM has focus on salvaging possibilities [31], design for disassembly [39] 
or storing material data in BIM models [40] and has not shown in-depth typological 
modelling at scale with parametric tools for MFA in stock flows. This is in contrast to 
many recent attempts to provide high-quality quantitative take outs from BIM in planning 
[41–43] and arguably model-based quantity take-offs are the most valuable use of BIM in 
cost management of new buildings [44]. Unfortunately, (high-quality) BIM models of 
existing and historical buildings are rare and inaccessible. 

The aim of this study is to investigate the differences and possibilities between static 
bottom-up models and parametric BIM-integrated bottom-up models for MFA to predict 
the building material composition (BMC) of existing building typologies. The objective is 
to identify the framework, scope and boundary conditions for (i) BMC-relevant data (ii) 
BMC-relevant typology and (iii) BMC-relevant predictive models. In the present study, 
two types of predictive MFA models for material composition are tested and analyzed. 
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The first model is static and based on material data from pre-demolition audits in 
Copenhagen. The second is a generative parametric model based on data from public 
building registers and literature on building practices specific to historical typologies. The 
models are tested and compared based on four case studies. 

2. Materials and Methods 
The reliability of the models is analyzed for the accuracy of the prediction of BMC 

within the model by using statistical techniques (k-fold cross-validation and Monte Carlo 
simulations). Factorial dependencies outside the model are analyzed empirically and use 
references from the literature. High-level mathematical notification of factorial 
dependencies within and outside static and parametric modelling approaches are used to 
describe and compare the models. 

2.1. Static Material-Flow Analysis 
The static model uses information on individual buildings as the fundamental source 

of data in predicting the material composition of buildings. Similar models based on 
demolition data have been used in previous studies [45] to predict material flows. Static 
MFA is limited to describing systems at a specific time in a current state [46], feedback 
loops and other similar system dynamics cannot be captured from such models. 
Nonetheless, from this simplistic approach, we define the precision of each data point as 
the ability to (i) identify a building material and (ii) measure the quantity of the material. 

One impractical yet straightforward way of determining the material composition of 
any building is to map the building waste composition (BWC) of demolitions. Buildings 
can theoretically be dismantled, sorted and weighed for each material composition and 
thus efficiently serve as the fundamental data source for BMC. It is safe to assume that 
two identical buildings, one having been demolished, the other still standing, have the 
same BMC. Based on this assumption, we can describe the translation of post-audit 
building waste composition from BWC to BMC for equivalent existing buildings as: 

eqv postBMC BWC≈  (1)

In the ideal world, with any model for predicting BMC for any building, the 
following terms are given if: 

BWC data are abundant and accurate. 
Equivalence derives from building typology. 
Unfortunately, neither term can be assumed to be met safely with current data and 

current building typologies, which is why the model needs to take this into account. To 
generalize, the model is introduced with discrepancy factors, f, per material 
category/waste category: 

eqv CD sCD postBMC f f BWC= ⋅ ⋅  (2)

where fCD and fsCD are tied to the auditor and systemic components of a construction and 
demolition waste system, which handles the identification and measurements of the BWC 
(see Table 1 for a detailed description of these factors). Many different approaches have 
been developed to measure demolition waste system data both directly and indirectly [7] 
to account for such factors. We assume that a model based on the direct weights of 
materials at a waste sorting and handling facility will have the highest accuracy potential. 
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Table 1. Factors/flow origins identified for BMC models. 

Audit System Factors, fsa Auditor Factors, fa 
• Approximation method for measurement of physical 

quantities • Practical experience of various building typologies 

• Approximation method for destructive and non-de-
structive tests on materials 

• Skills and equipment in identifying materials and 
amounts 

• Training, education, certification and support of au-
ditors 

• Quality assurance of audits 

• Systemic political, financial and cultural influence • Educational & certification level of auditor 
Demolition waste system factors, fsCD Demolition waste factors, fCD 
• Method for measurement of physical quantities • Skills and equipment for identification of materials 
• Method for destructive and non-destructive tests on 

materials 
• Physical capacity for sorting and storage of materials 

• Method for sorting and storing materials • Quality assurance of C&D facility, its assessors and 
processes 

• Systemic political, financial and cultural influence 
(e.g., accessibility of data)  

Typological factors ftype Model-centric factors, ffit 
• Method and requirements on typological categoriza-

tion of buildings and materials. • Method for fitting the data to the model 

• Available documentation and details on structure 
and building envelope per typological category. 

