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Preface

Motivation

Multi-agent systems (MAS) consist of multiple entities called agents that interact in a
shared environment aiming to achieve some individual or collective objective. Simulation
studies the modeling of the operation of a physical or conceptual system over time. For
more than two decades, the field of MAS and the field of simulation have been combined in
very active strands of research. Where, on the one hand, agents have been used extensively
as a tool for designing modeling and simulation problems, on the other hand, simulation
has often been used for the design of MAS in a variety of application domains. Bringing
these research endeavors together promises valuable insight and benefits between the two
strands of research. This book aims to integrate and consolidate the acquired knowledge
and experiences, and outline promising directions for future research in this field.

Scope

The focus of this book is on the intersection of MAS, simulation, and application domains.
The book starts from the observation that simulation is being used for agents and agents
are being used for simulation in a variety of application domains.

Simulation is being used for agents. MAS are particularly useful in application domains
that are characterized by an inherent distribution of resources and highly dynamic operating
conditions. Examples are open electronic markets, traffic and transportation systems, and
supply chain management. Because of the highly dynamic conditions in the environment,
testing by simulation becomes imperative in the software development process of MAS.
Simulation, however, is also exploited for agents’ decision making. For example, software
agents in military systems are equipped with simulation capabilities to reason about the
future effects of their decisions enabling them to select the most suitable actions.

Agents are being used for simulation. A typical example where MAS models are used
in simulation is for simulating traffic situations. In microscopic simulation of traffic situa-
tions, drivers’ behavior can naturally be modeled as agents. Traffic simulations are used to
predict traffic flow, to study the effects of control measures, etc. Another example is the
domain of online simulations that are used to optimize industrial processes. Such systems
apply MAS to exploit their inherent adaptability to cope with the fast evolving distributed
business environment. A simulator gathers data from sensors that are connected to the
real world; it simulates possible future states, and adapts the system based on the outcome
of the simulations. Such systems have been built, for example, for online optimization of
semiconductor manufacturing where quick decision making is required in order to improve
the operational performance of a semiconductor wafer fabrication plant.

Key Aims

The objective of the book is twofold. The first aim is to provide a comprehensive overview
of the research in the intersection of MAS, simulation, and application domains, thereby
consolidating knowledge and experiences. The study of various aspects such as modeling
abstractions, methodological approaches, formal foundations, and platforms in different
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viii

domains will yield insights to the underlying principles of MAS and simulation. The second
aim of the book is to initiate avenues for future research. In particular, the aim is to outline
how the obtained insights provide opportunities and enable future research in each of the
related areas: MAS, simulation, and different application domains.

Audience

This book serves different communities. The first audience is the multi-agent system com-
munity, including students in computer science and artificial intelligence, and researchers
and engineers in these fields. The book provides an overview of experiences with MAS
simulation and tools for exploiting simulation in MAS software development, and outlines
promising venues for using simulation in MAS engineering. The second audience is the
modeling and simulation community, including students in computer science, simulation,
mathematics, economics, etc., and researchers and engineers in these fields. The book
presents modeling and simulation techniques and tools for applying MAS in simulation sys-
tems, and identifies opportunities for future research in this area. Finally, the third audience
includes professionals from various application domains such as civil engineering, biological
systems, transportation and traffic, and factory scheduling and control. The book depicts
experiences with MAS simulation in these various application domains; it offers a repertoire
of concepts and tools to enrich modeling and simulation practice.

Structure of the Book

The book is structured in four parts. Each part consists of a coherent set of chapters that
discuss aspects of MAS and simulation from a particular viewpoint and outline promising

ciples. It gives an overview of the intersection and co-evolution of MAS and simulation
from two different perspectives, i.e., the agent community and social science. To illuminate
the richness of methodological developments, the area of simulation engines for MAS is
explored.

decision making, the use of simulation for the design of self-organizing systems, the role of
software architecture in simulating MAS, and the use of simulation for studying learning and

are an agent-based framework for symbiotic simulation, the use of country databases and
expert systems for agent-based modeling of social systems, crowd-behavior modeling, agent-
based modeling and simulation of adult stem cells, and agents for traffic simulation. Finally,

including Jason, JAMES II, SeSAm, and RoboCup Rescue.
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Part IV presents a number of state-of-the-art platforms and tools for MAS and simulation,

stigmergic interaction in MAS. Part III zooms in on MAS for simulation. Discussed subjects

directions for future research. Part I systematically introduces background and basic prin-

Part II discusses the use of simulation in MAS. It explains simulation support for agent
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Multi-Agent System group,

G2I ENS Mines
Saint-Etienne

France

Mark d’Inverno
Department of Computing
University of London
UK

Arne Kesting
Faculty of Transportation and

Traffic Sciences “Friedrich
List”

Dresden University of
Technology

Germany

G. Jiyun Kim
Department of Electrical and

Systems Engineering
University of Pennsylvania
USA

Franziska Klügl
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Università di Bologna
Italy

H.Van Dyke Parunak
NewVectors: Division of

TechTeam Government
Solutions, Inc.

USA

Ingo Roeder
Institute for Medical

Informatics, Statistics and
Epidemiology

University of Leipzig
Germany

Mathias Röhl
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2 Background

Simulation studies have accompanied the development of multi-agent systems from the be-
ginning. Simulation has been used to understand the interaction among agents and between
agents and their dynamic environment. The focus has been on test beds, and the descrip-
tion and integration of agents in dynamic virtual environments. Micro and individual-based
simulation approaches also became aware of the new possibilities that the agent metaphor
and the corresponding methods offer. The area of social simulation played a key role, being
enriched and equally challenged by more detailed models of individuals and contributing
itself to a better understanding of the effects of cooperation and coordination strategies in
multi-agent environments. During the first decade the focus of research has been on the
modeling layer. Only gradually, the need to take a closer look at simulation took hold, e.g.,
how to ensure efficient and repeatable simulation runs.

The chapter by Fabien Michel, Jacque Ferber, and Alexis Drougol on “Multi-agent sys-
tems and simulation: A survey from the agent community’s perspective” gives a historical
overview of the methodological developments at the interface between multi-agent systems
and simulation from an agent’s perspective. The role of test-beds in understanding and
analyzing multi-agent systems in the 1980s, the development of abstract agent models, the
role of social simulation in promoting research in multi-agent systems and simulation, and
the challenges of describing agents and their interactions shape the first decade of research.
With the environment of agents becoming an active player, the questions about timing move
into focus and with them traditional problems of simulator design, e.g., how to handle con-
current events. For in-depth analysis simulation questions like validity of models, design
and evaluation of (stochastic) simulation experiments need to be answered, but also new
one emerge in the context of virtual, augmented environments.

The significant impact of social science on multi-agents research is reflected in the realm
of simulation. In the chapter “Multi-Agent Systems and Simulation: A Survey from an
Application Perspective,” Klaus Troitzsch traces the first simple agent-based models back
to the 1960s. Particularly, analyzing the micro and macro link of social systems, i.e., the
process of human actions being (co-) determined by their social environment and at the same
time influencing this social environment, permeates agent-based simulation approaches from
the beginning, despite the diversity of approaches which manifests itself in varying level of
details, number of agents, interaction patterns (e.g., direct or in-direct via the environment),
and simulation approach. The aim of these simulation studies is to support or falsify theories
about social systems. However, in doing so, they also reveal mechanisms that help to ensure
certain desirable properties in a community of autonomous interacting entities and as such
can be exploited for the design of software agent communities as proposed by the “socionics”
initiative.

A long neglected area of research has been the question of how to execute multi-agent
models in an efficient and correct manner. This question is addressed in the chapter by
Georgios Theodoropolous, Rob Minson, Roland Ewald, and Michael Lees on “Simulation
Engines for Multi-Agent Systems”. Often agent implementations were translated into dis-
crete stepwise “simulation” with no explicit notion of simulation time. However, the need
to associate arbitrary time with the behavior of agents and synchronize the behavior of
agents with the dynamics of the environment led to discrete event simulation approaches.
As the simulation of multiple heavy weight agents require significant computation effort,
sequential discrete event simulators are complemented by parallel discrete ones and help an
efficient simulation of multi-agent systems. Interestingly, in the opposite direction we find
the agent approach exploited to support the distributed simulation of latency simulation
systems. Simulation systems are interpreted as agents and the problem of interoperability
and synchronization of these simulation systems is translated into terms of communication
and coordination.
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1.1 Introduction

This chapter discusses the intersection between two research fields: (1) Multi-Agent Systems
(MAS) and (2) computer simulation.

On the one hand, MAS refer to a computer research domain that addresses systems which
are composed of micro level entities -agents-, which have an autonomous and proactive be-
havior and interact through an environment, thus producing the overall system behavior
which is observed at the macro level. As such, MAS could be used in numerous research and

3
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4 Multi-Agent Systems: Simulation and Applications

application domains. Indeed, MAS are today considered as an interesting and convenient
way of understanding, modeling, designing and implementing different kind of (distributed)
systems. Firstly, MAS could be used as a programing paradigm to develop operational soft-
ware systems. MAS are particularly suited to deploy distributed software systems that run
in computational contexts wherein a global control is hard or not possible to achieve, as
broadly discussed in [Zambonelli and Parunak, 2002]. At the same time, MAS also rep-
resent a very interesting modeling alternative, compared to equation based modeling, for
representing and simulating real-world or virtual systems which could be decomposed in
interacting individuals [Parunak et al., 1998; Klügl et al., 2002].

On the other hand, computer simulation is a unique way of designing, testing and study-
ing both (1) theories and (2) real (computer) systems, for various purposes. For instance,
according to Shannon, simulation is defined as [Shannon, 1975]:

“The process of designing a model of a real system and conducting experi-
ments with this model for the purpose either of understanding the behavior of
the system and/or of evaluating various strategies (within the limits imposed by
a criterion or a set of criteria) for the operation of the system.”

With respect to this definition, simulation could be thus considered as a computational
tool used to achieve two major motivations which are not mutually exclusive:

• The understanding of a real system;
• The development of an operational real system.

So, the opportunities of using both MAS and simulation are numerous, precisely because
they can be applied and/or coupled in a wide range of application domains, and for very
different purposes. In fact, the number of research works and software applications that
belong to the intersection between MAS and simulation is simply huge. To have an idea
of how close MAS and simulation are today, one can consider that there are about 800
instances of the word simulation, distributed among more than 35% of the 273 papers
published the 2007 agent community’s most known conference: AAMAS’07 [Durfee et al.,
2007]. Moreover, considering this already very high percentage, one has to take also into
account that, in this conference, there was no session directly related to simulation at all.

So, numerous works belong to the intersection between MAS and simulation. In this book,
this intersection is considered according to two main perspectives:

1. Modeling and Simulation (M&S) for MAS;
2. MAS for M&S.

Roughly, the first case refers to projects wherein computer simulation is used as a means
for designing, experimenting, studying, and/or running a MAS architecture, whatever the
objectives. Especially, simulation could be used to ease the development of MAS-based soft-
ware, by following a software-in-the-loop approach (e.g., [Riley and Riley, 2003]): Simulation
allows one to design, study and experiment with a MAS in a controlled and cost-efficient
way, using simulated running contexts in place of the real running context (e.g., the In-
ternet). Examples of related application domains are Supply Chain Management (SCM),
Collective Robotics, self-organized systems, and Distributed Artificial Intelligence (DAI) to
cite just a few of them.

The second case is related to simulation experiments that use MAS as modeling paradigm
to build artificial laboratories. Well-known examples are the simulation of virtual insect
colonies (e.g., [Drogoul and Ferber, 1992]), artificial societies (e.g., [Epstein and Axtell,
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1996]), social systems (e.g., urban phenomena [Bretagnolle et al., 2006]), etc. Today, using
artificial laboratories represents a unique way of testing theories and models for many
application domains.

The first part of this chapter provides the reader with an overview of some historical
motivations belonging to each perspective. As it would be endless to enumerate them all,
the chapter only focuses respectively on (1) DAI aspects for illustrating the M&S for MAS
perspective, and on (2) some relevant works done in the scope of Artificial Life (AL) for
illustrating the MAS for M&S perspective.

Beyond the previous distinction, there is of course only a thin line between concerns
belonging to each category as they both rely on simulating MAS. So, the second part
presents and studies some basic concepts of MAS in the scope of simulation. However,
although this study highlights some general concerns related to MAS simulations, in the
third part we will argue on the idea that it does not represent the full picture of the
intersection between MAS and simulation. In fact, understanding this intersection requires
us to shift our point of view from the MAS field to the simulation field. Indeed, simulation
is not only a computational tool, but a real scientific discipline. As such, M&S already
defines some general issues, whatever the application domain. That is why one has also
to consider these issues to apprehend some of the challenges that the MAS community is
facing regarding simulation.

So, the next part of the chapter studies MAS simulation works according to a pure M&S
perspective, derived from the Zeigler’s framework for M&S proposed in the early seventies
[Zeigler, 1972]. Doing so, our goal is twofold: (1) put in the light the relevance of studying
MAS simulation according to this perspective, and (2) highlight some major challenges and
issues for future research.

1.2 M&S for MAS: The DAI Case

In the literature, MAS are often related to the history of DAI [Ferber, 1999]. Not surprisingly,
most of the first MAS researches wherein simulated systems are involved belong to the
DAI field. To understand why there is a need for simulation to engineer MAS, let us here
consider three historical researches which are often cited as forerunner examples of MAS: (1)
the Contract Net Protocol [Smith, 1980], (2) the Distributed Monitoring Vehicle Testbed
(DVMT)[Lesser and Corkill, 1983], and (3) the MACE platform [Gasser et al., 1987].

1.2.1 The CNET Simulator

Proposed by Smith, the Contract Net Protocol [Smith, 1980] specifies problem-solving com-
munication and control for task allocation (or task sharing) over a set of distributed nodes.
To experiment with this negotiation protocol, Smith needed some instances of relevant dis-
tributed problems. To this end, Smith developed a simulated system called CNET, the
purpose of which was to simulate such instances. For instance, CNET was used to simulate
a distributed sensing system (DSS): A network of sensor and processor nodes distributed in
a virtual geographic area. In this experiment, the agent was in charge of constructing and
maintaining a dynamic map of vehicle traffic in the area.

With these experiments, Smith was able to test and refine his protocol. Obviously, it
would have been very hard to achieve such experiments without the use of a simulated
environment. The reason is twofold: (1) The deployment of the system in a real running
context would have been costly and (2) real-world experiments cannot be entirely controlled
(e.g., hardware reliability) so that they do not ease the development process, as they include
irrelevant noise in it. So, CNET simulations were used to provide the suitable testbed which
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was required by Smith to experiment with the Contract Net Protocol.
The point here is that the CNET simulator has played a fundamental role in this research:

CNET was the means by which the Contract Net Protocol has been evaluated and validated.
Therefore the CNET settings were a critical parameter doing this research and this was
already noticed by Smith in the original paper. This historical research is a forerunner
example of the importance that simulation has always taken in DAI research, and also
MAS engineering. This is even more clear with the second example.

1.2.2 The DVMT Project

Initiated in 1981 by Lesser and Corkill and continued through 1991, the Distributed Mon-
itoring Vehicle Testbed (DVMT) project [Lesser and Corkill, 1983] has been some of the
most influential research for the MAS field. The purpose of the DVMT project was clear:
Provide a generic software architecture, a so-called testbed, for experimenting with co-
operative distributed problem solving networks composed of semi-autonomous processing
nodes, working together to solve a problem (an abstract version of a vehicle monitoring
task in this project). In this perspective, the DVMT was clearly presented as a simulation
tool, the purpose of which was to enable researchers to explore design issues in distributed
problem solving systems.

The interesting thing is that this research emphasized the need of a real DAI tool rather
than on a particular DAI problem to solve. Indeed, considering the DAI research experi-
ments which were previously conducted up until that time, such as the well known Hearsay
II project [Erman et al., 1980], it was clear that further investigations were required to
understand and explore all the issues raised by the use of these Functionally Accurate, Co-
operative Distributed Systems (FA/C) [Lesser and Corkill, 1981], especially regarding the
size of the network and the communication topology of the nodes. Questions like, how to
select an appropriate network configuration with respect to the selected task characteristics,
was at the heart of such research, and this did require extensive experimentation. Lesser and
Corkill pointed out the difficulties of doing such experiments because of the inflexibilities in
the design of the existing systems: The design of these systems were focused on the problem
to solve rather than on the corresponding testbed. Thus, experimenting with the existing
systems was time consuming or even not feasible.

Therefore, designing the DVMT, the approach of Lesser and Corkill was to [Lesser and
Corkill, 1983]:

• Abstract a realistic distributed solving task to make it more generic and param-
eterizable.
• Develop the related distributed problem solving system using a software archi-

tecture as flexible as possible.
• Build a simulation system able to run this system under different environmen-

tal scenarios, node and communication topologies, and task data.

Motivating this approach, Lesser and Corkill said [Lesser and Corkill, 1983]:

“We feel this approach is the only viable way to gain extensive empirical
experience with the important issues in the design of distributed problem solving
systems. In short, distributed problem solving networks are highly complex. They
are difficult to analyze formally and can be expensive to construct, to run, and
to modify for empirical evaluation. . .Thus, it is difficult and expensive to gain
these experiences by developing a “real” distributed problem solving application
in all its detail.”
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Obviously, Lesser and Corkill were right as they were generalizing approaches like Smith’s.
But, more than a pragmatic method of doing this kind of research at that time, the approach
followed by Lesser and Corkill clearly highlights (1) that modeling and simulation is a key
for most of the DAI research and thus (2) why the simulation aspects on which this research
relies cannot be bypassed or underestimated.

Here, considering the scope of this chapter, one question is: Is it possible to generalize
the importance of modeling and simulation aspects to MAS engineering in general? The
answer is a strong yes. Indeed, in the preceding citation, it is possible to replace the words
distributed problem solving systems by MAS to have a statement that still holds today in
most cases when engineering multi-agent-based software.

Still, DVMT was only a first step toward a more general way of engineering agent-based
systems as it was focused on the simulation of a particular domain, considering a specific
paradigm (FA/C), and motivated by pure DAI purposes. The next step relied on proposing
a more generic testbed which would not have been built with a dedicated domain in mind.
This step was achieved few years later by another historical pioneer work that has also
deeply influenced MAS research: the MACE platform [Gasser et al., 1987].

1.2.3 MACE: Toward Modern Generic MAS Platform

The Multi-Agent Computing Environment, MACE, is the result of a work initiated by Gasser
and his colleagues in the mid-eighties [Gasser et al., 1987]. At that time, thanks to the
previous works done on DAI testbeds, there was a general agreement in the DAI community
that having a framework embedding simulation tools was essential for exploring DAI issues
(see [Decker, 1996] for a detailed discussion on historical DAI testbeds and their essential
features). However, MACE represented a historical shift for several reasons:

• MACE was not related to a particular domain nor based on a particular DAI
architecture;
• MACE was completely focused on providing DAI system development facilities

able to model various kinds of DAI systems, and considering different levels of
granularity for the agents;
• MACE proposed both (1) modeling and simulation tools to experiment DAI

systems and (2) a physically distributed software environment able to deploy the
corresponding systems over a real network;
• the MACE software was itself designed as a community of system agents that de-

fined the concrete means for building agent-based software systems with MACE:
MACE was agentified.

So, even though MACE was tagged as a DAI tool, it could be considered as the ancestor
of many generic MAS platforms that were designed in the years that followed (e.g., MadKit

[Gutknecht et al., 2001], JAMES [Himmelspach et al., 2003], Spades [Riley and Riley, 2003],
and the new version of MACE, MACE3J [Gasser and Kakugawa, 2002]). Indeed, most of
the existing MAS testbeds and platforms (DAI related or not) provide simulation tools,
particularly to enable a software-in-the-loop approach for designing MAS architectures.

1.3 MAS for M&S: Building Artificial Laboratories

1.3.1 The Need for Individual-Based Modeling

The interest of using MAS in the scope of M&S mainly appears when it comes to the sim-
ulation of complex systems (i.e. systems which are composed of many interacting entities).
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The modeling of complex systems has always been a motivation for scientific researchers.
One historical example is the continuous deterministic model which has been proposed by
Volterra to represent the population dynamic of two animal species (predators and prey)
[Volterra, 1926].

By mathematically relating the population dynamics of two species using a differential
equation system (DES), the purpose of this model was to explore the mechanism of interac-
tion between predator and prey (sharks and sardines in the original Volterra’s study). This
model was found appropriate because the solution of this DES shows an intuitively sound
result which is that both populations should oscillate: When the prey density is high, the
predator multiply until there is not enough prey, which leads in turn to the regeneration of
the prey, thanks to the lethal competition which occurs between the predators.

However, despite the apparent appropriateness of this model, some researches gave results
which did not exhibit oscillatory behavior with experimental predator/prey populations
[Gause, 1934]. Therefore, many variations of the original model were done in order to rec-
oncile the discrepancy between observed experimental results and the model: Adding more
complex dynamics (e.g., variation of the predator’s voracity over time), new constraints
(e.g., a maximum number of animals in the environment), and/or new parameters (e.g.,
gestation time of prey and predator) to the system [Rosenzweig, 1971].

There were also early attempts to formulate a stochastic version of the system, but it was
only in the sixties that, thanks to the advent of computer simulations, it has been possible
to experiment with such versions of the model (e.g., [Bartlett, 1960]). At that time, these
researches highlighted that one major drawback of deterministic models precisely relies on
the fact that they are unable to take into account the apparent not deterministic nature of
real life complex systems such as a predator/prey ecosystem. Indeed, real life interaction
situations seem to always involve randomness because of the actual complexity of real world
processes.

However, the counterpart of the stochastic versions of the original equations was that
they exhibit more complex behaviors and great variability, even when used with the same
parameters [Buettner and Siler, 1976]. This raises the question of the relevance of the
parameters with respect to the targeted system: Are they really capturing something from
reality? Such models finally seem to be more related to a mathematical exercise than a
modeling that helps to understand the targeted system. So, although this model has some
interesting behavior with respect to real population dynamics, it is criticized for the lack of
insights it gives about the dynamics of the true components of the systems: The prey and
predators.

So, several problems remain with these approaches considering the modeling of complex
systems which involve individual entities [Ferber, 1999]:

• Only a global perspective is possible
• Equation parameters hardly take into account the complexity of micro-level in-

teractions
• The modeling of individual actions is not possible
• Integrating qualitative aspects is hard

As we have seen in the previous section, MAS platforms, relying on the modeling and
simulation of autonomous proactive entities, did appear practically at the time the agent
paradigm was defined, in the early eighties. However, the notion of agent itself, as a funda-
mental unit of modeling could be found in models and experiments which took place much
earlier, at least in the late fifties.
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Indeed, the first attempts that tried to solve the previously cited problems, by integrating
several levels of analysis in the modeling, were proposed by the microsimulation approach.

1.3.2 The Microsimulation Approach: The Individual-Based Modeling
Forerunner

In the scope of social sciences, the notion of agent has always been essential. So, one of the
first approaches that has been proposed as an alternative to mathematical models comes
from social science and is named microsimulation [Orcutt, 1957].

In [Orcutt, 1957], Orcutt pointed out that the macroeconomic models which were pro-
posed until that time failed to provide relevant information about the influence of govern-
mental policies on the evolution of micro level entities (households and firms). Therefore,
Orcutt’s point was to emphasize the need for integrating micro level entities in the develop-
ment of simulation models, making their results more relevant and useful for the study of
social systems’ dynamics. To this end, the basic principle of microsimulation is to concretely
integrate the micro level by means of rules, either deterministic or stochastic, that apply
on the attributes of individual units, leading to the modeling of changes in their state and
behavior.

Mainly used for population, traffic, and firm based models, microsimulation (or micro-
analytic simulation) is a modeling approach which is still intensively used today, as the
activity of the International Microsimulation Association (IMA) shows∗. The IMA website
provides many references to actual works in the microsimulation field. Other introductions
to this field could be found in books such as [Conte et al., 1997; Harding, 1996].

So, although microsimulation has its roots within the scope of social sciences, it can
be considered as the original starting point of Agent-Based Modeling (ABM) approaches
(sometimes called Individual-Based Modeling, e.g., in the modeling of ecological systems
[Grimm and Railsback, 2005]).

