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Abstract: Owing the stressful, busy and fast lifestyle of people in today’s highly dynamic circumstances, everybody has a need to get 

away from it. In this respect going for short and long trips for varied purposes has become an essential part of the life of people. As a 

result the number of people opting out for travelling to far away tourist destinations is on the rise. Acknowledging the need of traveling 

of the people in different revered places to find serenity and relax, our proposed approach to the single intersection optimization problem 

is gradient based, and we derive simulation-based gradient estimators that are more efficient than brute-force finite differences. Here we 

focus on the single channel waiting line systems with Poisson arrival and exponential service time in revered places. Mathematical 

models of queuing theory present an interest in modeling, designing and analyzing information network and describe the base for 

waiting phenomena, services processes, and prioritization of services among others. The other aspect of the study also demands that the 

expended network in revered places must bring modern technologies along, to serve venerator across the globe for better turnout and 

efficiency in carrying activities. 
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1. Introduction 
 

We proposed approach to the single intersection 

optimization problem is gradient based, and we derive 

simulation-based gradient estimators that are more efficient 

than brute-force finite differences furthermore, they can be 

implemented online, which also differentiates the algorithm 

from that of Spall and Chin [1].Due to the difficulty of the 

problem, we apply an approach called smoothed 

perturbation analysis (SPA), introduced by Gong and Ho 

[2]. Another simpler technique called infinitesimal 

perturbation analysis (IPA) is not applicable in the setting 

[3]. IPA is not applicable, because the sample performance 

measure is discontinuous in the parameter space. Because of 

this discontinuity, SPA, which uses conditional expectation, 

is required. For the single intersection of two one-way 

streets, we use the framework of Fu and Hu [4] to derive 

unbiased two line gradient estimators for the queue lengths 

at each of the streets. We then employ these gradient 

estimators in a stochastic approximation algorithm to 

optimize the signal light timings. Numerical comparisons 

with optimization using finite difference estimators illustrate 

the promise of the proposed approach.  

 

2. Problem Setting 
 

The system of interest consists of two one-way streets line 1 

line 2 in Figure 1 intersecting at a signal light that has two 

states:  

 

A1the light is green for street 1. This state allows both 

departures and arrivals at street 1, but only arrivals at street 

2. 

 

A2the light is green for street 2. This state allows both 

departures and arrivals at street 2, but only arrivals at street 

1.  

 

The length of a green cycle in states A1 andA2 is denoted by 

T1 and T2, respectively. When the light is green for one 

street, the light is red for the other street. A complete signal 

cycle is denoted by a green-red sequence, and the time to 

complete such a cycle is denoted by T = T1 + T2. We assume 

that the green-red cycle repeats identically and indefinitely, 

and without loss of generality assume that the sequence 

begins with a green for street 1. In state Aj, j= 1.2, venerator 

in street j's queue are served one at a time, according to i.i.d. 

service times”with mean 1/µj, c.d.f. Fj and p.d.f. Fj, whereas 

in the other queue no venerator are served. All service time 

and interarrival time distributions are continuous. 

 

 
Figure 1: Isolated intersection revert place system visual 

depiction 

 

If a venerator does not make it through the intersection 

during a cycle, it must start over with a fresh service time 

during the subsequent green cycle, i.e., the departure process 

must start over from scratch once it is realized that the 

venerator will not exit the queue during the current cycle. 

Arrivals to each street follow a renewal process with 

interarrival c.d.f. Gj, assumed to have finite rate λ¸j. Unlike 

the departure process, the arrival processes to both 
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intersection are on in both states. The performance measure 

of interest is the average number of venerator waiting at 

revert place for a particular street. By Little's Law, this is 

essentially equivalent to the average waiting time. We 

define:  

 
𝐿𝑗  𝑡 =≠ 𝑉𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑡𝑟𝑒𝑒𝑡 𝑗 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑗

= 1, 2  
𝐿 𝑗   𝑡 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑞𝑢𝑒𝑢𝑒 𝑙𝑒𝑛𝑔𝑕𝑡 𝑓𝑜𝑟 𝑠𝑡𝑟𝑒𝑒𝑡 𝑗 𝑢𝑝 𝑡𝑜 𝑡𝑖𝑚𝑒 𝑡

=
1

𝑡
 𝐿𝑗  𝑥 𝑑𝑥
𝑡

0

 

𝑁 =≠ 𝑟𝑒𝑑 − 𝑔𝑟𝑒𝑒𝑛 𝑐𝑦𝑐𝑙𝑒 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 

𝐿 = 𝐿 1  𝑁𝑇 + 𝐿 2  𝑁𝑇  
 

In other words, the average total queue length performance 

measure 𝐿  is taken over N green-red cycles. Note that queue 

length throughout includes all venerator waiting at the street, 

even the one currently in service. 

