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Abstract 
The increasing complexity of networked real-time embedded systems asks for systematic design 
processes and methodologies. A progressive simulation-based design methodology that uses fast 
and real-time simulations at different stages of the design process is presented. This methodology 
views simulation as a driving force for designing and testing engineering systems and supports 
systematic transitions from simulation models to real system realization. We present this 
methodology for designing networked real-time embedded systems, and apply it to the 
development of a cognitive radio network on software defined radio. The design process and 
experiment results are presented. 
 
1. Introduction 
Simulation has long been used to support design and analysis of complex engineering systems. 
Fast simulations (simulations in the fast mode) allow designers to flexibly try out and analyze 
different design solutions without implementing the systems in hardware. Real-time simulations 
(simulations in the real-time mode) support designers to test the real-time features of a system 
that interacts with the real world and/or other hardware components. The later is especially 
useful for designing real-time embedded systems, such as mobile devices, manufactory 
automation sensors/actuators, and the networked software defined radio system presented in this 
book chapter. System design and implementation of these systems have been influenced by the 
increasing demand of new products as well as recent advances in technologies. The complexity 
and multidisciplinary nature of these systems make analytical modeling and analysis infeasible. 
However, system engineers need to assess a design before proceeding with implementation of an 
expensive solution. Although traditional modeling and simulation can help in this goal, its 
applicability has been limited due to the gap between simulation models and real implementation 
in hardware.  

One type of real-time simulation is Hardware in the Loop (HIL) simulation, which is an 
advanced technique frequently used in embedded systems development [1], [2]. A HIL 
simulation refers to a system in which parts of a pure simulation have been replaced with actual 
hardware. This is based on the belief that once hardware is added to the loop, unmodeled 
characteristics can be investigated, and controls can be further refined. HIL is typically aimed at 
developing a single module in a larger system. Although it is a useful technique that can greatly 
support an engineering design, it does not offer a general methodology that can scale to more 
complex systems. Systematic design processes and methodologies are needed for designing 
complex systems that are characterized as large scale, networked, and tight couplings between 
software and hardware. Motivated by this need, we developed a progressive simulation based 
design (PSBD) methodology that goes beyond HIL simulation by gradually adding more 
hardware to the simulated system in a progressive manner and improving the co-simulated model 
in each level before continuing [3]. The design process of PSBD starts from all models that are 
simulated on computers, and proceeds by bringing real system components into the simulation to 



replace their virtual counterparts (models), and ends when all components are real and the final 
system is tested in a physical environment. Throughout this process, model continuity is 
emphasized and the simulation model is continually updated whenever new design details are 
revealed. Several distributed robotic systems have been developed following the principles of the 
PSBD methodology (see e.g., [4], [5], [6]).  

This book chapter presents the progressive simulation-based design for networked real-time 
embedded systems. We give an overview of the PSBD methodology and show a bifurcated 
design process that implements progressive simulation-based design for individual embedded 
devices and the networked embedded system. We then apply the PSBD methodology to the 
design of a networked Software Defined Radio (SDR) system. SDR technology refers to a radio 
communication system capable of transmitting and receiving different modulated signals across 
a large frequency spectrum using software programmable hardware [7]. SDR boards often have a 
base-band processor for computation, field-programmable-gate-array (FPGA) for fast parallel 
processing, and radio frequency (RF) frontend for wireless communication. SDR gives modem 
designers a great opportunity to build complex modems by programming the, previously 
hardware, components of the radio. This replacement of hardware by software also intensifies 
the effectiveness of the model continuity approach of PSBD, as the individual system 
components are code modules to be developed and tested along the design process. The 
advantage of PSBD becomes more explicit when multiple SDR nodes should collaborate to form 
a network, hence the interaction of many complex subsystems should be engineered for best 
performance of the whole system. We show how the progressive simulation-based design is 
applied to a single cognitive modem as well as a cognitive radio network. This book chapter 
extends previous work on the PSBD methodology [3] and the case study example on SDR [8]. 
We aim to show that the progressive simulation-based design is an effective methodology that 
can be applied to a wide range of networked real-time embedded systems and engineering 
applications.  