1.3.3 The Agent-Based Modeling Approach

Considering the integration of the micro level within the modeling, an ABM approach goes
a bit further than microsimulation. ABM suggests that the model not only integrates the
individuals and their behaviors, but also focus on concretely modeling the actions and
interactions that take place between the entities, through the environment. Similarities
and differences between ABM and previous approaches are discussed in more details in
this book, Chapter 2. So, with respect to Equation-Based Modeling (EBM), using the MAS
paradigm to model a system provides a completely different perspective which represents an
attractive alternative regarding the problems raised previously: Contrary to EBM, wherein
the system global dynamics are defined a priori using mathematical relations between global
system properties (e.g., the total number of prey), ABM relies on the explicit modeling of
micro level entities and dynamics (e.g., individual characteristics and behaviors, actions and
interactions between the entities and the environment, etc.). The observed global behavior
of the system being thus considered as the result of these micro level dynamics. For instance,
considering a predator/prey system, each individual has to be modeled (cf. Figure 1.1).

More generally, quoting [Parunak et al., 1998], the two main differences between EBM and
ABM rely on (1) the way they model relations between entities and (2) the level at which

∗http://www.microsimulation.org. Accessed June 2008.
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FIGURE 1.1 An agent-based model: The micro level entities, their actions and interactions, and the
environment.

they focus their attention. EBM model relations between system observables (i.e. measurable
characteristics of interest) while ABM represent individuals that evolve by interacting with
one another and the environment.

The interest of MAS relies on four main concepts:

1. Autonomous activity of an agent, i.e. its ability to carry out an action on its own
initiative, (pro-activity), by controlling its behavior in order to increase its satis-
faction and by deciding to help or to prevent others from satisfying their goals.
As it could be noticed, the previous definition of agent stresses the autonomy of
decision, which results from the independence with which an agent tries to satisfy
its objectives (in the broad sense of the term), by using its competences and its
own resources, or by asking for help from others.

2. The sociability of the agents, i.e. their ability to act with other agents from a
social point of view. An agent in a MAS is not an isolated entity, but an element
of a society. A society emerges from the interactions which take place between the
agents, and conversely, the organization of a society constrains the behavior of
the agents by ascribing them roles which will restrain their action potentialities.

3. Interaction is what connects the two preceding concepts. This interleaving of
actions, where each action is decided inside an agent’s mind, produces organized
patterns of activities, emerging social forms, which, in return, force and constrain
the behavior of agents. So it is through these interactions that forms of interaction
emerge, such as cooperation, conflict or competition. This, in return, produces
more or less stable organizational patterns which structure the individual action
of each agent.

4. The situatedness of the agents, i.e. the fact that the agents are placed into an
environment which defines the conditions in which the agents exist, act, and
interact. The environment is the glue that connects the agents together, enabling
interaction between the agents so that they are able to achieve their goals.

All the power of MAS comes from this cyclic process: Agents act in an autonomous way in
a space constrained by the structure of the society in which they act, this structure resulting
itself from the behaviors of these agents. There is a dependency loop between agents and
societies, between the micro and the macro level, between individual and collective, which
is finally at the core of complex system issues.

It is thus not by chance if MAS seem to be a major tool to model complex systems, as
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societies of agents. They propose much more than a simple technique of modeling. They
are not simple abstract tools making it possible to numerically characterize the evolution of
a system from its parameters. Being societies by themselves, and being built on the same
basis as any complex systems, MAS prove to be ”artificial micro-worlds”, of which it is
possible to control all characteristics and reproduce series of experiments as in a laboratory.
Compared to animal and human societies, and to complex systems in general, MAS may
be seen as ”microcosms”, small-scale models of real systems, like reduced size models of
boats and buildings, while having the same dynamics and following the same principles as
the real social systems.

Moreover, one of the main qualities of multi-agent modeling stands in their capacity
of integration and in their flexibility. It is possible to put together quantitative variables,
differential equations and behaviors based on symbolic rules systems, all in the same model.
It is also very easy to incorporate modifications in the behavior of the individuals, by adding
behavioral rules which act at the individual level. It is also possible to add new agents with
their own behavioral model, which interact with the already defined agents. For example,
in a forest management model, it is possible to introduce new animals, new plant species,
new farmers, and to analyze their interactions with already modeled agents.

Because of emergent processes due to interactions, MAS makes it possible to represent
complex situations where global structures result from interactions between individuals, i.e.
to spring up structures of the macro level from behaviors defined at the micro level, thus
breaking the barrier between levels.

Establishing an exhaustive list of all the simulations which rely on an ABM approach
would be endless. Therefore, we will only focus on some representative and forerunner
examples in the following sections.

1.3.4 Agent-Based Social Simulation: Simulating Human-Inspired
Behaviors

Naturally, inspired by the forerunner works which have been done in the scope of microsim-
ulation, social science was one of the first research fields wherein an ABM approach has
been applied. In this perspective, the seminal work of Schelling on residential segregation
[Schelling, 1971] has deeply inspired the field. Schelling’s model was one of the first to show
clearly how global properties (segregation among the agents in this case) may emerge from
local interactions.

Following this trend of research, Agent-Based Social Simulation (ABSS) became widely
used only in the mid-nineties (a number of examples can be found in [Conte et al., 1997]).
These works model artificial (human-inspired) societies, considering various levels of ab-
straction as discussed in [Gilbert, 2005].

To depict the approach underlying these models, Epstein and Axtell coined the notion
of generative social science in the book Growing Artificial Societies [Epstein and Axtell,
1996]. As discussed in more details by Epstein in [Epstein, 2007], this notion enables one
to highlight the differences between ABM and both inductive and deductive social science.
More on the different motivations of using agent-based models for social science could be
found in papers such as [Conte et al., 1998; Axtell, 2000; Goldspink, 2002] and in the second
edition of the book of Gilbert and Troitzsch which gives a comprehensive view of the field
[Gilbert and Troitzsch, 2005].

ABSS concrete examples are the modeling of urban phenomena (e.g., [Vanbergue et al.,
2000; Bretagnolle et al., 2006]), works done in game theory on the iterated prisoner dilemma
(e.g., [Beaufils et al., 1998]), and the modeling of opinion dynamics [Deffuant et al., 2002].
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One can find many other examples in the electronic journal Jasss
∗, the Journal of Artificial

Societies and Social Simulation.

Some generic ABSS-related platforms have also been proposed (e.g., Ascape [Parker,
2001], Moduleco [Phan, 2004]). Moreover, a modeling language relying on rule-based
agents has been proposed in [Moss et al., 1998], namely SDML. Today, the RePast toolkit
[North et al., 2006] is a representative example of platform which is used for ABSS.

1.3.5 Flocks and Ants: Simulating Artificial Animats

The Reynolds’s Boids

Considering the use of the agent paradigm for M&S purposes, a forerunner work was done
by Reynolds on flocks [Reynolds, 1987]. In the scope of computer graphic animation, the
goal of Reynolds was to achieve a believable animation of a flock of artificial birds, namely
boids. Reynolds remarked that it was not possible to used a scripted flock motion to achieve
a realistic animation of group motion. So, Reynolds was inspired by two stream of research:
(1) particle systems [Reeves, 1983] and (2) the Actor paradigm [Agha, 1986].

Particle systems were already used for the animation of complex phenomena, such as
clouds or fire, which were modeled as collections of individual particles having their own
behavior and state. However, particles did not interact as their behavior only relied on
their own internal state (position, velocity, lifetime, etc.) and potentially on some global
parameters that could represent phenomena such as gravity.

The idea of Reynolds was that boids have to be influenced by the others to flock in a
coherent manner: “Boid behavior is dependent not only on internal state but also on external
state”. So, Reynolds used the actor abstraction to define the boids behavior so that they
do interact to flock. Boids change their directions according to others’ to stay at the center
of the local flock they perceive.

The results obtained were very compelling and the impact of the Reynolds’s boids on the
community of reactive agents can still be perceived today as it was one of the first works
to be bio-inspired.

Indeed, beyond graphic animation, boids-inspired behaviors can be found in domains such
as mobile robotics (e.g., flocks of unmanned aerial vehicles (UAV) [Nowak et al., 2007]), and
human crowd simulation, e.g., like in [Musse and Thalmann, 2000] or [Pelechano et al., 2007].
In this last reference, the research is also inspired by the pioneer work of Helbing and Péter
Molnár on human crowd which uses the concept of social forces to model how pedestrian are
motivated to act with respect to external environmental conditions (e.g., others pedestrians
or borders) [Helbing and Molnár, 1995]. A famous example of an application derived from
these different technologies is the use of the Weta Digital’s MASSIVETM software for special
visual effects in movies such as the Lord of the Rings, in which there are huge battle scenes.

Although the boids paradigm is well suited for modeling collective moves, it is limited
by the fact that it only relies on the direct perception of the others: The environment does
not play any role in the interaction between the agents. On the contrary, the environment
plays an essential role for the modeling of ant colonies.

∗http://jasss.soc.surrey.ac.uk
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Ant Colonies

Regarding bio-inspired MAS related works, ant colonies probably represent the natural
system which has inspired the most. Indeed, first, ant colonies exhibit many features which
are expected from MAS such as self-organization, self-adaptation, robustness, emergent
properties, and so on. Secondly, the ability of ants in solving complex problems in an
efficient and constant way is fascinating considering their limited individual characteristics.
The most well known example of that being how ants use pheromones to find the shortest
path from the nest to food sources [Beckers et al., 1992].

So, as an ant colony was quickly recognized as a fascinating model of MAS, many MAS
simulations done in the early nineties rely on simulating and studying characteristics of
ant-based systems (e.g., [Collins and Jefferson, 1992]). Among these forerunner works on
ants, one of the most ambitious has been done in the scope of the MANTA (Modeling
an ANTnest Activity) project [Drogoul and Ferber, 1992]. Firstly, MANTA relied on an
innovative modeling and simulation framework called EMF (EthoModeling Framework)
which was sufficiently simple to be used by non computer scientists to implement multi-agent
simulations. Secondly, the purpose of MANTA was not only to simulate some characteristics
of ants but to translate all the parameters of a real biological study into a virtual ant farm.
So, MANTA simulations were composed of all the creatures that can be found inside an ant
nest (ants, larvae, cocoons, eggs) and also took into account time and some environmental
factors such as light and humidity.

It is worth noting that, at the same time, Dorigo also took inspiration from ants to define
a new kind of optimization algorithm, namely the Ant system heuristic [Dorigo, 1992].
Especially, he derived from this approach a distributed algorithm called Ant Colony System
(ACS) which was applied to the traveling salesman problem [Dorigo and Gambardella, 1997].
Today, Ant Colony Optimization (ACO) [Dorigo and Stützle, 2004] represents a whole trend
of research in the domain of swarm intelligence.

The common point between all these researches is that they all identified that one ma-
jor characteristics of ants is their ability to use pheronomes (evaporative scent markers)
to indirectly communicate and coordinate through the environment. Indeed, pheromones
enable the ants to achieve complex tasks thanks to a simple environmental mechanism:
Pheromones evaporate, so that the system can forget obsolete information which is the fun-
damental feature of such systems [Parunak, 1997]. For instance, paths leading to depleted
food sources progressively disappear with time. This powerful mechanism has been success-
fully translated into computer programs and simulations, thus defining the concept of digital
pheromones which has been used in numerous works. Additionally, using a pheromone-based
approach of course does not entail one to only consider ant-like agents. One example can
be found in this book: Polyagents [Parunak and Brueckner, 2008].

1.4 Simulating MAS: Basic Principles

MAS have been developed around a set of principles and concepts. These concepts are
Agents, Environment, Interaction and Organizations, as presented in the Vowels approach
[Demazeau, 1997]. We will give a brief overview of the first three aspects in this chapter.
Then, we will discuss issues related to the modeling of time in MAS simulations.

1.4.1 Agent

Many definitions of agency have been proposed in the field of MAS, each one being more
adapted to a specific flow of research (see [Woolridge, 2002]). The following one is adapted
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from [Ferber, 1999]: An agent is a software or hardware entity (a process) situated in a
virtual or a real environment:

1. Which is capable of acting in an environment
2. Which is driven by a set of tendencies (individual objectives, goals, drives, satis-

faction/survival function)
3. Which possesses resources of its own
4. Which has only a partial representation of this environment
5. Which can directly or indirectly communicate with other agents
6. Which may be able to reproduce itself
7. Whose autonomous behavior is the consequence of its perceptions, representa-

tions and interactions with the world and other agents (cf. Figure 1.2).

FIGURE 1.2 A multi-agent world.

Agent Architectures

The term generally used to describe the internal organization of an agent is that of archi-
tecture, by analogy with the structure of computers.

It is generally considered that there are two main approaches for analyzing agent archi-
tectures: (1) The reactive approach in which we only consider perception-action (or stimuli-
response) architectures and (2) the cognitivist approach which relies on mental issues, such
as the explicit representation of the environment (and other agents) by agents. A third
approach, called hybrid, consists in trying to get together the first two.

Reactive Architectures. A reactive agent does not have an explicit representation of
its environment nor of other agents. Its behavior is entirely described in terms of stimuli-
response loops which represent simple connections between what they perceive and the
set of available operations that may be performed. The most well-known architectures in
this domain are the subsumption architecture in which tasks in competition are arbitrated
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along predefined priorities [Brooks and Connell, 1986], the competitive task architecture,
where concurrent tasks have their weight modified through a reinforcement learning process
[Drogoul and Ferber, 1992], and connectionist architectures which are based on neural nets.
Some approaches combine these different structures within an integrated architecture, like
the one of Tyrell for instance, which combines control by priorities and neurons, within a
hierarchical structure [Tyrrell, 1993]. There are also architectures that combine behaviors,
each behavior being represented as a vector of actions. The Satisfaction-Altruism function
allows one to combine behaviors centered on the desires of agents with cooperative behaviors
centered on the needs of others [Simonin and Ferber, 2000].

Cognitive Architectures. Cognitive architectures are founded on the computational
metaphor which considers that agents reason from knowledge described with a symbolic
formalism. This knowledge explicitly represents their environment (states, properties, dy-
namics of objects in the environment) and the other agents. The most well-known archi-
tecture of this type is the BDI (Belief-Desire-Intention) which postulates that an agent is
characterized by its beliefs, its goals (desires) and intentions [Rao and Georgeff, 1992]. It is
assumed that cognitive agents are intentional, i.e. that they intend to perform their action,
and that these actions will allow them to satisfy their goals. In other words, a BDI agent
acts rationally from its beliefs about world states, its knowledge (and those of others), its
intentions (and those of others) to achieve its goals. A BDI agent is assumed to possess
a library of plans, each plan being designed like a recipe making it possible to achieve a
particular goal. An intention is set when an agent makes a commitment about achieving a
specific goal by using a particular plan. The management and update of beliefs, goals and
intentions are carried out by the BDI engine which selects the plans and the actions to be
undertaken.

FIGURE 1.3 A BDI architecture with its different modules.

Figure 1.3 illustrates the functional representation of a BDI architecture. External per-
ceptions and messages are used to form beliefs. It is supposed that an agent may initially
have several goals. These initial goals, added with the goals resulting from requests of other
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agents, are analyzed and selected in the decision component to trigger the set of plans com-
patible with the agent’s beliefs. If there are no plans that can be found, a problem solver
(not shown here) has the responsibility to decompose the initial problem into sub-problems,
by producing sub-goals that the agent will have to satisfy. When an agent chooses to ex-
ecute a plan, the actions of this plan are transformed into intentions which will produce
environmental actions and communications with other agents. The main quality of BDI
architectures is to create a behavior which mimics that of a rational human being. As an
example, The Jason platform, which is described in this book [Bordini, 2008], enables to
design Agent-Based Simulation Using BDI Programming.
Hybrid Architectures. The two main types of agents, cognitive and reactive, propose
solutions apparently diametrically opposite, but in fact, they may be viewed as complemen-
tary. In order to build best suited architecture to solve a problem (in terms of response
time, precision or efficiency), it is possible to create hybrid architectures which combine the
two types of approaches, and then build more flexible agent architectures.

In such architectures, agents are composed of modules which deal independently with the
reflex (reactive) and reflexive (cognitive) aspect of the agent behavior. The main problem is
then to find the ideal control mechanism ensuring a good balance and a good coordination
between these modules. Let us cite the Touring Machine [Arango et al., 1993] and InteRRap
[Müller and Pischel, 1993], the most well know examples of hybrid architectures.

Developing MAS with a specific architecture in mind (cognitive, reactive and even hybrid
approaches), may be a disadvantage when developing open MAS: some developers think
in terms of reactive agents whereas others prefer to use a cognitive approach. In an open
system, all these agents must live together, conform to a framework of execution and of
behavior, and thus must be able to interact within the same interaction space.

Modeling the Behavior of Agents

In order to simplify the model of agents, the process which takes place between the percep-
tion of inputs and the production of outputs can be considered as the deliberation function
of the agent. So, an agent is a cyclic three phase process: (1) perception, (2) deliberation,
and then (3) action (cf. Figure 1.4).

FIGURE 1.4 An agent as a three phases process.

As the purpose of this section is not to explain the modeling details of existing agent
architectures, we here just present a formalism which is inspired by the work of Genesereth
and Nilsson [Genesereth and Nilsson, 1987] and focuses on representing the cyclic nature
of the behavior of an agent. Let σ ∈ Σ be the actual state of the world, the behavior
cycle (perception / deliberation / action) of an agent a is represented using a function
Behaviora : Σ �→ Aa , Aa representing the set of possible actions that the agent a can take:
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• Perceptiona : Σ �→ Pa , that computes a percept pa ∈ Pa from the system’s state
Σ.
• Deliberationa : Pa × Sa �→ Sa , that computes the new internal state sa of the

agent.
• Actiona : Pa × Sa �→ Aa , that produces the action of a.

So, firstly an agent obtains a percept pa which is computed by the Perception function
using the current state of the environment σ. Such a function may simply return some raw
data (quantitative variables) used to defined the state of the environment (e.g., coordinates
of objects, the current temperature in celsius degrees, etc.), but it may also represent more
complex processes that transform raw data to high level percepts representing qualitative
aspects of the environment (e.g., near or far from an object, the temperature is hot or cold,
etc.), thus easing the deliberation of an agent as discussed in [Chang et al., 2005].

Secondly, the Deliberation function (Memorization in [Genesereth and Nilsson, 1987])
defines how the agent uses pa to make its internals evolve according to pa , updating its own
representation of the world for instance. The deliberation process of an agent defines the
core part of its behavior and characterizes its architecture (reactive or cognitive). As such,
it is obviously the part which has been studied the most. Still, it is worth noting that this
function is skipped for tropistic agents (without memory) as they directly match percepts
to actions.

Finally, the Action function represents how an agent makes its decision, based on its new
internal state and current percept, and thus chooses the action to take. Most of the time,
this action is directly concretized by the modification of the environment which is supposed
to succeed the action (e.g., σ = {door(closed)} �→ σ = {door(open)}). In other words, the
direct modification of the environment is the means by which is the result of the action of
an agent is computed.

1.4.2 Environment

An Essential Compound of MAS

In the beginning of MAS, in the old days of DAI, the concept of environment had not been
given an important consideration. But the development of MABS has shown the importance
of the environment because, in MABS models, agents are situated in a concrete environment:
the simulated environment.

More recently, the environment has also been pointed out as an essential compound of
MAS as it in fact broadly defines all the perceptions and actions that an agent may have or
take: The environment defines the conditions in which the agents exist in the MAS [Odell
et al., 2002]. Especially, the term environment could also refer to the infrastructure in which
agents are deployed and thus be studied as a first order abstraction from an agent-oriented
software engineering perspective, as thoroughly discussed by Weyns et al. [Weyns et al.,
2005b].

To distinguish the different concerns which could be related with the concept of environ-
ment in MAS, Valckenaers et al. have proposed a structured view on environment-centric
MAS applications, thus identifying three base configurations which one is simulation [Val-
ckenaers et al., 2007]. So, in the scope of a simulation configuration, according to this
proposition the environment simply refers to the part of the simulation that models the
relevant portion of the real world (either it exists, needs to be realized or no longer exists)
or an imaginary world. From now on, we will only consider this aspect of the environment,
i.e. the modeling part that represents the world in which the simulated agents evolve.
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Modeling the Environment

The inputs an agent receives come from the environment it is situated in (and of which the
other agents are part). Similarly, the outputs an agent produces go in the environment.

FIGURE 1.5 An agent receives inputs from the environment and produces outputs on it.

From a M&S perspective, the environment is another dynamic system (ABM relies on
a multi-model approach). However, contrary to an agent model, the dynamic of the envi-
ronment does not represent any autonomous behavior. Regarding the characteristics and
dynamics of the environment, Russell and Norvig propose to consider several properties
[Russell and Norvig, 2003]:

• Accessible vs.inaccessible. An environment is defined as accessible if its complete
state can be can perceived by an agent.
• Deterministic vs. nondeterministic. An environment is deterministic if its next

state is entirely determined by its current state and the actions selected by the
agents.
• Episodic vs.non-episodic. In an episodic environment, an episode (an agent per-

ceiving and then acting) does not depend on the actions selected in previous
episodes.
• static vs.dynamic. In a static environment, changes only occur under the influ-

ences of the agents, contrary to a dynamic environment which posses an endoge-
nous evolution.
• Discrete vs.continuous. In a discrete environment, the number of possible per-

ceptions and actions is limited and clearly defined.

The modeling of the environment usually embeds the representation of some physical
places wherein the agents evolve. As the environment defines the perceptions and actions
of the agents, two main approaches can be distinguished with respect to the granularity of
these perceptions and actions:

1. Discretized: The environment is discretized in bounded areas that define space
units for the perception/action of the agents (environment-centered)
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2. Continuous: The range of each perception/action depends on the acting agent
and the nature of the perception/action (agent-centered)

The first approach consists in modeling the environment as a collection of connected
areas, which thus defines the topology of the environment. Figure 1.6 shows three examples
for such an approach: The rooms of a house thus defining non-uniform cells (a), a physical
space divided in regular zones (uniform cells) (b) and the nodes of a network (c). With such
a modeling, the idea is to use the environmental characteristics to define the range of the
perceptions and actions (e.g., an entire room, a cell, or a network node).

FIGURE 1.6 Examples of discretized environments.

The most usual examples of this kind of approach are those wherein the environment is
discretized in a regular grid of cells (or patches) (cf. Figure 1.6 (b)). Platforms allowing such
a modeling of the environment are numerous (e.g., StarLogo [Resnick, 1994], TurtleKit

[Michel et al., 2005]).
Widely used for their simplicity of implementation, grid-based environment models have

also the advantage of easing the modeling of environmental dynamics such as the diffusion
and evaporation of digital pheromones. As major drawback, a grid-based model raises the
problem of the granularity of the perceptions/actions which an agent can make. Indeed,
whatever the perceptions/actions of an agent, which can be very heterogeneous, their range
will always be the same (modulo a factor): The cell.

On the contrary, the continuous approach considers each agent as the reference point from
which the range of perceptions/actions is computed (cf. Figure 1.7. This kind of modeling is
required when accurateness is needed. For instance, this modeling is usually used to simulate
soccer robots (e.g., in RoboCup soccer simulators [Kitano et al., 1997]): The granularity of
the movements of both the agents and the ball has to be accurately modeled.

Except from the fact that such a modeling could be required, the main advantage is that
the continuous approach is far more flexible than the former considering the integration of
heterogeneous perceptions/actions within the modeling of the agents. The counterpart is
that it is of course more difficult to model and implement such an approach.
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FIGURE 1.7 Continuous approach for the perception of the agents.

1.4.3 Interactions

Communications between agents are at the core of interactions and social organiza-
tions. Without communicating, an agent is totally isolated, deaf and dumb, closed on
its perception-deliberation-action loop. Because they communicate, agents can cooperate
and coordinate their actions, and become true social beings. Communication is expressed
through language items (messages, signals) which, once interpreted, will produce an effect
on agents. There are a great number of approaches to communication: the social sciences,
linguistics, and philosophy of language each developed a whole set of concepts, that deal
with what are known as speech acts. Biology and ethology have also produced theories on
communication through signals.

Communication by Message Passing

The traditional model of communication between agents relies on message passing. A trans-
mitter sends a message to a recipient knowing directly (or indirectly via a directory) its
address. This simple model is used in most of the MAS. It has been extended by the speech
act theory, which gives precise semantics to the interaction. First appearing in the work of
Austin [Austin, 1962] and Searle [Searle, 1969], the concepts of speech act theory have been
simplified with the development of the KQML [Finin et al., 1994] and ACL [for Intelligent
Physical Agents] languages. Speech act theory considers that communications may be in-
terpreted as mental acts. For example, if an agent A, with the goal of having the world in
state S sends a request to an agent B to perform the action a, it supposes that A believes
that the world is not in state S , that a has not been performed, and that the achievement
of a would result in the state S , and that A believes that B is able to do a. It is the same
if A informs B that a proposition p is true. Its meaning resides in mental issues: A believes
that p is true, that B has no beliefs about p, and the expected result by A is that finally B
eventually believes that p is true.
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Research works have also been conducted to define interaction protocols, i.e. to define the
sequence of messages which characterize an interaction situation. For example, if A requests
B to perform a, it waits for an answer from B saying if B agrees to accomplish the job.
If B does agree, it will inform B when the task a will be achieved. This means that it is
possible to represent interactions between agents with communication diagrams. Proposed
by Odell, Bauer and Müller, AUML [Bauer et al., 2001] is a MAS description language
which extends UML sequence diagrams by adding specific extensions and by reducing some
of the obviously too specifically ”object-oriented” aspects.