• Method of fitting the generative parametric model to 
measured data 

• Available overlapping data to determine a building 
typology category, if selected category is not given in 
the source data set. 

• Identification of most influential parameters that de-
scribes a typology 

• Typological links to historic building codes, local 
planning requirements, etc. 

• Implementation factors, such as possible states per pa-
rameter, choice of tools, coding language, speed, flexi-
bility and accuracy of the implementation.  

• Systemic political, financial and cultural influence 
(e.g., non-compliance of building codes) 

• Quality assurance of waste facility, its assessors and 
processes. 

To accurately translate all the categories of materials present in a building in terms 
of an equivalent waste composition from demolitions, the few mandatory categories being 
registered in the dataset, such as the pre-demolition audit, do not explain all the materials 
in a building, since it is based on a professional assessment performed by an auditor. It is 
therefore necessary to accommodate non-registered, not-yet-registered and future-regis-
tered building (waste) material categories, BWCd, , in contrast to all the materials that are reg-
istered BWCr: 

post r dBMC BWC BWC= +  (3)

We may rewrite the model to consider demolition waste factors for all identified cat-
egories, BWCeqv as follows: 

( ) ( )
1 1

r d
r d

eqv fit sCD BWC CD BWC CD
BWC BWC

BMC f f W f W f
= =

 
= ⋅ ⋅ ⋅ + ⋅ 

 
   (4)

where BWCr=1 is the building waste categories included in the waste system, and BWCd is 
the materials not identified as building waste categories within this system. WBWC is the 
measured weight of a building waste category, while WBWCd is the measured weight of 
materials outside the identified building waste categories. fsCD is the systemic errors gen-
erated due to higher-level waste conditions and management, and finally fcd is the errors 
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associated with the measurements and identification of the specific materials at the spe-
cific waste-sorting facility. 

At this point, we have yet to account for the factors that apply when equivalence 
derives from typology, instead of assuming full equivalence between BMCeqv and BWCpost. 
In other words, the results of the MFA depend on the way the typologies are grouped. If 
we assume some type of audit/assessment of buildings are used to determine its typology, 
we can adopt these errors under the two factors fa and fsa (see Table 1 for a detailed de-
scription of these factors), which account for faulty typological inspections at a varying 
level of detail: 

typo eqv a saBMC BMC f f= ⋅ ⋅  (5)

This gives a generalized MFA baseline for BMC based on typology and BWC data: 

( ) ( )
1 1

1
r d

r d

typo fit sCD BWC CD BWC CD
BWC BWCa sa

BMC f f W f W f
f f = =

 
= ⋅ ⋅ ⋅ + ⋅ ⋅  

   (6)

The typology BMCtypo calculated through the static MFA is based on pre-demolition 
audit data reported to Copenhagen Municipality, which are not publicly available. The 
reported pre-demolition data is based on the requirements in Waste Law BEK no. 224 
from 08/03/2019 [47] and the previous version of the Waste Law BEK no. 1759 from 
27/12/2018 [48]. The data contain information on demolition waste from both total and 
partial demolition, as well as renovations. The municipality’s construction waste in the 
notification is reported on the address level. The notification contains quantities of waste 
in whole tonnes is divided into material fractions and the expected handling of the waste 
(preparation for reuse, recycling, other recovery or disposal). The reported data are based 
on a pre-demolition audit, and which material fractions and quantities were actually gen-
erated during the demolition or renovation are not subsequently checked. The data input 
to the static MFA model is based on data from 474 cases of demolition cases and 946 cases 
of renovation carried out over a two-year period from 2018 to 2019. A linear regression 
model for 𝑊௪  using k-fold cross-validation covers 16 building waste categories 
(BWCi,n=1. BWCi,n=16) where its assumed that every WBWC is independently described as: 

, 0 1 , 1 ,...BWC i XBMC i nXBMC i n iW β β β ε= == + + + +  (7)

where β and ε are model response variables, and χ is the id of a building in the data set. 
Thus, the linear predictive building material composition for each typology category, 

t as presented in Table 2, is described as: 

( ) ( ), , , , ,
1 1

r
r

i i

typo t fit sCD BWC i CD i other i CD i
BMC other

BMC f f W f W f
= =

 
= ⋅ ⋅ ⋅ + ⋅ 

 
   (8)

where t is one of the first five typology categories (See Table 2) that filters the selected 
span of years, BWC,i represent the material categories except the category “other”, which 
is assumed to represent the BWCd fraction of the building material composition. ffit repre-
sents the model-centric parameters that describe how well the model fits the data. fsCD and 
fCD,i are ignored in this case and equal 1. 

