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Contemporary physical science studies rely on the effective ana-
lyses of geographically dispersed spatial data and simulations of
physical phenomena. Single computers and generic high-end com-
puting are not sufficient to process the data for complex physical
science analysis and simulations, which can be successfully sup-
portedonly throughdistributed computing,bestoptimizedthrough
the application of spatial principles. Spatial computing, the comput-
ing aspect of a spatial cyberinfrastructure, refers to a computing
paradigmthatutilizes spatialprinciples tooptimizedistributed com-
puters to catalyze advancements in the physical sciences. Spatial
principles govern the interactions between scientific parameters
across space and time by providing the spatial connections and
constraints to drive the progression of the phenomena. Therefore,
spatial computing studies could better position us to leverage
spatial principles in simulating physical phenomena and, by exten-
sion, advance the physical sciences. Using geospatial science as an
example, this paper illustrates through three research examples
how spatial computing could (i) enable data intensive science with
efficient data/services search, access, and utilization, (ii) facilitate
physical science studieswithenablinghigh-performance computing
capabilities, and (iii) empower scientists with multidimensional
visualization tools to understand observations and simulations.
The research examples demonstrate that spatial computing is of
critical importance to design computing methods to catalyze physi-
cal science studies with better data access, phenomena simulation,
andanalytical visualization.Weenvision that spatial computingwill
become a core technology that drives fundamental physical science
advancements in the 21st century.

Globalization over the past decades has raised human aware-
ness of global challenges, such as global warming, severe

weather conditions and rapid diffusion of contagious diseases
(1, 2). These challenges require advancement in the physical
sciences to better understand the world around us. Spatial data,
the information related to space and time, are critical to scientific
advancement by providing multidimensional (3D space, 1D time,
and important parameters) records of the Earth. Large-scale data
are typically collected, generated, and stored in geographically
dispersed locations and must therefore be supported by distrib-
uted computing facilities. Seamless sharing and access to these
resources calls for a spatial cyberinfrastructure (CI) to enable the
use of spatial data for the advancement of the physical sciences
(1, 3, 4). Global initiatives, such as the Global Earth Observa-
tion System of Systems (GEOSS, an initiative to integrate Earth
observation data to address regional to global problems such as
climate change), Digital Earth (an initiative to integrate Earth
referenced data to provide intuitive and better end-user tools),
and the Spatial Data Infrastructure (SDI, an initiative to build
an infrastructure to seamlessly share spatial data) (5–8), all call
for the integration of many spatial resources to solve complex
problems, such as climate change prediction and rapid emergency
response. These problems must be addressed in a multidimen-
sional context and conceptualized as spatiotemporal or geospa-
tial dynamics in order to be effectively resolved (9, 10).

Because of the distributed nature of physical science resources
and computing devices, a computing paradigm utilizing intrinsic
spatial principles is needed to optimize distributed resources

(10–12). We refer to this computing paradigm as spatial comput-
ing. Spatial computing leverages spatial principles, such as space
and time connections and constraints (13), in computing arrange-
ments, selection, and use of data to make possible the computabil-
ity of physical science problems. For example, spatial computing
can be used for (i) understanding dynamic domain decomposi-
tion, where different resolutions need different decompositions of
domains interactively within a simulation process, such as dust-
storm forecasting (14, 15) and routing (16), in a self-adaptive fash-
ion (17); (ii) synchronization for dynamic simulations to remove
the errors introduced by simulations in each step through the
decoupled domain borders; (iii) visualizing datasets using spatial
computing in a distributed environment; and (iv) building spatial
CI by providing spatial computing methodologies for both trans-
parent and opaque cloud computing (4, 18–20).

Here, we consider spatial principles as the spatial and temporal
connections and constraints among phenomena (or scientific
parameters). The principles include (13, 17, 21–23)