Interactions Using Signals

Besides speech acts and communication standards, agents may communicate by using sig-
nals. This type of communication is based on biology and ethology, where animals tend
to behave collectively by using signals. In the MAS domain, two main kinds of signals are
used: marks and fields. Marks are traces that agents make while moving. Agents may drop
marks on their way (pheromones, tracks, pebbles, objects of any sort,..) which could then
be interpreted by other agents. This mechanism produces the famous ant lines. The tracks,
in the form of pheromones dropped by the ants while returning to their nest, are used as
interaction medium to signify to other ants where food can be found (Figure 1.8).

FIGURE 1.8 Ant agents, represented as robots, carry resources back to their base while dropping
pheromones which are used as marks.

Signals may be spread in the environment. And in this case, they may be used to indicate,
remotely, the presence of obstacles, desirable objects, agents to help or to avoid. These
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signals are used to coordinate a set of agents acting in a common environment. Let us
consider the intensity of signals relative to the distance between the source and a location
in the environment. If these signals are propagated in a uniform and homogeneous way, they
form potential fields. It is then possible to define attractive and repulsive forces from the
gradient of these fields [Arkin, 1989]. The goals are then represented as attractive fields and
obstacles as repulsive fields. The movement is obtained by a combination of attractive and
repulsive fields, and an agent has only to follow the greatest slope direction (Figure 1.9).
When obstacles can move, i.e. when there are other agents, it is necessary to add avoidance
behaviors [Zeghal and Ferber, 1993; Simonin and Ferber, 2000; Chapelle et al., 2002].

FIGURE 1.9 An agent moves in a field by following its gradient.

One has to notice that these signals may either be real (and part of the environment)
or virtual, i.e. rebuilt by agents as simple means to coordinate their movements in the
environment, like it is done in [Mazouzi et al., 2007] in the scope of image segmentation:
Simulated agents create potential fields, without affecting the pixels, to attract others in
areas of interest (object edges).

1.4.4 Modeling Time

Like the simulation of other kinds of system, the evolution of time should be modeled when
simulating MAS, especially if all the agents are supposed to act and interact concurrently
with respect to the principle of causality [Fyanio et al., 1998].

Time could be modeled using three main approaches: (1) continuous time (by means
of time functions which can compute the system state for any time stamp, e.g., DES),
(2) discrete time (time evolves discretely with respect to constant time intervals), and
(3) discrete event-based (time evolves discretely from one event to the next considering a
continuous time line, i.e. the time interval between two events could be any real number).
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In this respect, modeling time for a MAS needs to consider at least three aspects:

1. The modeling of the behavior time of the agents
2. The modeling of the endogenous dynamics of the environment
3. The evolution of the environment with respect to the agent actions.

Modeling the Behavior Time of an Agent

The models which are used to represent how an agent reacts to external events and deliber-
ates are inherently discrete. Indeed, although an agent could be put in an environment which
dynamics are modeled using a continuous approach, the deliberative process of an agent
is usually modeled as a process that makes its internal state variables change discretely,
i.e. instantaneously. Moreover, in almost every agent-based model, the perception/deliber-
ation/action cycle is associated to a single instant t for simplicity reasons.

However, in some application domains, the temporal thickness of the behavior of an agent
has to be explicitly taken into account, and therefore modeled. For instance, in the scope of
DAI, the evaluation of the deliberation efficiency of an agent could be the aim of the study.
For example, this efficiency could be modeled as a function of the actual computation time
which is used by a deliberating agent, like in the Phoenix simulator [Cohen et al., 1989].
The goal is to be able to measure and compare the efficiency of different agent architectures.

For example, the Multi-Agent System Simulator (MASS), which has been designed to
study the efficiency of agents’ deliberation in multi-agent coordination/negotiation pro-
cesses, explicitly integrates time models of the mechanisms involved in the deliberation
processes (method invocations, access to resources, etc.) [Vincent et al., 2001]. A similar
approach has been used in the Sensible Agents platform [Barber et al., 2001] to experiment
with agent-based systems in dynamic and uncertain environments. In another example,
Uhrmacher and Schattenberg have proposed to model the overall behavior of an agent as a
discrete event system using the DEVS (Discret Event Systems Specification) [Uhrmacher,
2001]. Doing so, the authors are able to model not only the deliberation time of an agent,
but also the reaction time of an agent to external events, thus explicitly distinguishing,
within the modeling of time, between the reactive and the proactive processes of an agent.
The JAMES simulation platform relies on this approach [Schattenberg and Uhrmacher,
2001]. In this book, the reader will find a chapter about the new version of this platform,
namely JAMES II [Himmelspach and Röhl, 2008].

Modeling the Temporal Evolution of the Environment

Depending on the application domain, modeling the temporal evolution of the environment
could be crucial. For instance, simulating agents in a network, it could be interesting to
model different lag times to evaluate the impact of network congestion, node failure, and
so on. Moreover, the environment may not only react to the agents inputs but also evolve
according to its own dynamic, namely its endogenous dynamic. For instance, in a robocup
simulation, a rolling ball continues to move even when the agents do not perform any actions.

As the environment could represent very different kind of systems, continuous or discrete
time modeling could be considered depending on the experiment requirements. However,
due to the fact that the agents have their perception and produce their actions in a discrete
manner, the environment temporal dynamics generally embeds some event-based mecha-
nisms to ease the coupling between the model of the environment and the agent models.
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Coupling the Agents and the Environment: Scheduling the MAS

Once the agent behaviors and environment dynamics are defined, they have to be coupled
to finally model the targeted MAS, so that a MAS could be considered as three-tuple:
MAS =< Agents,Environment ,Coupling > [Parunak, 1997]. Figure 1.10 gives the overall
picture of this coupling.

FIGURE 1.10 Coupling the agents and the environment.

The main problem of the coupling is to make it coherent with respect to time [Parunak,
1997; Fyanio et al., 1998]. In other words, achieving this coupling relies on defining a function
Evolution such that the evolution of the MAS from one moment t to the next t+dt results
from the combination of the agent actions, A1(t),A2(t)...An(t) with the dynamics produced
by the natural evolution of the environment, En(t), at t :

sigma(t + dt) = Evolution(�(An(t),En(t)), σ(t)) . (1.1)

The symbol � is used here to denote the action composition operator. It defines how the
actions produced at the instant t must be composed in order to calculate their consequences
on the previous world state σ(t). Intuitively, this coupling does not seem to be more than
scheduling the activation of each model considering the modeling of time which is chosen
(i.e. discrete time or event-based). However, several difficulties exist in the scope of ABM
as we will now briefly see.

Due to the simplicity of its implementation, discrete time simulation (i.e. dt is constant)
is the most used technique for simulating MAS. Indeed, in a discrete time simulation, all
the models are sequentially activated for a time t , and then the global clock of the system
is increased of one time unit. So, the implementation can be as simple as the following loop:

while ( g loba lVir tua lTime != endOfSimulation ){
for ( SimulatedAgent agent : AllTheAgents )

agent . act ( ) ; // percept ion , d e l i b e r a t i o n , ac t i on
virtualEnvironment . evo lve ( ) ; // f o r a dynamic environment
g loba lVir tua lTime++;

}
However, there is a major issue with such a scheduling technique: The order in which each

model is activated may change the result obtained for the system state since the environment
evolves for each action. This in turn may lead to very different system dynamics with the
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same behaviors [Michel et al., 2004]. Figure 1.11 illustrates this issue on a prey/predator
problem: the prey (the triangle) could be dead or alive depending on the activation list.

FIGURE 1.11 The prey could be dead or alive depending on its rank in the activation list.

Several variations of the discrete time approach have been proposed to solve this problem.
One solution is to systematically shuffle the activation list at each time step in order to
smooth the problem (e.g., [Epstein and Axtell, 1996]). Another solution is to simulate
concurrency by having all the agents operate on temporary variables, so that the perceived
environment is the same for all the agents. Once done, the next system state is computed.
So, the activation list has no effect on the results. However, the new problem is that one has
to solve the conflicts which may exist between two or more actions that produce different
states for the system (e.g., the same ball at two different places). Solutions to such conflicts
could be hard to find and lead to complex solving algorithms, as discussed in [Dumont and
Hill, 2001] for instance.

More generally, whatever the time management (discrete time or event-absed), modeling
interaction (concurrent actions) in MAS is hard to achieve using action representations
such as the one presented in the end of Section 1.4.1 because they directly match the
decision of an agent to a modification of the environment: One action gives one result.
Quoting Parunak [Parunak, 1997]: This leads to an (unrealistic) identity between an agent’s
actions and the resulting change in the environment, which in turn contributes to classical
AI conundrums such as the Frame Problem, as also further discussed in [Ferber and Müller,
1996]. Therefore, the actions (Equation 1.1) are not composed to produce a result but
rather produce results one by one, which indeed leads to conflicting, sometimes unrealistic,
situations. So, implementing simultaneity using such procedures may still be done but it
takes complex codes which are more related to programming tricks than to an efficient
and generic simultaneity modeling solution [Ferber, 1999]. In Section 1.6.2, we will see that
several works have addressed this particular problem by relying on the Influence / Reaction
model [Ferber and Müller, 1996].

Besides concurrency, another issue which is raised by a discrete time approach is the tem-
poral granularity of actions. Indeed, in the same way the discretisation of the environment
raises problems about the modeling of heterogeneous perceptions/actions, the discretisation
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of time implies taking care of the temporal granularity of actions. Figure 1.12 illustrates
this problem: If an agent is able to move across more than one spatial unit in one time step,
then several agents may have crossing paths without generating any collision, whatever the
discrete time algorithm (i.e. there is no conflict here). This is an important issue in MABS
involving mobile agents like traffic simulations (e.g., [Dresner and Stone, 2004]).

FIGURE 1.12 The problem of the temporal granularity of actions.

So, depending on the application domain, an event-based approach could be required as
it represents a far more flexible approach when it comes to the modeling of heterogeneous
actions because it eases the integration of actions having different granularities. Moreover
event-based simulations are often considered as more representative of the reality that we
observe in the everyday life. Indeed, it is difficult to think about reality as a system in which
all the entities would be “updated” simultaneously [Huberman and Glance, 1993].

Like for the discrete approach, there are various way of modeling and implementing an
event-based approach, depending on how the events are generated and handled (classical
event-based implementations are presented in [Balci, 1988]). The event list could be deter-
mined using a predefined order, like in the Swarm platform [Minar et al., 1996], or generated
dynamically during the simulation, like in James which uses DEVS [Himmelspach et al.,
2003], or in Dima which relies on the activity notion [Guessoum, 2000].

1.4.5 Simulating MAS as Three Correlated Modeling Activities

To sum up this section, we propose here a high level view of agent-based simulation models.
To this end, we consider that simulating a MAS relies on three correlated modeling activities:
(1) the modeling the agents, (2) the modeling of the environment, and (3) the modeling of
the coupling between the agents and environment models. Figure 1.13 illustrates this view:

• The first module is related to the modeling of the agent behaviors, namely the
behavior module. Considering this module especially involves choosing an agent
architecture and a behavior time model.
• The second module, the environment module, is related to the definition of the

virtual place wherein the agents evolve and interact. Modeling the environment
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notably supposes to decide if the environment should be (1) discrete or continu-
ous, and (2) static or dynamic. If the environment has an endogenous dynamic,
then a time model of this dynamic should also be defined. Additionally, as agent
interactions are mediated by the environment, how the agents interact is mainly
defined through the modeling of the environment, by defining (1) how the actions
of the agents affect the environment state and (2) how these actions are perceived
by the agents (messages and/or signals).
• Finally, the scheduling module defines how all the models, environment and

agents, are coupled and managed with respect to time. Besides choosing a par-
ticular time management, considering this module implies defining how the envi-
ronment evolution, the agent perceptions, actions and interactions are done with
respect to one another, thus defining the MAS causality model. It is worth noting
that this fundamental part of the modeling is not always specified nor even con-
sidered during the elaboration of agent-based models as it is often regarded as
something for which the simulation platform should be responsible, thus ignoring
a major part of the model dynamics∗. In Section 1.6.3, we further discuss why
defining this module should be considered as a primary modeling activity.

FIGURE 1.13 Simulating a MAS as three modeling modules.

This tripartite perspective also defines how the modules are related to each other. The
scheduling module controls how the agents and the environment are executed considering
the representation of time (e.g., actions and interactions management and ordering). The
relation between the agent module and the environment module concerns the definition of

∗Other researchers usually have a different perspective and consider scheduling as an issue at the level
of the simulation framework, rather than at the level of modeling.
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all the possible agent actions and perceptions with respect to the environment. This relation
is bidirectional since adding new perceptions or actions requires modifying both modules.

1.4.6 A Still-Incomplete Picture

This overall picture proposed in Figure 1.13 highlights the different modeling activities which
have to be considered when designing a MAS simulation model. Each of these activities
raises very different issues according to the considered application domain. Most of them
are discussed in detail throughout this book. However, it is difficult to identify what are
the actual challenges for these different modules without going into the details of some
application domains. However, in the scope of this chapter, we want to provide a more
global perspective of the intersection between MAS and simulation that will help to identify
some fundamental questions and general concerns for the next years.

Going toward a global perspective of the intersection between MAS and simulation, it
is necessary to understand that the module view is rather incomplete. Indeed, it is only a
“MAS-side” view of the problem, in the sense that it focuses on MAS design issues. The
other side of the coin is simulation itself. Indeed, simulating a system, whatever it is, also
relies on considering some general issues about the design process of the experiment. To
make this point clear, let us consider the Fishwick’s definition for simulation [Fishwick,
1997]:

“Computer simulation is the discipline of designing a model of an actual
or theoretical physical system, executing the model on a digital computer, and
analyzing the execution output.”

Fishwick thus distinguishes between three fundamental activities:

1. Model design: The simulation is expressed in a model that specifies the charac-
teristics of the simulated system.

2. Model execution: The model specifications are implemented in concrete compu-
tational structures that constitute the simulator of the experiment.

3. Execution analysis: The outputs of the simulation are checked according to some
validation rules and then interpreted.

By defining simulation as a discipline composed of three fundamental activities, Fishwick’s
idea is to highlight that simulation is a concrete scientific process, which could be studied
from a general perspective, independently from the purpose or the reason why it is used.
In other words, simulation is more than just a tool. Simulation is a discipline that has
its own characteristics and requirements (terminology, methodology, etc.) which should be
considered whatever its context of use.

Therefore, understanding the different issues which exist considering both MAS and sim-
ulation, it is also necessary to have some insights about the general issues which are related
to M&S. To this end, the next section briefly presents the Framework for M&S which was
originally proposed by Zeigler in the beginning of the seventies [Zeigler, 1972; Zeigler et al.,
2000]. In the scope of this chapter, the interest of the Framework for M&S is twofold: (1)
Put in the light the relevance of studying MAS simulation according to this framework, and
(2) highlight some major challenges and issues for future research in the MAS community.
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1.5 The Zeigler’s Framework for Modeling and Simulation

In [Zeigler et al., 2000]∗, Zeigler proposed the Framework for M&S which relies on defin-
ing the entities of the framework and their fundamental relationships. This section briefly
presents these entities, namely the source system, the experimental frame, the model, and
the simulator, and these relationships, namely the modeling relation and the simulation
relation (see Figure 1.14).

1.5.1 Source System

As shown by Fishwick’s definition, the terms real system used in Shannon’s definition do
not necessarily refer to a real-world system, but more generally to the system which is the
object of the current study, i.e. the phenomenon to simulate. This is what is called the
source system in the Framework for M&S: The real or virtual system which is targeted by
the simulationist. Thus, a source system may define a theoretical phenomenon which first
exists only in the mind of somebody, and which does not exist before it is simulated. So, this
terminology enables one to distinguish the real or virtual targeted system from the system
which is finally obtained by executing the implementation of the model on a simulator.

If the source system does exist in the real world, it should be considered as the source
of observable data that defines what is called the behavior database of the system (i.e. a
relation between inputs and outputs). For instance, if the purpose of the simulation is to
study a real ant farm, it is possible to collect data about the ants (e.g., lifetime, population
dynamics, etc.).

1.5.2 Experimental Frame

Since a source system could be modeled considering very different purposes and objectives,
the definition of a source system should be always done in the scope of an associated
experimental frame. Formally, an experimental frame is a specification of the conditions
under which the system is observed or experimented with. An experimental frame is the
operational formulation of the objectives that motivate a modeling and simulation project.

Stating the experimental frame is crucial. Firstly, it deeply influences how the modeling,
validation and verification processes are done with respect to (1) the information available
about the source system and (2) the level of abstraction at which the source system is
considered with respect to the resources and objectives of the experiment∗. For instance,
for the study of a real ant colony, taking into account the velocity of the ants within the
modeling could be of interest, or even crucial in some cases, while not relevant in others.
Therefore, in a more general perspective, the experimental frame could be considered as the
definition of the experimental context. Especially, taken in a broad sense, this includes the
used modeling paradigm and its associated constraints as discussed later on.

1.5.3 Model

Model is an overloaded term. However, in the scope of the Framework for M&S, a com-
puter simulation model has a precise meaning. A model refers to all the computational

∗The first edition of this book, Theory of Modeling and Simulation, was published in 1976.
∗See [Boero and Squazzoni, 2005] for a focused discussion on these issues in the scope of ABSS.
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specifications (instructions, rules, equations, and so on) that entirely define how all the
possible state transitions of a system operate. In other words, a model is the specification
of the Evolution function (equation 1.1). This specification could be written using different
simulation formalisms or languages.

1.5.4 Simulator

A simulator is any software architecture on which the model could be executed to generate its
behavior. In other words the simulator is responsible for computing the Evolution function
and producing the outputs of the model with respect to acceptable inputs. A simulator
could also embed some verification and validation tools. Depending on its general purpose,
a simulator could be designed for only one experiment or a wide class of models.

1.5.5 Modeling Relation: Validity

The modeling relation concerns the study of the relation between a model and a source
system in the scope of a particular experimental frame. This relation thus globally raises
issues about the validity of the experiment by comparing the model (and its behavior) with
the source system (and its behavior database if it exists). Here, the main question is to
know if the modeling which has been done could be validated as an acceptable abstraction
of the source system, considering the chosen qualitative criteria and experiment objectives.
To answer this question, Zeigler proposes three main levels of validity:

1. Replicative validity is achieved if the behavior of the model which is observed
matches the behavior of the source system considering an acceptability threshold.

2. Predictive validity implies replicative validity but also requires that the model
is able to predict unseen source system behavior, which requires that the state
transition function does reflect how the source system actually reacts to any
acceptable inputs.

3. Structural validity implies predictive validity but also requires that the model
mimics the way in which all the components of the source system do their state
transitions.

1.5.6 Simulation Relation: Simulator Correctness

The simulation relation concerns the verification of the simulator with respect to the model.
The question is to ensure that the simulator does generate correctly the model behavior. In
other words, the simulation relation holds if the simulator guarantees that the consecutive
states of the model are correctly reproduced. Conversely, it is interesting to note that this
implies that the model specifications should entirely define the state transitions in both
a (1) computerizable and (2) unambiguous way, otherwise the simulation relation cannot
hold as it is possible to implement different interpretations of the model, thus implementing
simulators relying on different state transition functions, which in turn produce different
results for the same model.

Additionally, as the model specifications must be independent from the way they are
executed by the simulator, the simulation relation also implies that the evolution of a
simulated system must not depend on any simulator or hardware-related issues, enabling the
replication of the experiment, which is fundamental from a M&S perspective. For instance,
let us considered a simulated MAS executed on a Java Virtual Machine (JVM). If the
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evolution of any part of the system does depend on how the JVM manages the Java threads,
replication is not achievable: the system is not simulated, but more simply executed.

FIGURE 1.14 The Zeigler’s Framework for M&S.

1.5.7 Deriving Three Fundamental Questions

Considering the use of simulation, the Framework for M&S has several advantages. Firstly, it
gives a precise meaning to the different keywords which are related to simulation. Secondly,
by relating these different key words to each other, thanks to the modeling and simulation
relations, the Framework for M&S highlights the basic issues and problems which are related
to any M&S experiment. Especially, it gives some clear guidelines to study the problem
of the validation and verification (V&V). Although the purpose of this chapter is not to
directly discuss V&V issues in the scope of MAS simulations, it is interesting to study MAS
simulation works with respect to the basic relations of the Framework for M&S. Especially,
we propose to do this study according to three questions derived from the Framework for
M&S:

1. Does the model accurately represent the source system? (modeling relation:
model vs. source system)

2. Does the model accommodate the experimental frame? (modeling relation: model
vs. experimental frame)

3. Is the simulator correct? (simulation relation: model vs. simulator)

So, studying how these questions could be answered in the scope of MAS simulations,
the main goal of the next section is to extract and discuss some important issues which
represent relevant directions for future research within the MAS community.
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1.6 Studying MAS Simulations Using the Framework for
M&S

1.6.1 Does the Model Accurately Represent the Source System?

Identifying the Nature of the Source System

One can easily see that the issues related to the study of the modeling relation (validity)
strongly depend on the source system being actual or theoretical. Indeed, in the case where
the source system is purely theoretical, structural validity is a given property since the model
does represent the actual state transitions of the system: They do not exist elsewhere.

On the contrary, if the source system is actual, then the modeling should be done with
great care according to the behavior of the source system in order to, at least, achieve
replicative validity. For instance, in a DAI platform that simulates the environment as a
network, like in the DVMT experiment, the behavior of the simulated network has to match
with real-world conditions (messaging time, resource access time, node failure, etc.) to some
extent to be valid. So, doing a simulated MAS, one has to clearly state the nature of the
source system which is considered: Actual or theoretical.

One could argue that it could be subtle to decide if a source system is actual or theoreti-
cal, which is true. For instance, although ABSS are inspired by real-world human societies,
the level of abstraction used is sometimes so high that the model is considered as purely
theoretical, while being inspired by real-world dynamics (e.g., SugarScape [Epstein and Ax-
tell, 1996]). Validation issues related with an actual vs. theoretical perspective are discussed
in papers such as [Marietto et al., 2004; Boero and Squazzoni, 2005] where continuum clas-
sifications of ABSS models are proposed according to different goals, levels of abstraction,
and empirical data availability and gathering. The former proposes a general layered clas-
sification of paradigmatic models in ABSS with respect to their targets. The latter gives a
focused discussion on related methodological issues and proposes a model maker perspective
taxonomy of ABSS models (from case-based models to theoretical abstractions), suggesting
various validation strategies according to the characteristics of the empirical target matter.
So, by characterizing and layering the level of abstraction of ABSS models, these approaches
help to decide how the modeling should be validated and such approaches could be useful
in other domains.

Nonetheless, defining the level of abstraction of a model is a subjective task to some extent,
and it would probably be possible to define hundreds of model classes if all application
domains would be considered at once. In the scope of this chapter, we need a more general
criterion to decide if a source system should be rather stated as actual or theoretical. In this
respect, it is important to understand that such a criterion should not rely on the level of
abstraction which is used in the modeling. And, in fact, it is possible to solve this problem in
a general way with respect to the existence of the behavior database. Indeed, if a behavior
database could be established, then the results could be checked according to it, thus the
source system has to be considered as actual, whatever the level of abstraction.

Paradoxically, this also holds when it is not possible to establish the behavior database
before the experiment. For instance, a large number of DAI operational systems, such as
DVMT, are first design using simulation models before being deployed in real-world com-
putational structures (when they finally are). Therefore, no behavior database is available a
priori. However, if the system could be deployed, a behavior database could be established
and used to check replicative validity for the model. So, deciding if a source system is the-
oretical or actual, one has to check if it could be possible to establish a behavior database
for the system. If it is not the case, the source system is theoretical.
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Different Modules, Different Issues

Still, the previous analysis is not complete and should go further: In the scope of MAS,
raising the question about the nature of the source system, it is important to make a
distinction between the behavior module and the environment module. Indeed, it is possible
to define a system with theoretical behaviors embedded in a very realistic environment. So,
it is possible to distinguish between four situations as illustrated in Figure 1.15.

FIGURE 1.15 Simulation and MAS with respect to the source systems of the behavior and environment
modules.