The modeling and simulation environment that supports this work is based on DEVS 
(Discrete Event System Specification) [9]. DEVS is a formalism derived from generic dynamic 
systems theory. It has well-defined concepts of coupling of components, hierarchical, modular 
model construction, and an object-oriented substrate supporting repository reuse. There are two 
kinds of models in DEVS: atomic model and coupled model. An atomic model is a basic 
component. It has input/output ports to represent its interface, state transition functions, time 
advance function, and output function to specify its dynamic behavior. A coupled model tells 
how to couple several component models together to form a new model. This latter model can 
itself be employed as a component in a larger coupled model, thus giving rise to hierarchical 
construction. DEVS models time explicitly. This makes it possible to study timeliness, which is 
an essential property of real-time systems. DEVS is not just a theoretical framework, as it has 
been widely implemented and used as a practical simulation tool in a variety of implementations 
[10], [11]. The DEVSJAVA environment [10] is used in this work to support fast and real-time 
simulations in the design process. More information about the DEVS formalism can be found in 
[9]. We note that although the DEVS simulation environment is used in this work, the presented 
PSBD methodology is general and can be realized using other modeling and simulation 
environments.   

This book chapter is organized as follows. Section 2 gives an overview of the progressive 
simulation-based design methodology. Section 3 describes the cognitive radio case study 
example and highlights some of the design challenges of the system. Section 4 describes the 



progressive simulation-based design procedure when applied to the cognitive radio system. The 
design starts with a single radio system, and then proceeds to the design of the cognitive radio 
network. Some design results are presented. Section 5 concludes this work. 
 
2. Progressive Simulation-based Design (PSBD) for Networked Real-time Embedded 

Systems 
 

2.1 PSBD Overview 
The progressive simulation-based design views simulation as the driving force for designing and 
testing engineering systems. It provides a design process that explicitly focuses on systematic 
transitions from simulation models to real system realization. As shown in Figure 1, the design 
process consists of three stages, each of which is characterized by the types of entities (virtual or 
real) that are involved. The first stage is conventional simulation (in fast simulation mode), 
where simulation is carried out using all models. A major task of this stage is to develop the 
system model based on knowledge and assumptions about the real system’s hardware and 
operating environment. Often discrepancies between simulation models and real system 
components exist. These discrepancies cause the models to result in undesirable behavior when 
applied to real system in a physical environment. To reveal such design discrepancies, the next 
stage of the design process is virtual environment simulation (in real-time simulation mode), 
where simulation-based study is carried out in a virtual testing environment using combined 
models and real system components. This stage brings simulation-based study one step closer to 
the reality by including real system components into the simulation. The goal is to use real 
system components to reveal overlooked design details, and thus help designers to improve the 
control models/algorithms under development. The final stage is real system experiment, where 
the real system is tested in a physical environment. 
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Figure 1: Progressive Simulation-Based design (PSBD) Methodology 

 
Along this design process, the PSBD methodology emphasizes two parallel activities in a 

progressive manner: replace models with real system components, and update models. As the 
design moves forward, real system components are gradually brought into the simulation to 
replace models. Simulations with these real system components allow designers to validate their 
design assumptions and to reveal new design details. Such information is fed backward to the 
previous stages to update the models if needed. The updated model will then be used for follow-
on design and test. This activity of model update allows designers to maintain a coherent model 
of the system under development. Thus at the end of the design, not only the system is realized 



and tested, but also a system model that faithfully represents the system is developed. This 
system model can support final system measurement and evaluation (shown by the dashed line in 
Figure 1), as well as serve other purposes such as system maintenance and future development. It 
is important to note that each design stage is a dynamical evolving process by itself. For example, 
during the conventional simulation stage, it is common for designers to start from high level 
models and then refine them to more detailed models. Similarly, the virtual environment 
simulation stage that involves combined models and real system components typically includes 
multiple phases too, e.g., to start with replacing one real system component first and then 
gradually add more.  