 

The optimization problem is then given by 

min
𝑇1𝑇2

𝐸 𝐿   1.1 

 

Subject to 𝑇1 + 𝑇2 = 𝑇 
 

Which we propose to solve by satisfying the first-order 

condition 

∇𝜃𝐸 𝐿  = 0 1.2 
 

Where𝜃 is the vector of controllable variables (parameters), 

between T1 and T2 .T is fixed therefore, we can remove the 

dependence on T2.The optimization problem described by 

equation 1.1 can be rewritten as 

 

min
𝑇1

𝐸 𝐿   1.3 

 

To find the value of 𝜃satisfying the equation (1.2), we use 

gradient-based simulation optimization via a stochastic 

approximation recursion of the following form: 

 

𝜃𝑛+1 = 𝛱𝜃 𝜃𝑛 − 𝑎𝑛∇ 𝐸 𝐿 (𝜃𝑛   1.4 

 

Where an is a positive sequence of step size ∇  represents a 

gradient estimate and 𝛱𝜃 is projection onto the feasible 

region 𝜃 

 

The gradient estimate in 1.4 requires estimators for  

𝑑𝐸 𝐿 𝑗  

𝑑𝜃
. 𝑗 = 1, 2… . . 1.5 

We assume T is given, so the constraint essentially reduces 

(1.1) to a two-variable optimization problem. With T fixed a 

positive perturbation in T1 results in a negative perturbation 

in vice versa. Although we take T1 and T2as deterministic, a 

more general formulation could have T1 and T2, as random 

variables, with 𝜃as a parameter in the distribution of T1 or 

T2. 

 

3. Derivation of Estimators 
 

Now we examine the concept of SPA as given by Gong and 

Ho [2]. By defining 

𝜃= controllable parameter,  

έ= random sequence of numbers defined on a probability 

space (Ώ F; P),  

We have that a stochastic DES can be represented by the 

pair (𝜃;έ), Then the performance measure of interest 

L(𝜃;έ)is a random variable on (Ώ, F, P). 

 

Next, let Ft be an increasing family of σ algebras on (Ώ, F; 

P), that is generated by the simulation model up to time t. 

Now let N be the number of cycles simulated and let T be 

the length of a cycle, then it follows that NT is the duration 

of a simulation run. The characterization, Z, is a FNT 

measurable random vector. Z is a set of data obtainable from 

the data generated from a simulation such as queue content, 

services times, interarrival times, etc. The choice of which 

data makes up the characterization is a problem dependent 

decision. The SPA estimator then can stated as 

 
𝑑𝐸 𝐿 𝑗  

𝑑𝜃
 
𝑆𝑃𝐴

=
1

𝑁
 

𝛿

𝛿𝜃

𝑁

𝑘=1

𝐿 𝜃1ƶ𝑘  1.6 

Where  
𝛿

𝛿𝜃
𝐿 𝜃, ƶ = lim

∆𝜃→0

𝐸∆𝐿(𝜃, 𝜀) ƶ 

∆𝜃
 1.7 

It is the case that the estimator represented in equation (1.6) 

can be implemented provided  

 
𝛿

𝛿𝜃
𝐿 𝜃, ƶ can be calculated from the simulation run 

generated by 𝜃, 𝜀𝑘 . 
 
Now we consider the conditions that will ensure the 

consistency of the estimator represented in equation (1.6). 

By the strong law of law numbers we have 

lim
𝑁→∞

1

𝑁
 

𝛿

𝛿𝜃
𝐿(𝜃1ƶ𝑘)

𝑁

𝑘=1

= lim
𝑁→∞

1

𝑁
 

𝛿

𝛿𝜃

𝑁

𝑘=1

𝐿(𝜃, ƶ𝜃, 𝜀𝑘)) 

= 𝐸
𝛿

𝛿𝜃
 𝐿 𝜃, ƶ  

= 𝐸 lim
∆𝜃→0

𝐸 𝛿𝐿(𝜃, 𝜀) ƶ  

∆𝜃
 1.8 

So the question is under what conditions 
𝛿

𝛿𝜃
𝐿 𝜃, 𝜀 = lim

∆𝜃→0
𝐸
𝐸 𝛿𝐿(𝜃, 𝜀) ƶ  

∆𝜃
 

 