Each situation requires a different approach for validating the modeling: From fully theo-
retical systems for which structural validity is always true to fully actual systems for which
both the behavior module and the environment module have to validated (at least with
respect to replicative validity) according to the behavior of their targeted source systems.
Thus each situation raises different issues when considering the modeling validation. Let us
now discuss some of these issues according to the classification proposed in 1.15.

Environment Module Issues: The Need for Virtual Reality

From a validation point of view, the simplest case is to have a fully theoretical model. For
instance, in [Beurier et al., 2006], a morphogenesis model for multi-agent embryogeny is
proposed. Although this model is inspired by real biological processes, the purpose of both
the behavior and environment modules is not to mimic any real system at all, but only to
define a system which is able to produce emergent phenomena having interesting properties
such as self-organization and the like. Therefore, there is no need to check the validity of
the model with respect to the source system: The model is the source system itself, and
therefore structurally valid. As we will see later on, that does not mean that the overall
modeling could be directly considered as correct, but it clearly remains the less problematic
case.
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Next in difficulty are models where theoretical behaviors operate in an actual environ-
ment, namely in virtual reality (VR). For instance, in the Sims’s work [Sims, 1994], virtual
creatures evolve in a 3D world. As the Sims’s goal is to study the evolution of the vir-
tual creatures in a realistic world, the environment model embeds complex dynamics such
as gravity, collisions, friction and so on. In such a case, structural validity is true for the
behavior module as the agents are purely virtual (i.e. the source system of the behavior
module is theoretical), while the model of the environment has to be validated according to
real world dynamics (i.e. the source system of the environment module is actual). There-
fore, from a validation point of view, the environment module is more important than the
behavior module considering Simulated MAS applications that use VR. For instance, de-
signing the agents AI in realistic video games, it is crucial that, like for the virtual creatures
of [Sims, 1994], “the environment restricts the actions to physically plausible behaviors”:
Observing and studying the behavior of the agents is not relevant if the modeling of the
environment is not valid.

If having a realistic model of the environment is a strong requirement in the scope of
VR-based applications, it is very interesting to see that the need for realism has also been
pointed out as a primary concern in the DAI field relatively early, in the late eighties. For
instance, studying teamwork and coordination of fire fighting units, a primary goal of the
Phoenix testbed was to simulate an environment as realistic as possible∗ [Cohen et al.,
1989]:

“Our position is that most AI systems have been built for trivial environments
which offer few constraints on their design and, thus, few opportunities to learn
how environments constrain and inform system design. To afford ourselves this
opportunity, we began the Phoenix project by designing a real-time, spatially
distributed, multi-agent, dynamic, ongoing, unpredictable environment.”

Later, during the DAI testbeds explosion of the nineties, Hanks revealed the “danger of
experimenting in the small” in [Hanks et al., 1993]. Hanks’s point was that DAI testbeds
such as the TileWorld do not really fulfill their objectives, i.e. making progress in both the
engineering and the understanding of (efficient) DAI systems, because most of the time they
consider small, controlled, and deterministic world:

“The ultimate danger of experimentation in the small is that it entices us
into solving problems that we understand rather than ones that are interesting.
At best it gives the mistaken impression that we are making progress toward our
real goal. At worst, over time it confounds us to the point that we believe that
our real goal is the solution of the small, controlled problems.”

Today, it is clear that experimentation in the small is still a reality, not only in the
DAI field. Of course, from a pragmatic point of view, we always have to experiment in the
small to some extent: We just cannot simulate all the details of reality and should focus on
the aspects of the environment which are the most relevant according to the experiment
objectives. However, one has to bear in mind that, with respect to the experiment objectives,
the modeling of the environment could be crucial when evaluating the appropriateness of the
overall modeling. In this respect, one major challenge for DAI researches in the years to come

∗Studying forest fires management in the Yellowstone National Park, Phoenix defined a highly dynamic
environment thanks to a complex simulation integrating several realistic parameters such as weather
conditions, physical features of the park, and burn rates of different land types.
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is to move from theoretical environments to actual ones: Putting DAI systems into VR, and
thus experimenting in the large. Such a point of view also nicely bridges the gap between
concerns from Artificial Life and DAI, highlighting the importance of the environment
module for both [Luck and Aylett, 2000]. Considering such an issue, the RoboCup [Kitano
et al., 1997] is a really interesting step in the history of DAI testbeds because it represents a
good deal between realism and DAI testing. Additionally, one can find in this book a chapter
dealing with the fundamental role of the environment for software-in-the-loop simulations
[Helleboogh et al., 2008].

Behavior Module Issues: Toward the Participatory Design of
Simulation

Although checking the validity of an actual environment module could be a hard and time
consuming task, the general approach itself is relatively straightforward, because of our
everyday life experience of the causality principle. Indeed, as we are living inside this real
environment, we can directly observe it so that we are able to deeply analyze its functioning.
So it is easy (relatively of course) to see that an environment module does not agree with
real world dynamics, thanks to our own experience. Objects are supposed to be under the
influence of the gravity force for instance. Comparatively, it is much more difficult to decide
about the appropriateness of the behavior module when facing the modeling of real-world
behaviors.

In fact, considering the modeling of actual behaviors, we have to distinguish between
two different cases: (1) behaviors that refer to real-world computational structures (robots,
software agents, etc.) and (2) behaviors of real-world living entities (insects, animals or
human).

In the first case, checking the validity of the behavior module is not more difficult than for
the environment because we deeply know the real structure of the related behaviors as we
created them. For instance specifying the behavior module of a real robot simply consists
in modeling how the behavior program of the robot runs on some concrete hardware in real
conditions (software-in-the-loop). The same goes for an e-commerce agent as well.

However, when it comes to the modeling of living entities, we do not have such informa-
tion. In contrast with the environment, we cannot observe the internal mechanisms that
effectively conduct living entities’ abilities to make decisions: A living creature’s behavior
is a black box whose internal mechanisms could be only modeled using very high level
abstractions.

Consequently, it could be difficult to decide about the validity of a behavior module with
respect to the experiment objectives as we are, once again, always experimenting in the
small to some extent: Validating a behavior module is a highly subjective task in such
cases. Moreover, evaluating a human-like behavior module could be by a huge order of
magnitude more problematic than one representing an ant-like behavior. It is obviously a
reason why there is a growing trend toward a participatory design of simulation: We need
to “put the human in the loop”.

In [Drogoul et al., 2002], Drogoul et al. highlight the huge gap which usually exists between
the behaviors of the domain model (the behavior module) and the computational structures
which are finally used to implement them:

“This means that the resulting ’computational agents’ (if we can still call
them this way) do not possess any of the properties generally assigned to the
agents used in MAS or DAI: they do not have any structural nor decisional
autonomy, are not proactive, and cannot, for instance, modify their knowledge
and behaviors through learning or adaptation.”
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The authors thus proposed a MABS methodological process that more concretely involves
real stakeholders in the modeling activity, thus advocating the idea of the participatory
design of simulations. Agent-Based Participatory Simulations could be considered as a more
strong merging between MAS and Role Playing Game (RPG) [Guyot and Honiden, 2006].
RPG was used in [Barreteau et al., 2001] to work on both the design and the validation of
social MABS models. Still, in such works, the participants of the RPG do not directly control
an agent of the simulation and the agent’s behaviors are still encoded as computational
structures. So, the main idea of agent-based participatory simulations is to have real humans
playing the role and taking control of simulated agents to design and then refine the behavior
module through an iterative modeling process (with steps with or without real human
agents) [Nguyen-Duc and Drogoul, 2007; Guyot and Honiden, 2006]. The main advantage is
that, as all the events could be recorded, the behavior of the participants could be analyzed
in details during and, more importantly, after the simulation runs using the trace of the
simulation execution. This helps to understand why and how the participants make decisions
with respect to the information they gather during the simulation. So, the participatory
design of simulation helps for the modeling of more accurate artificial behaviors, thanks to
the refining of the perception/deliberation/action processes which is done at each iteration
of the modeling loop proposed by this approach.

Although motivations for the design participatory simulation are numerous, in the scope
of this chapter, we can summarize the major idea of such approaches as follows. Modeling
the behavior of a real living entity is hard and structural validity could not be an objective
at present time considering the behavior module. We need high level abstractions. Build-
ing these abstractions, rather than trying to model existing behaviors from scratch using
complex deliberation models, and thus searching for an unreachable structural validity, we
should focus on studying what we can observe and analyze from real living entities: The
actions they produce with respect to their perceptions. In other words, rather than focus-
ing on the structural aspect of the behavior module, we should first focus on its ability to
achieve replicative validity, thus relating perceptions with actions, i.e. inputs with outputs.

If the relevance of participatory simulations is obvious considering social simulations, it
could also be very interesting to use a similar approach for the modeling of non human
species. The interest of the idea still holds: It could help for the design of the behavior of
artificial entities as it is of course possible for a human to play the role of a predator agent for
instance. Studying what makes a human decide what are the relevant perceptions/actions
may significantly help for refining both the behavior module (modeling deliberation) and
the environment module (adding perceptions/actions).

Merging Participatory Design and VR: A Promising Future for MABS

In the previous sections, we have discussed only few issues which are related to the study
of the modeling relation in SMAS. However we have highlighted two very interesting tracks
of research, each of which being related to either the environment module or the behavior
module: That is respectively VR and the participatory design of simulation. In this respect,
it is worth noting that very recent works integrate both in a very innovative and unexpected
manner.

In the pioneer work proposed in [Ishida et al., 2007], Ishida introduces the notion of
augmented experiment, in the scope of real-world experiments on disaster evacuation. The
idea of a multi-agent-based augmented experiment is to do real-world experiments, with real-
world subjects evolving in an augmented reality: That is, in a real-world environment where
actions of simulated entities, evolving in a corresponding VR, could be perceived by real-
world subjects thanks to the use of suitable sensor devices. In this perspective, the related
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design process of the experiment is particularly interesting as it involves a participatory
design loop for modeling VR, which is in turn used to do augmented experiments. Doing
so, such a work establishes a link between reality and VR as well as between humans and
virtual entities.

We are at the frontier of what we can do with our technologies today, but augmented
experiments raises a number of technical problems [Ishida et al., 2007]. However, this is
obviously a forerunner example of how we could finally experiment in the large in a near
future. In such a perspective, VR and participatory simulation are key concepts.

1.6.2 Does the Model Accommodate the Experimental Frame?

MABS are Supposed to Model MAS

One could think that considering a theoretical model implies that the overall modeling
could be directly validated. Especially, as discussed by Troitzsch in the scope of ABSS, a
simulation program can be seen as a full model of a theory as it can be considered as a
structuralist reconstruction of this theory as discussed [Troitzsch, 2004].

However, beyond this legitimate consideration, it is also crucial to not forget that the
modeling relation is tripartite, implying that the source system and the model should always
be considered in the scope of a particular experimental frame, which defines modeling
constraints both explicitly and implicitly. Therefore these constraints must be taken into
account in the validation process, whatever the nature of the source system. Notably, this
is also true for fictitious worlds because they do also define environmental laws that impose
consistency and coherence, as does the real world [Valckenaers et al., 2007]. For instance,
if a theoretical source system is supposed to embed usual physical laws, then the modeling
should not define state transitions which contradict these laws: It is not a valid modeling
otherwise as it is an implicit constraint of the experimental frame.

So, as pointed out by Zeigler, it is crucial for the validity of a model that it at least co-
herently accommodates the experimental frame, thus verifying the accommodation relation
[Zeigler et al., 2000]. Considering this relation in the scope of MAS is more challenging that
it seems to be at first sight.

Verifying the accommodation relation, it is obvious that both the behavior module and
the environment module must follow some modeling guidelines so that they do not integrate
state transitions contradicting the experimental frame. For instance, it is obvious that an
agent must not be able to perform an action that makes it go through a wall. Therefore,
there is not really a need to put forward the importance of such concerns here.

Nonetheless, all MABS rely on an implicit, but strong, hypothesis: They use MAS as mod-
eling paradigm. As such, their modeling should accommodate the properties of the agent
paradigm, whatever the objective of the simulation study. Verifying this particular accom-
modation is related to the study of what we define as paradigmatic validity/coherency∗, i.e.
the validity of the model with respect to the multi-agent paradigm itself. In the following
section, we only focus on two consequences underlying the consideration of such a level of
validity.

∗The word validity is intentionally used to make a parallel between paradigmatic validity and the other
forms of validity defined in the Framework for M&S.
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Modeling Simultaneous Actions and the Autonomy Feature

Firstly, that means we should be able to represent simultaneous actions as agents are sup-
posed to act in a concurrent manner on the environment. As Ferber has highlighted, imple-
menting simultaneity with usual formalisms is not trivial [Ferber, 1999].

Secondly, one has to bear in mind that agents are supposed to be autonomous entities.
As pointed out in [Michel et al., 2004], it is easy to model systems wherein agents are finally
not autonomous, since some of their behaviors are directly controlled by other agents.

Without going into the details of the problems which are related to each case, it is
interesting to see that the Influence/Reaction model has been considered as a solution for
both. Indeed, the Influence/Reaction model [Ferber and Müller, 1996] relies on modeling
the agent actions as influences that do not modify the environment (and the other agents as
well), but which are treated as a whole to compute the reaction of the environment to these
influences, and thus the next system state. So, it is possible to easily model simultaneous
actions by combining the influences to compute the actual result on the environment. Works
such as [Helleboogh et al., 2007; Michel, 2007; Weyns and Holvoet, 2004; Dàvila and Tucci,
2000] show the interest of such an approach for modeling simultaneous actions in different
contexts. Moreover, as the agents do not directly modify the others’ internal variables, it is
easy to check that the autonomy feature is taken into account [Michel et al., 2004].

Toward Paradigmatic Validity: The Need of Linking the Micro and
Macro Levels

In the previous section, we discussed the opportunity of using the Influence/Reaction model
for simulating MAS. From a more general point of view, this shows that we need approaches
and formalisms specifically dedicated to the ABM approach in order to accommodate the
experimental frame. All this is about studying issues related to paradigmatic validity.

Considering this study, one difficulty relies on the fact that MAS define at least two levels
of dynamics: the micro level and the macro level. Most approaches only consider the micro
level specifications and do not evaluate their impact on the macro level dynamics (e.g., the
possibility of representing simultaneous actions for instance). So, most of the time, there is
a discrepancy between the system we want to model (i.e. the source system) and the model
we finally produced. In this respect, [David et al., 2002] shows the interest of specifying
both the micro and macro levels for ABM. Notably, [David et al., 2002] proposes modeling
specifications at different levels of granularity: atomic agentified entities (AE) are specified
at the micro level, and then aggregates of AEs (macro-AE) are specified at different levels
of aggregation (first order macro level, second order, and so on). The Influence/Reaction
model also makes a difference between the micro level (influences) and the macro level (the
reaction of the environment to the influences) within the modeling.

Nonetheless, it is clear that many efforts have still to be done in such directions. One
major challenge for ABM approaches is indeed to reduce the gap between what we are
supposed to model (i.e. MAS) and the modeling abstractions and formalisms we use to
do it. In the scope of paradigmatic validity, this is a necessary requirement if we want
to have a clear understanding of the models we build, knowing they are becoming more
complex everyday. In this perspective, the problem is not only to represent simultaneous
actions or autonomy, but also to be able to express complex concepts such as stigmergy,
self-organization, emergence and the like, in the model specifications. To this end, making
an explicit link between micro level and macro level specifications is definitively an avenue
for future research. As we will see now, such considerations also impact the study of the
simulation relation.
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1.6.3 Is the Simulator Correct?

We now switch our focus from the modeling relation to the simulation relation, that is, to
the study of concerns related to the simulator correctness.

A New Day, a New Simulator

From a MAS perspective, it possible to classify MAS simulators according to three categories
according to their capability and focus:

1. limited to a single class of model: One shot;
2. able to accept a whole class of models related to a particular domain: Domain

related (e.g., Ecology: Cormas [Bousquet et al., 1998], Echo [Hraber et al., 1997]);
3. designed for implementing MAS simulations using a particular agent software

architecture, independently of a particular domain: Generic (e.g., Swarm [Mi-
nar et al., 1996], MadKit [Gutknecht et al., 2001], Jason [Bordini, 2008], SeSam
[Klügl, 2008]).

It is worth noting that there are far more One-shot MAS simulators than the two other
kinds. This clearly shows that there still no consensus on the way agent-based systems have
to be modeled and implemented. Indeed, one question is: Why is a new simulator required
almost every time? One could say that it is due to the ability of MAS to address numerous
application domains, each having their own modeling requirements. This is probably true to
some extent. However, another answer is possible if we consider the problems raised in the
previous section: The gap between the MAS paradigm and the modeling tools we used. This
gap does not allow a clear understanding of MAS simulation frameworks. Consequently, it
is not surprising that researchers prefer to define their own simulation tools in order to (1)
fulfill their requirements and (2) control entirely the simulation process.

Having a majority of one shot simulators raises several problems for the community.
Firstly, it severely reduces the possibility of reusing previous works, which is an undisputed
drawback from a software engineering point of view. It is a sure bet to claim that similar
things (agent and environment models, simulation engines, etc.) have been coded hundreds
of times: The community hardly capitalizes experiences. Of course, it also increases the
possibility of facing bugged simulators. So, one major challenge for the community is to
find ways of doing MABS so that we can reuse and capitalize on experiences in a more
efficient manner.

Secondly, it raises the problem of reusing the simulation results themselves. Indeed, the
simulation relation is rarely studied and few MAS works do consider the simulator as a
first order entity of the experiment. Most of the time, the implementation of the model is
considered as a step of the experiment which correctness would be true a priori, which is
obviously a mistake. Moreover, this decreases the confidence we have in published simulation
results. Therefore, not considering the simulation relation is obviously a weak point that
should be addressed in the years to come because it dramatically limits how simulation
experiments can be evaluated: Verifying the simulation relation is not less important than
validating the modeling relation in the simulation process. To emphasize more on that
point, let us now consider a fundamental consequence of this state of affairs: The difficulty
of replicating existing models.

The Fundamental Problem of Replication

In Section 1.4, we have shown that ABM implementations could raise many problems, in
many different ways. So, it is clear that going from model specifications to the implementa-
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tion is not a trivial task in the scope of MAS. Not surprisingly, simulation results are highly
sensitive to the way the model is defined and implemented (see [Merlone et al., 2008] for
a recent and very interesting study of that issue). Works such as [Axelrod, 1997; Lawson
and Park, 2000; Rouchier, 2003; Edmonds and Hales, 2003] also clearly address this issue
by showing all the difficulties we face when trying to replicate published results. Especially,
they show that, since simulation results are usually published without detailing enough the
model and its implementation, replications have a high probability of producing results
which are (very) different from the originals.

This problem is identified as the engineering divergence phenomenon in [Michel et al.,
2004], i.e., the possibility of implementing different simulations, considering a unique model.
Such a problem contradicts at the heart a basic hypothesis of the simulation relation of the
Framework for M&S : A model should be defined so that the produced results do not depend
on how it is implemented (cf. Section 1.5.6). In the previous section we claim that there is a
gap between the MAS paradigm and the modeling tools/formalisms we used. We can make
a similar statement here: There is a gap between the agent-based models which are defined
and the computational structures we used to implement them. In fact, the complexity of the
implementation, which is dramatically real, is usually simply bypassed when agent-based
models are designed.

The scheduling module is particularly neglected during the modeling phase because it is
often considered as only related to the implementation. This is a mistake: The scheduling
module is fundamentally part of the modeling. Indeed, if this part is fuzzily or not defined
at all, thus the model specifications are ambiguous and could be implemented following
different interpretations, which in turn may lead to huge differences in the simulation results.

So, as highlighted by Axelrod in the scope of ABSS [Axelrod, 1997], one major challenge
for the community is to find ways of sharing modeling specifications in an efficient way,
enabling the replication, and thus the study, of published experiments. To this end, it is
clear that making an explicit link between computational structures and models is the key.
In this respect, the Swarm platform design is of great interest [Minar et al., 1996]. Indeed,
establishing a Swarm-based model explicitly relies on defining, not only the behavior and
the environment modules, but also the order in which they are finally executed by the
simulator. In other words, a swarm-based model is directly related to its implementation,
so that it is easy to replicate it.

Generalizing such an approach is crucial for the years to come: Enabling replication
is what the community should go for. To this end, we claim that two things should be
placed on the agenda of multi-agent simulationists: (1) Promoting the reuse of existing
works as far as possible and (2) defining unambiguous models. The former will enable the
community to go toward the elaboration of a real simulator software engineering process,
ultimately making the reuse of existing works possible. The latter will help to really study
the simulation relation in ABM by making an explicit distinction between the model and its
implementation, which in turn will help to better understand the true dynamics of MAS as
they will be explicitly modeled. Only such approaches will enable us to ultimately answer
the fundamental question of this section: Is the Simulator Correct?
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1.7 Conclusion

MAS and simulation are two research fields having a close relationship. Studying the inter-
section between these two fields, it is important to keep in mind that simulation is not only
a tool, but a real scientific discipline which already defines some design guidelines. This
is the reason why we have argued on the interest of considering MAS simulation works in
the scope of a pure M&S perspective such as Zeigler’s. Indeed, the Framework for M&S
permitted us to study MAS simulation works according to the modeling and simulation
relations, which are essential for any M&S experiment.

FIGURE 1.16 Defining MAS simulation issues using the Framework for M&S.

Figure 1.16 illustrates the different challenges we have highlighted by studying MAS
simulation according to Zeigler’s Framework for M&S.

First of all, we have seen that VR is a concept of primary importance with respect to the
environment module. Experimentation in the small has been useful for exploring some char-
acteristics of the MAS paradigm in the past two decades. Today, the available technologies
urge us to make the step toward VR-based models of the world to prove the usefulness of the
existing DAI architectures and develop new ones, more adapted to real-world applications.
Additionally, considering software-in-the-loop approaches, VR is the only way to go: With-
out an accurate model of the deployment environment, the system cannot be developed in
an efficient way. The reader will find more about the crucial importance of the modeling of
the environment in this book [Helleboogh et al., 2008]. For the MAS community, VR is the
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key for experimenting in the large.
About the behavior module, we have emphasized the difficulty of building representative

models of real living entity behaviors, whether they are human or animal beings. Indeed,
contrary to software agents (e.g., robots), the real structure of the decision process cannot be
observed with our technologies today, so that we use theoretical approaches to model them.
Therefore we have to find ways to reduce, as far as possible, the inescapable gap which
exists between what we want to model (i.e., real decision processes) and what we could
model using the theories and computational modeling abstractions available today. In this
respect, we have discussed the relevance of the participatory design of simulation. There
is a major idea in this trend of research: Rather than model real behaviors so that they
somehow fit our computational structures, we should make the computational structures
evolve so that they can reflect how a real living entity is motivated to act (which perceptions
for which actions). In other words, we should not directly use computational structures to
model real behaviors, but use real behaviors to model new computational structures, which
will in turn be more suited to our needs. Doing this shift of perspective is a major challenge
for the MAS community, considering behavioral modeling.

The two previous directions of research represent paths toward the accommodation of
future MAS models with the MAS experimental frame. Indeed, they force us to make
progress toward simulation formalisms that take into account the specificities and features
of the MAS paradigm, which in turn enables the study of issues related with paradigmatic
validity. For instance, the Influence/Reaction formalism permits one to model MAS basic
concepts such as action simultaneity and autonomy. In a more general perspective, a major
feature of ABM relies on the fact that it requires at least two fundamental levels of model-
ing: The micro (agent) and the macro (multi-agent) levels. Most of the approaches do only
consider the modeling of the micro level entities and do not clearly specify how their dy-
namics should be composed, leaving the developer free to choose during the implementation
phase. Providing abstractions for the macro level dynamics, such as simultaneous actions,
is a first step toward a concrete linking between these two fundamental levels.

Ultimately, studying the simulation relation, we have emphasized on a crucial issue for the
MAS community: Capitalizing on passed experiences. This is necessary if we want to speed
up the research on MAS simulation in general, whatever the objectives. In this respect,
it is obvious that the software engineering perspective is neglected by most of the MAS
simulation works as the emphasis is always put on modeling issues. The MAS community
has to find the way of concretely sharing implementation experiences, promoting reusability
as a must. Without such concerns in mind, reinventing the wheel will continue to be a reality
for the community. More than that, it is the only way through which we will be able to
really do verification on MAS simulation experiments as it will ease replication, which is
fundamental from a M&S perspective. Trusting simulator implementations a priori is not a
viable option.
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F. Klügl. SeSAm: Visual programming and participatory simulation for agent-based
models. In Uhrmacher and Weyns [2008], chapter 16.
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2.1 Simulation in the Sciences of Complex Systems

As social and economic systems are among the most complex systems in our world, the
chapter will mainly deal with applications of simulation in general and agent-based simula-
tion in particular in economics and the social sciences. Thus it will start with a discussion
of the predecessors and origins of agent-based simulation mainly, but not only, in these
sciences from the time when the first simulation models were created that used, or rather
should have used, multi-agent systems. If one accepts that multi-agent systems have object-
oriented languages as their prerequisites, one has also to accept that multi-agent systems
proper could only be implemented after the early 1980s, but much earlier, namely in the
1960s the first simulations, for instance in political science, were built that can be described
as forerunners of multi-agent systems.

