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ABSTRACT
Searching for targets from a group of Unmanned Aerial Vehicles
(UAVs) is a complex problem, whose applications range from the
localization of military targets to search and rescue missions. De-
termining the best locations to search within the mission scenario
requires to consider the dynamics of the UAVs and of its onboard
sensors, and the uncertainty of the problem, usually related with
the target initial location and dynamics, and with the sensor like-
lihood. Besides, what is best is not always the same (e.g. it can
be maximizing the detection probability and/or minimizing the
target detection time, while ensuring communications, smooth tra-
jectories, energy saving, etc). These makes the evaluation of UAVs
target-search strategies a complex system itself. In this paper, we
tackle this problem using the Discrete Event System Specification
(DEVS) to exploit its modular and hierarchical design, and to im-
prove the reusability and scalability of our evaluation system. DEVS
also provides simple and clear semantics to manage the complex-
ities of the system, represents an explicit separation between the
model specification and the corresponding simulation, and helps
us to debug and verify our model, as the results of the paper show.

CCS CONCEPTS
•Computingmethodologies→Modeling and simulation; Prob-
abilistic reasoning; Planning under uncertainty.

KEYWORDS
Discrete Event Systems,Model Based Systems Engineering, Bayesian
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1 INTRODUCTION
Looking for targets, placed at unknown positions within a given
area, by means of mobile sensors is a problem that has been long
studied, since the Second World War [40] and from more recent
perspectives that have mainly emerged from the fields of Opera-
tional Research, Optimal Control and Information Fusion. Within
the first field, the problem is formulated as a Partially Observable
Markov Decision Process, where the target location is the unknown
state and the information provided by the mobile imperfect sen-
sors are the observations [20, 38]. Within the second domain, it is
considered a stochastic optimal control problem, where the sensors
displacements are regulated taking into account the information
gained by sensing [9, 10]. Finally, formulations within the third
discipline exploit Bayes theory to: 1) represent and update the
available information of the target state; and to 2) determine the
sensors’ searching strategy by optimizing probabilistic-based util-
ity functions [3, 12]. The work in this paper is related to this last
group, as it is focused on the development of a scalable and reusable
framework that incorporates the processes and utility functions
required to evaluate target-search strategies that are performed by
sensors placed on board Unmanned Aerial Vehicles (UAVs) during
real-world missions.

The theory and more traditional algorithms that have been devel-
oped within the different fields can be useful for numerous search
applications, including those involving UAVs as mobile sensing
platforms due to their capability to overfly and search wide regions
in an assumable time. A few examples are military target detec-
tion, search for survivals after natural disasters, or maritime search
and rescue missions [11, 22]. Additionally, to apply them to real-
world target-searches and bring other aspects of the mission into
consideration (e.g. non-flying zones, communication losses, UAV
dynamics and/or energy savings), new approaches are continuously
developed, as those presented and/or reviewed in [19, 26, 32–34].
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Increasing the target-search realism within the mission planner
often involves expanding the complexity of the evaluation process
required by the optimization algorithms to determine which UAVs
search-strategies are the best. In particular, the evaluation process
should consider, at least, the UAVs dynamics (including the dynam-
ics of its onboard moving/reorientable sensors), the uncertainty
of the target location and movements, and the sensor likelihood.
Besides, depending on the final objectives of the search mission,
the evaluation process calculates different utility functions related
with the previous elements, such as the probability of detecting the
targets [3, 23] or the expected time of detection (to increment the
changes of locating them as soon as possible [25, 35]). Additional
objectives, related to other mission aspects (e.g. those previously
mentioned), can also be needed. In the end, the evaluation process
can become a complex task, with a big set of models interacting
and simulated at different levels of resolution (dependent on the
precision defined by the operator before each simulation takes
place). Using Model-Based System Enginering (MBSE) and Dis-
crete Events Simulation (DES) principles to implement a mission
simulator and evaluator can help us to define and manage the com-
plexity of this task. On one hand, MBSE allows a clear separation
between models specification and the simulation process, facilitat-
ing the incremental models design and refinement. On the other,
DES supports multi-resolution modeling, as well as the integration
of different types of models (e.g. probabilistic and deterministic,
continuous and discrete, etc.), which can be evaluated at different
rates or at asynchronous instants. Both paradigms can also help us
to debug, verify, and validate this complex evaluation process.

The objective of this paper is to present our approach to system-
atize the evaluation process of UAV target-search strategies using
MBSE and DES. In particular, our framework is developed using the
Discrete Event System Specification (DEVS, [50]), a well-established
DES formalism that is gaining acceptance with a holistic construct
called the Modeling and Simulation Framework. Additionally, it is
worth mentioning that DEVS has been successfully used to simulate
and analyze other complex systems involving autonomous vehicles
(such as, to name a few, [13, 15, 28, 36, 48]), taking advantage of its
capabilities to conduct the MBSE process and of its versatility to
handle multiple resolution modeling levels [49].

In order to implement and demonstrate the viability of our ap-
proach, we have decided to 1) define an architecture that can handle
the elements and requirements of the evaluation process of many
target-search planners, and 2) incorporate into its different models
the behaviors and functions of a specific case. In particular, we
have selected the evaluation process of the UAV trajectory plan-
ners presented in [31, 32], as they already consider all the essential
elements, incorporate complex models for the UAV dynamics and
sensors, and evaluate multiple utility functions.

The paper also analyzes, through several examples, the possibili-
ties that the new DEVS-based system brings to the evaluation of
target-search strategies in real world problems with targets, UAVs
and sensors operating at independent frequencies and/or time reso-
lution. Additionally, it also analyzes the effects of the space resolu-
tions used during the simulation of the models in the computation
time and in the final values obtained for the evaluation criteria.

The organization of the paper is the following. Section 2 presents
is a literature review that discuss different formulations of the target-
search problem and highlights a few works that use DEVS in closely
related problems involving UAVs and planning. Section 2 describes
the main features of DEVS and of the evaluation process selected to
demonstrate the viability of the approach presented in this paper.
Section 4 presents the specification for our DEVS-based target
search evaluation tool, and details the architecture and behaviors
of its modules. Section 5 presents different simulations, carried out
to illustrate the possibilities of our tool. Finally, Section 6 draws
some conclusions and presents a few future lines of research.

2 RELATEDWORKS
On one hand, this section discusses different approaches and for-
mulations of the target-search problem. It is not an exhaustive state
of the art, as it focuses on highlighting the main characteristic of
different types of target-search mission planners based on Bayes
theory and on introducing the evaluation approach of those works
that have motivated this paper. During this discussion, we also
present the advantages of bringing more flexibility to the evalu-
ation process, to be able to develop in the future more versatile
planners. On the other one, we also review a few works that use
DEVS for closely related problems that involve UAVs, planning
and/or multi-resolution modeling.

2.1 Target-Search Related Works
Let us analyze the selected target-search publications from the
perspective of the elements and models of their evaluation process.