Two important features of the PSBD methodology are model continuity and virtual 
environment simulation that supports simulation-based test with combined virtual and real 
system components. Model continuity refers to the ability to transition as much as possible of a 
model specification through the stages of a development process. For real-time embedded 
systems, we restrict model continuity to the models (software components) that implement the 
system’s real-time control. This means the control models of a real-time embedded system are 
designed, analyzed, and tested by simulation methods, and then smoothly transitioned from 
simulation to hardware execution in the physical environment [4], [6]. To support model 
continuity it is necessary to develop system models and run simulation-based tests in a 
systematic way. A modular model design and well-defined interfaces are needed to ensure the 
control models to work with both real and simulated hardware at different stages of the design 
process [4], [6]. The virtual environment simulation provides a virtual testing environment by 
using combined real and virtual system components. It bridges the gap between conventional 
simulations that use all models and real system experiments that use all real system components. 
To support virtual environment simulation techniques need to be developed to synchronize the 
real and virtual system components. This includes allowing the real and virtual components to 
“sense” each others’ existence (see [12] for an example of how real and virtual robots are 
synchronized with each other). Meanwhile, time synchronization is also important. Since real 
hardware components are included in the simulation-based study, real-time simulations are 
needed to support the virtual testing environment.    
 
2.2 A Bifurcated Design Process for Networked Real-time Embedded Systems 
Networked real-time embedded systems are characterized by a network of embedded devices 
interacting with each other and the tight couplings between software and hardware of those 
devices. Each of these devices is referred to as a node in this chapter. When commercial-off-the-
shelf (COTS) nodes are not used, design of networked real-time embedded systems needs to 
design both the individual nodes and the networked system as a whole. Within this context, the 
PSBD methodology described above is elaborated to include a bifurcated design process as 
shown in Figure 2. The bifurcated design process explicitly differentiates the design of a single 
node (the bottom route in Figure 2) and the design of the networked system (the top route in 
Figure 2). The former mainly concerns designing the different functional modules, such as 
sensing, modulation/demodulation and channel coding, of the embedded device. The later 
focuses on how the multiple nodes work together as a whole, including designing and improving 
the communication protocols and the cooperative strategies among the nodes. Despite the 
different design focuses, both designs follow the progressive simulation-based design process 
that starts from models and gradually adding more real system components.  
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Figure 2: A Bifurcated Design Process for Networked Real-time Embedded System 

 
In Figure 2, the models are shown as white boxes; the real system components are shown as 

grey boxes. The design starts and bifurcates into two routes: the design of a single node and the 
design of the networked system. For designing a single node, the first step is to model the 
functional modules of the embedded device and simulate how they work together to fulfill the 
functionality of the device. Then hardware components are brought into the design and 
hardware-in-the-loop simulations are conducted to test how well the designed modules and 
algorithmic code work with the hardware. This proceeds in a stepwise fashion as more and more 
hardware components are included. Eventually all the code modules are implemented in the 
hardware and the embedded node is tested with all hardware components. For designing the 
networked system, the first step is to develop individual node models, as well as a model of the 
communicating network. The individual node model can reuse the model from designing the 
single node (as indicated by the dotted arrow in Figure 2). Alternatively, a different node model 
at a higher abstraction level (e.g., without including all the details of the devices’ functional 
modules) can be used. Simulations with these models allow designers to test the networked 
system in the model world. The next step is to gradually include real device nodes into the 
simulation-based study to conduct virtual environment simulations. The real device nodes are 
either the ones from the single node design or COTS nodes. This continues until the whole 
system is realized and all designed nodes are tested in a real network. It is important to note that 
the bifurcated design process provides a systematic view for designing general networked 
embedded systems. For a specific application, the design process can be tailored (e.g., some 
design stages are elaborated while others are skipped) to fit the specific design needs of the 
application. In Section 4, we provide an example of designing a cognitive radio system by 
starting from the design of a single radio modem, and then proceeding to the design of a 
cognitive radio network. The single radio modem is also designed in progressive manner, where 
different functional modules are gradually implemented/tested in the real hardware while other 
modules are provided by simulation models. 

The progressive simulation-based design brings several advantages when designing complex 
networked engineering systems. Some of them are shared by the traditional HIL simulation. For 
example, it brings simulation-based study one-step closer to the reality to provide useful 



information for designers. It also increases designer’s confidence about how the final system is 
going to work. However, the PSBD goes beyond that by emphasizing a systematical design 
process that gradually adds more real system components to replace simulation models. The 
virtual environment simulation provides the flexibility for experimenting with a design in a 
virtual testing environment. It allows designers to use several, instead of all, real nodes to carry 
out system-wide test of a networked system. This is especially useful for large-scale networked 
real-time embedded systems whose complexity and scale severely limit experimentations in a 
physical environment using all real nodes. As the scale of these systems increases, so does their 
design and test complexity. It is the intension of PSBD to systematically handle such design 
complexity in a progressive manner. 