Table 2. Danish typology based on construction periods in TABULA [49] focusing on energy re-
quirements. BR is the Danish Building Regulations. 

Construction Period Changes in Typology Typical Materials Typology Categories 
Before 1850 Shift in building tradition Masonry, Thatched, Wood beams 1 
1851–1930 Shift in building tradition Masonry, Tiles, Wood beams  2 
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Case study 3 & 4 (parametric 
MFA) 

1931–1950 Cavity walls introduced Masonry, Tiles, Wood beams 3 

1951–1960 
Insulated cavity walls in-

troduced Masonry, Eternit, Wood beams 4 

1961–1972 
First energy requirements 

in BR1961 
Masonry, Concrete bricks, Tiles, 

Eternit, Wood beams 5 

1973–1978 
Tightened energy require-

ments in BR1972 
Masonry, Concrete backwall, Eter-

nit, Tiles, Wood beams 
6 

Case study 2 (static MFA) 

1979–1998 
Tightened energy require-

ments in BR1978 
Masonry, Tiles, Concrete backwall, 
Eternit, Wood and Concrete beams 7 

1999–2007 Tightened energy require-
ments in BR1998 

Masonry, Tiles, Concrete backwall, 
roof, Wood, Steel and Concrete 

beams 

8 
Case study 1 (static MFA) 

2007–2011 Tightened energy require-
ments in BR2006/2008 

Masonry, Tiles, Concrete backwall 
and roof, Wood, Steel and Con-

crete beams 
9 

The static MFA is tested on two different buildings with two different typologies. 
Case study 1 is an office building in typology category 8, which was constructed in 1999, 
then demolished in 2020. The floor area of the office was 1497 m2 excluding the basement 
and roof area. The office building had a single floor, excluding basement and roof. The 
height of the building was assumed to be 4 m, resulting in a gross volume of 5868 m3. Case 
study 2 is a daycare center, constructed in 1976 and demolished in 2020. The floor area of 
the daycare center was 578 m2, excluding basement and roof area. Similarly to the office 
building, the building had a single floor. Its height was assumed to be 4 m, resulting in a 
gross volume of 2312 m3. 

The registrations of waste in the pre-demolition audit for the two case-study build-
ings can be found in Supplementary Material S1. 

2.2. Parametric Material Flow Analysis 
The principle behind this parametric approach is the generation of a high level of 

detail from low-level data by utilizing rule-based modelling techniques by encoding geo-
metric Boolean operations. While it is unfeasible to describe every set of parametric en-
coding in detail with mathematical notations for comparative reasons, the parametric 
model is summarized in Equation (9) with a description of the flow origin parameters in 
Table 1 and the parametric Grasshopper model can be accessed in raw encoded form (see 
Supplementary Material Table S2). To assess the results comparatively for our test models, 
a set of procedurally connected requirements is defined to validate the model’s imple-
mentation. These requirements, which are meant to systematically reduce errors from 
model-centric factors represented by the factor ffit are associated with the choice of typol-
ogy (in this case, limited to buildings from the period 1851–1930, typology category two; 
see also Table 2). 

The parametric model, based on an extensive collection of articles on typologies in 
Denmark, is mapped and curated by BYG-ERFA [50], combined with detailed descrip-
tions of multi-story residential buildings categorized by typology 2 (see Table 2) [51,52]. 
Input from the Danish national building register (BBR) [53] includes area, number of 
floors, building age, outer wall materials, roof materials, building footprint and free pa-
rameters identified. This leads to the following approach to selecting influential parame-
ters for the parametric model: 
1. Generate a complete 3D model of essential building elements through the 11 steps 

shown in Figure 1; foundations, load-bearing walls, load-bearing decks and roof 
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structures for a given typology based on definitions and rules defined by Engelmark 
and input from BBR implemented with the least amount of free parameters. 

2. Calculate volume of generated building elements. Each element is assigned with ma-
terial id based on [49] and amounts are calculated based on generic densities. For 
known parameters, each parameter is chosen by the state given the dataset BBR for 
that particular building in question. For unknown parameters (not present in BBR), 
each parameter includes variance and boundaries for the Monte Carlo simulation 
approach. The variances in our test case are derived from a small test/training set of 
carefully measured building material compositions. 

3. The results of the building material composition generated from a building is rec-
orded in two formats, one for human inspection (for visual inspection, 3D models, 
and 2D renders), for comparison with photos; the output, in this case, shows the most 
likely (summarized median) of all possible parameter states. The second forma is a 
machine-readable file format for further processing and boundary checks with pre-
modeled sets of buildings with a given typology. 