2.1.1 Targets uncertain location and displacement. They are usually
modeled under a probabilistic umbrella, that in some cases captures
the chances that the target is at each location/region of the search
space [1, 4, 7, 8, 23–26, 30–32, 35, 41, 44, 47] and in others how
probable is to locate targets in a given region [17, 46, 51]. Both
cases are different because in the first, the probability function
is distributed over the search space and in the second, there is
a probability function over each region. Besides, within the first
group (where the selected works to implement our approach fall),
the probability distribution is often modeled as a probability map
over a grid of cells or as a weighted sum of Dirac functions centered
at different samples of the search space, and updated (accordingly
to the target movement and sensory uncertainties) with Recursive
Bayesian Filters (RBFs, [7, 8, 24, 25, 30–33, 41, 44, 45, 47]) or Particle
Filters (PFs, [1, 4, 23]).

As RBFs and PFs share the steps used to update their correspond-
ing probability distributions (although they differ in their properties
and in the calculations that implement them), it is undoubtedly use-
ful to be able to substitute one for the other. However, only one
planner considers both possibilities [35], in spite of the advantages
associated with each probability model and filter.

2.1.2 Sensors observing the search space. While looking for tar-
gets, sensors take measurements from the positions allowed by the
movements of the UAVs in which they are embarked. However,
their observations have a limited range and can fail. This behav-
ior is modeled through likelihood functions, which are used by
the RBFs and PFs to update the probability distributions. Their



expressions depend on the type of sensors and on the realism of
the planner, ranging from ideal/constant sensor models that only
observe a few cells of the probability map under the UAV location
[8, 25, 26, 33, 41, 45, 47], to range-based sensor models with prob-
ability curves that decrease with the distance between the sensor
and target location [23, 24, 44], or to specific models of certain types
of radars [30, 31] and cameras [7, 32, 35].

Again, being able to easily change the sensor likelihood is useful
to re-use the planner for UAVs equipped with different sensors.
Although the previous works usually present the results related to
a specific sensor type, the majority could be easily applied to others.
However, it could also be useful to 1) move the sensor orientation
and location, or 2) decide when and how often to activate them.
Among the reviewed works, the first option is considered only in
[32, 35], while the second one is not yet included.

2.1.3 UAVs trajectories. They are defined/encoded by the planners
with different strategies and according to different assumptions. On
one hand, several works [1, 21, 23] obtain trajectories traditionally
used in search missions by adjusting the parameters (e.g. initial
location, length, width) of predefined patterns (e.g. lawn-mower
and spiral). On the other one, and specifically in works whose
underlying target model is a probability map, the trajectories are
defined as straight lines that joint the center of a cell with the center
of another [8, 25, 26, 33, 35]. Finally, a third group of planners
manipulates the periodical setpoints of the UAVs (e.g. heading,
speed and height) and exploits their dynamical models to obtain
free-shape trajectories [7, 24, 30–32, 41, 44, 47]. Within this group,
note that [7, 24, 41, 44, 47] use a streamlined differential model,
while [30–32] use a more complex one that includes the height,
speed and lateral dynamics of the UAV.

Using dynamical models to generate the UAVs trajectories en-
sures the fulfillment of the maneuverability constraints of differ-
ent types of UAVs (e.g. fixed vs. rotatory wing ones) and allows
to include environmental aspects (e.g. winds) into the evaluation
processes of the planners. In the two other cases, although the
trajectories are easier to understand by human pilots, their fea-
sibility should be checked (or ensured by construction). Again,
the capability of changing how the evaluation process obtains the
UAVs trajectories from their planner encoding can be useful to
re-use other elements of the evaluation process. This property is
not supported by the works under analysis, what also makes the
comparison of target-search strategies a troublesome task.

2.1.4 Utility functions. They exploit the information provided by
the models associated with the previous elements to evaluate a
given target-search strategy. They can be classified in two groups:

(1) Probability-based utility functions,which refer to those objec-
tives that relate the (targets & sensors) probability models
and filtering processes with the (UAVs & sensors) trajectories.
Often, they are the probability of detecting the target from
the sensor trajectory [6–8, 23, 24, 26, 41, 44, 45, 47] and the
expected time to detect the target [25, 30–33, 35]. The works
under analysis usually focus on optimizing one of those func-
tions, although it can be useful to simultaneously evaluate
or optimize them, or substitute one for another promptly.

(2) Mission-specific utility functions,which refer to the remaining
objectives and constraint criteria, evaluated and optimized
by the planners. Although these functions bring realism and
additional intends to the missions, just a few works under
analysis [6, 30–33] consider these types of functions, and
specifically evaluate: if UAVs pass over nonflying zones, if
there are collisions between them, if they are able tomaintain
a communication network with the ground control station
and/or the UAVs fuel consumption.

2.1.5 Numbers of targets, UAVs and sensors on board each UAV.
These are other variables to consider, as they usually increment
the computation requirements and complexity of the evaluation
process. In particular, the evaluation process of the works under
analysis varies from single-target [1, 7, 8, 25, 30–33, 35, 41, 45, 47]
to multi-target [24, 26, 44], and from single-UAV [1, 8, 45] to multi-
UAV [7, 24–26, 31, 32, 35, 41, 44, 47]. Additionally, all of them only
consider a single target-detection sensor within each UAV.

Facilitating the change in the number of all these elements as
well as allowing to modify the underlying models of the different
instances is interesting to build planners that simultaneously exploit
the capability of different types of UAVs equipped with multiple
sensors and that consider the situation of multiple targets.

2.1.6 Final Remarks. The previous analysis shows that we can
improve the evaluation process of existing planners by combining
their possibilities or including new capabilities. To achieve it, it can
be extremely useful to implement the evaluation process under a
flexible well-established Model and Simulation methodology (like
MBSE and DES through the use of DEVS). This way of proceeding
will facilitate the integration of different types of models (for the
UAVs, sensors, and targets) at different resolutions, as well as the
adaptation to different types of target-searchmissions. Nevertheless,
to the best of the authors’ knowledge, the existing works do not
focus on this aspect of the research, which will also allow us to
improve the management of these models; will provide support for
verification and validation; and will help us to perform reliability
and scalability analysis.

2.2 DEVS related works
Next, we present several works that apply the DEVS formalism to
closely related problems, involving UAVs and/or planning.

The closest work is [16], as it presents a planner for determining
the trajectory of a UAV that wants to maximize the probability of
detecting a target. To do it, it uses Cell-DEVS to model the target-
search problem with cellular automatas that combine diffusion
rules to update the probability map and high-climbing algorithms
to determine the UAV search-pattern. Our approach differs from
[16], as our atomic and coupled models are associated with the
different elements of the search problem, include more realistic
behaviors (e.g. for the UAV, sensor, and target dynamics), and are
focused, so far, in the evaluation process of given UAVs trajectories.
Besides, following the Cell-DEVS formalism, other path, defense or
emergency planners/simulators are presented/surveyed in [42, 43].