1. Physical phenomena are continuous and digital representations
(scientific parameters) are discrete for both space and time
a. Closer things are more related than those farther away:

i. Correlations exist among parameters, time, and space
ii. Neighboring discrete representation cells need commu-

nication across time
iii. Duplication along domain borders is needed for analyz-

ing/simulating phenomena
b. Multiscalar

i. Phenomena are represented at global, regional, and
local scales

ii. Human thinking and digital representation of phenom-
ena are hierarchical and fractal

iii. Information frequency determines the hierarchical
structure

2. Physical phenomena are heterogeneous in space and time
a. Higher resolution will include more information
b. Phenomena evolve at different speeds (the faster a dynamic

process, the quicker an exchange occurs among neighbors)
c. The longer a dynamic process persists and the larger its spa-

tial scale, the more exchanges are needed among neighbors

These general spatial principles can help guide us in designing
solutions for spatial CI to enable greater physical science discov-
eries. National Science Foundation denoted CI with four major
aspects including data access, high-performance computing, visua-
lization, and education (24). Taking dust-storm research as an
example, we illustrate how spatial computing can be used to help
construct a spatial CI to solve physical science problems associated
with data access, high-performance computing, and visualization.
We discuss utilizing these spatial principles in three examples from
the aspects of (i) the relevant physical science problems, (ii) experi-
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ments for finding/identifying spatial principles, (iii) utilization of
spatial principles in our experiments, and (iv) enablement for
solving these problems and applicability of spatial principles for
solving other related problems. All three research examples are
focused on geospatial phenomena. Other spatial problems, such
as those related to topology and hypercube, can also be tackledwith
a spatial CI because they share similar characteristics.

Data/Service Search, Access, and Utilization for Climate
Change Analysis
Global climate change has generated more frequent and intense
severe weather patterns in recent years. It is a great challenge
for the Earth sciences to identify and characterize the physical
parameters contributing to the formation of severe weather. For
example, to tease out the driving forces of a dust storm, we must
access and analyze over 100 dynamic or static physical parameters
recorded as spatial data including relative humidity, temperature,
U wind, and V wind. These dynamic data reside at distributed loca-
tions, such as National Aeronautics and Space Administration
(NASA) and National Oceanic and Atmospheric Administration
centers, and are provided through standard interfaces (14, 23), such
as aWeb Coverage Service or aWebMap Service (WMS). For end
users, traditional data access methods require ordering, data
copying, shipping, and loading, a process that could last from days
to months. Effective integration and analysis of these distributed
data through Web services can help us conduct research more
effectively by providing near real-time online data access (25).

A spatial CI should integrate these services for users with
acceptable quality and performance levels when services accessed
have varied performance levels (a common reality). Thousands
of WMSs are freely available online, but their discovery is an
arduous task for end users. In addition, access to WMSs requires
the retrieval of a detailed capability file (including a description of
the content, extent, and resolution of the available data products),
which is time-consuming to download and process. The response
time for accessing a WMS ranges from milliseconds to hours.
Long response times are not tolerable in the Internet arena,
especially when responding to emergency situations (26). These
services are normally accessed by spatial Web portals or geo-
browsers (27, 28), where processing occurs at the portal server.
There are also performance problems when accessing data from
multiple services with varying performance levels. Our research
explores the possibility of applying spatial principles to design
and achieve better performance from spatial Web services for
scientists and other users across distributed geographic locations.

We picked 15 WMSs, evenly distributed across North America
with a varying number of datasets served, and tested their perfor-
mance by accessing them from three distributed sites. To ensure
results’ comparability, the sites have 100-Mbps connection to a
campus Internet backbone with similar hardware/software config-
urations. Fig. 1A reveals spatial principle 1.a showing that the
response time is related to distance, in either a physical or a vir-
tual environment between the client and the service server. For
example, the Fairfax site performs much better than the other two
sites when accessing servers that are close to Fairfax. This locality
effect is of critical importance when deploying an operational
spatial CI to provide sufficient performance for distributed users.

To address the performance problems of capability file down-
loading and preprocessing, a centralized server resides at the
same location as the portal server and can be employed to harvest
and broker the capability file information. Thus, a portal server
can access capability information in a centralized, rather than in a
distributed, manner. Fig. 1B illustrates capability information
access performance with and without using the centralized server
from the three sites. The bars shown are performance averages
across time based on the three sites’ performance. Because each
layer of a WMS has its own quality and performance levels
(24, 26), we introduced a layer-based Application Programming

Interface (API) search so that the performance is more predict-
able. This configuration provides a higher performance access
model for published WMS layers. However, the introduction
of the API incurs costs to the spatial interoperability of a WMS.

Another issue in searching, accessing, and utilizing distributed
services is quality of service (QoS), including metrics such as
availability, performance, and stability. Although the consumer
cannot control QoS, providing QoS information in a spatial Web
portal can help users identify better services. An initial QoS func-
tion is defined as Eq. 1 to evaluate the server performance,
including the time to (i) connect to the server, (ii) process the
request on the server side, and (iii) download the response from
the server. Eq. 1 represents the server performance (ST) by
subtracting the download speed, denoted by volume divided by
Internet speed (S∕V ), from the total response time (T).