4. While the algorithm used to generate the 3D model is implemented to present the 
most probable constructions and materials (based on its available data set), it is pos-
sible to adjust the settings for the algorithms. Based on human inspection for com-
parison with land sat photo material (Google maps), changes to the fixed and free 
parameters are modified (see Figure 2), thus generating a new model through step 
13 in Figure 1. This process can be repeated until the user’s visual inspection has been 
satisfied. 

 
Figure 1. Step by step guide to the auto generation of the parametric BIM model with assignment 
of specific building components based on typical historical building practice. 
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Each parameter is either modelled with a standard uniform normal distribution (P 
(X > 1.96)) or through a cumulative function given by the distinct value for the parameter 
assigned by the probability between 0–1, depending on how many times it occurs. The 
BMC for typology 2 is described as: 

( ), , , , , , , ,typo t a saBMC Fh WH WW BH FH FDT MCH RH f f= ⋅ ⋅  (9)

where each of the variables FH to RH described in Table 6 depend and are modelled par-
ametrically using Grasshopper3d. ffit represents the model-centric parameters that de-
scribe how well the model fits the data. fa and fsa are modelled by introducing variance 
determined by using the one-at-a-time (OAT) simulation principle, as each parameter is 
simulated 300 times based on the Monte Carlo selection. Inner alignment of the model 
sensitivity index is calculated for each parameter. The sensitivity index is calculated using 
the all-at-a-time (AAT) simulation principle, where all parameters are varied simultane-
ously based on a set of 500 as defined by [54]: 

( )
1

1

n
ijj

i
n

ijj

y
nS P

y
n

β

β

−
=

 − 
 




 (10)

where i is the index of the parameter, n is the state of the parameter P. xi, yij are the outputs 
of the system for the jth measure of xi, k corresponds to the number of parameters and β 
is the base solution. 

  
(a) (b) 
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(c) (d) 

Figure 2. Based on typological rules and drawings, typical floor for typology (a), and typical roof 
build-up several alternatives for the typology (b), it is possible to generate a full 3D representation 
of a building (c). The visual inspection shows that the BIM generated roof (d) is of the wrong type 
of the two typical roof construction alternatives, meaning changes of specific fixed or free parame-
ters need modification. 

Case study 3 is a residential building in typology category 2, it was constructed in 
1895 and is still in use. The floor area of the building is 2003 m2, excluding basement and 
roof area. The residential building has four floors, excluding basement and roof. Detailed 
historic drawings are used to assess the accuracy of the model, but they are not used as 
input in modelling the case study. 

Case study 4 is a residential building in typology category 2, constructed in 1903 and 
still in use. The floor area of the building is 1467 m2, excluding basement and roof area. 
The residential building has five floors, excluding basement and roof. Detailed historic 
drawings are used to assess the accuracy of the model, but they were not used as input in 
modeling the case study. 

3. Results and Discussions 
3.1. Accuracy of the Static Stock Flow Model 

In general, we see how the model overshoots minerals (stone, concrete and ceramics), 
iron and metal. On average, for the two cases, the model overshoots by a factor of 2 and a 
factor of 100, respectively (see Table 3). The static stock flow model based on typology and 
age is unfit to describe the nuances of materials in buildings, at least based on currently 
available data. Depending on the building typology, the waste composition on wood can 
cause inaccurate predictions with a factor of 2–3. The static MFA model poorly depicts 
concrete, iron and metal, natural stone and unglazed bricks in general. All building waste 
categories typically found in large amounts (weight-wise) come with significant variance 
when predicted across all typologies. Even with a relatively large data set, the quality of 
this particular data set differs critically in serving as accurate predictors. Two mechanisms 
explain the high variance: (1) poor data quality (with a high noise ratio serving as prior 
for the model) and (2) the spread of typologies vary significantly within the data, meaning 
that the typologies show low internal correlations and/or are falsely identified by the filter 
(address, building age, type, size). Both mechanisms result in offshoots of actual BMC 
with an unknown but assumingly high margin. 
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Table 3. Two cases comparing predicted building material compositions vs. actual measured build-
ing material compositions. 