 
3. Background on Cognitive Radio Design 
The scarcity of unallocated frequency spectrum and the need for coexistence of different radios 
in the shared unlicensed bands highlight the importance of the next generation of radios with 
dynamic spectrum access. Traditionally spectrum is assigned to legacy devices, also called 
Primary Users (PUs). However licensed frequency bands are rarely used everywhere [13], [14], 
and overtime lead to spectrum holes in time and space. To address this underutilization Federal 
Communications Commission (FCC) has loosened the regulation to allow secondary users (SUs) 
to share some previously dedicated bands subject to minimal interference to legacy devices of 
the band [15]. Based on this definition of coexistence, SUs try to dynamically fill the spectrum 
holes over time and space [14], thus forming a cognitive radio (CR) [16]. For example when a 
TV station (which is a PU of some frequency band) is not broadcasting or is in a location far 
from any TV broadcasting, SUs can instead use the spectrum in an opportunistic fashion. 
Spectrum access for first responders in disaster scenario, where many wireless devices are active, 
is another application of cognitive radio [17].  

A typical cognitive radio network consists of multiple secondary users (SUs) that coexist 
with primary users (PUs) of a shared spectrum. PUs have priority accesses to the spectrum over 
SUs, that is, SUs should give up the spectrum when PUs begin transmission. The SU network 
should be designed to aggregate more of the available bandwidth subject to minimum 
interference with the PUs. The hidden terminal problem should be solved to minimize 
interference. For this purpose, SUs should form a cognitive radio network to sense the presence 
of active PUs and dynamically adapt to a suitable frequency resulting in little or no interference 
with PUs. They collaboratively sense the spectrum and decide which part of the spectrum is 
available to them. Collaborative sensing involves signaling/reporting through a (possibly narrow 
band) control/reporting channel. To maximize the bandwidth efficiency of the SU network while 
minimizing interference with PUs, this signaling should be done in a reliable manner and in a 
minimum span of time. In addition to this requirement, it is desirable to have a system operating 
among radios from different vendors and modulations and protocols. Coexistence and 
interoperability are two major design goals for a cognitive radio network. Software defined radio 
(SDR) technology best satisfies the required flexibility of cognitive radio, and thus is often used 
to implement cognitive radio network [18], [19]. A SU that is realized on a SDR hardware board 
is called a cognitive modem. Design of a cognitive radio network needs to design the individual 
cognitive modems and the cognitive radio network as a whole.  

The complexity of designing an individual cognitive modem is due to the many functional 
components and their complicated mutual interactions. These components can be implemented in 
parallel to expedite the manufacturing process. Parallelism can be achieved by simulating the 



whole system for a functional component that is being developed. Here the simulation closes the 
loop of system integration and provides a regression testing environment. In addition, as is 
common in system engineering design, not all hardware is available at the beginning of the 
project. Therefore, simulation is necessary in order to start the design with partial hardware that 
is available. The rest of the functional components are provided by simulation. In our project, at 
first we received only one baseband module of SDR, capable of processing only the Digital 
Signal Processor (DSP) algorithms such as polyphase implementation of filterbank for channel 
sensing. We tested our sensing algorithm using a simulated fading channel and optimized it to 
some extent. The high dynamic range of filterbank sensing better detects low power PU, thus it is 
less likely to interfere with legacy users. By the time we developed our fixed point sensing 
method, we received one RF frontend and applied sensing on real wireless channel to replace the 
previously simulated channel. The complexity of designing the cognitive radio network lies in 
the potentially large number of SUs and PUs that influence each other. By simulating the rest of 
the network before more hardware was available, we were able to test a cognitive radio network 
of many SUs when only one SDR board was available. Below we present how the progressive-
based simulation design is applied to the design of both individual cognitive modems and the 
cognitive radio network. In this project, the code running on the hardware board was compiled 
by the Code Composer Studio (optimization level). The compiled code was then uploaded to the 
Small Form Factor (SFF) SDR [20] hardware platform provided by Lyrtech and Texas 
Instruments.  
 