= 𝐸 lim
∆𝜃→0

𝐸 𝛿𝐿(𝜃, 𝜀) ƶ  

∆𝜃
 1.9 

 

Equation 1.9 holds. So basically we are left with requiring 

an interchange of limit and expectation. Conditions for such 

an interchange involve applying the dominated convergence 

theorem. Following the framework of Fu and Hu [14], the 

general SPA estimator consists of an infinitesimal 

perturbation analysis (IPA) term and a conditional term, the 

latter due to possible critical event order changes, which 

intuitively are changes in the order of events in a sample 

path that drastically alter the performance measure of 

interest. For instance, in our light setting, a perturbation 

might lead to one less or one more departure in a given 

green cycle. How to estimate the probability (rate) of such a 

change and the subsequent expected effect on the 

performance measure is the key to deriving the SPA 

estimator.  
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The general form of the SPA estimator is 

 
𝑑𝐸 𝐿 1 

𝑑𝜃
 
𝑆𝑃𝐴

=
𝑑𝐿 𝑗

𝑑𝜃
+  lim

∆𝜃→0
𝛿𝐸ƶ  𝐿 𝑗 (𝛽(∆𝜃)  1.10 

 

𝛽 ∆𝜃 denotes a critical event change due to a perturbation 

of ∆𝜃 and𝛿𝐸ƶ 𝐿 𝑗 (𝛽(∆𝜃) denotesthe corresponding expected 

change in the performance measure𝐸ƶ[𝐿 𝑗 ]. The subscript 

ƶdenotes a conditioning on the characterization, which is the 

set of conditioning quantities on the sample path on which 

the conditional contribution is estimated, and it will differ 

for each of the four estimators we derive. In addition to 

choosingƶ, the chief difficulty in implementing an SPA 

estimator is the estimation of the expected change, 

lim∆𝜃→0 𝛿𝐸ƶ  𝐿 𝑗 (𝛽(∆𝜃) ideally, this quantity would be able 

to be estimated from the original sample path, which we call 

the nominal path (NP), but its general form is given as 

lim∆𝜃→0 𝛿𝐸ƶ  𝐿 𝑗 (𝛽(∆𝜃)  =𝐸ƶ 𝐿 𝑗
𝑃𝑃1 − 𝐿 𝑗

𝐷𝑁𝑃1  which is defined 

by three other sample paths. 

 

NP: nominal path, the original sample path; 

 

PP: perturbed path, limiting version of nominal path on 

which the critical event change occurs, that is a version of 

the NP on which the parameter that causes the event change 

is just big enough to cause the event change; 

 

DNP: degenerate nominal path, limiting version of the 

nominal path on which no critical event change occurs, that 

is a version of the NP on which the parameter that causes the 

event change is just small enough to not cause the event 

change,  

 

Where the superscripts denote the performance measures on 

the corresponding sample paths. Over N cycles, the 

estimator (2.10) becomes 

 

 
𝑑𝐸 𝐿 1 

𝑑𝜃
 
𝑆𝑃𝐴

=

𝑑𝐿 𝑗

𝑑𝜃
+  lim∆𝜃→0

𝑃ƶ𝑖 𝛽1(∆𝜃) 

∆𝜃
lim∆𝜃→0 𝐸ƶ𝑖   𝐿 𝑗

𝑃𝑃𝑖 − 𝐿 𝑗
𝐷𝑁𝑃𝑖 𝑁

𝑖=0  

1.11 

 

Since the optimization is with respect to T1, we will take 𝜃= 

T1 throughout. We derive two estimators: Line 1 and Line 2 

estimators for each of the two streets, with l and r subscripts 

denoting line 1 and line2 estimators, respectively. The 

critical event changes, β(ΔӨ) are quite intuitive: a 

shortening of a green cycle could cause a departure to be lost 

during the cycle, whereas a lengthening could allow an 

additional departure. 
 

Queue 1 

We first consider queue 1 with Δθ>0, corresponding to the 

Line 1 estimator for 
𝑑𝐸 𝐿 1 

𝑑𝜃
, in this case (Δθ= Δ T1 >0), there 

is a positive perturbation in the green signal length of street 

1 while keeping the total signal cycle length, T, unchanged. 

Since small perturbations at the end of T1 do not affect the 

departure. 