 
Case 1: Office Building Case 2: Daycare Center 

Actual BWCr [kg/m3] Predicted BMCr [kg/m3] Actual BWCr [kg/m3] Predicted BMCr [kg/m3] 
Minerals 281.1 335.8 49.0 182.1 

Iron and metal 0 15.5 4.8 116.2 
Wood 3.6 1.2 3.6 6.7 

Total (BWC, BMC) 291.8 403.6 161.4 384.4 

These variances are very high, and one should be cautious in relying on such data 
and models. Given the quality of the data set, we expect high variance outputs, making 
the approach is imprecise and challenging to apply in practice. However, since 2020 reg-
ulatory changes in the ways data are collected and verified are likely to improve data 
quality in the future. Thus, the method of predicting BMC from BWC using static MFA 
cannot entirely be ruled out. However, until much more accurate data become available, 
the presented type of predictive model will deliver significant forecast errors of building 
material stock. 

3.2. Factorial Dependencies of the Static Stock-Flow Model 
The variance across all buildings in the test set related to ffit in the model is expressed 

by the mean absolute error (MAE) per material composition (see Table 4). While we do 
not have supporting data to derive the real fsCD and fCD in detail for all the data points in 
question, we tested the model against two waste audit cases. These present the measured 
building material waste composition measured by a demolition company versus the pre-
dicted waste BMC, i.e., the BWC, assuming all materials are accounted for. This gives an 
idea of the prediction variance (associated with the factors fsCD, fCD and ffit). 

Table 4. Post demolition BMC model and its MAE. 

BMCtypo,1–5 MAETypo,1–5 [ton] MAETypo,2 Only [ton] 
Natural stone, e.g., granite and flint 4.0 1.1 
Asphalt 95.0 10.3 
Concrete 545.0 495.3 
Asphalt and concrete mix 4.0 0.5 
Natural stone, unglazed tiles and con-
crete mix 

148.0 343.0 

Gypsum 10.0 1.1 
Iron and metal 233.0 45.4 
Glass 9.0 0.4 
Unglazed brick and tiles 147.0 52.6 
Roofing felt 2.0 0.7 
Stone wool 9.0 0.9 
Wood 11.0 38.5 
PVC 0.2 0.0 
Plastic 0.1 0.0 
Cardboard 0.03 0.0 
Others 24.0 4.7 

To quantify the margin of error due to audit practice and the practitioners in an audit 
system that may serve as much better predictions in a future data set, we conjecture that 
other audit systems within the demolition sector may give insights into the approximate 
factors of fsCD and fCD. As an example, we use the experience of the Danish energy-labeling 
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scheme. Its purpose is to rank buildings on their energy use and to help the authorities 
regulate the energy consumption of buildings according to EU 2018/844 [55]. The system 
is composed of a certification standard maintained by a nationally regulated organ (Dan-
ish Ministry of Environment), which places a high authority level on the system itself but 
is handled through certified companies and their auditors. Data on inspection of these 
certifications are available in a public energy label database, which makes it possible to 
inspect and compare audits and take out random inspections of audits to incentivize 
measurements that are more accurate. Audits are based on version-controlled guidelines 
for auditors, which challenge the comparability of audits over time. This has contributed 
to criticism of the system because 23% of audits in 2018 contained errors that would affect 
the result so much that the energy label had to be changed [56]. Because the system does 
not explicitly include materials, the materials’ volumes can only be extrapolated from the 
building envelope and not from the rest of the building composition. 

This same kind of error rate of 23% can be associated with the errors that are charge-
able to audit-system factors and auditor factors. Given this assumption, the material com-
position is based on audits using a similar approach, and the given audits can take into 
account equivalent measurements of interior building surfaces (floors, inner walls, etc.) 
and BMC for the entire building. 

To generalize further, we surmise that BMC from audits will contain around 20% 
inaccurate information caused by systemic errors and errors due to the specific auditor, 
equivalent to those reported by [56]. We can further speculate if auditors who are trained 
systematically on differences in typologies will reduce fa-inaccuracies. While these errors 
are likely to be minimized, with a higher frequency of quality assurance and better train-
ing of auditors, the model suggests that divergences between audited material composi-
tions and “true” material compositions cannot be minimized, since no term for feedback 
is introduced. This sets up a BMC model approach for high-precision measurements of 
material waste compositions based on post-demolition data, as introduced in the regula-
tory change to how to manage BWC, mentioned earlier. 

3.3. Accuracy of the Parametric Stock-Flow Model 
Compared to the static MFA, we obtain more accurate predictions for all materials 

with the parametric MFA (see Table 5). The highest recorded errors are for concrete, again 
consistent with the static MFA model, but in this case the variance is much smaller, and 
the predictions are more consistent compared to the pre-audit model using BBR data as 
its prior. This suggests that rule-based parametric models generate reliable quantities 
and/or identify materials significantly better than a somewhat unregulated pre-audit sys-
tem as that represented by the demolition waste measured data set. 