4. PSBD Of the Cognitive Radio Network 

 
4.1 Design procedure and implementation environment  
The design starts from a single cognitive modem, and then proceeds to the cognitive radio 
network. As part of the simulation-based testing environment, simulated PUs generate data 
traffic based on a model of the application layer for realistic PUs on particular frequency 
channels. Depending on the channel the traffic model can be a constant bit rate (CBR), burst data 
or a Poisson process. For example internet traffic is often modeled as bursts of data transfer, 
CBR is a good model for TDMA networks such as voice traffic, and Poisson process is a generic 
model of data arrival. Simulated SUs not only generate data traffic, but also are responsible for 
handling signaling packets over control channel of the network.  

In the first stage of PSBD, we implement a single transceiver (transmitter and receiver radio). 
To start with the traditional modeling and simulation we begin with MATLAB simulation of 
generic transceiver modem and a generic channel. The goal is to find out the initial parameters 
for required bit error rate (BER) of the system. A complete transceiver is first simulated in 
MATLAB. Then the hardware board is included and the virtual environment simulation (also 
referred to as co-simulation) is carried out in DEVSJAVA. In this stage, individual and 
combined signal processing and communications algorithms are substituted by those running on 
the board. To take advantage of some utilities (such as the mathematical model of random fading 
of multipath channel) provided by Simulink, we reused some of the MATLAB code in 
DEVSJAVA. To do this, we used compiled MATLAB algorithms inside DEVSJAVA whenever 
a mathematical model for a subsystem was required. The MATLAB Builder for Java can build 
Java libraries from MATLAB functions and have them ready to use in DEVSJAVA. In our 
project, the MATLAB m-files developed for MATLAB simulation of the channel, some 
MATLAB visualization methods, and also the hardware-interfacing MEX files were compiled to 



Java methods, which were invoked later inside the DEVSJAVA simulation. The embedded 
MATLAB code inside DEVSJAVA helps in generating precise communication-specific models 
such as traffic and random fading of multipath channel. Not only that MATLAB is very 
convenient and widely used when modeling complicated mathematical models of 
communication channels, but also we can reuse the MATLAB code written for this purpose 
beforehand. In this way, we were able to avoid re-implementing many the mathematical libraries 
inside Java, and instead we focus on higher level modeling in DEVSJAVA. The integration of 
DEVS with MATLAB gives designers the opportunity of decoupling the cognitive radio model 
from the underlying (often very complicated) math.  

While MATLAB is good at mathematical modeling, it is not straightforward to model the 
event-driven nature of interconnected components. On the other hand DEVSJAVA can naturally 
support network modeling, and thus is used to model the network of cognitive radio nodes. After 
an initial cognitive modem is implemented (as one SU), the next step is to design the cognitive 
radio network. At first, a complete simulation of a cognitive radio network with SUs and PUs is 
developed in DEVSJAVA. The conventional simulation simulates the activities of channel 
assignments for SUs and PUs. An SU acting as Secondary Base (SB) station model receives the 
sensing information from all SUs and compiles channel state information. In our system, we 
have distributed sensing in order to avoid hidden node problem as much as possible. A vector 
signal generator emulates the traffic of simulated PUs and simulated SUs on the real channel. In 
modeling the network, cognitive radio nodes are modeled by DEVS atomic models and the 
network is modeled as a DEVS coupled model. The scheduled messages passing between the 
DEVS atomic models carry packets with different lengths. Based on the propagation rules, the 
channel model reschedules the messages to the receiver. Note that DEVS modeling is 
homomorphic. This means the cognitive radio node could be modeled as a coupled model itself 
including its functional component models. The hierarchical model construction of DEVS can 
help in modeling the internal interactions of subsystems of a single cognitive modem as well as 
the interactions of multiple cognitive modems in a network. During the course of PSBD, we have 
replaced two of the simulated SUs with real cognitive radios in order to carry out virtual 
environment test. In the setup of the virtual environment simulation, the real nodes use 
Filterbanks to detect the presence of the PUs and send the sensing information to the SB which is 
simulated on a PC. In this way, we were able to develop the network and to carry out system-
wide test without waiting for all hardware to be available. Below we describe the two design 
routes in detail.  