In addition, and in chronological order, the following works in-
volving DEVS and UAVs have appeared. On one hand, [13] presents
Pliades, a DEVS-based simulator developed to systematically and



intensively evaluate, through Monte-Carlo simulations, the effec-
tiveness of military missions involving multiple vehicles. Although
our evaluation system is originally intended to be part of a planner,
it could also be used to run Monte-Carlo simulations of target-
search scenarios, providing an extra atomic model that randomly
modifies some of the inputs of our evaluation system. On another
one, [28] presents a DEVS-based model to evaluate the trajectories
returned by a planner for UAVs that have to overfly an ordered list
of way-points avoiding radars, missiles, and non-flying zones. As
the elements in that problem are different from the ones in ours,
the atomic and coupled models of both works are not the same,
although the way of developing both evaluation systems is rather
similar. In addition, DEVS has been used to tackle multi-resolution
modeling for exploratory analysis of complex and adaptive UAV
service systems [48], allowing the modeler to build a collection
of partial models (each oriented to one or more objectives of spe-
cific missions). Our framework does not incorporate an exploratory
analysis at the moment, but as the DEVS architecture allows it, we
could in the future make our system automatically select the grid
resolution or the best UAV’s control policy. Finally, [29] presents
a unified DEVS-based platform to model and simulate hybrid con-
trol systems, which is validated over a system intended to deal
with mapping missions involving a fixed-wing UAV. The system
includes multiple models for the UAV dynamics and controller,
and a streamlined motion and path planner, which makes the UAV
follow pre-defined patterns (e.g. lawnmower) over the mapping
region. Although this work is more focused than ours in the UAV
lower-level and path-following simulation, some of their ideas can
be included in ours to simulate the UAV trajectory using a different
model decomposition than the one that is currently implemented
in our system.

The previous analysis shows how DEVS has already been suc-
cessfully used to model and simulate systems involving UAVs, per-
forming different types of missions. They also suggest that it can
also be an interesting tool to develop a framework for evaluating
(and in the future for planning) target-search UAV-strategies.

3 BACKGROUND
This section describes the main features of the evaluation processes
of the planners in [31, 32] and the main characteristics of DEVS, all
of them selected to implement and demonstrate the viability of the
approach presented in this paper.

3.1 Formulation of the Search Problem
This section summarizes the main variables, properties and models
selected to verify and validate our DEVS-based framework for eval-
uating UAVs target-search strategies. For more specific details in the
behavior of some models, the reader is suggested to read [31, 32],
as the description in this section is focused in the operations and
features that are relevant for building the framework.

3.1.1 Target-related operations. The search region Ω, rectangular
and parallel to the (𝑥,𝑦) axes for simplicity, is discretized into a
Grid of 𝑁𝐺 = 𝑁𝑥 x 𝑁𝑦 rectangular cells, each of size𝑤𝑥 x𝑤𝑦 .

The discretization of Ω is required so far, since the target proba-
bility distribution 𝑏 (𝜏𝑡 ) at a given time 𝑡 is currently discretized as
a probability map - mass function - 𝑏 (𝑐𝑡 ) over each cell 𝑐𝑡 ∈ 𝐺 . The

initial target belief 𝑏 (𝜏0) is also discretized as 𝑏 (𝑐0), and updated
to obtain 𝑏 (𝑐𝑡 ) using the following operations related to RBF steps:

Initialization, making the unobserved probability 𝑝 (𝑐0) over
the cells 𝑐0 ∈ 𝐺 equal to 𝑏 (𝑐0).

Prediction, which redistributes the unobserved probability
over the map as the target moves. To do it, the operation
stated at Eq. (1) is carried out, exploiting the target motion
model 𝑝 (𝑐𝑡 |𝑐𝑡−𝑇𝜏 ), which expresses how probable is that the
target at cell 𝑐𝑡−𝑇𝜏 at time step 𝑡 −𝑇𝜏 arrives at cell 𝑐𝑡 at time
𝑡 . As the target motion model is usually defined for a fixed
time lapse 𝑇𝜏 , this step is usually applied periodically.

𝑝 (𝑐𝑡 ) ←
∑

𝑐𝑡−𝑇 ∈𝐺
𝑝 (𝑐𝑡 |𝑐𝑡−𝑇𝜏 )𝑝 (𝑐𝑡−𝑇𝜏 ) (1)

Assimilation, which updates the unobserved probability over
the map with the information provided by the sensors on
board the UAVs. This operation is performed with Eq. (2)
whenever UAV 𝑢 has to take a measurement with its 𝑘-th
sensor, to either detect 𝐷 or not detect 𝐷 the target. To do it,
it is necessary to know the probability of not detecting the
target 𝑝 (𝐷 |𝑐𝑡 , 𝑠𝑡𝑚

𝑢,𝑘
) placed at cell 𝑐𝑡 from the location and

pose 𝑠𝑡𝑚
𝑢,𝑘

of that sensor at time stamp 𝑡𝑚 ∈ [𝑡, 𝑡 +𝑇𝜏 ].

𝑝 (𝑐𝑡 ) ← 𝑝 (𝐷 |𝑐𝑡 , 𝑠𝑡𝑚
𝑢,𝑘
) · 𝑝 (𝑐𝑡 ) (2)

Note that Eq. (2) allows to include several measurements taken at
same 𝑡𝑚 and assimilates all the measurements between two target
predictions to the time step of the first. Moreover, those readers fa-
miliar with RBFmay have noted that Eq. (2) lacks of a normalization
term and that only considers the non-detection measurement. This
happens because Eqs. (1) and (2) are finally intended to estimate
the expected time of detection [31, 32]. Nevertheless, obtaining the
target belief 𝑏 (𝑐𝑡 ) is straightforward and only requires calculating
𝑝 (𝑐𝑡 )/∑𝑔∈𝐺 𝑝 (𝑐𝑡 = 𝑔) when desired.

In addition, 𝑝 (𝐷 |𝑐𝑡 , 𝑠𝑡
𝑢,𝑘
) is obtainable from the sensor likelihood

𝑝 (𝐷 |𝜏𝑡 , 𝑠𝑡𝑚
𝑢,𝑘
), which states how likely is measuring 𝜏𝑡 from 𝑠

𝑡𝑚
𝑢,𝑘

. The
easiest way, performed in [31, 32], is 𝑝 (𝐷 |𝑐𝑡 , 𝑠𝑡

𝑢,𝑘
) = 1−𝑝 (𝐷 |𝜏𝑡 , 𝑠𝑡

𝑢,𝑘
)

considering that 𝜏𝑡 is the center of 𝑐𝑡 . However, if the likelihood
changes significantly within the cell, it is better to calculate the
mean of the likelihood over a set of 𝑁𝑐 equally spaced points within
𝑐𝑡 (i.e. 𝑝 (𝐷 |𝑐𝑡 , 𝑠𝑡

𝑢,𝑘
) = 1−∑𝜏𝑡 ∈𝑝𝑜𝑖𝑛𝑡𝑠 (𝑐𝑡 ,𝑁𝑐 ) 𝑝 (𝐷 |𝜏

𝑡 , 𝑠𝑡
𝑢,𝑘
)/𝑁𝑐 ). Hence,

this improvement is already included in our DEVs-based framework.
We conclude this section remarking the target-related models

that input the evaluation process:𝑏 (𝑐0), 𝑝 (𝑐𝑡 |𝑐𝑡−𝑇𝜏 ) and 𝑝 (𝐷 |𝜏𝑡 , 𝑠𝑡𝑚
𝑢,𝑘
).