Table 5. Building material composition for two cases, actual vs. predicted. 

 
Case 1: Mølle Alle Case 2: Brysselgade 

Actual BMC [kg/m3] 
Predicted BMC 

[kg/m3] Actual BMC [kg/m3] Predicted BMC [kg/m3] 

Masonry 179.1 179.3 +/− 12.5 192.6 193.9 +/− 33.3 
Concrete 102.2 104.1 +/− 7.0 110.3 111.5 +/− 19.3 

Wood 39.0 39.6 +/− 2.7 41.9 42.2 +/− 7.2 
Iron/Steel 13.5 13.5 +/− 1.0 13.1 13.3 +/− 2.2 

Total (~BMC) 333.7 336.5 +/− 23.1 357.9 361.0 +/− 62.0  

The parametric model also generates a deeper typological breakdown than what is 
possible to generate from the BBR set alone. The “typologysation” is equivalent to the 
number of open parameters in the model. This allows for a selective tweaking of the gen-
erated building components and their material compositions adjusted for all other param-
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eters. The primary benefit with the parametric MFA ties in with the qualified opportuni-
ties for component types linked with the option to visually inspect the building in the 
model. This is currently not possible in the static MFA approach. 

3.4. Factorial Dependencies in the Parametric Stock-Flow Model 
To explain the model’s insights, we show the simulated variance along with the sen-

sitivity index of each relevant parameter in the model. Three distinct experiments were 
performed with 100 simulations each. The analysis took place individually on the parts of 
the building that had significant variance during the uncertainty analysis. For masonry, 
the floor height, the height and cantilever of the wall, and the window area were selected 
as open parameters. Specifically relevant for concrete, there were variations in basement 
height, foundation height and width, and deck thickness. In the roof construction, the 
height and cantilever height of the wall, the roof slope with a uniform slope, slopes with 
a two-part roof slope and the roof height varied. 

Inaccuracies due to floor heights were mainly caused by the differences in the BBR 
data for declared areas vs. generated areas based on a polyline-footprint multiplied by the 
number of floors (see Table 6 column 2). We see the majority of errors as linked as expected 
to the BMC of the façade and not the internal structure or the foundation. The generative 
model itself had a mean absolute error ranging from 0.03 to 102.15 tonnes, where heavy 
materials such as masonry and concrete have larger mean absolute errors, which is con-
sistent with the pre-audit results. Of the two cases (tested against the model; see Table 6 
column 4) we saw a lower mean error than in the model (see Table 6 column 3). This was 
expected, as the buildings in the test set are likely to be closer to mean values than the 
outliers, due to the limited test set used. 

Table 6. Essential free parameters identified for housing constructed between 1931 and 1950. 

Parameter Parameter Type Mean State [m] 
Variance, 
OAT [m] Sensitivity Index, AAt [-] 

Floor height, Fh Cumulative function 3.20 0.117 0.39 
Window height, Wh Uniform distribution 1.80 0.274 - 
Window width, WW Uniform distribution 1.40 0.016 - 

Window area (derived) Uniform distribution - - 0.45 
Basement height, BH Cumulative function 2.80 0.018 0.26 

Foundation height, FH Uniform distribution 0.50 0.008 0.27 
Foundation deck thickness, FDT Uniform distribution 0.30 0.528 0.41 

Mural crown height, MCH Cumulative function 0.65 0.0135 0.12 
Roof height, RH Cumulative function 2.70 0.0837 0.20 

What remains relevant to conclude is that, when the model generates buildings that 
resemble the “correct typology”, its expected variance is reduced significantly, and highly 
accurate predictions can be made. At the same time, this also means that if the model 
attempts to predict BMC outside its actual typology, the predictions will almost certainly 
be less accurate. The case studies in the test set summarize the BMC for primary structural 
materials (material compositions), as shown in Table 7. 

Table 7. Errors due to generative parametric modelling factors. 