ST ¼ T − S∕V; [1]

where T is in milliseconds, S is in bytes, and V is in bytes/
millisecond.

To obtain a more comprehensive result, Eq. 2 was developed to
calculate the average response time by repeating the testN times.
The tests are distributed at multiple geographic locations and at
different times according to the spatial principle 2.b:

ST ¼ ∑
N

i¼1

ðTi − Si∕V iÞ∕N; [2]

where ST ¼ average server performance, N ¼ number of test
times (including different locations), and i denotes the ith time.

To eliminate the service time sensitivity, the average server
performance is utilized in a spatial Web portal (see Fig. 1C)
to classify service layer performance into six grades signaled by
five green bars to support the usage by the GEOSS Air Quality
and Health Working Group. The more green bars, as illustrated
in Fig. 1C, the better the performance. The portal also supports
multiple datasets (such as vegetation cover and forest fires) to
be shown over time and space, to illustrate the correlation of
physical science parameters (vegetation cover and fires).

Our portal experiment found that 200 WMS capability files can
be accessed within 1 s (25). Therefore, we can discover and utilize
datasets for scientific studies on the fly instead of waiting for days to
months to get the datasets and determine if the datasets obtained
are usable or not. This performance improvement contributes to a
21st century paradigm shift in data access—frommedia shipping to
on the fly, online access. Our study illustrates how to identify spatial
principles and utilize the identified principles to design a spatial
Web portal, a critical interface for spatial CI, for higher perfor-
mance. It is also straightforward to scale up the above architecture
further for even more widely dispersed geographic locations,
according to spatial principles 1.b and 2.b, by deploying several
centralized servers (distributed for serving different regions).

This research advances the study of QoS and Web services for
spatial CI to enable data access solutions for highly complex Earth
science problems. These previously undescribed methodologies
and tools can be used to identify and select the best services in a

Fig. 1. Performance and quality of Web-based services are spatially collocated
and essential to provide adequate support todata selection in scientific research.
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timely fashionanddeliver themintophenomenasimulations.Weare
using these research results in deploying theGEOSS clearinghouse.

High-Performance Spatial Computing for Enabling Dust-Storm
Research
Windblown dust is a primary natural hazard causing public health
and environmental problems. To mitigate dust storms, atmospheric
scientists try to determine the relevant parameters, such as soil
and vegetation types, contributing to the generation of dust storms
to improve dust-storm prediction (14). This research task poses
significant challenges to computing facilities. For example, when
conducting the initial research, we could simulate a geographic
region only of about 2;000 × 2;000 km2 at 10 × 10 km2 resolution.
The simulation model ran an entire day to produce a three-day
result. This poor performance prevents researchers from achieving
higher resolution, longer time, or broader geographic coverage in
dust-storm simulation models. To enable higher resolution and
broader coverage, researchers can tap into concurrency and high-
performance computing (HPC) (28, 29) and develop spatial CI
to tackle such computational intensive problems (2, 3, 30–33).

This section reports the results of five dust-storm modeling
experiments to obtain finer resolutions, larger domains, and long-
er time scales by exploring, understanding, and utilizing spatial
principles as they pertain to high-performance computing. We
chose theWeather Research and Forecasting–Nonhydrostatic Me-
soscale Model (WRF-NMM, http://www.dtcenter.org/wrf-nmm/
users) and NMM-dust (34–36) for these experiments. These
simulations include numerical weather models with appropriate
boundary conditions (14, 37), where the physical space is usually
decoupled in regular grid cells and the numerical computations on
inner grid cells are performed uniformly (38). The computational
cost of the models is a function of the number of cells, the time
step, and algorithms used for the domain (39).

Parallelization Degree. Parallelization degree refers to how many
central processing unit (CPU) cores can be leveraged in a con-
current mode effectively (40). Most parallel implementations
of atmospheric models use the domain decomposition method
in one form or the other, and the grid point models (e.g., WRF-
NMM) require nearest-neighbor communication in the physical
domain to keep consistent the progression of physical phenom-
ena (41). Parallel implementations of dust-storm models indicate
the spatial principle 1.a.ii “neighbor discrete representation cells
need communication cross time.” The test uses the dust models
for the southeastern United States to find out how many CPU
cores can be utilized with a cluster of 28 computing nodes con-
nected to each other with 1 Gbps. Each node in the cluster has
two quad-core processors (eight physical cores) with a clock fre-
quency of 2.33 GHz.We first parallelized the dust model and then
tested the parallelized version on a cluster (14). The experiment
demonstrates that the model can leverage only a limited number
of CPU cores (up to 80 as illustrated in Fig. 2A).