3.1.2 UAV-related operations. The UAV and sensor trajectories
used in [31, 32] are obtained from a non-linear dynamical model
implemented in Simulink [37], whose inputs are the initial state 𝑠0𝑢
of the UAV and of its sensors 𝑠0

𝑢,𝑘
, and a sequence of setpoints for

the UAV heading, height and speed, and for the sensor pose. The
model in [31] includes the fuel, height, speed and lateral dynamics
of the UAV, while the model in [32] incorporates the pose dynamics
of a gimballed camera. Both models include the usual limitations
related with their state variables (e.g. air velocity, height, heading,
sensor pose), as well as their dependencies with the wind.



As the differential equations of these models do not bring much
insight to the discussion of this paper, we summarize them with the
following expressions. Besides, to facilitate the comparison of the
DEVS-based UAV trajectories with those obtained with Simulink,
we have implemented them as the following groups of difference
equations (which integrate themselves, using a 4th order Runge-
Kutta, the differential equations of the models):
• 𝑠𝑡𝑢 = 𝑓 (𝑠𝑡−𝑇𝑢𝑢 , 𝑎

𝑡−𝑇𝑢
𝑢 , 𝜖𝑡−𝑇𝑢 ,𝑇𝑢 ) stands for the expressions

used to compute the new state 𝑠𝑡𝑢 of UAV 𝑢 from its previous
state 𝑠𝑡−𝑇𝑢𝑢 given the set points in 𝑎

𝑡−𝑇𝑢
𝑢 , the environmental

conditions (e.g. wind) in 𝜖𝑡−𝑇𝑢 , and the sampling period 𝑇𝑢 .
• 𝑠𝑡

𝑢,𝑘
= 𝑔(𝑠𝑡𝑢 , 𝑠

𝑡−𝑇𝑢,𝑘
𝑢,𝑘

, 𝑎
𝑡−𝑇𝑢,𝑘
𝑢,𝑘

, 𝜖𝑡−𝑇𝑢,𝑘 ,𝑇𝑢,𝑘 ) stands for the ex-
pressions used to compute the new state 𝑠𝑡

𝑢,𝑘
of sensor 𝑘

of UAV 𝑢 from the current UAV state 𝑠𝑡𝑢 and the previous
sensor state 𝑠𝑡−𝑇𝑢,𝑘

𝑢,𝑘
, given the sensor setpoints in 𝑎𝑡−𝑇𝑢,𝑘

𝑢,𝑘
, the

environmental conditions 𝜖𝑡−𝑇𝑢,𝑘 and the sensor sampling
period 𝑇𝑢,𝑘 .

Finally, it is worth noting that in [31, 32], both models iterate at
the same basic time step (i.e. 𝑇𝑢 = 𝑇𝑢,𝑘 ) and only accept changes in
all setpoints at the same fixed rate, pre-defined before hand. This
restriction is alleviated in the framework presented in this paper.

3.1.3 Evaluation-related operations. The models and equations in
the previous sections do not determine yet the utility of a given set
of UAV trajectories (defined through the setpoints of the UAVs and
of the sensors). This section introduces those functions:
• The probability-based utility function are the probability of
detection up to 𝑡 (𝑃𝑑 (𝑡)) and the expected time of detection
(𝐸𝑇 (𝑡)), which are computed with Eqs. (3) and (4).

𝑃𝑑 (𝑡) = 1 −
∑
𝑐𝑡 ∈𝐺

𝑝 (𝑐𝑡 ) (3)

𝐸𝑇 (𝑡) =
∑

𝑙=1:1:𝑡/𝑇𝜏
(1 − 𝑃𝑑 (𝑙 ·𝑇𝜏 ))𝑇𝜏 (4)

• The remaining utility functions are:
– Fuel consumption, computed by the UAV motion model.
– Collision avoidance, which determines how often each
pair of UAVs is closer than the security flight range.

– Non flying zones (NFZs), which determines how often the
UAVs overfly forbidden regions, which are defined as a list
of non-flyable cells 𝑐𝑁𝐹𝑍

𝑙
∈ 𝐺 .

3.2 DEVS Formalism
As stated above, our methodology to define the new framework
for evaluating UAVs target-search strategies is based on MBSE and
DES principles. To this end, we have selected the DEVS formal-
ism [50]. As a result, we provide a common architecture with a
highly-detailed structural and behavior description, and use DEVS
to validate and guarantee an incremental, reliable and solid design,
with an explicit separation from the chosen implementation. These
characteristics facilitate scalability, maintainability and reusability.
Additionally, introducing new system elements (i.e. a new type of
UAV or of sensor, as we will see below) is easier and faster. Trade-
offs between new or existing elements can also be performed, in
order to analyze which element fits better in a specific mission.
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Figure 1: Root coupled model

Overall, DEVS enables to represent a system by three sets (input
𝑋 , output 𝑌 and state 𝑆) and five functions (external transition 𝛿ext,
internal transition 𝛿int, confluent 𝛿con, output _, and time advance
𝑡𝑎). Besides, DEVS models are either atomic and coupled. On one
hand, atomic models define the system’s behavior through the five
functions mentioned above. They process input events based on
their model’s current state and condition, generate output events
and transition to the next state. On the other one, coupled models
are the aggregation/composition of several atomic or coupled mod-
els connected by explicit couplings. Given this recursive definition,
a coupled model can be a component of a larger coupled model
system. Hence, DEVS supports a hierarchical model construction
that is exploited to define our framework.

4 DEVS-BASED EVALUATION PROCESS
This section presents the specification for our DEVS-based target-
search evaluation tool, which will be available from [2]. Designed
using MBSE principles and exploiting DEVS scalability, reusability
and flexibility, it presents a modular design capable of adapting to
different types of scenarios. Moreover, depending on the particular
characteristics of each element used in a given mission (e.g. UAVs
can be equipped with static radars or gimballed cameras), our mod-
els are configured accordingly to the mission specification file, to
match the actual behaviors of each element.

In the remaining of this section, we describe the structure and
behavior of each model of our evaluation framework.

4.1 Root Model
The Root Model is the top-level coupled module of the architecture
and represents our DEVS-based evaluation tool for the search prob-
lem. As Fig. 1 shows, it is composed by the Flight Simulator (FS)
and Evaluator (EV) coupled models, which are used to obtain the
UAVs (and sensors) trajectories while the target evolution (due to its
own movement and to the observations from the UAVs) and utility
functions are evaluated. More in detail, the ports of this model are:

(1) The search area Ω, defined by its geographical coordinate
origin and its lateral dimensions.

(2) The NFZs, defined as the lists of cells of 𝑐𝑁𝐹𝑍
𝑙

∈ 𝐺 .
(3) The encapsulated definition of the target, which includes

its initial belief 𝑏 (𝑐0), its motion model 𝑝 (𝑐𝑡 |𝑐𝑡−𝑇𝜏 ), and its
end time 𝑡𝑒𝑛𝑑𝜏 .

(4) The information of the environment 𝜖 , which so far consists
of a wind matrix of the same size as 𝐺 .

(5) The encapsulated definition of the UAVs involved in the
mission [uav]1:𝑈 , which for each UAV includes its initial
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state 𝑠𝑡
0
𝑢
𝑢 , its initial and final time in the mission [𝑡0𝑢 , 𝑡𝑒𝑛𝑑𝑢 ], its

deterministic motionmodel 𝑓 (·), the list of UAV setpoints (i.e.
as many 𝑎𝑡𝑢 as desired) , and the information of its onboard
sensors, which is described later.