BMCtypo 2 MAE (ftype) [ton] 
MAE (ffit), in 
Model [ton] 

MAE (ffit), Test 
Set [ton] 

Masonry 20.8 102.15 2.30 
Secondary masonry 0.0 11.65 2.00 

Concrete 4.0 55.65 10.75 
Wood beams t1 0.0 1.00 −0.03 
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Wood beams t2 0.0 9.61 0.04 
Wood rafters t3 0.3 2.04 0.23 

Wood roof t4 0.0 0.39 −0.01 
Wood laths t5 0.0 0.03 −0.02 
Steel profiles 0.0 1.53 0.05 

3.5. Predictive Capabilities of the Pre-Audit Model and the Generative Parametric Model 
To begin with, we see that the methods determining the relevant factors that affect 

the accuracy of harvesting BMC vary significantly between the approaches we present in 
this paper. The models are based on different data sets, but they also refer to different 
domains of modelling that are rarely seen in the same research projects. Since the models 
range from direct data transfer based on low-level multiclass linear regression to high-
level generative parametric models, we chose to focus on the most critical aspects of our 
experiments’ model results and indications. 

Several test implementations of the parametric algorithms have been performed in-
cluding different ways of generating the structural beams at every floor as shown in Fig-
ure 3. During these tests cases studies were used to calculate the errors on BMC for the 
beams. 

 
Figure 3. Beam span algorithm test, here showing three buildings actual span (green) and two dif-
ferent implementations tested (blue and purple). 

Summing up, we suggest that factors can be classified similarly, regardless of the 
modelling approach. The models all share the same distinction between two types of fac-
tor: 

The quality of direct measurements of building material compositions from material 
waste composition is a result of the following factors: 
• Demolition waste system factors associated with the method of measuring construc-

tion demolition waste made by the waste-handling facility. 
• Demolition waste factors associated with the specific waste-handling facility. 

The quality of building material compositions by indirect measurements performed 
through audits is a result of two types of factor: 
• Audit system factors associated with an established building audit system. 
• Auditor factors associated with the specific auditor. 

The quality of generated building material compositions from a parametric model of 
BMC is a result of the following factors: 
• Typological factors associated with historical and cultural factors. 
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• Model-centric factors associated with the method of modelling. 
We have shown that, when predictive modelling is used, the model-centric factors 

(ffit) are easier to quantify compared to the systemic factors e.g., fsa and fsCD and the “human 
in the loop factors”, such as fa and fCD. Nonetheless, it is possible to quantify such factors. 
When this can be done, interventions can be introduced to reduce their inaccuracies. 

When comparing the predictive capabilities of the pre-audit model with the genera-
tive parametric model, we see a drastic improvement in the error-reduction of ffit. Our test 
models and test cases are based on limited data, and the model’s data priors are not di-
rectly comparable. However, given the significance of the magnitude of variance between 
the two models, we see an indication of a more precise modelling approach when utilizing 
a parametric model. The consequence of a pre-audit model that relies purely on the sta-
tistical significance of its raw data is the acquisition of good-quality data. We see that the 
pre-audit model is highly susceptible to errors in the waste pre-demolition audit even 
after heavy pre-processing of the data. In addition, the material intensities for existing 
buildings have increased due to the growing amount of material that is used for replace-
ments [57], which will not be reflected in the results when the data is historical. We also 
see that the number of individual building data points in every typology category matters 
for the precision of the model. The generative parametric model can be based on testing 
the implementation of typology 2, defined on the basis of a relatively small prior data set, 
as long as the parametric rules are realistically accounted for in the model. This, however, 
does not mean that every typological category is equally well defined or that it can be 
described with few and efficient parameters derived from other datasets (i.e., BBR). It is 
unlikely that, e.g., typology category 4 can be modelled with as few parameters as we 
present for typology 2, simply because typology 4 ranges much further in material choices 
and building traditions. 

Without speculating whether the models are likely to be transferred to other cities 
and countries, we do suggest that if other countries were to rely on similar ways of col-
lecting waste data through pre-demolition audits, they would find that currently available 
data on demolition waste is of such bad quality that static prediction-based modelling is 
hard to justify. It would therefore be better to use the parametric approach, that, given (a) 
well-defined sets of rules and (b) an accurately assessed typology, BMC can be predicted 
with high levels of precision. This assumes that the BMC calculated from technical draw-
ings and rules actually does account for the built BMC. 

3.6. Implications for Future Predictions of Material Composition and Registration of Waste Data 
It seems a natural step to develop better techniques and methods to fit existing build-

ings into distinct typologies and possibly rethink the typological systems used interna-
tionally. We found that TABULA lacks detailed information on BMC but supports deriv-
atives of expected materials used in the mapped typologies. A systematic use of existing 
typologies in TABULA, combined with other sources of BMC-relevant data is possible, as 
shown in this paper, but our results indicate that a more “fine-grained” version of TAB-
ULA would further improve the model’s predictions. 