We found that the dust model does not scale well beyond
48 cores and produces no further performance gains after 80
cores are utilized. This saturation results from the overhead for
exchanging boundary information and synchronizing data above
80 cores. However, after reaching the best performance point
(80 cores), there are still several minutes of fluctuation beyond
80 cores due to the trade-off between the increase in communi-
cation overhead and computing power.

Decomposition Method. The domain of dust-storm model (NMM-
dust) is decomposed into multiple subdomains along longitude
and latitude directions to achieve parallelization, and each processor
computes one subdomain. However, dynamics are not consistent
along the space, e.g., velocities are relatively large near the poles
and are much smaller in the North–South (meridional direction)
than that of in the East–West (zonal direction) (41). Spatial principle

2 “spatial heterogeneity of physical phenomena” can be found in the
noneven dynamics characteristic of atmospheric circulation. There-
fore, communication needs differ among processors in the South–
North (S-N) direction from those of the West–East (W-E) direction
(41). In addition, different domain sizes along W-E and S-N direc-
tions cause different numbers of grid cells along these two directions.
This results in different amounts of grid cells to exchange boundary
conditions alongW-E and S-N directions. Thus, for the same degree
of parallelization, different decompositions can result in a different
communication overhead. We tested the parallel implementation
through various decompositions of 24 subdomains along S-N and
W-E directions from the same domain (Fig. 2B). We observed
that a one-dimensional decomposition in both longitude and lati-
tude alone is a bad idea for parallel implementation as the 24 × 1
(24 columns along S-N and only 1 column alongW-E) had the worst
performance followed by the 1 × 24 (1 columns along S-N and only
24 column along W-E), and more decomposition along longitude
(S-N) direction is preferred as 3 × 8 and 4 × 6 decompositions obtain
higher performance than that of 8 × 3 and 6 × 4 (Fig. 2C).

Spatial Resolution. Short-range dust-storm prediction is time sen-
sitive (typically should be completed in <2 h, 42) and computa-
tionally intensive. The time-sensitivity requirement is used as a
criterion to identify the number of cores required for predictions
as a function of spatial and temporal resolution. According to
spatial principle 2.a, physical phenomena are spatially heteroge-
neous and a higher resolution will include more information.
Therefore, more computations are required to simulate the phe-
nomena at a higher resolution. This experiment was designed to
analyze the relationship between the spatial resolutions of the
dust-storm prediction model and the number of cores. Our results
show that one core is sufficient for successfully completing the
10-km resolution simulation in 2 h (Fig. 2D). Eight CPU cores
are required for the 5-km simulation, whereas at least 16 cores
are needed for a 4-km simulation. Computation requirements
are greatly increased with increased resolution. The comput-
ing time of 5-km resolution and 4-km resolution simulations
increases by a factor of 10.5 and 16.5, respectively, when com-
pared with the 10-km resolution simulation using only one core.

Fig. 2. Spatial principles are utilized to guide optimizing high perfor-
mance computing to enable phenomena simulation for better resolution,
time, and geographic scope.
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Theoretically, the computational cost of an explicit three-dimen-
sional hydrodynamics weather forecasting model behaves like a
function of n3 for a given domain size, where n is a grid dimension
(38). Therefore, the theoretical increase in computing time from
10- to 5- and 4-km resolution should be about 8 in the former
instance and 15.6 in the latter. The actual increases in computing
time are higher than these theoretical estimates because of the
additional communication overhead required. We found in this
experiment that a resolution increase to 3 km in each dimension
of the model cannot be performed in the cluster for the domain of
2;000 km × 2;000 km × 37 levels. To support the runs, we should
either (i) redesign the existing algorithms, codes, and data struc-
tures or (ii) increase the speed of the CPU and the network con-
nection. Thus this study poses a great challenge for both physical
science (in improving model resolution and extent) and computer
science (in increasing CPU and network speed).