 

 

 

 

 
_____________NP 

……………… PP 

Figure 2: Example of L1(t) sample path for a single 

intersection optimization system with positive perturbation 

of (Δθ>0) T1 cycle. 

 

Times of venerator from street 1, the IPA contribution is 

zero. A small enough increase in the green signal length 

would not cause any change in the queue length for street 1; 

however, a large enough increase would lead to an 

additional departure; in other words, the performance 

measure is piecewise constant. The critical change in this 

case is this additional departure. An additional departure is 

possible if and only if the queue is nonempty at the light 

change. When nonempty, the last venerator to enter for 

darsan is the only candidate for a critical change because the 

probability of more than one critical change is of higher 

order and thus can be ignored. Thus, we only consider the 

last venerator as a possible extra departure. To calculate the 

probability rate and expected effect of this critical change, 

we condition on all arrivals and darsan times except for the 

last entry to service during the current A1 state. Since the 

only critical event change in a cycle is a function of the last 

entry to darsan, we can index by cycles, and we define:  

 

αi= time until light change from last entry of service during 

i
th

 cycle. 

S = set of all darsan times 

𝑆1
∗= last darsan time of i

th
 cycle. 

 A= set of all arrival times 

ᵶi =
𝑆

 𝑆1
∗ 
∪ 𝐴 

where the darsan time for the last venerator to enter darsan 

(and not depart) in cycle iis greater than αi.. DNP and PP are 

then defined by the critical change occurring precisely at the 
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green/red light change, with the darsan times of the last 

venerator to enter darsan being  𝛼𝑖
+and  𝛼𝑖

−.respectively, 

where. 

 𝛼𝑖
+ = α + ε 

 𝛼𝑖
− = α − ε 

 

for ε>0 infinitesimally small. If X denotes a random variable 

with venerator time distribution F1, then the probability of a 

critical change is given by 

 
𝑃 𝛽𝑖 (∆𝜃) = 𝑃 𝑋 ≤ 𝛼𝑖 +  ∆𝜃  𝑋 ≥ 𝛼𝑖  1.12 

And hence 

lim
∆𝜃→0

𝑃(𝛽1 ∆𝜃 )

∆𝜃
=

𝑓1(𝛼𝑖)

1 − 𝐹1(𝛼𝑖)
 2.13 

Thus, the estimator given by (2.11) becomes 

 

 
𝑑𝐸 𝐿 1 

𝑑𝜃
 
𝑆𝑃𝐴,𝑟

=
1

𝑁𝑇
  

𝑓1 𝛼𝑖 

1 − 𝐹1 𝛼𝑖 

𝑁

𝑖=1

 𝐸ƶ𝑖 𝐿 1
𝑃𝑃1

− 𝐿 1
𝐷𝑁𝑃1  1.14 

 

We note that NT is the length of each simulation run. To 

calculate the resulting expected effect, 𝐸ƶ 𝐿 1
𝑃𝑃1 − 𝐿 1

𝐷𝑁𝑃1 we 

observe that starting at the critical change, 𝐿 1
𝐷𝑁𝑃1(𝑡)will be 

identical to L1(t), whereas 𝐿 1
𝑃𝑃1 (𝑡)will be one lower than 

L1(t)until L1(t) empties. Thus, we have that𝐿 1
𝐷𝑁𝑃1(𝑡) 

=𝐿 1
𝑃𝑃1 𝑡 + 1for all t from the epoch of the first light change 

after the critical change to the time when the system first 

empties after the critical change (see Figure 2 for an 

example). Figure 2 shows one possible sample path, we note 

that the last entrant to darsan that does not exit the system 

could have also been an arrival to an empty queue. Thus,  

𝐸ƶ 𝐿 1
𝑃𝑃1 − 𝐿 1

𝐷𝑁𝑃1  = −𝐸  𝑚𝑖𝑛  𝑁𝑇, 𝑖𝑛𝑓  𝑡 >
𝜏

𝐿1  𝑡 
= 0   −

𝜏 1.15 

 

where 𝜏 = 𝑖𝑇 − 𝑇2corresponds to the epoch of the i
th

 light 

change from green to red (for street 1). We subtract 

𝜏because the critical change only effects the sample path 

after its occurrence. Estimation of (1.15) can be done offline 

as follows. We define 𝛾𝑖 = Residual interarrival time at the 

epoch of the i
th

 light change. 