At the same time, ingredients were developed that nowadays are a defining part of the
agents in multi-agent systems, such as fact and rule bases [Abelson and Carroll, 1965]
in which early “agents” stored information that they communicated among each other,
although they lacked the defining feature of autonomy. But for a long time, simulation
approaches prevailed that did not address the fact that in social and economic systems there
are actors who are endowed with a very high degree of autonomy and with the capability
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to deliberate. Although not for all purposes of the sciences dealing with these systems,
autonomy and deliberation are necessary ingredients of theory and models, one would not
content oneself with humans being modeled as deterministic or stochastic automata but
prefer models that reflect some typically human capability. And one would not content
oneself with models that deal only with the macro level of a society. As early as in the
nineteenth century, Emile Durckheim [Durckheim, 1895] proposed “sociological phenomena
[that] penetrate into us by force or at the very least by bearing down more or less heavily
upon us”, thus anticipating what Coleman [Coleman, 1990, pg. 10] introduced as the well-
known “Coleman boat” (see Figure 2.1), a representation describing the process of human
actions (co-) determined by their social environment and at the same time changing this
environment, such that social change is not just a change of the macro state of a society (or
organization, or group) but at the same time always a change in the micro state of most or
all of the individual beings.

macro cause �

�
�

�
�

�
��

downward causation

micro cause
�

micro effect

upward causation

�
�

�
�

�
��

macro effect

FIGURE 2.1 The Coleman boat describing downward and upward causation and the link between the
micro and the macro level.

Coleman’s idea of upward and downward causation coincides with the concept of exactly
two societal levels (micro and macro) — which for many socio-economic models might seem
too simple (cf. [Tilly, August 1997]), which makes it necessary to elaborate on the concept
of levels and to discuss alternatives.

Thus a concept of levels will always be a part of any modeling of complex systems (but
see [Ryan, 2006]). With “level” a set of things of the same “natural kind” [Bunge, 1979] is
understood, and two subsequent levels Li < Lj are sets of things for which the following
holds:

Li < Lj =df (∀ x )[x ∈ Lj ⇒ (∃ y)(y ∈ Li ∧ y ∈ CLj
(x ))] (2.1)

where CLi (x ) means the composition of system x . In plain words this means that the micro
level Li consists of entities which we call y , and these compose the entities x of the macro
level Lj .

Again this refers to Bunge’s definition in [Bunge, 1979] according to which a system σ
is defined as a triple consisting of its composition CLi

(σ), its environment ELi
(σ) and its

structure S(σ), where both CLi
(σ) and ELi

(σ) are subsets of the same set of things belonging
to the same “natural kind” (CLi (σ), ELi (σ) ⊆ Li) and where S(σ) is a set of relations, among
them “bonding relations”, defined on Li (“bonding relations” are those due to which one
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element y1 ∈ Li acts on another element y2 ∈ Lj — y1 � y2 — in a way that “it modifies
the latter’s behavior line, or trajectory or history” [Bunge, 1979, pg. 6]). S(σ), in turn, is a
subset of the set of all relations that can be defined on Li , where different kinds of systems
may have different structures (see below 2.3 on p. 65).

Using Li and Lj as abbreviations for two natural kinds, for instance Li the set of all human
beings and Lj the set of all groups of human beings, equation 2.1 can be interpreted as
follows: “the micro level Li precedes the macro level Lj ,” which means by definition that for
every group on this macro level there exist individuals belonging to the micro level, and these
are components of their group. Ryan [Ryan, 2006] debunks the idea of levels and recommends
replacing them with scopes and resolutions although he concedes that Bunge’s concept of
levels is sounder than the usual talk of levels, but does not explain why he finds this concept
“still not explanatory”. The idea of resolutions instead of levels nevertheless allows for a
more appropriate modeling than the one with levels, as unlike levels, resolutions are not
defined as sets of entities of the same natural kind, but as spatial or temporal distinctions,
such that they can encompass entities belonging to different natural kinds. On the other
hand, Ryan’s concept of scope and resolution is perhaps less appropriate for socio-economic
systems, as will be seen later in this chapter. For now it might be sufficient to mention that
Ryan, when he addresses socio-economic phenomena, restricts himself to interesting, but not
very complex models such as the tragedy of the commons and the prisoners’ dilemma [Ryan,
2006, pg. 17], where he distinguishes between “local and global structure”, but with only
two levels, resolutions, scopes or scales (to add still another related concept also mentioned
by Ryan) it seems not really necessary to make a difference between these four concepts.
Only when we have to deal with a deeper nesting does difference seem to matter.

Whatever concept will be agreed upon among complexity researchers, reducing the anal-
ysis of complex systems to only one level (or scope or resolution) will never be satisfactory.
This is why this chapter touches the so-called system dynamics approach to analyzing com-
plex systems only superficially — although the system dynamics community also claims to
deal with complex systems (see, for instance, [Schwaninger, 2006]), but their interpretation
of “complex system” is obviously different from the one adopted by the multi-agent sys-
tems community, as their understanding of complexity refers to the interactions between
the attributes or variables of the one and only object of a system dynamics model.

The role simulation plays in the context of complex systems (as these are viewed from
the perspective of the multi-agent systems community) can be described as the role of a
method that helps to construct “would-be worlds” [Casti, 1996] and artificial systems with
the help of which the behavior of real systems can be understood better. When Casti states
that and “how simulation is changing the frontiers of science” he obviously has in mind
that simulation is a tool to develop “a proper theory of complex systems that will be the
capstone to this transition from the material to the informational.” [Casti, 1996, pg. 215] His
idea that “the components of almost all complex systems” are “a medium-sized number of
intelligent, adaptive agents interacting on the basis of local information” necessitates a new
formalism that currently cannot be provided by mathematics. Mathematics is capable of
dealing with a large number of not very intelligent agents interacting on the basis of global
information — as the synergetics approach [Haken, 1978; Weidlich and Haag, 1983] and
sociophysics [Helbing, 1994a,b] have impressively shown. But in the case of medium-sized
numbers of agents, the approximations and simplifications used to find a closed solution
(for instance, of the master equation) will not always be appropriate.

Although Casti’s “intelligent, adaptive agents” might also move in a “social field” [Lewin,
1951] and be driven by “social forces” [Helbing and Johansson, 2007], both concepts cannot
capture the cognitive abilities of human beings, as these, unlike particles in physics, move
autonomously in a social field and can evade a social force. Thus, for instance in a situa-

© 2009 by Taylor and Francis Group, LLC



56 Multi-Agent Systems: Simulation and Applications

tion of pedestrians in a shopping center (as it is modeled in [Helbing and Johansson, 2007,
pg. 631]) humans decide autonomously whether they obey the “social force” exerted on
them by the crowd, or the “social force” exerted by their children or by the shop windows.
Admittedly, often “people are confronted with standard situations and react ‘automatically’
rather than taking complicated decisions, e.g., if they have to evade others” [Helbing and
Johansson, 2007, pg. 625], but more often than not they do make complicated decisions. An-
other assumption that will not always hold is “the vectorial additivity of the separate force
terms reflecting different environmental influences” — again, this assumption is doubtful
and might be replaced with the assumption that only the strongest “force” is selectively
perceived and obeyed by a pedestrian (to keep to the example). Again, Casti’s “intelligent,
adaptive agents” (the term not only refers to human beings, but to other living things as
well) are different from physical particles in so far as they are selective. And this results
in the consequence that emergence in complex physical systems (such as lasers) is quite
different from emergence in living and, particularly, cognitive systems. This describes the
role of simulation in the context of the complex systems in Casti’s sense as quite different
from the role it plays in general complex systems.

Definitions of “complexity” and “complex system” are manifold and they refer to different
aspects of what these terms might mean. For the purpose given here, the following charac-
teristics may suffice: Complexity deals with a dynamic network of many agents acting and
reacting to what other agents are doing. The number of different kinds of interactions may
be arbitrarily high (not restricted to the forces of physics), and the state space of agents
may have a large number of dimensions.

2.2 Predecessors and Alternatives

This section deals with the similarities and differences between agent-based simulation in
multi-agent systems and all the earlier approaches to simulation: continuous and discrete,
event-oriented and oriented at equidistant time steps, microsimulation and system dynam-
ics, cellular automata, genetic algorithms and learning algorithms. Many of these earlier
approaches were developed for applications in biology, ecology, production planning and
other management issues as well as in economics and the social sciences, and at the same
time physicists exported some of their mathematical and computer based methods to dis-
ciplines such as economics and sociology, forming interdisciplinary approaches nowadays
known as econophysics and sociophysics, and — as already discussed in Section 2.1 — al-
though they call their simulations often agent-based, these agents are often not much more
than interacting particles whose interactions are based on “forces” that are described in the
same manner as gravitational or electrostatic and electromagnetic forces. Agent-based com-
putational demography is a child of both classical microsimulation and multi-agent systems,
and the respective ancestry also holds true for many other interdisciplinary approaches, such
as systems biology, evolutionary economics and evolutionary game theory, to name just a
few. Socionics is another field where multi-agent systems, simulation and classical theory
building methodologies of an empirical science come together.

System Dynamics, already mentioned before, also deals with complex systems, but as it
is a one-of-a-kind method of modeling systems in so far as it models exactly one object with
a potentially large number of attributes (state variables) interacting via a large number
of equations (mostly difference or differential equations), this approach has very little to
do with multi-agent systems — but a system dynamics model can serve as one agent in a
multi-agent system, usually describing part of the environment of many interacting agents
[Möhring and Troitzsch, 2001].
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2.2.1 Simulation of Voting Behavior in the Early Sixties

Among the early forerunners of multi-agent systems in the social sciences at least two can
be named where processes of voter attitude changes are modeled and simulated. Although
the poor computer languages of the late 1950s and early 1960s did not allow for agents in
the sense of our days, any re-implementation would nowadays be a multi-agent system with
several classes of agents (representing voters, candidates, media channels, as in [Abelson
and Bernstein, 1963]) or in the Simulmatics project supporting John F. Kennedy’s election
campaign [Sola Pool and Abelson, 1962] as they dealt with the communications among
citizens, between citizens and candidates as well as between citizens and media channels
and modeled their behavior and actions in a rule-based manner.

This is especially true for the referendum campaign simulation presented by Abelson and
Bernstein as early as in 1963 [Abelson and Bernstein, 1963]. Their simulated individuals
were exposed to information spread by different communication channels about the topic of
the referendum (fluoridation of drinking water, an issue in the United States at that time),
and they exchanged information among themselves. Abelson and Bernstein defined some 50
rules determining how the individuals dealt with the incoming information. As an example,
rule A1 says that the probability that an individual will be exposed to a particular source of
information in a particular channel is a direct function of this individual’s attraction toward
this channel. To continue, rules A2 and B1 say that the exposure probability to each source
in any channel is also a direct function of the individual’s interest in the issue, and that the
probability that this individual talks to another individual about the issue is direct function
of the former’s interest in the issue. Another rule (B26) says that interest in the issue
increases as a direct function of the number of both conversational and channel exposures;
if there are no exposures, interest decreases. There is a total of 22 rules (or propositions, as
Abelson and Bernstein call them) about the influence of sources in channels and another
27 about the influences the individuals exert on to each other, as well as two additional
rules determining whether an individual goes to the polling station or not and, if it does,
which vote it will cast in the end. The simulation ran over ten or more simulated “weeks”,
and every “week” the simulated individuals were exposed to information from channels and
peers, changed their interest in and their attitudes toward the issue. The information is
coded in terms of “assertions” (which are either pro or con with respect to the fluoridation
issue); individuals keep track of all the assertions they are exposed to and change their
own attitude as a consequence of the evaluation of the sources of the assertions. Several
rules deal with the acceptability of an assertion (ideological match between individual and
source, consistency between the assertion and the individual’s predisposition). Most of these
rules are probabilistic rules (compare rules A1, A2 and B1 mentioned above), many rules,
however, are formulated such as “An assertion is more apt to become accepted by [individual]
i if he has not previously encountered it than if he has previously disagreed with it.” (A8)
It is not entirely clear from the paper how exactly this was formalized (but this “more apt”
is likely to have been formalized with the help of some transition probability).

2.2.2 Dynamic Microsimulation to Predict Demographic Processes

Microsimulation [Orcutt et al., 1961] is another early forerunner of agent-based systems,
as here, too, agents had to be modeled that changed their attributes according to certain
stochastic rules — although up to now most microsimulation models do not include inter-
action between agents (except perhaps for some kind of marriage market), but agent-based
computational demography [Billari and Prskawetz, 2003] makes heavy use of inter-agent
processes, for instance as in some recent papers the propensity to bear children is mod-
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eled as dependent on the perceived attitudes of a friendship network [Aparicio Diaz and
Fent, 2007] or as dependent on the biography of an individual [Leim, 2007] (whereas in
the mainstream microsimulation only the current state of a simulated individual is used for
calculating state changes).

The typical case of dynamic microsimulation uses a large database for initializing agents
and households (the latter form an intermediate level between the individual and the ag-
gregate level) which is simulated on a yearly base. Each member participates in a number
of subprocesses — aging, death, child-bearing, marriage, to name the demographic subpro-
cesses first, changes in educational and employment status, and perhaps other changes (of
income, for instance). Death, child-bearing, marriage and divorce make a reorganization
of households necessary, child-bearing, marriage and divorce change the networks to which
the individuals belong. Thus the microsimulation keeps track of the changing structure of
kinship networks and of the aggregate as a whole. In a way, demographic reproduction in
a wider sense is reduced to biographies [Birg et al., 1991], and the macro level is linked
with the micro level. Usually this link is only unidirectional as there is no feedback from
the macro level to the micro level.

2.2.3 Cellular Automata: Simple Agents Moving on a Topography

Many modern tools for multi-agent simulation use the technique of cellular automata
[Farmer et al., 1984] to give agents an environment with a topography that is sufficiently
similar to the environment the simulated animals [Drogoul and Ferber, 1994; Drogoul et al.,
1995] or humans [Schelling, 1971, 1978] live in, an approach that was extended into a full
grown multi-agent model which reconstructs “social science from the bottom up” [Epstein
and Axtell, 1996]. Other early approaches to reconstructing the emergence of complex sys-
tems used continuous spaces [Doran et al., 1994; Doran and Palmer, 1995], as is also the case
in the ambitious NEW TIES project [Gilbert et al., 2006]. In discussing these bottom-up
approaches — and most simulation approaches to complex systems are of the bottom-up
type — one has to take into account that the bottom-up approach is not always useful, see
the discussion in [Senn, a,b], where the argumentation is that a bottom-up approach that
meticulously mimics the movement of each single molecule would have been misleading to
explain the flow of heat in a gas. But this argumentation neglects that the averaging of the
impulses of molecules could only be successful as all these molecules obeyed the same laws
and were by no means selective with respect to several different forces by which they were
driven — as there was only one force. Biological and social systems underlie the effects of
several forces and are often not only reactive but proactive, have goals, sometimes conflict-
ing, such that the mathematical reduction often proposed by physicists would not lead to
success in cases where the interactions between the micro level entities are manifold.

Whereas the early usage of the concept of a two-dimensional cellular automaton such as
Conway’s game of life [Berlekamp et al., 1982; Gardener, 1970] was restricted to very simple
agents who could just be born and die, other models — such as Schelling’s segregation model
[Schelling, 1971] or Hegselmann’s migration model [Hegselmann, 1998] — allowed their
agents to move around in order to look for cells that made them “happier”. Both Conway’s
and Schelling’s models have been programmed over and over again as demo models in
nearly all simulation toolboxes. Nevertheless, a short discussion of Schelling’s findings may
still be in order: In his model, many, but not all of the cells of the cellular automaton
are occupied by agents which come in exactly two versions, say red and green agents, and
the distribution over the cells is entirely random in the beginning. The agents analyze
their Moore neighborhood and count how many of their neighbors are of the same color. If
this number is above a certain threshold, they are “happy”, otherwise they try to find an
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unoccupied cell where the number of neighbors of the same color is greater and move there.
Usually after several time steps, agents stop moving as all of them are “happy” or cannot
find cells that make them “happier” than they currently are on their cells (the latter is a
rather rare effect). And one finds that in the end the agents are by no means distributed
randomly over the cells, instead clusters have formed, either red or green, and these are
separated by empty stripes. If one compares the capabilities of these agents to one of the
standard agent definitions [Wooldridge and Jennings, 1995] one finds that Schelling’s agents
are autonomous, reactive, perhaps even proactive, but their social ability is rather restricted:
although they interact in a way with their neighbors, this interaction is not mediated by
any kind of language or message passing. These agents have only very simple beliefs (their
perception of the neighboring eight cells) and only one intention, namely to stay in a cell
where the number of neighbors of the same color exceeds an exogenously given threshold.
In spite of the extreme simplicity (which Schelling’s model shares with the game of life), the
model displays some emergent behavior (which is also true for Conway’s game of life with
its gliders, oscillators and other amazingly complicated and long-lived patterns). But these
emergent phenomena are of a relatively simple kind — if one accepts that “temperature
is an emergent property of the motion of atoms” [Gilbert and Troitzsch, 2005, pg. 11],
then, of course, the game-of-life patterns and the ghettos in Schelling’s model are emergent
phenomena as well. Without formalizing the notion of an emergent phenomenon in this
chapter, it can be described as a phenomenon that “requires new categories to describe it
which are not required to describe the the behavior of the underlying components.” [Gilbert
and Troitzsch, 2005, pg. 11] In this sense, the property of gliders and oscillators to be able
to glide or to oscillate obviously is an emergent property, as the ability to move is not a
property of the game-of-life cells at all.

Similar behavior of simulation models can be observed, for instance in MANTA, a model
that simulates the behavior of ants [Drogoul and Ferber, 1994; Drogoul et al., 1995] or
in models simulating insect behavior on continuous surfaces [Calenbuhr and Deneubourg,
1991]. Of course, insect societies can be rather complex systems, but one could argue that
human societies are much more complex, such that simple models do not do justice to the
complexity of human societies.

A next step in doing more justice to human society by modeling them with the help of
cellular automata is, for instance, Hegselmann’s [Hegselmann, 1998] approach to analyzing
social dynamics in the evolution of support networks. His agents can also move on a two-
dimensional grid, but they play a two-person support game with selected neighbors. The
agents in this model have several attributes, mainly a (constant) probability of becoming
needy and the capability to select another cell according to the outcome of past games.
The game they play can be described as follows: both players have a certain probability
of becoming needy, i.e. falling into a river, in the illustrative example. If both are good
swimmers, both move on, if both are bad swimmers, both drown; if only one of the two
players is in need of help the other has to decide whether it helps or not. The payoffs are
M for moving on, D for drowning, S for being saved and H for helping, where S > D
and M > H . Under certain conditions, a propensity to mutually support can be profitable
to both players, such that co-operation can occur. All agents know the “risk class” (the
probability of becoming needy) of all their neighbors (these probabilities are .1, .2, ... .9),
they know the payoffs M , D , S and H , and they can decide whether they rescue needy
neighbors or not. Moreover, they can migrate to other position on the surface; this might
be worthwhile, as there are good and bad “social positions”: the best social position is being
surrounded by four members (von-Neumann neighborhood) belonging to “the best risk class
willing to engage in support relationships with them”, and the worst social position is being
surrounded “by empty cells only or only by those individuals with whom support relations
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are not possible” [Hegselmann, 1998, pg. 51]. Compared to Schelling’s model, much more
deliberation is necessary for the agents to make their decisions, but again there is little
social ability, as there is no communication — agents look at each other and know what
their potential partners’ attributes are like. The outcome of this model is a stable state
in which agents with the smallest probability of becoming needy support each other and
members of the next higher risk class. The former sit in the middle of clusters, surrounded
by members of the next higher risk classes, such that the risk classes form more or less
concentric clusters, at the borders of which one can find the poor guys of the highest risk
class, but these, too, are often involved in stable support relations.

Another approach is the one developed by Bibb Latané and Andrzej Nowak [Latané
and Nowak, 1997; Latané, 1981, 1996; Latané and Nowak, 1994; Nowak and Lewenstein,
1996; Nowak and Latané, 1993]. Their cellular automata are populated by immobile agents,
and these are characterized by mainly two attributes: a binary attitude and a persuasive
strength. According to Latané’s dynamic social impact theory (which he sees as “as a ‘field
theory’ in which individuals are affected not only by their own personal experience, but
by the strength, immediacy and number of their communication partners” [Latané, 1996,
pg. 361], individuals flip their binary attitude when the sum of the products of strength and
immediacy of those people with the opposite attitude outweighs the respective product sum
of the people with the same attitude — immediacy being calculated as the inverse of the
Euclidean distance between persons. The simulation model (SITSIM, programmed by Nigel
Gilbert, can be found at http://ccl.northwestern.edu/netlogo/models/community/
Sitsim and run with NetLogo [Wilensky, 1999]) displays clustering after some time, but
unlike the Schelling and Hegselmann models this effect is not due to migration but to
near-neighbor persuasion: cluster of people of the same attitude are formed around the
proponents of each attitude with the highest persuasive strength (see Figure 2.2).

FIGURE 2.2 Start and final state of a SITSIM run.

Although Latané described his model as “a multi-agent ‘bottom-up’ conception of a com-
plex self-organizing social system”, again the SITSIM agents lack at least some of the char-
acteristics ascribed to agents by Wooldridge and Jennings [Wooldridge and Jennings, 1995].
They are in a way autonomous and reactive, but their proactivity is not very convincing
(at least less than in the Schelling and Hegselmann models), and their social ability is also
deficient (they can persuade and be persuaded, but not by means of message passing but by
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directly looking into each other’s minds, so to speak, or as [Hutchins and Hazlehurst, 1995]
put it, by telepathy). Nevertheless, it is a “bottom-up” conception, much like Epstein’s and
Axtell’s approach at “growing artificial societies” [Epstein and Axtell, 1996] which was a
large step forward in simulating complex systems.

FIGURE 2.3 The memory of an agent in [König et al., 2002]. The chain of arrows shows the yellow
agent’s path, the quadratic frames show the information available at the past six points of time. If the agent
had been a co-ordinator, the memory could have been augmented by information from followers. The blue
ones are other agents, the color of the cells depends on the amount of resources available there.

Their artificial world called sugarscape is populated with agents who make their living on
two complementary types of products (sugar and spice), both of which they need for surviv-
ing, but at individually different proportions. Both products grow on the surface of a cellular
automaton and can be harvested, stored, traded and consumed. In the different versions of
the model reported in [Epstein and Axtell, 1996] and several extensions published by other
authors (see for example [König et al., 2002; Epstein et al., 2006; Flentge et al., 2000, 2001;
Zaft, 2001]), agents are not only autonomous and reactive, but also proactive as they have
goals they try to achieve, and they have some social abilities as they exchange goods and
information. In [König et al., 2002] they explore their environment actively (moving around
satisfies their curiosity) and store information about the cells they saw within their range
of vision, about the resources and other agents in all these cells (see Figure 2.3); part of
this information is forgotten after some time, whereas older information tends to become
invalid after some time as resources may have grown or taken away and agents will not
have stayed in the positions where they had been seen. The agents even form primitively
structured groups whose chieftains collect this information and redistribute it to their tribe,
and in [Flentge et al., 2000, 2001] agents can mark a cell that they currently occupy and
sanction agents trespassing a marked cell — from which a possession norm emerges. The
latter paper also extends the sugarscape concept of tags (which allows some cultural trans-
mission [Epstein and Axtell, 1996, pg. 77] resembling the spread of an infectious disease)
in a way that the poorer agent adopts a tag (meme) of the richer agent whom it meets
in its neighborhood. The two tags (memes) the agents have play a particular role: only
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those having the possession meme mark cells and never trespass marked cells except when
they do not find any exploitable cell in their range of vision, those having both the pos-
session and the sanction meme additionally punish trespassers (taking away some of their
wealth and consuming also some of their own, as a cost of sanctioning). Agent societies in
[Flentge et al., 2001] without the possession meme were less sustainable than those with the
possession meme, and, similarly, in [König et al., 2002] agent societies where chieftains re-
distribute information among their tribes are more sustainable than agent societies without
the exchange of information.