 
4.2 Design a Single Cognitive Modem  
Based on the PSBD methodology a model of the cognitive modem is developed at the suitable 
abstraction level according to the required details and accuracy. This model includes the inter-
connected functional modules of the cognitive modem. First, we start from a conventional 
simulation of the system in a simulated operating environment. In this example the operating 
environment is defined by the frequency usage and channel and is changed as a result of both PU 
and SU transmissions and different channel fading parameters. The cognitive modem model is 
simulated in Simulink to test for required bit error rate [18]. Figure 3(a) shows the model of the 
cognitive modem, which includes multiple functional modules. This model is a transceiver that 
interacts with a communication channel. The MAC layer module is the core of this model. The 
cognition algorithm inside the MAC layer module is responsible for compiling the spectral 
information sensed by the filterbank sensing module in order to provide a utility function. This 



utility function is utilized to determine the channels that should be used and the duration for 
which those channels are valid. The Filterbank sensing [7], [17] module is applied directly on the 
channel in order to detect the power spectral density. The synchronization module detects the 
incoming packets while correcting the residual carrier offset, before passing data to an equalizer 
to compensate for the effect of channel on data. The communication channel in the simulation is 
considered as an additive white Gaussian (AWGN). Conventional simulations based on this 
model allowed us to test the system logic and to check if the inter-connected modules effectively 
work together to fulfill the required functionality.  
 

                         
(a) Cognitive modem model        (b) the three phases 

Figure 3: Simulation model of a single cognitive modem and the three phases within each cycle 
of the cognitive radio. 

 
The conventional simulation, however, is insufficient to design and test the features that are 

heavily influenced by the implementing hardware. For example, tuning algorithm/protocol 
parameters to achieve optimal result in singling and synchronization will depend on the 
hardware’s real-time properties that cannot be pre-determined without using real hardware. In 
our design, the MAC layer protocol is decentralized and consists of three phases as shown in 
Figure 3(b). In the sense phase all of the nodes sense the channel (it takes Ts). In the report 
phase all the nodes report their cognition results over a control channel (it takes Tr). And in the 
use phase all the nodes start using available channels that are determined by cognition algorithm 
(for Td duration). The purpose of the reporting period is to allow all SUs to know exactly which 
channels are occupied by PUs, and how the available channels are assigned to the SUs. Note that 
only the transmission time (Td) contributes to the cognitive radio bandwidth and therefore Ts 
and Tr should be minimized. An important task in designing the cognitive modem is to optimize 
the MAC layer so that reporting time (Tr) is minimized [21]. Also we should note that Td cannot 
be very long because a PU may return back to the spectrum and thus SUs should leave the 
occupied channels to the primary users. The time that SUs are permitted to transmit (Td) is thus 
determined by statistics of PU arrivals in the bands of interest. To better design the features such 
as the MAC layer protocol, the next stage is to include real hardware components into the 
simulation for virtual environment simulation.  

It is challenging to decide at what extent simulation-assisted design should be involved and 
to what level the system should be decomposed. A single cognitive modem comprises many 
individual modules each of which is a candidate for co-simulation along with other simulated 
objects and the environment. Figure 4 shows how a virtual environment simulation is carried out 
in designing a single modem. In this figure, one SDR hardware board is used. Since sensing the 
medium is the most critical part of cognitive radio we implemented this part in the earliest stage 



of the virtual environment simulation as shown in Figure 4. To test the sensing module we 
emulate PU traffic on different frequency bands using a wide-band vector signal generator, while 
adjusting some design parameters such as analogue to digital converter (ADC) gains, frequency 
axis margins, and power threshold of PU detection. The transmitted traffic of PU by the signal 
generator is a multi-band waveform which is generated using a MATLAB script and uploaded to 
the device with Agilent Waveform Download Assistant via Ethernet connection. All simulated 
objects are running on the same PC, while the SDR board (running implemented components) is 
connected to that PC via an Ethernet cable.  

 

 
Figure 4: Progressive Simulation-Based design (PSBD) of a single cognitive modem. The 
implementation starts from the sensing module and progressively more of the simulated models 
(left dotted box) are implemented (right dotted box). The rectangles are DEVS models simulated 
on PC, and parallelograms are implemented modules on the SDR board.  
 