This model’s outputs reflect the results of the evaluation process:
(1) The encapsulated definition of the UAVs simulations [eUav]1:𝑈 ,

which for each UAV includes the resulting UAV trajectory
for the given setpoints and the values of the utility-functions
UAV collisions, NFZs overflight and fuel consumption.

(2) The encapsulated definition of the target evaluation eTarget,
which include the evolution (for different values of 𝑡 ) of the
unobserved probability 𝑝 (𝑐𝑡 ), and of the values of the utility-
based functions 𝑃𝑑 (𝑡) and 𝐸𝑇 (𝑡).

Finally, note that there is not feedback from EV to FS, since the
purpose of this Root Model is only to evaluate the scenario with
the proposed inputs - instead of determining a good UAV strategy.
For the same reason, there will not be couplings between the UAVs
models (or between the sensors models), because there is not gain
of sharing information between them when no decision is to be
taken during the evaluation.

4.2 Flight Simulator (FS)
The FS coupled model is where the simulation of each UAV trajec-
tory takes place. Consequently, and as Fig. 2 shows, the FS model
creates, for each UAV 𝑢 in the mission, one instance of the UAV
Model (UM), whose structure and behavior is presented below.
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Figure 4: UAV control (UC) states diagram

Table 1: UC States Transitions

𝛿𝑖𝑛𝑡 𝛿𝑒𝑥𝑡

T1 At receiving initial data
T2 At reaching 𝑡0𝑢
T3 At receiving 𝑠𝑡𝑢 or traySen
T3’ At next setpoint time
T4 When new 𝜖𝑡 is available
T4’ To send 𝜖𝑡

T5 When setpoints list is empty
T6 When new 𝜖𝑡 is available
T6’ To send 𝜖𝑡

T7 At receiving 𝑠𝑡𝑢 or traySen
T8 At reaching 𝑡𝑒𝑛𝑑𝑢

T9 At receiving traySen

T10 end

4.3 UAV Model (UM)
Each UAV𝑢 is represented by an instance of the UAV coupled model,
which is composed (as Fig. 3 shows) by the UAV Control (UC) and
UAVMotion (UMM) atomic models, and by as many Sensor coupled
Models (SM) as target-detection sensors are mounted in the UAV.
Besides, the UM model receives as input data the search area Ω, the
environment information and the uav definition. Finally, it outputs
𝑝 (𝐷 |𝑐𝑡 , 𝑠𝑡𝑚

𝑢,𝑘
) for each onboard sensor and measurement time 𝑡𝑚 ,

and the simulated trajectory trayUAV.

4.3.1 UAV Control (UC). The main function of this atomic model
is regulating the simulation of the UAV trajectory. So, it handles
the lists of UAV setpoints (e.g. headings, heights and speeds), which
are built before the simulation, programmable as periodic or event-
based signals, and definable as absolute/incremental/rate setpoints.

Its behavior is summarized in Fig. 4 and Table 1. In more detail, as
soon as this model receives the initial input data (Ω, 𝜖 , uav), it starts
to operate by programming the internal transition 𝛿𝑖𝑛𝑡 and setting
𝜎 to the UAV start time 𝑡0𝑢 . By doing so, scenarios with multiple
UAVs that have different start mission times can be simulated. Next,
at 𝑡0𝑢 , its _ output function sends the required initial data to the
UMM and SM models (to allow them to start their own operations).

To handle the setpoints lists, UC programs a 𝛿𝑖𝑛𝑡 by setting 𝜎 to
the time of the next setpoint. When this time comes, the setpoint is
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sent by the _ function to the UMMmodel. This behavior is repeated
until the setpoints lists are empty. Further, a 𝛿𝑒𝑥𝑡 is triggered each
time a new UAV state 𝑠𝑡𝑢 is received through the input port linked
to 𝑠𝑡𝑢 output port of the UMMmodel. When this 𝛿𝑒𝑥𝑡 is triggered, 𝑠𝑡𝑢
is stored in the UAV path internal list and used to check if new en-
vironmental information (in our case the wind speed and direction
around the UAV location) has to be sent to UMMmodel by program-
ming an instant 𝛿𝑖𝑛𝑡 and returning to the previous state. Similarly,
sensor simulated trajectories traySen can also be received via the
input port linked to a SM model of a mobile sensor, triggering a
𝛿𝑒𝑥𝑡 that stores traySen into the internal sensor list.

When the setpoints lists is empty, UC transitions to a waiting
state until the UAV end time 𝑡𝑒𝑛𝑑𝑢 is reached. During this phase,
UMM 𝑠𝑡𝑢 or SM traySen are received and processed as already
described. Finally, when 𝑡𝑒𝑛𝑑𝑢 is reached, an additional 𝛿𝑖𝑛𝑡 is pro-
grammed before UC outputs the simulation data and changes to
a passive state. This allows UAV dynamic sensors to report their
respective simulations when the sensor end time 𝑡𝑒𝑛𝑑

𝑢,𝑘
is equal to

𝑡𝑒𝑛𝑑𝑢 . Otherwise, UC goes to a passive state before the SM models
report the sensor simulation data.

4.3.2 UAV Motion (UMM). This atomic model represents the UAV
flight dynamics. It remains inactive until it receives, at time 𝑡0𝑢 , the
initial data from UM. Specific parameters that define each type of
UAV are loaded at this moment to configure the behavior of the
motion equation 𝑓 (·), which is executed periodically by UMM. This
is achieved by programming a 𝛿𝑖𝑛𝑡 that runs 𝑓 (·) and setting𝜎 to the
UAV motion rate. In addition, UAV setpoints 𝑎𝑡𝑢 and environmental
information 𝜖𝑡 are received via their input ports, triggering a 𝛿𝑒𝑥𝑡
transition every time their information is updated by the UC model.
When this happens, UMM updates the 𝑎𝑡𝑢 and 𝜖𝑡 that are applied to
𝑓 (·) until receiving new inputs. Finally, note that every time 𝑓 (·) is
executed, a new 𝑠𝑡𝑢 is output to the UC model via the _ function, a
behavior that is repeated until the time of this model exceeds 𝑡𝑒𝑛𝑑𝑢 .

4.4 Sensor Model (SM)
Each target-detection sensor 𝑘 on board of the UAV has a one to one
match to a Sensor coupled model, which in general contains, as Fig.
5 shows, the Sensor Control (SC), Sensor Motion (SMM) and Sensor
Payload (SP) atomic models. However, their final configuration
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Table 2: Sensor payload (SP) states transitions

𝛿𝑖𝑛𝑡 𝛿𝑒𝑥𝑡

T1 At receiving initial data
T2 At receiving 𝑠𝑡𝑢 or 𝑠𝑡

𝑢,𝑘

T3 At every sensor 𝑡𝑚
T4 To send 𝑝 (𝐷 |𝑐𝑡 , 𝑠𝑡𝑚

𝑢,𝑘
)

T5 If next 𝑡𝑚 > 𝑡𝑒𝑛𝑑
𝑢,𝑘

depends on the type of sensor: static sensors only require to execute
SP, while dynamic sensors require all the couplings and models in
Fig. 5. The input ports of these models are the Sensor definition, the
UAV start time 𝑡0𝑢 and the 𝑠𝑡𝑢 produced by UMMmodel. In particular,
the Sensor definition consists, at least, in the initial and final times
in which the sensor is involved in the mission [𝑡0

𝑢,𝑘
, 𝑡𝑒𝑛𝑑
𝑢,𝑘
] and its

measurement rate 𝑡𝑚 . For mobile sensors, it also includes its initial
state 𝑠0

𝑢,𝑘
, its deterministic motion model 𝑔(·) and the list of sensor

setpoints (i.e. as many 𝑎𝑡
𝑢,𝑘

as desired). Finally, the output ports are
𝑝 (𝐷 |𝑐𝑡 , 𝑠𝑡𝑚

𝑢,𝑘
) and the simulated trajectory traySen (only in the SM

models of mobile sensors).