Cultural transmission, absent in Schelling’s and Hegselmann’s segregation and migration
models, seems only to be possible if agents have at least some memory (as in the tags
in [Epstein and Axtell, 1996], the memes in [Flentge et al., 2000, 2001] and the memory
in [König et al., 2002]). Thus cultural transmission necessitates the storage of information
about the environment, i.e. agents must be able to develop models of their environment in
their memories, and they must be able to pass part of these models to other agents. “No
social mind can become appropriately organized except via interaction with the products
of the organization of other minds, and the shared physical environment” [Hutchins and
Hazlehurst, 1995, pg. 160]

One of the oldest models of this kind is the EOS testbed [Doran et al., 1994; Doran
and Palmer, 1995] which reconstructs Upper Paleolithic social change. Its agents have a
comparatively complex internal structure, as they “have a production system in the AI
sense” [Doran et al., 1994, pg. 203] — rule base that works on a social model and a resource
model. The latter stores (as in [König et al., 2002]) information about resources and their
locations whereas the former stores an agent’s belief about itself and other agents. A central
concept of the EOS model is the request for co-operation that one agent can send another
agent when the former is not able to collect a certain resource in reach individually — which
can happen when the cost of exploiting a resource is higher than this agent can afford (the
background is that these resources represent prey animals instead of plants). Co-operation
relations between agents can develop into leader-follower relations (in a more complicated
way than in [König et al., 2002]) when an agents succeeds in recruiting several other agents
which in turn succeed in exploiting the resource.

2.2.4 Discrete Event Simulation

Discrete-event simulation, too, has extended into the field of multi-agent systems, as in
the traditional approach customers could never be modeled as human members of waiting
queues often behave: They would move from one queue to look for another queue that seems
to be served more quickly, or they leave the system before being served at all, they would
negotiate with the server — behavioral features that are difficult to model with classical
toolboxes and call for agent-based models.

One of the first object-oriented discrete-event simulation approaches was DEVS, devel-
oped by Bernhard Zeigler [Zeigler, 1985, 1990] as early as in the 1970s. The DEVS concept
describes atomic models formally as tuples consisting of inputs, internal states, outputs,
two transition functions (one responsible for state changes due to internal events, another
for state changes due to external inputs), an output function and a time advance func-
tion. These atomic models can be coupled into coupled models. These, too, are formally
described as tuples consisting of inputs and outputs, the component models, the coupling
between the latter, and a set of rules which select the component model firing next. From
this formalization it was only a small step to an agent-oriented DEVS, called AgedDEVS
[Uhrmacher, 1996], an extension that adds “internal models” to the standard DEVS models
(for other extensions of DEVS see also the contribution of Jan Himmelspach in this book).
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Some modern toolboxes such as AnyLogic [Ltd] which in its release 6 is announced as
“the first and only dynamic simulation tool that brings together System Dynamics, Process-
centric (AKA Discrete Event), and Agent Based approaches within one modeling language
and one model development environment” take a more informal way of integrating these ap-
proaches. The demos that can be downloaded from the provider’s web site include Schelling’s
model, a sophisticated version of a model similar to Latané’s (“Social Response Dynamics”),
and also a microsimulation model (“Urban Dynamics”) with monthly update which addi-
tionally has a topography which in turn is used to model individual and public transport
and the emission of CO2 in the city of Urupinsk.

Features of discrete event simulation are often used in agent-based models to get rid of
a unified time scale according to which all agents of all kinds have to be updated in every
time step even if nothing happens in and with them. This feature was also used for classical
dynamic microsimulation for the same purpose in the DYNAMOD model [Antcliff, 1993].
Examples of multi-agent models using discrete event features are [Becker et al., 2006; Dubiel
and Tsimhoni, 2005; Riley and Riley, 2003; Troitzsch, 2004; Zaft, 2001].

2.2.5 Similarities and Differences Among These Approaches

All these approaches have more or less different concepts of complexity. Table 2.1 tries to
give a comparison of these approaches with respect to how they handle different aspects
of complexity — as already mentioned above, the number of levels, of agent kinds, the
dimensionality of agents’ state space, the kinds of interactions and the structure of the time
domain.

TABLE 2.1 Overview of different simulation approaches in the social sciences with respect to their
treatment of complexity
Approach Levels Object

classes

State space

of agents

(dimen-

sions)

Interactions Time

System dynamics one one many only between

variables

equidistant

Microsimulation two one few few between

objects (local),

aggregation to

upper level (global)

most often

equidistant

Early agent models two few few both between levels

(global) and

objects (local),

often by

“telepathy”

equidistant

Discrete event one or

few

several few mainly between

objects

event

oriented
Cellular automata two few few local equidistant
Current agent

models

several several many both between levels

(global) and

objects (local),

often by message

passing

most often

equidistant
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Although, as discussed above, the concept of levels is a little problematic it allows for a
first structuring of complexities: From the point of view of the kinds of entities and systems
represented in a model, there is a clear divide between system dynamics and all the rest, as
the former approach only generates “one-of-a-kind” models: the world, an enterprise, any
target system is seen as an undifferentiated whole whose components are hidden or neglected
(which is then compensated by a large number of attributes describing this indivisible whole,
such that the complexity of the target system in terms of its properties is represented by
a complex system of differential or difference equations — note that in the latter case,
the word “system” denotes a concept, not a real-world entity [Bunge, 1979, pg. 52]). All
the other approaches “open the box” in so far as they make a difference between a target
system and its components, where microsimulation and the early forerunners of agent models
usually do not talk about subsystems in the sense that the components of these subsystems
are of the same kind as the components of the embedding system. And this applies to
cellular automata as well, even when they are populated with agents that move around as
in Schelling’s model and in Sugarscape. The discrete event case is a little different as its
models usually consist of entities of very different kinds (customers, server, queues), but
as the reference to compound models above shows, most discrete event simulation models
are “systems of nested systems” [Bunge, 1979, pg. 12], and this especially true for agent-
oriented discrete-event systems (AgedDEVS [Uhrmacher, 1996]). Even if microsimulation
is usually called a two-level approach, the “upper level” is not an object or agent itself
as it is only used to count or average or do other statistics on the elements of the “lower
level”. The other forerunners of agent-based models define only a few types of objects or
agents as well, only in the case of contemporary agent-based models one finds a greater
number of object classes as the architecture of an agent representing a human, for instance,
consists of several parts (sensor, effectors, decision engines) which do not, of course, represent
human beings, but instead parts of the these. And these models might also represent teams
or groups explicitly, which are necessary to define different roles agents have in different
contexts.

In terms of time, most multi-agent simulations in economics and the social sciences still
use simple equidistant time step all over a model, neglecting the fact that real-world target
systems often use different time scales in different subsystems. Event-oriented approaches
overcome this simplicity, but not all tool boxes are prepared for this modeling style.

In terms of interaction, complexity is coped with by different means — system dynamics
restricts itself to interactions between the properties of the one and only target system,
microsimulation is mainly interested in the fate of the individual components of its models
and statistics on these and uses interactions mainly where they are necessary to generate
new individuals in the birth process. Early agent models like the ones referred to above
modeled communication more or less explicitly [Abelson and Bernstein, 1963], but even
today communication is often done just by telepathy, i.e. with get and set methods of
modern object-oriented programming languages instead of an explicit message passing which
in turn necessitates something like interpretation on the side of the receiving agent instead
of the direct manipulation of agent attributes.

2.3 Unfolding, Nesting, Coping with Complexity

Multi-agent systems also lend themselves to coupling models of different types and unfolding
models in a top-down way, starting with a macro model of the top level (see eq. 2.1)
of the system and then breaking it off, replacing part of the rules of the macro system
with autonomous software entities representing real-world elements of the modeled overall
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system, as for instance exemplified in [Brassel et al., 1999]. An approach like this allows
researchers to start with a macro view on a complex real-world system — given that all
interesting real-world systems are complex. Whereas the complexity of many models derived
from some of the existing system theories is restricted to complexity of the interactions
between state variables of the system as such [Forrester, 1980], we usually observe that
systems are decomposable into interacting system elements which in turn might be systems
of another “natural kind” [Bunge, 1979]. On all the levels of such a nested system, agents
can be used for representation, although not on all levels the respective agents would need to
have all the features that are commonly attributed to them [Wooldridge and Jennings, 1995]
— autonomy, reactivity, proactivity, social ability. Moreover, in such a view, not only the
complexity of the domain can be mapped into a simulation model, but also the complexity
of time — different time scales for the different levels of a nested system — as for every
kind of agents different mechanisms of representing time can be used.

In a way, “agents cover all the world” [Brassel et al., 1997] in that multi-agent systems
can be used for all simulation purposes, as agents can always be programmed in a way
that they behave as continuous or discrete models, can be activated according to event
scheduling or synchronously or in a round-robin manner, can use rule bases as well as
stochastic state transitions, and all these kinds of agents can even be nested into each
other, thus supporting a wider range of applications than any of the classical simulation
approaches. This leads to a third aspect of complexity (after the complexity of domains and
the complexity of time): agent-based models can encompass several different approaches,
both from a technical and implementation point of view, but also from the disciplines
making use of simulation (for instance, disciplines such as ecology, economics, sociology
and political science can combine their contributions into a deeply structured simulation
model [Möhring and Troitzsch, 2001], and the same holds for neurophysiology, cognitive
psychology, social psychology and sociology in other conceivable examples).

It goes too far to say that all this would not be possible in a non-agents world (as
everything is programmable in Assembler), but examples make clear that models combining
aspects from even neighboring disciplines as the ones enumerated in the paragraph above are
only understandable and communicable when they come in a modular form that is typical
for agent-based models — and the same applies to ecological models where disciplines from
physics, via biochemistry to population biology would play their co-operative roles.

2.3.1 Agents with Different Roles in Different Environments

First of all, one has to observe that real world entities can be components of several different
systems at the same time — perhaps a fourth type of complexity. This is most obvious
for humans who typically belong to a family, a peer group, a school form, an enterprise
department and a military unit at the same time. All these systems are of different “natural
kinds”, to keep to Bunge’s system theory [Bunge, 1979], although the micro level is the
same for all these kinds of systems:

∀σ ∈ {F ,P ,S ,D ,M } [CH (σ) ⊂ H ∧ EH (σ) ⊂ H ] (2.2)

where

• H is the set of humans,
• σ is an element of one of the different system kinds F being the set of all families,

P being the set of all peer groups, . . . , M being the set of all military units, and
all instances of these kinds of systems have humans as their components and
populating their environments,
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the set of (bonding) relations is different between a family and a military unit: not all
relations that hold in a family would also hold in a military unit:

∃Ri ∈ SF ∧ Ri �∈ SM (2.3)

where F and M are again the natural kinds of families and military units, respectively, and
Ri could, for instance, be the (bonding) relation of nursing (〈a, b〉 ∈ Ri ⇒ a � b, meaning
a nurses b). To put it the other way round:

σ1 ∈ F ∧ σ2 ∈ M ⇒ S(σ1)\S(σ2) �= ∅ (2.4)

such that it is not very reasonable to think of the different kinds of social systems mentioned
above (as forming a unified (meso) level of social subsystems between the individual (micro)
level and the macro level of society): F ,P ,S ,D ,M ⊂ Lj does not make much sense when
obviously σ1 ∈ F and σ2 ∈ M do not belong to the same set of systems: their structures
are different as the nursing relation does not belong to the structure of military units.

In the end this means that the concept of level defined in 2.1 is not very helpful, but
for other reasons then those mentioned in [Ryan, 2006], and Ryan’s scope and resolution
would not help either to cope with the problem of individuals belonging to different kinds
of systems at the same time. Agent-based simulations, however, can easily model all these
relations.

Only very few papers on simulation models have ever made use of the versatility of the
agent-based approach in a way that took into account that real-world humans can belong
to several systems at the same time. In systems of different kinds, agents perform different
roles, and even in the same system (e.g., a team [Schurr et al., 2006]), a member can perform
different roles at different times. In [Doran and Palmer, 1995; Doran et al., 1994], agents
can perform the role of a leader or a follower, in [König et al., 2002] they can additionally
perform the role of a single.

[Schurr et al., 2006, pg. 313] discusses the “assignment of roles to team members” as
“of critical importance to team success”. Teams are here defined as in [Kang et al., 1998]
as a special kind of “group whose members share a common goal and a common task
... The most critical distinction between teams and groups [sc. at large] is the degree of
differentiation of roles relevant to the task and the degree of member interdependence.”
Thus for modeling and simulating teams, it is necessary to endow team members with a
problem solving capacity, a symbol system and a knowledge base. [Schurr et al., 2006],
extending Soar [Laird et al., 1987] to Team Soar, emphasize that “each member in Team-
Soar develops two problem spaces: a team problem space and a member problem space”, as
each members tries to achieve both the common goals and the member goal (which they just
describe as “make a good recommendation to the leader”, but the individual goals could,
of course, be manifold, and in modeling and simulating project teams, members could even
work for different projects at the same time). For the evolution of such teams, see [Dal Forno
and Merloine, 2008].

Geller and Moss, too, make use of the concept of roles when they [Geller and Moss, 2007,
pg. 115–116] describe the “complex interpersonal network of political, social, economic,
military and cultural relations” in Afghan society. This network, called a qawm, consists
of a number of different actor types. In reality (though not in their model), individual
actors may “incorporate a variety of roles”, and, moreover, members of different qawms
compete among each others (and perhaps there might be even individuals who belong to
more than one qawm at a time). The knowledge that agents (as representatives of real-
world individuals) have in [Geller and Moss, 2007] is packed in so-called endorsements.
“Endorsements are symbolic representations of different items of evidence, the questions on

© 2009 by Taylor and Francis Group, LLC



Multi-Agent Systems and Simulation: A Survey from an Application Perspective 67

which they bear, and the relations between them. Endorsements can operate on each other
and hence lead to the retraction of conclusions previously reached, but since there is no
formal accounting of final conclusions, the process is seen as a procedural implementation
of non-monotonic patterns of reasoning rather than as a logic.” [Shafer and Pearl, 1990,
pg. 626], referring to [Sullivan and Cohen, 1985].

Another approach to modeling agents that “engage in several relations simultaneously”
was recently published in [Antunes et al., 2007]. The authors here represent agents on differ-
ent planes in a cube, where on each plane the inter-agent network is displayed. Technically
speaking, the agents move between planes, and this movement between planes represents
the change in focus an agent has on its respective relations. The idea behind is that “an
agent can belong to social relations, but possibly not simultaneously” [Antunes et al., 2007,
pg. 492]. Although this idea can be criticized from a real-world perspective (where, e.g.,
husband H’s relation with his wife W is simultaneous with his relation to his boss B, and
both B and W influence H at the same time when they ask him a favor each, and these two
favors are conflicting), the authors’ approach is a step forward, and they extend the original
approach a few pages later where “agents will have to face several contexts constantly, ei-
ther simultaneously, or at rhythms imposed by the different settings.” [Antunes et al., 2007,
pg. 494]. This concept might be combined with the endorsement concept used by [Geller
and Moss, 2007], as — at least in the case of “rhythms”, the agents would not deliberate
with respect to the current state of their environment, but on what they remember about
the different settings.

2.3.2 The Role of Interactions

Interaction between agents is usually modeled in different modes. On the one hand, and this
is the simpler case, agents just read from other agents’ memories. This is easily programmed,
but not very naturalistic when agents represent human beings, as these communicate via
messages, most of them verbal, but also using facial expression or gesticulation, but these
messages need not necessarily express the real opinions or attitudes that these humans have
in their minds. Thus software agents in simulation of socio-economic processes should also
be able to exchange messages that hide or counterfeit their internal state. For the exchange
of messages, an environment (see below) is most often necessary (at least in the real world,
but for message passing in the simulated world one would have blackboards for one-to-all
messages or mail systems for one-to-one or one-to-few messages), but what is even more
necessary is that agents have something like a language or some other symbol system for
communicating. Communication can be achieved with the help of pheromones as in ant
colonies, and the pheromone metaphor [Drogoul et al., 1995] may work well with simple
types of messages (such as “follow this way” or “avoid this place”), but communication is
richer when it can use symbolic languages (see the special issue of Autonomous Agents and
Multi-Agent Systems, vol. 14 no. 2, or for an early example KQML [Finin et al., 2007]).
These symbol systems have to refer to the components of the agents’ environments and to
the actions agents can perform.

2.3.3 The Role of the Environment

Environment in multi-agent simulation plays a special role. As discussed in [Brassel et al.,
1997, 1999; Möhring and Troitzsch, 2001] it is possible to represent the environment (or
several distinguishable parts of the environment) with an agent and several different kinds
of agents, respectively. Representatives of the non-human environment in social simulations
would be relatively simple agents then, lacking the social and proactive capabilities. The
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representation of elements of the agents’ environments by additional agents is partly justified
by the fact that from the perspective of an individual agent, all other agents belong to its
environment [Weyns et al., 2007, pg. 8]. On the other hand, as e.g., discussed in [Parunak
and Weyns, 2007, pg. 2] as “it provides the conditions for agents to exist” and, as one
could add, to communicate (as for the communication, see Section 2.4). But unlike real
world agents, software agents can exist without an explicit representation of a real-world
environment (they need, however, the environment of a computer, its operating system and
its runtime environment, but these are not the correlate of any real-world environment).
But only with a simulated environment they are able to interact in a realistic manner
(reading other agents’ memories directly does not seem very realistic, the no telepathy)
assumption [Hutchins and Hazlehurst, 1995, pg. 160]. This environment allows them to
communicate, by digital pheromones [Drogoul et al., 1995] or by abstract force fields (see
the discussion in Section 2.1 on p. 55, but also — and this should be the typical case
in social simulations — symbolically, as it may contain blackboards and other means for
sending messages. But at the same time it is also necessary to allow agents to take actions
other than those that directly affect other agents of the same kind (e.g., harvesting, as in
[Epstein and Axtell, 1996]) and thus to affect other agents indirectly. And perhaps agents
need an environment as an object to communicate about and as an object for representation.
In an early description of the NEW TIES project [Gilbert et al., 2006], there is a generic
description of what a minimal environment for multi-agent social simulation should consist
of. Beside a topography, an interesting requirement is that the environment should provide
agents with “tokens”, “distinguishable, movable objects, some of which can be used as tools
to speed up the production of food, but most of which have no intrinsic function, and can
be employed by agents as location markers, symbols of value (e.g., ’money’), or for ritual
purposes”. This is quite similar to the role of the environment for communication and co-
ordination, but goes beyond as application of this environment to the famous Kula Ring
[Ziegler, 2007] model shows.

In many special applications, for instance in traffic simulation, the representation of the
physical environment is inevitable, as it “embeds resources and services” and defines rules
for the multi-agent system [Weyns et al., 2007, pg. 16–17] in so far as it allows and forbids
the usage of particular routes at particular times. Thus traffic simulation systems typically
consist of a topography and agents (including both stationary agents such as traffic lights
and signs and dynamic agents such as cars, bikes and pedestrians) [Lotzmann, 2006]. In
some interesting cases, the topography might not be static at all: evacuation scenarios need
an environment that can rapidly change (outburst of fire, spreading of smoke, all of which
have to be modeled in terms of their physical dynamics).

Ecological models, too, need an explicit modeling of the environment in which agents
representing humans, enterprises and other social and economic entities act and interact
with this environment. Here the description of the environment is usually even more complex
than in traffic simulation, as one is particularly interested in the physical dynamics of the
environment and its responses to social and economic activities. For a more detailed analysis
of the role of the environment see the contribution of Hellebogh, Weynes and Holvoet in
this volume, especially their Sections 2, 4 and 5.
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2.4 Issues for Future Research: The Emergence of Commu-
nication

2.4.1 Agent Communication

Although agent communication languages (see the special issue of Autonomous Agents and
Multi-Agent Systems, vol. 14 no. 2) such as KQML [Finin et al., 2007] have been developed
for a long time (back to 1993), it is still an open question how agents in a simulation model
could develop a communication means on their own and/or extend their communication
tool to be able to refer to a changing environment (see the special issue of Autonomous
Agents and Multi-Agent Systems, vol. 14 no. 1). In their introduction [Dignum and van
Eijk, 2007, pg. 119] to the latter special issue, Dignum and van Eijk even state that there
is “a wide gap between being able to parse and generate messages that conform to the
FIPA ACL standard and being able to perform meaningful conversations.” Malsch and his
colleagues also complain that “communication plays only a minor role in most work on
social simulation and artificial social systems” [Malsch et al., 2007].

The problem of inter-agent communication has at least two very different aspects — one
is about agents that use a pre-defined language for their communication, while the other is
about the evolution of language among agents that are not originally programmed to use
some specific language.

As far as simulation is concerned, the first aspect deals with languages that are appropri-
ate for the particular scenarios simulated. [Fornara et al., 2007] center this aspect around
the concept of commitment, as agent communication in general (but also in the special case
of simulating social systems) is most often used for commitments (and humans chatting
just to kill time are seldom simulated).

The second aspect, evolution of language, starts from agents having no predefined lan-
guage at all, but have goals that they cannot achieve by themselves, which makes it necessary
for them to ask others for help. It is not entirely clear whether a grammar is actually nec-
essary as a starting point of the evolution of language. What seems to be necessary is the
capability of agents to draw conclusions from regularities in other agents’ behaviors. One
behavior b1 regularly accompanying another behavior b2 might lead to a rule in an observing
agent enabling it to predict that another agent will soon display behavior b2 after it used
b1 immediately before. One of the first example of this approach is the paper by Hutchins
and Hazlehurst [Hutchins and Hazlehurst, 1995] who made a first step into the field of
the emergence of a lexicon, but their agents were only able to agree on names of things
(patterns — moon phases) they saw. In another paper they developed agents that were
able to learn that moon phases were regularly connected to the turn of the tide [Hutchins
and Hazlehurst, 1991]. This enabled the agents in this extended model to learn from others
about the role of moon phases for the turn of the tide and endowed them even with a very
simplistic grammar.

The NEW TIES project [Gilbert et al., 2006], ambitious as it is, aims at creating an
artificial society that develops its own culture and will also need to define agent capabilities
that allow them to develop something like a language although it is still questionable whether
the experimenters will be able to understand what their artificial agents talk about. As
compared to all earlier attempts at having artificial agents develop a language, the NEW
TIES project is confronted with the problem of large numbers [Gilbert et al., 2006, 7.1],
both of language learners and of language objects (many agents have to agree on names for
many kinds of things and their properties).

A similar objective is aimed at in the current EMIL project (Emergence in the Loop
[Andrighetto et al., 2007; Conte et al., 2007]) which attempts at creating an agent society
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in which norms emerge as agents observe each other and draw conclusions about which
behavioral feature is desirable and which is a misdemeanor in the eyes of other agents
— which, as in the case of language emergence, makes it necessary that agents can make
abstractions and generalizations from what they observe in order that ambiguities are re-
solved. But even in this case it seems to be necessary to define which kinds of actions can
be taken by agents in order that other agents can know what to evaluate as desirable or
undesirable actions. The current prototypical implementations of EMIL models [Troitzsch,
2008] include an agent society whose members contribute to a large text corpus resembling
a wikipedia. The language used is entirely fictitious, but has sufficient features to make
it resemble natural language, and the actions include writing, copying, adding to existent
texts, checking spelling and searching for plagiarisms. Without a definition of possible ac-
tions that agents can perform nothing will happen in these simulation models, and before
any norms can emerge in such an agent society, at least some rules must exist according to
which agents plan and perform their actions, but on the other hand, if all possible actions
and their prerequisites were predefined, no emergence would be possible. The architecture
of these agents [Andrighetto et al., 2007] contains a normative board which keeps track of
all information relevant to norms and several engines to recognize a norm or not, to adopt
it or not, to plan actions and to decide whether to abide by or violate a norm as well as to
defend a norm by sanctions taken against others.