 

𝑅𝑁
(1) 𝛾1 = Expected time to empty queue 1, given N 

venerator in the queue and an initial interarrival time of 𝛾𝑖  
 

Qi= number in queue at the epoch of the i
th

light change from 

green to red: 

 

Thus. (2.15) can be rewritten as 𝑅𝑄
(1) 𝛾1  and subsequently 

the estimator given by (2.14) becomes 

 

 
𝑑𝐸 𝐿 1 

𝑑𝜃
 
𝑆𝑃𝐴,𝑟

=
1

𝑁𝑇
 

𝑓1  𝛼𝑖 

1 − 𝐹1  𝛼𝑖 
 −𝑅𝜃𝑖

(1) 𝛾𝑖  

𝑁

𝑑=1

 1.16 

 

Note that the sign of the estimator will be negative, which 

makes intuitive sense, because an increase in the green 

signal length should decrease the average queue length. 

 

 

Queue 2 

We now consider the case of queue 2 with (Δθ>0) to derive 

the line 2 estimator for 
𝑑𝐸 𝐿 2 

𝑑𝜃
An increase in T1 affects the 

entry to darsan of venerator in queue 2 and hence the 

departure times of venerator in queue 2, because it results in 

a decrease in T2, delaying the transition from state A1 to A2 

and leading to an IPA perturbation in the departure times of 

every venerator in the initiating busy period (IBP) of the 

cycle. If the queue was empty at the beginning of the green 

period, we say that the particular cycle has no initiating busy 

period and hence there will be no IPA contribution for that 

cycle. Also any venerator that arrives after an idle period 

will not be affected by a perturbation in T1, i.e., once the 

system empties, the perturbation is lost. The critical change 

for this case is a loss of a departure. A departure by a 

venerator that is in the initiating busy period may be 

eliminated by the perturbation and hence represents a 

potential critical change. To calculate the probability rate 

and expected effect of each of these possible critical 

changes, we condition on all arrival times and all darsan 

times except that of the kth initiating busy period departure 

of the ith period. We define: 

 

𝛼𝑖
𝑘  = time until light change from the entry to service of the 

kth IBP departure; 
 

𝑆1
∗𝑘 =set of all service times of ith cycle prior to kth IBP 

departure 

𝑍𝑖
𝑘 =

𝛿

 𝑆1
∗ 
∪ 𝐴 

𝐻𝑖= number of IBP departures during ith cycle. 
 

𝛽1
𝑘= critical change cause by kth IBP departure during ith 

cycle. 
 

𝑃𝑃1
𝑘= perturbed path caused by kth IBP departure during ith 

cycle; 

 

𝐷𝑁𝑃1
𝑘= degenerate nominal path caused by kth IBP 

departure during ith cycle: 

 

If X denotes a random variable with service time distribution 

F2, then the probability rate of a critical change is given by 

 

lim∆𝜃→0
𝑃 𝛽1

𝑘(∆𝜃) 

∆𝜃
= lim∆𝜃→0

𝑃 𝑋≥𝛼𝑖
𝑘−∆𝜃/𝑥≤𝛼𝑖

𝑘 

∆𝜃
=

𝑓2 𝛼𝑖
𝑘 

𝐹2 𝛼𝑖
𝑘 

 1.17 

Thus, the estimator given by (2.10) becomes 

 
𝑑𝐸 𝐿 2 

𝑑𝜃
 
𝑆𝑃𝐴,𝑟

=
1

𝑁𝑇
  𝐻𝑖 +   

𝑓2 𝛼𝑖
𝑘 

𝐹2 𝛼𝑖
𝑘 

𝐻𝑖

𝑘=1

𝑁

𝑗=1

𝑁

𝑖=1

  𝐸ƶ1
𝑘  𝐿 2

𝑃𝑃1
𝑘

− 𝐿 2
𝐷𝑁𝑃1

𝑘
  1.18 

 

Estimation of the expected difference between 𝐿 2
𝑃𝑃1

𝑘

 

and 𝐿 2
𝐷𝑁𝑃1

𝑘

 is similar to the previous estimator. The 

difference in these two performance measures is the 

difference in the time it takes for the two paths to empty, 

which can be estimated by simulating the expected time to 

empty the system, given that the initial queue length is equal 

to the queue length of the PP path at the time if the light 

change. Because arrivals are not affected by the perturbation 
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of T1 we must consider additional arrivals in the expected 

difference calculation. Defining. 

 

𝑅𝑁
(2) 𝛾𝑖 = expected time to empty queue 2, given N cars in 

the queue and an initial interarrival time of 𝛾𝑖 . 
 