4.3 Design a Cognitive Radio Network 
After the cognitive modem is implemented, we design the cognitive radio network using the 
developed cognitive modem. Similar to the design of a single modem, we start from 
conventional simulation of the cognitive network using the model of cognitive modem developed 
in the previous stage. In our design, first we consider a centralized network where some SUs are 
assigned to act as Secondary Base (SB) stations. This approach leads to a global common plane 
architecture for signaling and control to avoid hidden PU node problem. This is essential in any 
cognitive radio network to avoid interfering with existing PUs. SB is in charge of 
synchronization and channel assignment. It compiles the channel state information based on 
sensing results of SUs and uses this knowledge to rank different part of spectrum and blacklist 
some active channels. After the role of each cognitive radio node is assigned, we model the 
cognitive network, which includes multiple PU and SU models, a Secondary Base (SB) model, 
and a Channel model that simulates the features of the wireless channel. Conventional 
simulations using this network model allowed us to test if the SUs can successfully detect non-
used bands and to dynamically use them without interfering with the PUs. A sample simulation 
result is provided in Section 4.4.   



The next stage is to introduce real cognitive modems (SUs) in the simulation. The virtual 
environment simulation includes real SUs, real PUs, simulated SUs, simulated PUs and 
simulated channel (used only between simulated SUs). Figure 5 shows the setup of a virtual 
environment simulation and the interconnections among simulated, emulated, and real 
components. In Figure 5, two real SUs (Lyrtech SFF SDR boards, denoted as Real SU1 and Real 
SU2) and one real PU (two-way radio, denoted as Real PU1) are used. The simulated SUs and 
PUs are emulated using a vector signal generator to generate spectral energy on the bands of the 
simulated agents. Therefore, the real SUs would see the channel as if the simulated users exist. 
To test the cognitive modem against the generic PU channel usage pattern, the traffic of PU 
(being simulated) is known and programmed in the PU model. The emulation of PU for real SU 
is necessary to test the sensing mechanism of real SUs. The simulated SUs use the simulated 
channel and simulated traffic directly from the simulated PUs. The simulated channel is also 
used between two simulated SUs when transmitting a packet. A fading channel and different 
exponential PU traffics (with various mean for each channel) is implemented in MATLAB and 
compiled to be invoked by DEVSJAVA. Note that the emulator is considered as part of the 
testing environment and does not belong to the system model.  
 

 
Figure 5: Virtual environment simulation of a cognitive radio network. The rectangles are DEVS 
models.  
 

To carry out virtual environment simulation, it is important to set up the environment so the 
real and simulated nodes can “sense” each other’s existence. For example, when a real SU uses a 
band of the channel, the simulated SUs need to know the band has been occupied (by the real 
SU). The reverse is true too. Thus a two-way communication is needed between the real SUs and 
the PC that host the simulated SUs. In our system as shown in Figure 5, the emulator conveys the 
simulated environment and broadcasts the information sensed by the real SUs. To support the 
communication from a real SU to the PC, Ethernet cable (not shown in Figure 5) is used to 
connect the real SU with the PC. During the “report” stage of the MAC protocol, a real SU sends 
its information to the PC through the Ethernet cable. Note that the Ethernet cable is not needed in 



real system test, where wireless communication is used. To synchronize the real and simulated 
SUs (meaning to allow the real and simulated SUs to know each other’s existence) in a 
systematic way, each real SU has a “shadow model” on the PC. This is similar to the robot-in-
the-loop (RIL) simulation [4], [5], [6] where each real robot has a counterpart robot model in the 
simulation environment on the PC. The shallow model is responsible for receiving report 
information from the real SU and then passes that information to the Channel model in the same 
way as other simulated SUs do.  

Figure 6 shows a DEVS model of cognitive radio network including two PUs, two SUs and 
one SB in the virtual environment simulation. One of the secondary users (SU2), the two primary 
users (PU1 and PU2) and also the secondary base (SB) station are simulated on the host PC. The 
other secondary user (SU1) has hardware implementation thus is emulated using the co-
simulation engine. The SU1 shown in Figure 6 is the shadow model of the real SU1. Using the 
message passing mechanism of DEVS between the models, in which messages are external 
events, and also exploiting the time triggered message generation inside the modeled nodes, 
which are internal events, the simulation of the network was implemented. We used immediate 
messages for passing parameters between the models while time scheduled messages to pass the 
data-carrying binary signals (longer packet is scheduled for later time). For the simulated nodes, 
after a transmitter sends a packet of data, the Channel model passes the binary signal, along with 
the carrier frequency and other required parameters to a MATLAB code which simulates a 
complete transmitter, channel, and receiver. The MATLAB code for the transmitter includes 
source coding, base-band modulation, upsampling and RF modulation, channel, downsampling, 
etc. For the receiver, the necessary functions are also developed in MATLAB and the data which 
might have error is passed to the node in DEVS. The real cognitive modem SU1 relies on its 
embedded software for data transmission and the co-simulation engine handles the interface 
between the shadow model SU1 and the real SU1. 