2.4.2 Concluding Remarks

Although the use of multi-agent systems for simulating social and economic phenomena
is not much older than about 15 years (if one neglects the early ancestors of this kind of
approach) it has made rapid progress during its short lifetime and used a wide range of
methods and tools. Sociologists using multi-agent simulation for their purposes often even
claim that they could contribute to the further development of computer science while de-
veloping simulations of socio-economic systems which in turn are self-adaptive. Thus there
is a claim that the development of self-adapting software could use the insights of social
science to construct something such as more co-operative, secure agent societies, for in-
stance on the web. Socionics [Müller et al., 1998, section 1.1] “start[ed] a serious evaluation
of sociological conceptions and theories for computer systems”, thus “leaving the path of
‘folks-sociology’” of which it was not clear whether its protagonists used notions such as
agents forming “‘societies’, ‘teams’, ‘groups’, ‘an organization’” and “behave ‘socially’, . . .
help each other, . . . are selfish” only “for the limited purpose of simplifying the complex
technical background of a distributed system” or whether they took these terms seriously.
The founders of the socionics approach claimed that sociological paradigms such as “social
roles, cultural values, norms and conventions, social movements and institutions, power and
dominance distribution” should be useful paradigms to teach computer scientists to build
“powerful technologies” endowed with “adaptability, robustness, scalability and reflexivity”.
David Hales, also mentions “socially-inspired computing”, reasoning that human social sys-
tems have “the ability . . . to preserve structures . . . and adapt to changing environments
and needs” — even to a higher degree than biological systems that have already been used
as a template for “design patterns such as diffusion, replication, chemotaxis, stigmergy,
and reaction-diffusion” in distributed systems engineering [Babaoglu et al., 2006]. But still
there seems to be a long way to go until socially-inspired computing has advanced in a way
that well-understood social processes can be used as design patterns in distributed systems
engineering — anyway, it might be “an idea whose time has come” [Hales, 2007].
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3.1 Introduction

Multi-agent systems (MAS) are often extremely complex and it can be difficult to formally
verify their properties. As a result, design and implementation remains largely experimental,
and experimental approaches are likely to remain important for the foreseeable future.
Simulation is therefore the only viable method to rigorously study their properties and
analyze their emergent behavior.

Over the last two decades, a wide range of MAS toolkits and testbeds have been developed
and applied in different domains. A number of surveys of these systems have appeared in
the literature in recent years, e.g., [Serenko and Detlor, 2002; Gilbert and Bankes, 2002;
Tobias and Hofmann, 2004; Mangina; Railsback et al., 2006]. However, these have tended to
focus on the high level support that these toolkits offer for the process of agent specification
and model creation. In contrast this chapter focuses on the simulation engines integrated
in to these toolkits to facilitate the execution of the resulting MAS models. In this context
a simulation engine is taken to be any virtual machine which provides controlled execution
of the model.

This chapter is organized as follows: Section 3.2 first discusses what types of MAS model
- in terms of the architecture of an individual agent and the mechanisms by which it in-
teracts with its environment - are executed using these engines; section 3.3 then surveys
the engines used by the currently available toolkits in the context of these observations
about MAS model types; Sections 3.4 and 3.5 then explore recent and future research in to
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distributed simulation engines which aim to provide both scalability and interoperability to
MAS simulation models.

3.2 Multi-Agent System Architectures

Toolkits for building MAS are generally targeted at one of three types of application:

1. MAS for studying Complexity. Examples are social models (e.g., Schelling’s
segregation model [Schelling, 1971], or Ormerod’s low-dimensional paradigm [Or-
merod, 2007]), artificial life (e.g., Axtell’s Sugarscape [Epstein and Axtell, 1996]
or Reynold’s Boids [Reynolds, 1987] models) or logistics (e.g., Traffic Simulations
[Burmeister et al., Feb 1997]). Such models use very simple agents which engage
in little, if any, planning or coordination. The models are interpreted usually
via some quantitative (average life expectancy, average queuing time, etc.) or
qualitative (emergent segregation patterns, emergent flocking, etc.) observation
at the macro-level of the population itself.

2. MAS for studying Distributed Intelligence. Examples range from planning
(e.g., Blocksworld [Fahlman, 1973], Tileworld [Pollack and Ringuette, 1990]), to
more cognitively ‘accurate’ social simulations (as advocated by researchers such
as Nigel Gilbert [Gilbert, 2005], John Doran [Doran, 2001] or Ron Sun [Sun,
2001]) all the way up to research in to human cognition itself (such as the work
of the CoSY project [Hawes et al., 2007], or of researchers like Aaron Sloman
[Sloman and Logan, 1999] or Mattias Scheutz [Scheutz and Logan, 2001]). Such
models use internally complex, situated, communicating agents, and are often
designed to study the behavior of one particular cognitive formalism such as
SOAR [Wray and Jones, 2005], ACT-R [Taatgen et al., 2005] or BDI [Rao and
Georgeoff, 1995].

3. Development of Software MAS. These toolkits provide support for build-
ing software agents such as those described by Wooldridge & Jennings [Jennings
et al., 1998], Franklin & Gaesser [Franklin and Graesser, 1996] or as implied by
the FIPA [Foundation for Intelligent Physical Agents FIPA] or KQML [Finin
et al., 1994] standards. Typical applications are Semantic Web agents, Beliefs-
Desires-Intentions (BDI) agents in expert systems, or agents for network meta-
management (e.g., load-balancing or service discovery). Many of these toolkits
include a pre-deployment environment for debugging or verification of the imple-
mented MAS which may be considered equivalent to a simulation engine.

These different target applications have an obvious impact on the modeling facilities
offered by a toolkit in order to develop MAS models. However, they also have implications
for the type of simulation engine that will be used (and usually packaged along with the
toolkit itself) to execute the models.

The first two types provide an execution environment which would be most widely rec-
ognizable as a simulation engine. That is, a virtual machine with a notion of logical time
advancing in discrete steps. This reflects the fact that, with these applications parame-
terization, repeatability and introspection are key to understanding the model’s behavior,
whether this be at a micro- or macro-level.

In contrast the types of execution environment which support development platforms
for software agents are primarily concerned with controlled emulation of a real execution
environment (e.g., a computer network). This reflects the fact that such applications are
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primarily concerned with debugging or validating the system in some way, while repeatable
or parameterizable behaviors are less of a concern.

On this basis, the remainder of this chapter will focus on the type of execution envi-
ronments which genuinely constitute simulation engines. This being those found in toolkits
supporting the experimental development of multi-agent models as in types 1 and 2 above.

3.3 Discrete Event Simulation Engines for MAS

MAS Simulation toolkits, in the interests of robustness, repeatability and micro-scale analy-
sis of the model, generally conceive of the model as a discrete system, transitioning through
time in discrete steps. Toolkits of this type are discussed in this Section, but first it is im-
portant to establish the common paradigm - independent from MAS modeling specifically
- which is generally used to simulate discrete systems: Discrete Event Simulation.

3.3.1 The Discrete Event Simulation Paradigm

Discrete Event Simulation (DES) [Fishman, 1978] is a common paradigm for the simulation
of discrete (or discretized) systems. DES is a special case of the more general approach of
Discrete Time simulations (such as a Time-Stepped approach) in which state transitions
occur instantaneously rather than continuously with time. Under the DES paradigm these
transitions do not occur as a linearly spaced sequence of steps, but occur instead at instants
in time at which a transition has semantic significance. This is a more flexible paradigm
(which is, of course, capable of simulating a Time-Stepped approach via a linearly spaced
sequence of events).

DES engines are generally implemented as a queue of events (commonly implemented as
a heap) each having a logical timestamp. A loop iterates over the queue, at each iteration
dequeuing and executing the event with the lowest timestamp. This event may cause some
transition in the system and, crucially, may also insert more events in to the queue to
be executed in the future. Generally events encapsulate a small amount of state and are
passed to event handlers which can perform conditional branching over the model’s state
at the time of execution to implement complex dynamic behavior. This paradigm is more
flexible than a standard Time-Stepped approach as the speed of system transition is entirely
dictated by the system being modeled. This allows, for example, both long- and short-cycle
phenomena to be modeled concurrently and efficiently within a single model.

An example of the mechanics of a standard sequential DES engine are given in Figure 3.1.
In this example an event at time 2 is dequed which represents the arrival of a truck at a
postal sorting depot. When the handler for the event is invoked, depending on the state
of the sorting depot, an event which represents the beginning of the mail sorting process
may begin, or may continue if it is already in progress. The delay between the two events
(from time 2 to time 7) may represent the overhead in starting the sorting process from
cold which the model wishes to represent.

3.3.2 A Survey of MAS Simulation Toolkits

This Section surveys the simulation engines integrated in to many of the most popular
and influential toolkits for building MAS simulations. This survey is not exhaustive due
to the unavailability of technical detail for some popular, closed-source toolkits (eg. Net-
Logo), however it does provide a good coverage of the various engineering options when
implementing a DES engine for MAS models.
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dequeue()

5000

TRUCK_ARRIVAL

Payload

Type

20 9 6 5 5 2

2LT

TRUCK_ARRIVAL_HANDLER

load += payload
if (sorting != true)

sorting = true;
enqueue(7, SORT);

end if

execute()

enqueue(7, SORT)

event list

FIGURE 3.1 The operation of a standard sequential DES engine. The example application is one of
a model of a postal sorting depot. Note that an event with time T may be scheduled regardless of the
existence in the schedule of events with time > T , however an event may never be scheduled in the past
(the time of the latest processed event).

LEE

The LEE (Latent Energy Environment) toolkit [Menczer and Belew, 1993] is implemented
in C and targets research on evolutionary complex systems. Its underlying assumptions re-
garding the structure of agents, their actions, and their environment are therefore highly
specific: Agents consist of a user-defined neural network that uses sensor information and
the internal state to trigger actions. Agents may only interact with their environment, which
is a two-dimensional toroidal grid. Each cell of the grid may contain consumable elements
that provide the agents with energy. This model of a multi-agent system is combined with
a genetic algorithm approach that allows individual agents to proliferate or die. A replen-
ishment function is used to generate new consumable elements and place them on the grid,
while a reaction table defines which elements react with each other, so that agents can
combine elements to increase their energy consumption. The simulation is executed in a
Time-Stepped manner. At every step, each agent has a certain chance of being executed.
This ‘virtual concurrency’ mechanism was devised to model the parallel execution of agents
in an unbiased serial way. The LEE has been successfully applied to model the co-evolution
of motor-sensor systems [Dagorn et al., 2000]. Figure 3.2 shows a screenshot of the LEE
graphical user interface (GUI).

JAMES II

JAMES II (Java-based Agent Modeling Environment for Simulation) [Himmelspach and
Uhrmacher, 2007] has become a general-purpose modeling and simulation system over the
years, but nevertheless provides several functions that are tailored to the needs of agent
modeling and simulation. In JAMES II, agents need to be modeled in a formalism of the
user’s choice. The system provides various extensions of the DEVS [Zeigler et al., 2000] for-
malism (e.g., ml-DEVS [Uhrmacher et al., 2007]), to support multi-level modeling, dynamic
structures, broadcasting, and the integration of external processes like planners or complete
agents [Himmelspach and Uhrmacher, 2004]. Other supported formalisms are StateCharts,
Petri Nets, Cellular Automata, and several process algebras, e.g., Space-π. The latter could
in principle be used to model large sets of simple, reactive agents situated within a 3-
dimensional environment (e.g., the ’swarm’ of Euglena cells in [John et al., 2008]).

It is also possible to run a simulation in paced mode, i.e., in sync with the wallclock time.
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FIGURE 3.2 A screenshot of LEE (from [Menczer and Belew, 1993]).

This is useful for testing an existing agent software within a controlled environment [Gierke
et al., 2006]. Under these circumstances, JAMES II could also be viewed as a real-time
execution engine, consisting of the model simulated by JAMES II on the one hand, and
some external processes on the other.

When using DEVS to model agents, however, there is no notion of space, i.e., situational
agent models require an explicit, user-defined model of the environment. As DEVS is a
discrete-event formalism, all DEVS simulation algorithms provided by the system are es-
sentially discrete-event simulators, with varying performance profiles and capabilities, e.g.,
regarding the model’s structure and the mode of execution (sequential/distributed). The
scheduling of the agents depends on the model and has to be defined by the user. The mod-
els themselves are implemented as Java subclasses or as XML files containing Java code.
More details on JAMES II can be found in Section 3.4.3. A screenshot of the JAMES II
GUI showing a 2D visualization is shown in Figure 3.3.

SeSAm

SeSAm (Shell for Simulated Agent Systems) [Klügl and Puppe, 1998; Klügl et al., 2006] is
a full-fledged simulation system for multi-agent systems, written in Java. It has a powerful
graphical user interface that allows to model multi-agent systems without programming.
In SeSAm, agents are embedded in a two- or three-dimensional grid. Agents are defined
by sensors and effectors, as well as an internal function to select the appropriate action.
The simulator proceeds in discrete time steps. There is, however, a plugin that enables
the system to process models in a discrete-event manner. SeSAm has been widely used in
research and teaching, often for modeling social systems like the behavior of honey bees or
consumers in a supermarket. A screenshot of the SeSAm GUI is shown in Figure 3.4.

RePast

RePast (Recursive Porus Agent Simulation Toolkit) [Project; North et al., 2006] is a free,
open-source toolkit with implementations in multiple languages, the most popular of these
being the pure Java version. RePast borrows heavily from and is targeted at similar models
to the Swarm framework (see below). RePast implements a full Discrete Event Scheduler
(DES), allowing the scheduling of events in the form of BasicAction instances which can
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FIGURE 3.3 The JAMES II GUI is still work in progress. It contains a rudimentary experiment editor
and supports to plug in arbitrary model editors and visualization components. Here, a two-dimensional
visualization of molecular transport in Space-π is shown.

FIGURE 3.4 A screenshot of SeSAm simulating and animating a Boids [Reynolds, 1987] model. SeSAm’s
GUI is very convenient and well-designed. It provides a broad range of advanced features: debugging, model
editing (including a Statecharts editor), output analysis, and experimentation. The user is also able to trace
and introspect individual agents at runtime.
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execute arbitrary code, including the scheduling of future events in the schedule. RePast’s
particular schedule implementation includes facilities for automatically rescheduling events
with some frequency and for the randomization of the order of execution of logically concur-
rent events, the latter facility being another example of virtual concurrency as mentioned
above in the case of LEE. Although, from the modeling perspective, RePast provides several
components (such as 2D or 3D grids, networks and GIS (Geographic Information System)
environments) which are generally useful for modeling social phenomena as Multi-Agent
systems, no assumptions are made inside the engine about the structure or behavior of the
model. Figure 3.5 shows a screenshot of the RePast GUI controls being used to manage a
GIS-based MAS simulation.

FIGURE 3.5 A screenshot of RePast in operation. The GUI offers methods to start, stop, pause and
step iteratively through the simulation whilst the configuration panel provides model parameterisation, data
collection and creation of video from running models.

Swarm

Swarm [The Swarm Development Group; Minar et al., 1996] is a free, open-source toolkit
implemented in the Objective-C language. In terms of Swarm as an execution engine, it is
very similar to RePast (see above) in that it implements a Discrete Event Scheduler which
is populated explicitly by the model with events executing arbitrary code (including event
(re-)scheduling). The DES extensions offered by RePast (automatic rescheduling, virtual
concurrency, etc.) are also present in almost identical form here. Swarm encapsulates all
this functionality, as well as data visualization, execution control and data analysis in the
‘swarms’ metaphor. The ‘Model Swarm’ represents the state and populates the schedule,
whilst ‘Observer Swarms’ can insert or extract data from the model and perform analysis
and visualization.
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MAML

MAML (The Multi-Agent Modeling Language) [Gulyás et al., 1999; Gulyás] is a high-
level modeling formalism for the creation of Multi-Agent models in the vein of the RePast
and Swarm toolkits. MAML explicitly compiles in to Swarm code and shares many of the
abstractions used by that toolkit. MAML adds a higher degree of structure to its models,
particularly with regard to the planning and interaction of the agents in the model. This
moves MAML slightly further away from the pure Discrete Event System of Swarm/RePast
and toward a more Time-Stepped model in which agents run largely on a loop, though still
with the ability to explicitly interact with the schedule itself in a standard Discrete Event
manner.

SIM AGENT

sim agent [Sloman and Poli, 1996] is an architecture-neutral agent toolkit developed
as a series of libraries written in the Pop-11 programming language. It can be used to
simulate many different types of MAS, such as software agents on the internet or physical
agents in an environment. An agent is described in the toolkit by a series of rule-based
modules which define its capabilities, e.g., sensing, planning etc. The execution mode of
the modules can be varied, including options for firing sets of satisfied rules sequentially or
concurrently and with specified resources. The system also provides facilities to populate
the agent’s environment with user-defined active and passive objects (and other agents).
The execution model is Time-Stepped and each step operates in logical phases: sensing,
internal processing and action execution, where the internal processing may include a variety
of logically concurrent activities, e.g., perceptual processing, motive generation, planning,
decision making, learning etc.

In the first phase an agent executes its sensing procedures and updates its internal memory
to reflect changes in its environment and any messages it receives. The next phase involves
decision making and action selection. The contents of the agent’s database together with the
new facts created in phase one are matched against the conditions of the condition-action
rules which constitute the agent’s rule system. Finally the agents send any messages and
perform the actions queued in the previous phase. These external actions will typically cause
the agent to enter a new state (e.g., change its location) or manipulate the environment
and hence sense new data.

CHARON

CHARON [Alur, 2008] is a toolkit comprising a language, compiler and simulation engine
designed to model continuous/discrete hybrid systems. These are systems which are modeled
in a continuous manner, using a set of analog variables, but whose holistic behavior switches
in a discrete manner between a set of ‘modes’. CHARON uses the agent abstraction to
describe such systems, generally modeling it as a hierarchy of interacting agents with shared
analog variables triggering mode changes based on a set of invariants. CHARON itself is a
language used to describe these modes, invariants and hierarchies. CHARON code can be
compiled to standard Java code which is then executed by a simulation engine.

This engine progresses the system in a timestepped manner, with continuous steps being
executed as timeslices using numerical integration, and discrete steps being executed as
the tests of invariants in between continuous steps. In this sense the sequential CHARON
engine can be seen as a simple timestepped engine which models continuous variables in
a discrete manner. A parallel implementation has also been devised which is described in
Section 3.4.3.
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3.3.3 Taxonomy of Discrete Event Simulation Toolkits

Table 3.1 gives a summary of the surveyed discrete event toolkits. The toolkits are char-
acterized by the execution engine (Discrete Event, Time-Stepped, etc.) which they employ
and by the assumptions this engine makes about the structure of the model (if any).

TABLE 3.1 Engines found in MAS simulation toolkits.

Toolkit Execution Model Type of MAS Targeted Type of Environment Supported

LEE Time-Stepped (DES simu-
lated with randomized agent
selection)

Artificial Life (using Neural
Networks)

Assumes 2D or 3D Grid

JAMES II Full DES Depending on formalism
(planner integration, com-
munication, etc. supported
via plugins)

None prescribed

SeSAm Time-Stepped (plugin for
DES available)

Reactive Paradigm Assumes 2D or 3D grid

RePast Full DES Complex Systems None prescribed (library
support for 2D/3D grids,
GIS environments, etc.)

Swarm Full DES Complex Systems None prescribed

MAML Full DES (via Swarm) Complex Systems (but
larger emphasis on coordi-
nation/communication)

None prescribed

sim agent Time-Stepped Cognitive Agents (some pre-
scribed external and internal
structure)

None prescribed

CHARON Time-Stepped Discrete/Continuous Hybrid
Systems (modeled as MAS)

None Prescribed

From this summary one interesting observation is that toolkits which seek to prescribe
some structure to the MAS being modeled also tend to constrict execution to a Time-
Stepped model. Though the phrase ‘prescribe some structure’ seems to imply a lack of
flexibility it could equally be given a positive connotation. Toolkits such as sim agent pro-
vide a clear design template within which several cognitive architectures and agent designs
can be implemented, without the need for re-implementation of ‘boilerplate’ code.

Indeed, it appears from this that there is a gap in the current design space for a toolkit
which both provides/prescribes some structure for implementing agents but also provides
a full Discrete Event scheduling implementation for the model’s execution. It is possible
that the two goals are not complementary in that prescribing structure to an agent also
implies the prescription of how and how frequently an agent is called on to sense, think,
act, communicate, etc.
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3.4 Parallel Simulation Engines for MAS

As agent-based modeling is applied to ever more complex models, two problems of existing
toolkits are emerging, hampering the development and deployment of complex multi-agent
models: lack of scalability and lack of interoperability. Distributed simulation can offer a
solution to these two problems and integrating this formalism with MAS simulation en-
gines has received significant recent attention amongst Distributed Simulation and MAS
Simulation researchers.

In this Section we review these projects, and discuss in Section 3.5 advanced issues of
data management and load balancing which are raised.

3.4.1 Parallel Discrete Event Simulation

A parallelized form of Discrete Event Simulation (DES, discussed in Section 3.3.2 above)
was formally introduced by Chandy and Misra in [Chandy and Misra, 1981] as the PDES
paradigm. In common with general parallel execution algorithms, PDES was primarily
concerned with making very large (in terms of required memory and required CPU-time)
computations tractable, rather than concerns of interoperability between simulation models
(see Section 3.4.2 below).

In PDES the simulation model is decomposed in to many Logical Processes (LPs) which
each represent a closed subsystem. Each LP is internally driven by a standard DES schedul-
ing algorithm, however it can also send and receive events to and from other LPs, this
representing interactions between the subsystems. Incoming external events are integrated
in to the local DES schedule and executed in the standard way, possibly scheduling future
local or external events. This system is shown in Figure 3.6.

LP3

To LP1
To LP2

send/receive
events

send/receive
events

20 9 6 5

local event list

synchronisation
algorithm

dequeueenqueue

LP3

LP1 LP2

FIGURE 3.6 A system of three LPs with the internals of LP3 shown in detail on the left.

In this context a synchronization algorithm is required to ensure that events are still
processed in timestamp order, this condition is known as the local causality constraint.
This can be trivially guaranteed in a sequential DES environment, but is far from trivial
in a parallel environment. Several such algorithms have been proposed [Paul F. Reynolds,
1988] though the two main families remain those based on Chandy and Misra’s original
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conservative scheme (in which an LP does not execute an event with timestamp t unless
it can guarantee no external event will be received with timestamp < t) and the later
optimistic scheme (in which an LP executes events in an unconstrained manner but also
has the ability to rollback executed events with timestamp t ′ if an external event with
timestamp t is received such that t < t ′) derived from Jefferson’s general-purpose Timewarp
concurrency algorithm [Jefferson, 1985].

3.4.2 The High Level Architecture and Simulation Interoperability

The High Level Architecture (HLA) is a simulation interoperability standard and frame-
work specification developed by the U.S. Department of Defense which aims to facilitate
interoperation between independently developed simulation models in a single simulation
[US Defence Modelling and Simulation Office, 1998; IEEE, 2000].

The HLA is a protocol based around the notion of the ‘federation’. An individual fed-
erate in a given federation is an instance of some simulation executive, which is currently
modeling a portion of the larger simulation (this is roughly analogous to an LP in the stan-
dard PDES model). The federates may be written in different languages and may run on
different machines. The federates in a federation communicate through a central ‘Runtime
Infrastructure’ (RTI) by issuing timestamped events which in some way modify the global
state and synchronize their local schedules with the global schedule through one of the
RTI’s time management services. These services are instances of one of the standard PDES
synchronization mechanisms described in Section 3.4.1 above.

Each federate shares in the global model through a common semantic understanding of
the data delivered to it by the RTI. The structure of this data is defined in a ‘Federation
Object Model’ (FOM), while the actual interpretation of this data is the responsibility of
the federate itself. This semantic independence of data in the HLA provides the basis for
model interoperation. Within a given FOM the classes of objects which are to be used in a
specific federation are defined by a name (unique within the hierarchy) and a set of un-typed
attributes.

At run-time the federate interfaces with the RTI through the use of an RTIambassador
instance. This object provides access to the remote invocation services provided by the HLA
specification. In a similar way, the federate itself must provide an implementation of the
FederateAmbassador interface, which accepts callbacks from the RTI to notify of events
pertinent to this federate. This coupling process is depicted in Figure 3.7.

3.4.3 A Survey of Parallel MAS Simulation Toolkits

Parallel and Distributed simulation technologies offer many important tools to MAS model-
ing, both in terms of increasing the complexity of feasible models and in terms of facilitating
the controlled interoperation of existing models. However, both the tasks of decomposing a
MAS model in to distinct computational units and of defining the semantics of interaction
amongst different MAS models are non-trivial.

Several research projects have aimed to open up these important technologies to MAS
models, exploring these challenges in the process. They are surveyed in the following Section.

Gensim and DGensim

DGensim (Distributed Gensim) [Anderson, 2000], developed in Allegro Common Lisp
(ACL) under Linux, is an extension of the original Gensim and the authors state that the
motivation for development was to increase the fidelity of the original Gensim. The authors
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FIGURE 3.7 The ‘Ambassador’ abstraction used by the HLA.

also point out other motivations for distribution: the gain in computational power; greater
experimental control; and reduced timesharing overhead. The major change in DGensim is
concerned with physical organization and the execution layer. DGensim divides the sim-
ulation onto n node processors, n − 1 of which execute internals of agents and an agent
manager. The remaining processor executes the environment manager. When the simula-
tion starts each agent process starts its agent manager which connects to the environment
manager via a port. When the environment manager is started it contacts the agent man-
agers and sends agent code to them. The agent manager is also sent limited environmental
information from the environment manager.