Temporal Scope.Another forecasting capability is for a computing
platform to support long-term dust-storm predictions (Fig. 2E).
It is observed that 4 CPUs can successfully complete a one-
day simulation in 2 h. However, it was not possible to complete
the 5- or 10-d simulation in 2 h using only 28 computing nodes
(224 cores). Peak performance is obtained using about 20 CPU
cores, which can predict dust storms in 6 h for 10 d ahead and in
3 h for 5 d in advance. This limitation is partially a result of cache
and memory contention (43, 44). But it is more a reflection of
spatial principles 2.b and 2.c that physical phenomena are tem-
porally heterogeneous and the longer or bigger a dynamic pro-
cess, the more exchanges occur among neighbors. Once again
we find that increasing the temporal scope poses a major chal-
lenge to both the physical and computer sciences.

Connection Constraint. The execution time analysis is performed
based on the result of one-day dust-storm simulations executed
on two computing nodes with eight cores in each computing
node. Different types of switches are used to connect computing
nodes to enable them to communicate at various Internet speeds.
To investigate the impact of a better connection performance, we
calculate the network speedup ratio S as Eq. 3:

s ¼ Δtm∕Tm; [3]

where Δtm is the decreased computing time of dust-storm simula-
tion on m CPU cores when increasing the network connection
speed from 100 Mbps to 1 Gbps, and Tm is the computing time
when the network connection speed is 100 Mbps. For example,
if 10 s is used for completing the simulation when using the
100Mbps and 6 s when using 1 Gbps, then theΔtm is 10 subtracted
by 6 and s is 4 divided by 10. The result shows that the average per-
formance improvement due to the network is more than 15.3%.
The best performance improvement is 20% when 6 CPU cores
are used (see Fig. 2F). Although it may not be important for
long-term dust-storm forecasting, finer resolution predictions
may take a longer time and can be very significant for real-time
dust-storm simulations when results are desired in less than 1 h
(42). Itwasobserved that thenetwork speedup ratio increaseswhen
theCPUcore number increases withmoreCPUcores involved and
more communication required, but speedup ratio decreases after
6 CPU cores. This is because two or more CPU cores of each
computing node contributed to the dust simulation. It is part of
the communication occurring among different cores within one
computing node. Communication between these cores will not
go through the Internet, therefore reducing the communication
overhead (spatial principles 1.a.i and 1.a.ii). Thus, the network
speedup ratio decreased after 6 CPU cores with 3 cores per com-
puting node were involved as more communication took place
within one computing node. And, spatial principle 1.a.i can be uti-
lized to reduce the communication overhead because faster com-
munication can be achieved by selecting closer computing nodes.

In this research, we identified and utilized spatial principles to
design HPC arrangements and to parallelize simulation modes.
The study was utilized in dust-storm research enabling scientists
to predict dust storms at higher resolution (3 km × 3 km) and for
longer times (5–10 d) by adopting the proper number of CPU
cores and decompositions of the domain to achieve best perfor-
mance. Because of the massive need for physical science phenom-
ena simulation and the prevalence of spatial principles in many
phenomena, these parallelization and analyses methods can also
be applied to the broader physical and social science domains,
such as public health and economics.

Spatial Data Visualization
Physical science phenomena are inherently complex and multidi-
mensional and therefore require visualization tools to help under-
stand the physical processes and the underlying driving factors.
Recently, data acquisition techniques andmodel simulations signif-
icantly increased the resolution and volume of spatial data. These
two factors present great challenges for scientific visualization.
To detect the movement patterns of dust storm for prediction
and hazard mitigation, for example, researchers typically visualize
simulated dust storms over a region with 4D dust density data for a
defined period. With improvements in the climate models, spatial
resolution can be refined to beyond 1∕12 degrees (14) toward
several kilometers. Similarly, the temporal resolution improves
from daily to hourly for better prediction when spatial principles
are applied. Consequently, visualization intensity increases by a
factor of at least 4ðlatitudeÞ × 4ðlongitudeÞ × 24ðtimeÞ ¼ 384when
compared to the original intensity for the same region. Such a
dataset cannot be handled by a conventional visualization frame-
work. Researchers need an advanced visualization tool to help
solve these scientific problems by utilizing spatial principles.