𝛾𝑖
𝑘= number in queue immediately after the epoch of the k

th
 

IBP departure during the i
th

 cycle; 

 

𝐴𝑖
𝑘= number of arrivals between k

th
 entry to service and next 

light change during i
th

 cycle. 

 

the final estimator becomes 

 

 
𝑑𝐸 𝐿 2 

𝑑𝜃
 
𝑆𝑃𝐴,𝑟

=
1

𝑁𝑇
  𝐻𝑖 +

1

𝑁𝑇
  

𝑓2 𝛼𝑖
𝑘 

𝐹2 𝛼𝑖
𝑘 

𝐻𝑖
𝑘=1

𝑁
𝑗=1

𝑁
𝑖=1 𝑅

𝛾1
𝑘

2 +

𝐴1𝑘(𝛾𝑖) 1.19 

 

The sign of the estimator will be positive, which makes 

intuitive sense, because a decrease in the green signal length 

should increase the average queue length. 

 

4. Special Cases 
 

For the special case of exponential interarrival and service 

times, (1.16), (1.19) respectively simplify to. 

 
𝑑𝐸 𝐿 1 

𝑑𝜃
 
𝑆𝑃𝐴,𝑟

= −
𝜇1

𝑁𝑇
 𝑅𝑄1

(1)𝑁
𝑖=1 . 1.20  

 
𝑑𝐸 𝐿 2 

𝑑𝜃
 
𝑆𝑃𝐴,𝑟

=
1

𝑁𝑇
 𝐻𝑖
𝑁
𝑖=1 +

𝜇2

𝑁𝑇
  

𝑅(1)𝛾1
𝑘+ 𝐴1

𝑘

𝑒𝜇 2𝛼1
𝑘

𝑣𝑖
𝑘=1

𝑁
𝑖=1  1.21  

 

Where the dependence of 𝑅(𝑗 )𝑛 on the residual interarrival 

time has been removed due to the memoryless property of 

exponential distribution.  

 

Unbiasedness of the Estimators 

 

The estimators derived in the previous sections are unbiased 

if 

𝐸   
𝑑𝐸 𝐿 𝑗  

𝑑𝜃
 
𝑆𝑃𝐴

 =
𝑑𝐸 𝐿 𝑗  

𝑑𝜃
, 𝑗 = 1, 2 1.22 

To establish equation (2.22). some additional conditions are 

required. 

(A1) F1(.) is Lipschitz continuous with Lipschitz constant 

K1. 

(A2) F2(.) is Lipschitz continuous with Lipschitz constant 

K2. 

 

where for 𝐼 ⊆ 𝑅 a function 𝑓: 𝐼 → 𝑅is said to Lipschitz 

continuous if there exist a constant K such that  𝑓 𝑥 −
𝑓(𝑦)<𝑘𝑥−𝑦for all x; y I and the smallest such K for which 

this holds is called the Lipschitz constant. 

 

We then have the following result. 

 

Proposition 1 

(i) Under condition (A1), (1.14) is an unbiased estimator for 
𝑑𝐸 𝐿 1 

𝑑𝜃
 

(iii) Under condition (A2), (1.18) is an unbiased estimator 

for 
𝑑𝐸 𝐿 2 

𝑑𝜃
 

We establish (i) of proposition 1. The proofs of (2) proceed 

similarly. Thus their details are omitted here. To proceed, 

we introduce the following 

 

(NT) = {i≥ 𝑁𝑇: 𝐿1(𝑖𝑇, 𝜃) < 0} 

Ak = {L1(t, 𝜃) = 𝐿1 𝑡𝑖𝜃𝑡∆𝜃 , 𝑡 = 𝑇, 2𝑇, … . 𝐾𝑇} 

BK = {𝐿1 𝑡, 𝜃 =  𝐿1 𝑡𝑖𝜃𝑡∆𝜃 , 𝑡 = 𝑇, 2𝑇, … . .  𝐾 − 1 𝑇} 

𝑉{𝐿1 𝐾𝑇, 𝜃 =  𝐿1 𝐾𝑇, 𝜃 + ∆𝜃 } 

 

K= 1, 2…N, where ∆𝜃=∆𝑇1 < 0, The set Zk is the 

characterization for our estimator, it contains everything 

except the darsan time of the last entrant to darsan in period 

K, Ak & Bk are both function of ∆𝜃, though we omit the 

explicit display of the argument, the event Bk indicates that a 

perturbation in the vaue of 𝜃 to 𝜃 + ∆𝜃 first causes a change 

in the queue length in period K, the event AN represents the 

case where the perturbation does not cause a change in the 

queue, length over the entire sample path. Thus, B1…… BN, 

AN partition our sample space and we can write. 