 
Figure 6: A cognitive network DEVS model with two Primary Users (PUs) and two Secondary 
Users (SUs) and one Secondary Base station (SB). SU1 is implemented on an SFF SDR board 
and emulated along with the other nodes. 
 



4.4 Experiment Results 
Based on the progressive simulation-based design methodology we designed and implemented 
three cognitive SUs as follows. After initial simulation of one SU in MATLAB, we agreed on 
certain technical parameters. Then inside DEVSJAVA along with a generic simulation of one PU, 
we improved our SDR implementation of one SU along with its model. In the next step, we 
added one more SDR-based real SU and more PU nodes along with one simulated SB to our 
network [18], [22]. The simulated SB is in charge of transmitting channel assignment over the 
reporting channel. It combines the individual sensing result of the SU and assigns channels to 
them upon their request. 
 

 
Figure 7: Simulation results using all models 

 
Figure 7 shows the result of a conventional simulation with all-simulated SUs and PUs. In 

this simulation, 2 SUs and 16 PUs were used. A flat fading wireless channel was used for 
simulation with white noise, and filter-banks were used for sensing. The simulation demonstrates 
how a SU can dynamically detect and change its band in order to avoid interfering with a PU.  
As shown in the top part of Figure 7, initially PU6 was not present (its power was below the 



noise temperature) and SU1 was using its band. Then as shown in the bottom part of Figure 7, as 
soon as PU6 returned SU1 dynamically found another unused band that was less likely to have a 
PU any time soon as described in [18] and changed to the new band. In this simulation, SU2 used 
a band which no other PU was using. Thus SU2 did not need to change its band.  
 

 
 

 
Figure 8: Simulation results using one real SU among many PUs 

 
Figure 8 shows the result of a virtual environment simulation that included one real SU and 

12 simulated PUs. In this experiment, we implemented three sensing methods including 
filterbank, FFT, and FFT with Hanning and compared them. The collected data was the power 
spectral density (PSD) sensed from a densely populated spectrum for 256 subcarriers in an 
experiment. This figure shows that SB reassigned a new frequency band to the only SU when 
PU3 was detected in the adjacent frequency of the previous carrier (the dotted vertical line in the 
top figure). As a result, the SU changed to a new band (shown by the vertical dotted line in the 
bottom figure). The top and bottom figures show before and after the PU3 detection respectively. 
The continuous transmission of voice during this action also proved the success of the frequency 
hopping. This experiment shows that the cognition modem was capable of locating a less active 
band in the spectrum where more than 10 active PUs were transmitting. In addition, as shown in 
this figure, the fast fourier transform (FFT) sensing could not detect two PUs on the right side of 
the frequency spectrum, while the developed filterbank sensing could easily find them. 
 



5. Conclusions 
We present a progressive simulation-based design methodology for designing networked real-
time embedded systems. The methodology includes a bifurcated design process that implements 
progressive simulation-based design for designing both individual embedded devices and the 
networked embedded system as a whole. We apply this methodology to the development of a 
cognitive radio network.  A single cognitive modem was first developed in a progressive manner, 
and then the cognitive radio network was built in the same fashion. During this process, the 
MAC layer model is fine tuned to increase data rate of cognitive radio, while minimizing 
interference with PUs. Experiment results show that the designed cognitive radio system was 
able to respond dynamically to the changing environment to avoid active PUs on a real-time 
basis, while continuing the functionality of a wireless radio. The system was presented 
successfully at 2007 smart radio challenge held by SDR forum. This case study example shows 
the effectiveness of the progressive simulation-based design methodology for developing 
complex networked real-time embedded systems.  

Gradually including real system components into a design to replace the simulation models 
should consider factors such as hardware availability, cost, speed and required accuracy for a 
certain application. Strategies can be developed in the future to provide guidelines for including 
hardware in a stepwise fashion in the progressive simulation-based design. Characterizing 
different types of systems to take the best of the methodology is another interesting topic asking 
for further research.  
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