To address these visualization challenges we designed our
research program to identify where the bottlenecks occur and
then provided an initial investigation on how spatial principles
can be applied to address these problems. Dust-storm visualiza-
tion is used as an example. Visualization of these events is critical
to understanding the spatial distribution, detecting the temporal
changes, and predicting the movements of dust particles that are
used to inform the public about the development of dust storms.
If the visualization of such dynamics is not straightforward, scien-
tists may face a series of difficulties that are not exclusive to dust-
storm prediction, but exist across the entire Earth system science
domain. Factors such as the high complicity of dust density data
derived from the climate model, the visualization modes used to
represent the movement of dust particles, and the spatial hetero-
geneity during the interaction under the spatial principles govern
the visualization capacity and performance.

To identify the bottlenecks within a visualization process, an
experiment was conducted with a one core desktop machine using
the dust density data produced by the models introduced in the
previous section. The data used for 4Dvisualization are hourly dust
particle density data generated by the NMM-dust. The original
hourly data are stored in NetCDF files (a common scientific file
format for model and observational data). The geographic cover-
age of the data is from 25.56°N to 41.48°N and from 123.00°W to
96.51°W. We focus on the data with this fixed spatial extent but
varying spatial resolutions and time stamps. The visualization was
implemented in theWorld Wind visualization environment. By in-
creasing the volume of data used for volume rendering, our test
found three extremes for a system to handle the data (Table 1).
To solve these problems, researchers have developed four types of
solutions including compression and simplification, multiresolu-
tion methods, memory external methods, and abstraction (45)
by breaking large data into smaller regions to be handled by com-
puting resources in parallel (46, 47). Also, parallel computing
resources can concurrently handle the computing requirements
to a limited extent. The reality is, however, that computing and
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processing capacities have in many cases lagged behind increases
in data volume. Besides parallel computing, visualization requires
the consideration of spatial principles to solve spatial complexity
issues. This situation is reflected in the coherence within visua-
lization granularity among the understanding hierarchy, spatial
data dissimilation and segmentation, and spatial-data-relationship
preservation during the visualization process (48, 49).

Our strategy exploits spatial principle 1.a in the followingaspects:
(i) Data organization for facilitating fast access to large-scale
spatially continuous data, for visualization through a multilevel
octree structure (see 1.b). The data from the same nodes are geo-
graphically related (1.a.ii). (ii) Data distribution and aggregations.
According to 1.a.iii, duplications are necessary for the final integra-
tionof distributeddata.Wehandle the duplication needs by extend-
ing the boundary of each block andmerging these boundaries in the
later synchronization.Thismethod is abalancebetweendata redun-
dancy and accuracy. (iii) Consideration of visual effects with respect
to rendering algorithms. The volume rendering is best implemented
when the spatial resolutionsalongeachdirection are the same.Thus
an interpolation may be applied to regulate the spatial resolution
and the block size with the underlying spatial continuities. And a
levels of details (LOD) strategy was developed based on the octree
structure to promote the hierarchical understanding (2.a) and
reduce the complexity of visualizing large volume datasets.

We designed a framework (see Fig. 3A) with effective parallel
computing and octree-based data organization to facilitate interac-
tive volume rendering of multidimensional data. The first step in
processing large volume datasets is to decompose the data to meet
the physical memory configuration (44). Loading capacity is evalu-
ated to obtain themaximumdata block size.Decomposition divides
the original data along latitude and longitude dimensions (see
Fig. 3A). The pressure (vertical) dimension is not subdivided due
to its much smaller size, which may influence the volume rendering
process. The borders of decomposed data pieces have a buffer to
avoid fuzzy visual results (1.a.iii). And an octree index is introduced
to organize the data and control the rendering process. This frame-
work has the following characteristics: (i) a simulated “out of core”
strategy is used to load data dynamically, which makes the best use
of physical memory and rendering capacity; (ii) a double multi-
threaded decomposition in the data distribution and visualization
process, which balances the computing power with computing
sources; and (iii) an adaptive query from an octree forms the LOD,
which isdesignated toadapt the framework todifferent visualization
platforms. Three tests of frames per second (FPS) are done to com-
pare the improvement by introducing such a framework.

The first experiment assigns the rendering tasks todifferent num-
bers of threads to examine the role of multithreaded processing.
The second experiment incorporates the octree index to accelerate
the rendering speed. The dust density data are the same in the first
two experiments, which have a vertex number of 32 × 256 × 128.
The third experiment found the maximum visualization capacity
of this framework applied in these two systems, respectively.