4.4.1 Sensor Control (SC). The main function of this atomic model
is simulating the sensor trajectory by regulating the list of sensor
setpoints, whose information is sensor-dependent. For instance, in
our gimballed camera, the setpoints are the sensor azimuth and el-
evation, can be represented with absolute/incremental/rate signals
and updated periodically or acyclically. As conceptually, the Sensor
Control (SC) model has a similar utility to the UAV control (UC)
model, parts of their behaviors are similar (although SC does not
require the part associated to the environment and to the reception
of segments of the sensor trajectory).

4.4.2 Sensor Motion (SMM). This atomic model represents the
sensor dynamics. Conceptually, as it has an equivalent role for the
sensor to the UAV motion model (UMM) for the UAV, their state
diagram are similar, differing only in the motion model (i.e. 𝑔(·) vs.
𝑓 (·)), and in the input/output signals (related to sensors vs. UAVs).

4.4.3 Sensor Payload (SP). This atomic model is in charge of cal-
culating the sensor likelihood for the target belief, according to
the behavior presented in Fig. 6 and Table 2. When it receives its
initial information at 𝑡0𝑢 , SP loads the parameters associated to the
specific 𝑝 (𝐷 |𝜏𝑡 , 𝑠𝑡

𝑢,𝑘
) implemented for the selected type of sensor.

Next, it transitions to a waiting state until the sensor start time
𝑡0
𝑢,𝑘

is reached. Afterwards, it programs a 𝛿𝑖𝑛𝑡 by setting 𝜎 to the
defined sensor measurement rate. When the measuring time 𝑡𝑚 is
reached, its _ function outputs 𝑃 (𝐷 |𝑐𝑡 , 𝑠𝑡𝑚

𝑢,𝑘
) for all cells 𝑐𝑡 ∈ 𝐺 . This
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behavior is repeated until the next measuring time 𝑡𝑚 exceeds the
sensor end time 𝑡𝑒𝑛𝑑

𝑢,𝑘
. The state of 𝑠𝑡

𝑢,𝑘
is received through SP input

ports and consists of: the UAV state 𝑠𝑡𝑢 for all types of sensors, and
the sensor own state (e.g. the azimuth or elevation for a gimballed
camera) for dynamics sensors.

4.5 Evaluator
This coupled model performs the remaining operations of the eval-
uation process: it updates the unobserved probabilities 𝑝 (𝑐𝑡 ) and
evaluates the utility-functions. As Fig. 7 shows, it is broken down
into the Target coupled Model (TM) and the Evaluation Function
(EF) atomic model, whose details are presented next.

4.6 Target Model (TM)
This coupled model estimates the state of the target that is being
searched by the UAVs. Targets can remain static or move, and in
the last case its simulation requires a probabilistic motion function
to perform the prediction step defined in Eq. (1). Hence, as the TM
structure changes to replicate both types of targets, Fig. 8 depicts
the most complex structure of the TM model for dynamic targets.

4.6.1 Target Control (TC). The main function of this atomic model
is to handle the operations of the unobserved probability map 𝑝 (𝑐𝑡 ).
Its behavior is specified in Fig. 9 and Table 3. In more detail, after
receiving the initial data and reaching the target start time 𝑡0𝜏 , TM
starts the target simulation, programming a 𝛿𝑖𝑛𝑡 by setting 𝜎 to the
target end time 𝑡𝑒𝑛𝑑𝜏 . While the simulation lasts, 𝑝 (𝐷 |𝑐𝑡 , 𝑠𝑡𝑚

𝑢,𝑘
) are

received (due to the port coupling among the TC and sensor payload
models), triggering the 𝛿𝑒𝑥𝑡 transition function and updating 𝑝 (𝑐𝑡 )
with Eq. (2). If the target is dynamic, the new 𝑝 (𝑐𝑡 ) is sent to TMM,
as it needs to be informed to predict the more recent 𝑝 (𝑐𝑡 ). To do
it, a 𝛿𝑖𝑛𝑡 is programmed by making 𝜎 = 0 and _ function output
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Figure 9: Target Control (TC) states diagram

Table 3: TC States Transitions

𝛿𝑖𝑛𝑡 𝛿𝑒𝑥𝑡

T1 At receiving initial data
T2 At reaching 𝑡0𝜏

T3
When receiving a new 𝑝 (𝐷 |𝑐𝑡 , 𝑠𝑡𝑚

𝑢,𝑘
)

or 𝑝 (𝑐𝑡 ) from TMM
T4 To calculate new 𝑝 (𝑐𝑡 )
T4’ To send 𝑝 (𝑐𝑡 ) to TMM
T5 At reaching 𝑡𝑒𝑛𝑑𝜏

T6
When new 𝑝 (𝐷 |𝑐𝑡 , 𝑠𝑡𝑚

𝑢,𝑘
) is received

at 𝑡𝑒𝑛𝑑𝜏

T7 end

𝑝 (𝑐𝑡 ) before TC returns to its previous state. Predicted 𝑝 (𝑐𝑡 ) can
also be received from TMM, triggering a 𝛿𝑒𝑥𝑡 that substitutes the
previous 𝑝 (𝑐𝑡 ) by the last one received. Besides, whenever 𝑝 (𝑐𝑡 ) is
updated due to the likelihoods, 𝑃𝑑 (𝑡) and 𝐸𝑇 (𝑡) are also updated
(note that they are not modified at target predictions, as 𝑃𝑑 (𝑡)
remains unchanged). Afterwards, 𝑝 (𝑐𝑡 ) is stored in the internal
target-probability list. Finally, when 𝑡𝑒𝑛𝑑𝜏 is reached, an additional
𝛿𝑖𝑛𝑡 transition is programmed before TC outputs the result of the
evaluation of the target model in eTarget. This allows UM models
to report their respective 𝑝 (𝐷 |𝑐𝑡 , 𝑠𝑡𝑚

𝑢,𝑘
) when 𝑡𝑚 is equal to 𝑡𝑒𝑛𝑑𝜏 .