 
𝑑𝐸[𝐼1]

𝑑𝜃
= lim∆𝜃

− 00  
𝐸 𝐼1 𝜃 + ∆𝜃 − 𝐼1 𝜃  𝑛 (𝐴𝑛)]

∆𝜃

+ 
 𝐸[ 𝐼1 𝜃 + ∆𝜃 − 𝐼1 𝜃  1  𝐵𝑘 ]
𝑁
𝐾=1

∆𝜃
  1.23 

 

We first prove the following lemma  

 

Lemma 1. Under condition (A2) 

(a) 𝐸 𝐼1 𝜃 + ∆𝜃 − 𝐼1 𝜃  1 (𝐴𝑛)] = ∆𝜃𝑋𝐸[
1

𝑁𝑇
 𝐻1]𝑁
𝑖=1  

(b) 
𝐸 𝐼1 𝜃+∆𝜃 −𝐼1 𝜃  1 (𝐵𝑘 )]=∆

∆𝜃
= 𝐸[

1

𝑁𝑇

𝑡2 𝛼𝑘  

1−𝐹2 𝛼𝑘  
𝑅𝑘

1(𝛾𝑘) 

Proof.  

 𝐿1 𝜃 + ∆𝜃 − 𝐿1 𝜃  1  𝐴𝑁 =  − 𝐻𝑖∆𝜃𝑁
𝑖=1  1.24 

Which established (a) 

We consider 𝐸 𝐿1 𝜃 + ∆𝜃 − 𝐿1 𝜃  1 (𝐵𝑘)] 
K=T, 2T, ---- NT.. 

 

First we rewrite it is 

𝐸[𝐸[ 𝐿2 𝜃 + ∆𝜃 − 𝐿1 𝜃  1
𝐵𝑘

𝑍𝑘
] 

We have𝐸 𝐿1 𝜃 + ∆𝜃 1  𝐵𝐾 𝑍𝐾  
= 𝐸 𝐿1 𝜃 + ∆𝜃 𝑍𝑘, 𝛼𝑘 𝜃 > 𝑆𝑘

> 𝛼𝑘 𝜃 + ∆𝜃   𝐴𝑘 − 1 𝑋𝑃(∝ 𝑘 𝜃 

>  >
0

𝑥

∝ 𝑘 𝜃 + ∆𝜃 ) 

 

= 𝐸  𝐿1 𝜃 + ∆𝜃 𝑍𝑘, 𝛼𝑘 𝜃 

>  >
0

𝑘

𝛼𝑘 𝜃 + ∆𝜃   𝐴𝑘

− 1 𝑋  𝐹1 ∝ 𝑘 𝜃 + ∆𝜃  − 𝐹1 ∝ 𝑘 𝜃    

≥ 𝐾1∆𝜃𝐸[𝐿1 𝜃 + ∆𝜃 𝑍𝑘, 𝛼𝐾 𝜃 >  >
0

𝑘

∝ 𝑘(𝜃 + ∆𝜃) 

 

Where ∝ 𝑘 𝜃 + ∆𝜃 = 𝛼𝑘 𝜃 + ∆𝜃and the last inequality 

follow from assumption (A1) to bound the expectation, we 

introduce notation for a renewal counting process based on 
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the arrivals (without darsan). Let {Xn, n = 1, 2..} be a 

sequence of i.i.d. interarrival times with common 

distribution G1 and denote the associated counting process 

{P(t) t> 0} Gn generates non negative interarrival times with 

a finite rate (𝜆1) thus G1 (0) >1 noting the arrivals are 

independent of 𝜃, from renewal theory we have. 