The first experiment (Fig. 3B) found that multithreading alone
cannot significantly improve real-time rendering. The second

experiment incorporated the octree index and found an increase
in FPS for both the one-core and eight-core machine because the
octree-based LOD derived by representation hierarchy (1.b) can
provide an approximate visualization thus reducing the rendering
intensity. In both experiments, the performance on the eight-core
is better than that on the one-core machine. For the eight-core
machine, the highest FPS appears when eight threads are present
in both scenarios. For theone-core, the peakofFPSdiffers resulting
in eight threads for octree based and 32 threads without octree,
respectively. Because the neighboring cells need to communicate
(1.a.iii), overdecomposition will reduce the rendering speed instead
of improving performance. Therefore, eight threads could be a
reasonable assignment that utilizes the rendering capacity.

The third experiment (Fig. 3C) found that the overall loading
capacity exceeded the extreme value identified in Table 1. The FPS
of the eight-core machine is reasonably good with respect to the
increase of data volume. Confirming the results of the previous ex-
periment, thecommunicationamong threadsmay influence the ren-
dering performance, demonstrated by the fact that utilizing fewer
threads can obtain the best performance, whereas more threads do
not necessarily lead to an increase of FPS. Fig. 3C also shows that
when data volume increases to about 1GB, the visualization system
of both machines fails again, due to the limited virtual memory.

This research advances the visualization of multidimensional
data by providing a visualization tool for atmospheric scientists
to vividly observe the dust model output and to more directly con-
nect the parameters to the simulation results. Because of the nature
of large data volume and spatial principles, the research can also be
applied to other science domains, such as ecology and geology. The
ability to explore the dynamics and spatial patterns behind physical
processes can also be extended to other multidimensional domains.

More research is needed to leverage spatial principles to solve
online visualization problems, concurrent massive user access,
and display device issues adaptation so that physical science repre-
sentations can be understood by the physical scientists more vividly
(46, 50–53).However, a systematic solution is still needed, especially
for the scalability and mobility for fast interactive spatial temporal
visualizations according to the spatial principles 2.b and 2.c (53, 54).

Discussion and Conclusion
This paper defines spatial computing, the computing aspect of
spatial CI, as the computing paradigm that leverages spatial prin-
ciples to optimize distributed computing that enables physical
science discoveries (55, 56).We conducted empirical studies to de-
termine how spatial computing can facilitate the advancement of
physical sciences. Using dust-storm research as an example, our re-
search examples collectively demonstrate methods for identifying,

Table 1. Maximum capacity test for visualization

Vertex number
(Elevation×
Latitude×
Longitude)

Spatial
resolution

(Unit∶degree)

Data
volume
(Unit∶M)

Reason for
system
failure

32 × 256 × 128 ∼0.12ðlatÞ,
∼0.10ðlonÞ

∼4 Very slow interactive
rendering speed

64 × 512 × 256 ∼0.06ðlatÞ,
∼0.05ðlonÞ

∼32 Cannot manipulate data
such as converting into

pixel values
128 × 2;048×

1;024
∼0.03ðlatÞ,
∼0.025ðlonÞ

∼1;024 Cannot load data from
the original file, I/O error Fig. 3. Octree and multitheading techniques based on spatial principles

are devised to enable visualizing large-volume spatiotemporal data.
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analyzing, and utilizing spatial principles in spatial CI design for
physical science applications. Specifically, (i) spatial principles
can be utilized in computing to effectively locate, access, and utilize
data resources, such as services, fordeploying a spatialCIwith good
performance to solve physical science problems; (ii) spatial princi-
ples can be utilized in HPC to develop solutions for simulating
physical science phenomena, providing more understanding of the
past, and better prediction of the future; (iii) spatial computing can
help leverage distributed computing power to enable visualization
of data and research results for scientists, educators, and students
to better understand multidimensional scientific phenomena.

It is not too bold to expect that spatial computing will provide
an enabling technology for the new physical science frontier by
contributing essential computing architectures, algorithms, and
methodologies to construct the spatial CI (1) for solving pro-
blems with characteristics of data intensive, computing intensive,

spatiotemporal intensive, and concurrent intensive (4). It requires
scientists, engineers, and educators from multiple domains to
collaborate to solve fundamental problems (55), e.g., how to fore-
cast high-resolution phenomena with broad geographic coverage
for regional emergency responses, such as tsunami. Although SDI
starts as a good example of the construction of a spatial CI and we
have seen notable successes fromGoogle Earth,WorldWind, and
Bing Maps, the aforementioned challenges remain to be solved.
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