4.6.2 Target Motion (TMM). This atomic model is only activated
for dynamic targets and handles the operations of the target predic-
tions. At the arrival of the initial data at 𝑡0𝜏 , it calculates the motion
model 𝑝 (𝑐𝑡 |𝑐𝑡−𝑇𝜏 ) using the methods presented in [32]. Its _ func-
tion outputs periodically (at target motion rate) the 𝑝 (𝑐𝑡 ) resulting
from Eq. (1). It also receives 𝑝 (𝑐𝑡 ) inputs from TC, triggering a 𝛿𝑒𝑥𝑡
that updates the current 𝑝 (𝑐𝑡 ). When TMM time is higher than
𝑡𝑒𝑛𝑑𝜏 , it transitions to a passive state.

4.7 Evaluator Function (EF)
This atomic model is executed at the end, after the UAV trajectories
and target evaluations are available. It performs the remaining
calculations to complete the evaluation process. That is, it computes
the UAV collision and NFZ utility functions. Its behavior is simple:
as soon as it receives [eUAV]1:𝑈 and etarget, it calculates those
utility functions and afterwards, it returns to a passive state.



(a) Initial belief 𝑏 (𝑐0) (b) Final 𝑝 (𝑐𝑡 ) at 𝑡 = 2 hours
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Figure 10: General information of the missions

Table 4: General characteristics of the two UAVs

Description UAV1 UAV2
Flying height range (ft) [500, 23000] [500, 13100]
Flying speed range (kts) [60, 110] [115, 190]
Operating range (nm) 135 81

Flying autonomy (hours) 20 7
Payload Radar Camera(s)

Simulation flying height (ft) 3000 10000
Simulation flying speed (kts) 80 87.5

5 SIMULATIONS
In this section our Model and Simulation (M&S) framework is used
to evaluate different UAV target-search strategies for real-world
inspired scenarios. Their setup is a straightforward process, since
after having defined the behavior and ports of all the models, their
connections and configuration can be performed through specifi-
cation files. This characteristic is facilitated by the integral separa-
tion between the model and the simulation layers in the proposed
MBSE&DES oriented methodology.

In the following, we firstly describe the mission, the system el-
ements and their individual features. Secondly, we propose and
evaluate different UAV target-search alternatives to show the ver-
satility of the tool. And third, we analyze how the grid resolution
affects the evaluation process from a computational and precision
perspective, which will be especially relevant in the future, when
our DEVs-based evaluation framework will become part of a plan-
ner for optimizing ASV trajectories.

Finally, and before presenting the scenarios (which will be avail-
able from [2]) and results, it is worth noting that in order to verify
that the behavior of the DEVs-based framework and of the eval-
uation functions of [31, 32] are the same (when applied to the
scenarios supported by the last), we have performed partial com-
parisons of the different parts of the system. For instance, the same
ASV and sensor trajectories are obtained in both cases when we
use periodic signals for all the setpoints, and the same 𝑃𝑑 (𝑡) and
𝐸𝑇 (𝑡) are calculated when we simplify the sensor models in the
DEVs-based framework to take into account only the sensor likeli-
hoods on the center of each cell. Instead of reproducing these types
of scenarios in the paper, we have decided to report a few cases

that take advantage of all the flexibility that the new DEVs-based
framework allows.

5.1 Mission Description
Our scenarios are based on a search and rescue mission at the sea,
where it is necessary to find a small drifting vessel (of 5 meters)
with the survivors of a shipwreck close to the coast.

The search area Ω is a square of 30x30 nm2 (which corresponds
to a square of 56.5x56.5 km2), discretized (at the highest resolution
level) in a grid of 80 x 80 cells. Over this grid, we define the initial
target probability map 𝑏 (𝑐0) represented at Fig. 10(a), taking into
account the last known position of the shipwreck, the sea wind
and currents, and the time lapsed since the emergency call and the
engagement of the first UAV in the search mission. As the vessel
drifts due to the wind and sea currents, we also have to define
𝑝 (𝑐𝑡 |𝑐𝑡−𝑇𝜏 ). The effect of our target motion model over 𝑏 (𝑐0) is
displayed in Fig. 10(b), which shows the unobserved probability
𝑝 (𝑐𝑡 ) obtained after applying Eq. (1) every 𝑇𝜏 = 375 seconds (in
order to take into account the wind/current velocities and the size
of 𝑐 ∈ 𝐺) during 2 hours.

Two fixed-wing UAVs, whose main characteristics are summa-
rized in Table 4, are available for performing the search operation. In
particular, the first UAV is inspired by the tactical Spanish Searcher
MK-III, while the second one is inspired by the one used in INTA
SIVA [5, 18, 39]. In addition, each UAV is equipped with a differ-
ent type of sensor: a continuous wave radar and an electro-optical
camera, this last mounted in a rotatory turret (with a maximum
slew rate of 60 degrees/s, an azimuth range of 360º and an elevation
range from 90º - downward - to 0º - at the aircraft longitudinal axis)
that can re-orient the sensor during the mission. Besides, each sen-
sor has a different likelihood 𝑝 (𝐷 |𝜏𝑡 , 𝑠𝑡𝑢 ) function and curve, which
are presented (for the current scenario setup) as a function of the
distance between 𝜏𝑡 and 𝑠𝑡𝑢 in Fig. 10(c). Although apparently the
camera has a greater likelihood for all distances, its distance-curve
has to be multiplied by a function that returns 1/0 in the locations
that fall within/ outside the camera footprint (which covers and
area of 550x550 m2 at UAV2 flying altitude, and whose location
over 𝐺 is modified by the UAV location and camera pose).

Furthermore, in the simulations of this paper, the UAV motion
model is updated every 1 second and their control signal every 10
seconds, the radar and camera respectively provide information
every 4 and 2 seconds, and the turret motion model is updated every



(a) ST1- Single UAV (b) ST2 - Two UAVs, one camera (c) ST3 - Two UAVs, double camera

Figure 11: Simulation results of the versatility scenarios
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Figure 12: Detection probability in the versatility analysis

1 second. Additionally, the UAV trajectories (which are displayed in
black and purple in Fig. 11 and 13) have been obtained by creating a
list of absolute heading setpoints to be applied at different moments
of the mission. In other words, we are evaluating pre-defined UAV
search patterns with our tool by defining an appropriated list of
heading setpoints and its starting time steps.

Finally, it is worth mentioning that the current setup can not be
handled by the evaluation function in [31, 32], since the setpoints of
the UAVs and sensors are evaluated at different rates, the duration of
the setpoints is flexible, and the likelihood are evaluated averaging
the values of multiple points within the same cell. Moreover, the
periods used to predict (375 seconds) and update (4 and 2 seconds)
the target unobserved probability 𝑝 (𝑐𝑡 ) are independent on each
other, as the Target Control (TC) and Motion Model (TC) manage
to perform both operations in the proper order.

5.2 Versatility Analysis
To demonstrate the versatility of our M&S framework, we analyze
the performance of the following strategies:

Strategy 1 (ST1) consists in making UAV1 (which arrives at
Ω from the southwest corner at 𝑡𝑠𝑡𝑎𝑟𝑡1 = 0 seconds) follow a
typical lawn-mower pattern during 𝑡𝑒𝑛𝑑

𝑚𝑖𝑠𝑠𝑖𝑜𝑛
= 7200 seconds.

Strategy 2 (ST2) incorporates UAV2 (which arrives at Ω from
the North at 𝑡𝑠𝑡𝑎𝑟𝑡2 = 1000 second) that has to perform a spiral
pattern while the azimuth of its camera makes a (-90º,90º)
zig-zag at fixed elevation (40º).