 

𝐸  
𝑆𝑢𝑝

Δ𝜃
𝐿1 𝜃 + Δ𝜃 𝑍𝐾, 𝛼𝑘 𝜃 > 𝑆𝑘0 > 𝛼𝑘 𝜃 + Δ𝜃  

≥ 𝐸 𝑃 𝑁𝑇  < 𝐷 

 

So by invoking the dominated convergence theorem (DCT), 

we have 

 
𝐿𝑖𝑚

∆𝜃
𝐸

[𝐼1 𝜃 + ∆𝜃 1(𝐵𝑘)]

∆𝜃

= 𝐸
lim⁡

∆𝜃
𝐸

(𝐿1 𝜃 + ∆𝜃 1 𝐵𝑘 𝑧𝑘]

∆𝜃
 

𝐸
𝑙𝑖𝑚

∆𝜃𝑠𝑜

  𝛼𝑘 𝜃 + ∆𝜃  − 𝐹1 𝛼𝑘 𝜃   

∆𝜃
𝑋

lim

∆𝜃𝑠𝑜
𝐸 𝐿1 𝜃

+ ∆𝜃 𝑍𝑘, 𝛼𝑘 𝜃 > 𝑆𝑘0

> 𝛼𝑘 𝜃 + ∆𝜃  𝑋𝐼 (𝐴𝑘 − 1)] 
= 𝐸[𝑡1 ∝ 𝑘 𝐸 𝐿

−𝑃𝑃𝑘  𝑡  ] 
= 𝐸[𝑡2 ∝ 𝑘 𝐸 𝐿

−𝑃𝑃𝑘  𝑡  ] 

= 𝐸
𝑡1(∝ 𝑘)

1 − 𝐹1(∝ 𝑘)
 𝑆𝑘∞ <∝ 𝑘 𝜃  𝐸 [𝐿1

−𝑃𝑃𝑘  𝑡 ]] 

 

We can similarly show 
𝑙𝑖𝑚

∆𝜃𝑠𝑜

𝐸[𝐿1 𝜃 1(𝐵𝑘)

∆𝜃

= 𝐸  
𝑓1(𝛼𝑘)

1 − 𝑓1(𝛼𝑘)
 𝑆𝑘0

< 𝛼𝑘 𝜃  𝐸[𝐿1
𝐷𝑁𝑃𝑘  𝑡 ]  

 

5. Numerical Results 
 

The first case (V1) corresponds to symmetric street flows 

and signal timings: μ1=μ2=2.0, 𝜆1 = 𝜆2 = 4.5 T=30, 

T1=T2=15, the second case (V2) is an asymmetric system 

μ1=1.5 μ2=.75 , 𝜆1 = 𝜆2 = 5.0 T=50, T1=20, T2=35 the 

simulation were carried out N=5, 000 cycles over 5000 

replications  

 

Table 1: SPA gradient estimate simulation result for the 

isolated intersection over all pulse setting for (V1) (standard 

error parenthesis) 
Estimator 𝑑𝐸 𝐿 1 

𝑑𝜃
(𝑠𝑡𝑑. 𝑒𝑟𝑟) 

𝑑𝐸 𝐿 2 

𝑑𝜃
(𝑠𝑡𝑑. 𝑒𝑟𝑟) 

SPA (lim 1) -2.324 (.010) 2.3765(0.0001) 

FD(.05) -2.2403 (.042) 2.7834(0.0672) 

 

Table 2: SPA gradient estimate simulation results for V2 

(standard error in parenthesis) 
Estimator 𝑑𝐸 𝐿 1 

𝑑𝜃
(𝑠𝑡𝑑. 𝑒𝑟𝑟) 

𝑑𝐸 𝐿 2 

𝑑𝜃
(𝑠𝑡𝑑. 𝑒𝑟𝑟) 

SPA (lim 2) -6.203 (.0043) 0.00675(.0008) 

FD(.05) -5.531(0.3215) 0.08932(0.0023) 

 

The results are shown in table 1 & 2 the FD estimates are 

quit sensitive to the difference value chosen, the best results 

are reported here, where, the number in parentheses 

following the heading „FD‟ in the tables indicates the 

specific difference value, even so, that SPA estimator is 

more precise, with a standard error always at least an order 

of magnitude vector and it also more stable and 

computationally efficient, in fact, when I is also desired the 

FD estimators require (on average) nearly three times as 

much computation time, the confidence intervals for all 

estimators overlap for these cases. 

 

6. Conclusions 
 

As far as we are aware, this is the first successful attempt to 

apply direct stochastic gradient estimation techniques to a 

venerator queue in revered places for optimization setting. 

This algorithm has also been converted to computer 

programming. The resulting estimators demonstrated 

superior computational performance over FD estimators, and 

in addition can be used on line with real-time venerator 

updating systems, because unlike FD estimators, they do not 

require altering the parameter values. Thus, although we 

have considered only a single intersection, this work 

constitutes an important stepping stone in the foundation of 

simulation-based venerator queue management.  
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