This situation has since changed through the revision of waste legislation BEK no. 
2159 from 09/12/2020 [58]. From 2021, upon notification of a pre-audit, each case is given 
a serial number, which must be reported to the waste management center to which the 
demolition waste is being delivered according to the new added paragraph § 76 [58]. Data 
on this regulatory change are sparse and have not been used in the following analyses. 

There is a need to further develop the model’s predictive capabilities by reducing the 
model-centric factors of ffit using more advanced machine-learning models (for the pre-
audit approach) or more complex parametric models that can combine ever more data 
from several sources. However, we stress that we simply cannot wait until data on dem-
olition waste is “good enough” to make useful BMC predictions. If society is to transition 
into a circular economy within a few decades, and if data collected through current waste 
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handling facilities does not improve, we shall be unlikely to acquire the necessary 
knowledge of BMC at the level of future reuse and recycling at scale for a circular econ-
omy. Thus, new ways of efficiently and accurately measuring BMC are needed to establish 
a better “ground truth” for any bottom-up approaches to predictive modelling. That said, 
we find that, over time, data from demolition waste, combined with established systems 
such as waste pre-audits, will be an important source of BWC data that can be used to 
extrapolate from similar typologies to existing building stock. 

One interesting aspect of the different models is the synergy between them. If de-
ployed widely in practice they can be used to reduce factor errors. Future BWC data are 
expected to give much more precise BMC data, thus creating an opportunity to con-
firm/challenge pre-audit data when buildings are torn down or renovated. It is possible 
that in time auditors will benefit from the more precise waste data to form predictions 
that are more precise for the BMC of buildings that are still standing. Ideally, some such 
system will be created without direct rebukes from auditors and will be set in place to 
help and justify specific methods of measurement and ways of identifying materials. Such 
a system will work if it creates indirect feedback made through the baseline from the gen-
erative parametric BMC, rather than purely based on infrequent feedback from the waste-
handling facilities of demolished buildings, as shown in Figure 4. 

 
Figure 4. BMC synergies to improve reliability in material prediction between the post demolition 
BMC and future predictions of BMC. 

The advantage of such set-up is that BMC can be generated for all buildings nation-
wide, while knowing that some buildings have been falsely categorized (by typology) and 
that input data are poorly depicted in the relevant databases. Auditors can step in and 
correct the typology, further enhancing the BMC by means of qualitative identifications 
and measurements. This helps to improve and calibrate the parametric model from two 
directions, from the auditors’ assessment side and the actual BWC = BMC test when the 
building is demolished. Given continuous recalibration and improvement of generative 
parametric models, ffit → 0 across the models, which states that we can assume more pre-
cise BMC, thus making the potentials for urban mining and recovery more reliable. 

4. Conclusions 
The aim of this study was to investigate the differences and possibilities between 

static bottom-up models and parametric BIM-integrated bottom-up models for material 
flow analyses to predict the building material composition of historical building typolo-
gies. Hereby we also investigated the inner factorial dependencies of material flow anal-
ysis on predictions of building material composition by a static and a parametric model. 
Among the factors identified are the mechanisms related to the systemic impacts of audi-
tors and waste-handling facilities, the factors associated with specific methods of measur-
ing material composition and the particular model’s ability to represent the available data. 

Generative 
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Pre Audit 
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The results show the key differences between a static bottom-up modelling approach and 
a parametric BIM-integrated bottom-up modelling approach for material flow analyses of 
historical building typologies. When comparing the predictive capabilities of the static 
model with a parametric model we see a drastic improvement in the error-reduction of 
material flow predictions. While the parametric model is more reliable in quantifying 
building material compositions, it is also has the potential to improve over time with new 
and better implementations. The study concludes that a more precise modelling approach 
is obtained when utilizing implementations of heuristic and statistic historical building 
tradition documentation specifically addressing a narrow building typology and when 
elementary data of key parameters (such as number of floors) are consistent when deliv-
ered by a public data set. Furthermore, the results shows that demolition waste data is of 
poor quality and in itself is prohibiting useful quantity predictions of building material 
compositions on existing building stock. While it is expected that future waste data are 
more reliable, the article argues for a combined static and parametric modelling approach 
to reduce factor errors in predictions of demolition waste. This can be used as a proxy for 
creating more precise pre-demolition audits and BIM models for material passports to 
support a circular construction transition. 

Supplementary Materials: The following supporting information can be downloaded at: 
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Supplementary Material_2_Parametric_Model. 
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