Strategy 3 (ST3) incorporates a second camera to UAV2whose
azimuth makes a (-180º,180º) zig-zag at fixed elevation (40º).

Figure 11 represents the final unobserved probability 𝑝 (𝑐𝑡 ) and
the trajectories of the UAVs, using a black solid-line for the first UAV,

a magenta solid-line for the second one, and substituting the actual
height of the UAVs by a fixed value of 𝑝 (𝑐𝑡 ), in order to be able to
observe simultaneously the trajectories (at a height of thousand of
feet) and 𝑝 (𝑐𝑡 ) (with values within [0, 1e-3]). Besides, the evolution
of 𝑃𝑑 (𝑡) is depicted in Fig. 12. Analyzing all of them, we can ob-
serve the expected behavior: as we add more sensors to the mission,
less probability remains unobserved (i.e. the corresponding 𝑝 (𝑐𝑡 )
surface has smaller values observable in the displayed range) as far
as the new sensors observe regions with uncollected probability.
In addition, the improvement of 𝑃𝑑 (𝑡) is not proportional to the
number of sensors, as their likelihoods and ranges are different. In
particular, although the camera footprint is smaller than the radar
range, its movement make it collect more probability. Moreover, the
second camera can collect less, because it observes parts already
observed by the first camera. Finally, with the three strategies we
have shown that the tool is already capable of working with differ-
ent number and types of UAVs and of sensors (including static and
moving ones), and with models iterating asynchronously.

5.3 Resolution Analysis
The simulations in this section are used to analyze the effect of
the 𝐺 resolution in the evaluation of the probability-based utility
functions. Three possible alternatives are tested:

High resolution (RES1), with a grid of 80x80 cells, each of
750 x 750 m. Although it has the same initial belief 𝑏 (𝑐0)
as the one in Fig.10(a), the target is static in this case, to
facilitates the comparison of the scenarios and let us see our
framework working under a different configuration.

Middle resolution (RES2), with a grid of 40x40 cells, each of
1500 x 1500 m, whose values are obtained adding up the
values of 2 x 2 consecutive cells of the high resolution belief
𝑏 (𝑐0).

Low resolution (RES3), with a grid of 20x20 cells, each of
3000 x 3000 m, whose values are obtained adding up the
values of 2 x 2 consecutive cells of the middle resolution
belief 𝑏 (𝑐0).

In this analysis, we only use UAV1 during the whole mission
and a list of heading setpoints that generates a lawn-mower pat-
tern that, as Fig. 13 shows, leaves unobserved regions between two
consecutive legs accordingly to the radar likelihood 𝑃 (𝐷 |𝜏𝑡 , 𝑠𝑡𝑢 )



(a) RES1 - High Resolution (final ET= 7804 s) (b) RES2 - Intermediate Resolution (final ET= 6765 s) (c) RES3 - Low Resolution (final ET= 5541 s)

Figure 13: Results of the resolution analysis
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Figure 14: Detection probability in the resolution analysis

of Fig. 10(c). Besides, as the assimilation step (stated at Eq. 2) re-
quires 𝑃 (𝐷 |𝑐𝑡 , 𝑠𝑡𝑢 ) and the radar likelihood 𝑃 (𝐷 |𝜏𝑡 , 𝑠𝑡𝑢 ) changes
significantly within the cells of all the resolutions, we calculate
𝑃 (𝐷 |𝑐𝑡 , 𝑠𝑡𝑢 ) = 1−∑𝜏𝑡 ∈𝑝𝑜𝑖𝑛𝑡 (𝑐𝑡 ,𝑁𝑐 ) 𝑃 (𝐷 |𝜏

𝑡 , 𝑠𝑡𝑢 )/𝑁𝑐 , spacing the eval-
uation points 𝑁𝑐 in all the resolutions equally. That is, if we use 𝑁𝑐

points to evaluate 𝑃 (𝐷 |𝑐𝑡 , 𝑠𝑡𝑢 ) in a given resolution, we use 4𝑥𝑁𝑐

points at the consecutive lower resolution.
With this setup, we obtain the results represented in Fig. 13 and

14, which are clearly different at different resolutions. Note that
the scale of the z-axis of Fig. 13 is not the same as the one in Fig.
10 and 11, because the beliefs of the new resolutions accumulate
more probability in each cell. This happens because at the lower
resolution 𝑃 (𝐷 |𝑐𝑡 , 𝑠𝑡𝑢 ) averages the values that will be put applied
to different cells of the 𝑝 (𝑐𝑡 ) of the higher resolution, consuming
more unobserved probability than at the higher resolution. Hence,
and as Fig. clearly 14 shows, the probability of detection, in this
example, is overestimated at the lower resolution. The effect is the
opposite in the expected time of detection (which is displayed at
the captions of the graph of each solution): at lower resolutions it
seems better (has a lower value) than at the highest.

Although increasing the resolutions solves the precision problem,
it has an important side effect: the computational time is increased,
something that can be critical when the evaluation framework has
to be repeatedly and systematically used (e.g. within an optimizer).
In particular, when using an Intel 4-Cores i7 at 2,5 GHz with a RAM
of 16 GB 1600 MHz DDR3, the computational time of the setup
(after disabling the intermediate data saving) for RES1 is 0.72±0.01
seconds, for RES2 0.60±0.02 second and of RES3 0.53±0.01 seconds.

The previous analysis shows that our methodology not only
allows us to easily set up complex scenarios, but it also facilitates the

exhaustive analysis of the simulation results. Finally, the verification
ofmodels is also straightforwardwith the different utilities provided
by our DEVS simulation engine, as can be seen in [14].

6 CONCLUSIONS
This paper presents our approach to systematize the evaluation
of UAV target-search strategies using MBSE and DES. To do it,
we have developed a hierarchical DEVS framework that 1) pro-
vides the infrastructure to model the evaluation process of different
target-search problems, that 2) incorporates the behaviours or the
evaluation of a selected path planner and that 3) is adjustable to
different scenarios. In particular, it is already possible to select the
number and types of UAVs and of sensors, to use static or mov-
ing targets, and to independently configure the iteration rates and
events of the different models. The results show the versatility of
the framework to analyze the effects of different UAV strategies and
of the grid resolution in the evaluation of target-search missions.

As future work, we are thinking of expanding the functionality
of the framework to let it use other types of probability models
for the target (e.g. particles filters) or evaluate other types of UAV
trajectories (e.g. Dubin curves or splines). For the first type of
expansion, we will only need to modify the probability models
and operations within the existing modules, while for the second
one, we will need to develop new models to be able to sample or
make the UAV follow the provided trajectories. We also plan to
add an optimization module to the framework, following the same
MBSE&DES principles, to be able to obtain automatically the best
search strategies for the different UAVs. Again, this will require
developing new modules that implement the optimizer steps and
call the root model of this paper to evaluate the different solutions
proposed by the optimizer. Finally, we will analyze the scalability of
the proposed M&S framework, testing the simulation of scenarios
with swarms of UAVs and larger exploration areas. To this end, we
will perform both parallel and distributed simulations, with the
help of the DEVS parallelization possibilities [27].
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