In the original Gensim, changes made by agents are processed on an agent-by-agent basis
cyclically. This has the undesired effect that the results of certain agents actions become
apparent before others in any one cycle. Agents have local views of their environment which
are maintained by perception agents. Each perception agent registers with the environment
manager stating how frequently it requires sensory information. The local DGensim agent
then senses its environment through its own perception agent. In DGensim agents send their
decisions (which are timestamped) asynchronously to an action monitoring agent inside
the environment manager. It is the job of the action monitoring agent to re-order the
incoming decisions using the associated timestamps. Although agents make their decisions
asynchronously in DGensim the environment manager is a time-driven simulation. While
agents can make decisions at any point, the result of the decision will not be processed by
the environment until the environment’s simulation time reaches the timestamp associated
with that particular decision.

The model in DGensim is susceptible to network delays, it is possible that an agent
decision might be delayed enough to affect the sensory actions in the future, i.e., network
delay could break the local causality constraint. Small delays are accounted for by a window
of safety, which is the time step used by the environment manager. That is if an agent
decision is processed and a slight delay occurs, as long as it is received within the same
time step the action monitoring agent will rearrange the action into the correct order. If
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the delay is sufficiently long that the action is received in a future time step then the
solution is slightly more complex. DGensim offers various alternatives in this case, firstly an
action can be invalidated as though it never occurred. The second option is to process the
event as though it had occurred when it was received rather than when it was sent. Although
neither of these alternatives are ideal the authors prefer this option to using some method of
rollback. The third and final option involves the agents regularly transmitting their actions
and the environment processing them upon receiving a full set. DGensim also allows each
action to have an associated time period, i.e., the number of units of simulation time an
action takes to execute. This avoids agents executing too quickly internally and losing
sensory information. The authors do point out that the mechanisms DGensim provides for
dealing with delay are not ideal. For their own experiments they use a small dedicated
network and hence delays are rare and so not an issue.

In DGensim perception occurs at a point between the agent decision making components
and the environment. Most of the agents’ perception is performed on the agent node by the
agents’ manager. The agent manager receives a description of objects when sensing. It is
up to it to filter the relevant information. This setup is conceptually more appealing and
also has the added benefit of spreading the computationally intensive task of perception
across multiple machines. However, because the filtering is done on the receiving end the
transmission overhead is large. To overcome this agent managers contain some basic views
of objects. The environment then conveys information to the agents by sending information
regarding particular changes to the state.

HLA Agent

hla agent [Lees et al., 2002, 2003, 2004] is an extension of the sim agent [Sloman and
Poli, 1996] toolkit developed at Birmingham University (see Section 3.3.2) which allows
sim agent simulations to be distributed across a network using the HLA (see Section
3.4.2).

In hla agent each HLA federate corresponds to a single sim agent process and is re-
sponsible both for simulating the local objects forming its own part of the global simulation,
and for maintaining proxy objects which represent objects of interest being simulated by
other federates. The sim agent toolkit has been adapted in four different areas for use
with HLA:

1. Extended sim agent to hold federate and federation information.
2. Object creation, deletion and attribute updates are transparently forwarded to

the RTI.
3. Modified the scheduler so that only local (non-proxy) objects are executed on

the local machine. The scheduler now also processes all callbacks created by the
RTI calls made in step two (above), i.e., callbacks from object creation, deletion
and attribute updates.

4. Added startup and synchronization code which is required to initialize the
hla agent simulation.

hla agent uses external calls to C functions and a series of FIFO queues written in
C to communicate with the RTI. This enables sim agent to request callbacks when it is
able, removing the need to deal with asynchronous callbacks directly. All necessary RTI and
federate ambassador calls are wrapped within a C style function, which in effect provides
an implementation of the RTI in Pop-11.

sim agent works in time-stepped cycles, with each agent sensing, thinking and acting
at each cycle. With the modifications to sim agent a cycle of hla agent now consists of

© 2009 by Taylor and Francis Group, LLC



90 Multi-Agent Systems: Simulation and Applications

5 stages. The main simulation loop is outlined below:

1. Wait for synchronization with other federates.
2. For each object or agent in the scheduler list which is not a proxy:

(a) Run the agent’s sensors on each of the objects in the scheduler list. By
convention, sensor procedures only access the publicly available data held
in the slots of an object, updated in step 5.

(b) Transfer messages from other agents from the input message buffer into the
agent’s database.

(c) Run the agent’s rule-system to update the agent’s internal database and
determine which actions the agent will perform at this cycle (if any). This
may update the agent’s internal database, e.g., with information about the
state of the environment at this cycle or the currently selected action(s) etc.

3. Once all the agents have been run on this cycle, the scheduler processes the
message and action queues for each agent, transfers outgoing messages to the
input message buffers of the recipient(s) for processing at the next cycle, and
runs the actions to update objects in the environment and/or the publicly visible
attributes of the agent. This can trigger further calls to the RTI to propagate
new values.

4. We then process the object discovery and deletion callbacks for this cycle. For all
new objects created by other federates at this cycle we create a proxy. If other
federates have deleted objects, we delete our local proxies.

5. Finally, we process the attribute update callbacks for this cycle, and use this
information to update the slots of the local objects and proxies simulated at this
federate. The updates performed at this stage are not forwarded to the RTI as
these would otherwise trigger further callbacks.

6. Repeat.

hla agent has been tested using the SIM Tileworld testbed on Linux clusters with
varying numbers of nodes, a screenshot of a running instance of this system is shown in
Figure 3.8. In the SIM Tileworld federation, the environment is usually simulated by a
single federate and the agents are distributed in one or more federates over the nodes of
the cluster. In [Lees et al., 2004] results show the system obtaining performance increase
for lightweight and heavyweight agents. The system achieves best speed up with the CPU
intensive (heavyweight) agents. The results also show however that communication overhead
becomes a dominating factor with relatively small numbers of nodes.

HLA RePast

hla RePast is another HLA enabled agent toolkit developed at the University of Birm-
ingham [Minson and Theodoropoulos, 2004]. It is based on the RePast agent toolkit which
is extended for HLA compliance. The key difference between hla RePast and hla agent

is that hla RePast is based on a discrete event agent simulation whereas hla agent is
time-stepped. RePast itself was developed for large-scale social simulations of agents and it
provides a collection of tools and structures useful for agent simulation. More information
on RePast can be found in Section 3.3.2.

hla RePast is implemented as middleware between the sequential RePast executive (a
standard heap-based DES engine - see Section 3.3) and the HLA’s RTI executive. Each
RePast instance now has two event queues, one populated with local events and one with
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FIGURE 3.8 A screenshot of hla agent running an instance of the SIM Tileworld testbed
simulation.

external events. This is a simplified form of the LP abstraction discussed in Section 3.4.
This design is depicted in Figure 3.9.

Complications to this design arise due to the slightly unusual structure of RePast as a
DES platform.

RePast has no constraints on the number of state updates which can occur on a single
event. It is possible to implement an entire simulation as a single event. While this offers
great flexibility, it adds complexity to the HLA integration. The hla RePast system there-
fore constrains the traditional RePast event system so that it is possible for the system to
observe state transitions and propagate these throughout the HLA federation.

To pass state changes between RePast and the RTI hla RePast defines a PublicObject
and PublicVariable class. These classes and their children have wrapped primitives which
forward appropriate calls to the RTI. On the receiving side hla RePast processes the HLA
callbacks by updating local proxies which model the equivalent variables and objects at the
sender. Proxies are created upon receipt of object discovery notification and modeled using
the hla RePastRemoteObject class. The PublicVariable and PublicObject classes are
also used by hla RePast to automatically generate an appropriate FOM which can be
passed to the RTI at startup.

hla RePast uses the notion of exclusive variables for conflict resolution. More specif-
ically any variable defined as exclusive in hla RePast can only be owned (in the HLA
sense) by at most one federate per time stamp. The middleware achieves this by only grant-
ing one HLA ownership request per timestamp on exclusive variables. Deletion is performed
by embedded code within the Java memory reclamation system. However, this relies on the
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FIGURE 3.9 The structure of a single node in an hla RePast Federation.

assumption that the model and Java view of an object’s life-cycle are consistent. Develop-
ment of a more flexible method of deletion is listed as further work.

One of the key goals for hla RePast is that the integration be as transparent as pos-
sible, so it should be possible with little work to use existing RePast simulations with the
hla RePast middleware. For this reason hla RePast uses a conservative synchroniza-
tion algorithm as this prevents the need for implementation of rollback algorithms within
the user model. To do this RePast implements a new class which inherits from the existing
scheduler class, this new scheduler only executes events at time t if it is possible to ensure
no future events will arrive with time < t . This guarantee is satisfied by using an HLA time
advance to time t − 1 with a lookahead of one.

The results in [Minson and Theodoropoulos, 2004] are arrived at using a RePast im-
plementation of the Tileworld testbed. The results found in this context are qualitatively
similar to those of hla agent. Namely that, when decomposing the system around its
agents, the best scalability can be achieved when an agent is computationally-bound (i.e.,
does a large amount of ‘thinking’ or other computation that produces only internal events,
in comparison to a small amount of ‘acting’ or other actions which produce external events).

hla RePast has also been used as a testbed application for running distributed simula-
tions in a Grid environment. The HLA Grid RePast project [Zhang et al., 2005; Theodor-
opoulos et al., 2006] ran a federated simulation between sites in Singapore and Birmingham,
UK using grid services to provide RTI connectivity.

HLA JADE

In [Wang et al., 2003a] a system is presented which integrates HLA with the JADE (Java
Agent DEvelopment) [Bellifemine et al., 1999] agent platform. JADE provides FIPA com-
patible middleware for agent development and testing. The system is composed of a series
of JADE instances running on different machines. Each instance of JADE (which may have
multiple agents) interfaces with the RTI through a gateway federate. The gateway federate
is responsible for translating output from JADE into specific RTI calls. The gateway fed-
erate also handles any callbacks received from the RTI through the federate ambassador.
Each gateway federate resides on the same JVM (Java Virtual Machine) as the JADE
instance, this avoids any extra overhead due to Java RMI calls. Each federate is conserva-
tively synchronized with two timesteps per simulation cycle. Various extensions have been
applied to this system. These include methods for interest management[Wang et al., 2003b]
to reduce bandwidth-utilization based on the DDM (Data Distribution Management) ser-
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vices of HLA. There are also schemes for conflict resolution[Wang et al., 2004b] and agent
communication[Wang et al., 2004a].

FIGURE 3.10 Mapping from a PDEVS-model structure to a parallel-sequential PDEVS simulator tree
(from [Himmelspach et al., 2007]). Sub coordinators and virtual coordinators allow to manage subsets of a
coupled model’s sub-models within a single thread. While coupled models define the hierarchical structure
of the model, agents would be represented by atomic models.

JAMES II

As already mentioned in Section 3.3.2, JAMES II is a Java-based general-purpose simulation
system that provides several tools for MAS simulation, e.g., support for the parallel DEVS
(PDEVS) modeling formalism. A distributed simulation of a PDEVS model in JAMES II
begins with the distribution of models and associated simulators (atomic) or coordinators
(coupled), which execute the model, across the nodes (Figure 3.10). Each node within the
simulation executes a copy of the JAMES II program. A single node is defined as the master
server, which manages all other nodes available for simulation. A client starts a simulation
by sending the model to the master server.

The master server determines an appropriate partition of the simulation across the simu-
lation servers [Ewald et al., 2006b]. Then it sends the model, the partition information, and
the addresses of the simulation servers to a single simulation server. This single simulation
server hosts the root coordinator and propagates sub-partitioning information to simula-
tion servers hosting the corresponding sub-coordinators (or simulators), which in turn will
continue to distribute it recursively. Upon completion of the distribution, each child node
(starting with the leaves) informs its parent that the distribution is complete. Eventually
this is propagated back through to the head node and then on to the master node, which
then initiates the execution of the simulation.

The distribution of such PDEVS model trees implies a hierarchical communication scheme
between nodes, which simplifies movement of agents between models. However, conservative
PDEVS simulation only processes events in parallel if they occur at exactly the same time
stamp, so usually only some parts of the model can be executed concurrently. Moreover,
the synchronization protocol of PDEVS involves a considerable amount of communication,
which may lead to a significant slow-down when simulating large sets of heavily interacting
agents. To alleviate the former problem, a load balancing scheme that distributes PDEVS-
models according to their inherent parallelism has been developed [Ewald et al., 2006c].
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For efficient (conservative) simulation of PDEVS, JAMES II provides - among others - a
parallel-sequential simulator that can be executed on several nodes while still using a single
thread per node and thus saving threading overhead [Himmelspach et al., 2007].

Additional approaches of distributed simulation are available for other formalisms. For
example, Beta-Binder models can be simulated in an optimistic manner by an algorithm
that employs a coordinator/simulator scheme similar to PDEVS [Leye et al., 2007].

SPADES

SPADES [Riley and Riley, 2003; Riley, 2003]is a conservative parallel discrete event simula-
tion engine designed for modeling Robocup teams. It uses a Software-in-the-loop methodol-
ogy for modeling agent thinking time, which assumes a sense-think-act cycle for agents and
that the time it takes an agent to think is non-negligible.

SPADES adopts the PDES paradigm for synchronization, though it does allow some out-
of-order event processing. Agent communication in SPADES is done using a communication
server on each processor which contains agents (see Figure 3.11). The agents communicate
with the communication server via Unix pipes, allowing the agents to be written in any
language which supports pipes. The world model is then created by the user code linking to
the simulation engine library, resulting in the simulation engine and world model running
in the same process. SPADES provides a series of C++ classes which world model objects
inherit from to interact with the simulation engine.

From the agent’s perspective the interaction with the communication server is a three
stage process:

1. Receive sensation
2. Action selection (including sending actions to communication server)
3. Send completion message when all actions are sent

In SPADES agent sensing is done in a ‘pushing’ manner, in that all updates to the
world model are sent via the communication server to all agents. This means an event
created by agent A on machine M (e.g., moving an object) will have to be sent to all other
communication servers and then on to all other agents regardless of whether the event is
relevant. This type of scheme involves a large communication overhead, especially in highly
dynamic simulations where the world model is constantly being updated. Agents are only
able to act upon receipt of a message (this being analogous to the general assumptions in the
original PDES literature in which LPs are considered as fairly deterministic systems which
only act in response to some stimulus), therefore agents have a special action request time
notify which can be sent asynchronously. If an agent wants to send an action independently
of a stimulus message it can send a request time notify and respond to it appropriately.

World
Model

Comm.
Server

Simulation
Engine

Agent

FIGURE 3.11 The basic SPADES architecture (from [Riley and Riley, 2003]). Agents interact with
communication servers, which in turn interact with the simulation engine running on a remote machine.
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For PDES synchronization, SPADES uses the centralized event list approach whereby
when an event is scheduled it is sent to a master process. In this centralized approach the
master process has global knowledge of the event queues and so can easily determine the
minimum virtual time stamp of any future message. This approach has major drawbacks in
terms of communication overhead and hence scalability. Having all events sent to a single
master process will create a serious communication bottleneck as the number of agents
and hence events increases. Riley and Riley do point out that for their purposes (modeling
Robocup teams) they have kept the number of agents small and so they haven’t noticed
any severe overhead.

In experiments with the SPADES engine, an agent simulation is used where each agent is
represented as a ball in a two dimensional world. Each sensation the agent receives contains
the positions of all the other agents in the world. The only action event the agents can
perform is to request a particular velocity vector. The simulation has two types of agent:
the wanderers, who move randomly, and the chasers, who set their velocity vector toward
nearest wanderer. Using the Ferrari cluster at Georgia Tech, the experiment was performed
on 1 to 13 machines, with 2 to 26 agents. To emulate varied processing requirements in the
different agents, an internal delay loop of 1.0ms (fast agents) and 9.0ms (slow agents) was
used.

With the faster agents, the maximum speed up achieved is about a factor of 1.8 compared
to a single machine. This is achieved with 14 agents and 9 machines. It seems with the
faster agents the communication overhead starts to dominate at around 5 processors (for
26 agents). With the slower agents speed up is better, achieving a maximum speed up of
5.5 times faster than the single processor case. However, again the communication overhead
becomes apparent. With the slower agents at around the 10 processor stage the speed up
achieved by adding additional processors seems to tail off. Again these results suggest that
simulations involving heavyweight agents which spend a long time ‘thinking’ compared to
‘acting’ scale better when parallelized.

Charon

CHARON [Alur, 2008] (see Section 3.3.2) is implemented in sequential form as a timestepped
engine. [Hur and Lee, 2002] propose and evaluate two approaches to parallelization of this
engine, one using conservative synchronization and one using optimistic. CHARON is already
a highly modularized system and hence appropriate for parallelisation, with each proces-
sor modeling a set of modules. The main issue is in ensuring that the mode transitions
within modules still operate with respect to the continuous shared variables and their in-
variants now that these are split across several processors and continuous steps executed in
parallel.

In the conservative implementation, each processor completes a single timeslice in lockstep
with the rest of the simulation. Within this slice, a complicated 7-phase barrier process
ensures the triggering of discrete transitions is still correct with respect to the continuous
behavior of each module. This implementation, the authors report, incurs a communication
overhead far in excess of any speedup gained by parallel execution for most models.

In the optimistic implementation, each timeslice is again lock-stepped across all pro-
cessors. However, in this case each processor computes the triggering of discrete mode
transitions by remote modules by optimistically approximating their outputs. If these ap-
proximations are always correct the entire system can execute in parallel with only minor
computational overhead and only a single barrier operation per-timestep. When an approxi-
mation is incorrect, the effected module will need to rollback its processing for that timestep
after the barrier is complete and re-compute, possibly triggering a rollback for other con-
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nected modules. For the models tested, this approach offered far superior speedups than
the conservative approach.

3.4.4 Taxonomy of Parallel DES Toolkits for MAS

Table 3.2 gives a summary of the surveyed parallel DES toolkits.

TABLE 3.2 A Summary of the surveyed PDES toolkits

Toolkit Support for Conflict Resolution Synchronization Technique Automated Partitioning

DGensim No Real-time execution with logi-
cal time stamps and centralized
timeslicing

Yes

hla agent Yes Conservative, via HLA RTI No

hla RePast Yes Conservative, via HLA RTI No

HLA Jade Yes Conservative, via HLA RTI No

JAMES II No Depending on formalism; Con-
servative for PDEVS

Yes

SPADES N/A Conservative, via Centralized
Event List (no synchronization
necessary)

No

CHARON N/A Lockstep, with Conservative
and Optimistic implementa-
tions for intra-step consistency.

Yes

3.5 Issues for Future Research

3.5.1 Scalability of Parallel Engines

As discussed in Section 3.4, parallel approaches to DES decompose a simulation model in to
disjoint subsystems, each of which is encapsulated by an LP: an air traffic control system is
decomposed in to a set of airport LPs; a postal network is decomposed in to a set of sorting
offices; and so on. Logical interactions between these subsystems are then represented by
their LPs explicitly sending and receiving events.

Parallel implementations of MAS simulations are therefore unusual in that they generally
partition the population of agents amongst the LPs leaving a large amount of shared state
(shared resources, communication media, physical space, etc.) which agent LPs both observe
(read) and modify (write) concurrently. When they are executed in a parallel environment,
this property of MAS simulations leads to multiple engineering challenges which are the
subject of current ongoing research.
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Shared State and Data Distribution

When data items in a simulation need to be read and written by several LPs concurrently,
the mechanisms for making these data available in a distributed setting can be non-trivial.
This issue of data distribution - at which nodes are data stored and under what circum-
stances is communication between nodes necessary? - already has a rich research corpus in
the fields of Distributed Memory models, Distributed Virtual Environments and elsewhere.

The parallel engines surveyed in Section 3.4.3 all took the approach of fully replicating all
shared state at all simulation nodes. One node is generally responsible for continual mainte-
nance of the environment (eg. for modeling state change over time) but all nodes replicate
the current state of the shared data items. In this situation much of the communication
spent updating data items is wasted if only a small proportion of the items are accessed by
the simulation process at each LP.

Interest Management (IM) is a field of research associated with both Distributed Sim-
ulation [Morse, 2000; Tacic and Fujimoto, 1998; Rak et al., 1997] and with Distributed
Virtual Environments (DVEs) [Abrams et al., 1998; Barrus et al., 1996; Morgan et al.].
IM seeks to distribute information about data items in a distributed system such that the
locality inherent in the access patterns can be exploited to reduce the total communication
and computation load of the system. Such an approach is particularly appropriate to MAS
simulations in which agents are physically situated and therefore have a limited perceptual
range.

The exploitation of this property using IM has been explored by the pdes-mas project
at the Universities of Birmingham and Nottingham, UK [Logan and Theodoropoulos, 2001;
Lees et al., 2006; Ewald et al., 2006a; Oguara et al., 2005]. The pdes-mas architecture
assumes two classes of LP, an Agent Logical Process (ALP) which simulates the actions of
an agent in the environment, and a Communication Logical Process (CLP) which maintains
some set of the data items representing the shared state of the simulation. Events passed
between ALPs and CLPs take the form of individual reads and writes of individual shared
state variables. When a write occurs the value of the variable is updated at the CLP respon-
sible for that variable. When a read occurs, the event travels to the relevant CLP, retrieves
the value, and travels back to the issuing ALP.

This paradigm allows the pdes-mas architecture to reduce irrelevant communication as
a result of updates to shared state. However, the CLP now becomes a bottleneck as the
single end point for all read and write operations. To ameliorate this problem, a CLP can
subdivide assigning both its attached ALPs and the variables it currently maintains to the
new child CLPs. The process of subdivision and reassignment is depicted in Figure 3.12.

This process of subdivision and reassignment creates a tree with ALP accesses emanating
from the leaf ALPs and traversing the tree to the destination CLPs. In this scenario, the
access patterns of an ALP and the distribution of variables to CLPs will drastically effect
both the average latency for shared state access and the overall communication burden
on the CLP network. The pdes-mas framework uses heuristic methods for assignment and
online migration of variables between CLPs to both achieve load balance across the network
and affect interest management.

Similar approaches to online adaptation to access patterns for scalability have been taken
in the work of Minson and Theodoropoulos [Minson and Theodoropoulos, 2005]. This
framework uses heuristic techniques to choose between two forms of update processing:
push-processing sends an update message when a variable is written (similar to most toolk-
its surveyed in Section 3.4.3); pull -processing sends a request message when a variable is
read (similar to the pdes-mas architecture). This technique is extended in [Minson and
Theodoropoulos, 2007] to support range-query operations similar to those encountered in
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FIGURE 3.12 A CLP in the pdes-mas architecture becoming overloaded and subdividing in to child
CLPs. Both ALPs and the shared state variables it maintains are reassigned between the resulting child
CLPs.

MAS simulations or DVEs.
This area of research in to adaptive, scalable data distribution techniques for parallel

MAS simulations and similar application areas is the subject of considerable ongoing work.

Shared State and Conflict Resolution

When a simulation model, such as a MAS model, involves the concurrent modification
of shared resources, it is necessary to define the semantics by which this concurrency is
controlled to produce correct and repeatable results. For instance, in the TileWorld MAS
testbed, Tile objects are a shared state resource which can be modified (picked up) concur-
rently by multiple agents. However, the actual effects carry model-specific semantics (a tile
should only be successfully picked up by one of the many agents that attempt to do so).

Since different models may need to represent different semantics for different types of
shared resource, it is not possible to define a single policy by which all concurrent modifica-
tions can be resolved. The hla agent project (see Section 3.4.3) defined a special type of
exclusive variable which constrained the ability to modify a variable to a single LP per-time
step. hla RePast extended these semantics further by adding cumulative variables which
could be concurrently modified by several LPs, but only using modifications relative to the
current value, never absolute assignments.

Clearly each new model may require semantics which are not covered by those offered by
a given library. Techniques for providing an extensible solution to this problem remain the
subject of future research.

3.5.2 Other Areas

Instrumentation and visualization for MAS

To visualize data of a simulation run requires that the data is observed from the simulated
model in the first place. Methods of model instrumentation, i.e., the association of observers
with certain parts of the model, have already been proposed (e.g., [Dalle and Mrabet, 2007]),
but in the context of MAS simulation the problem even aggravates: since agents may be
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created at any time during the simulation, a MAS model would have to be continuously
re-instrumented after changing its state, and the user would need to specify the entities to
be observed via generic rules. Furthermore, agents can have complex states, of which only
a very small part may be of interest. The user should be able to choose which entities and
their sub-states shall be observed. This would decrease the amount of unnecessarily stored
result data and hence could speed up simulation significantly.

Symbiotic Simulation for MAS

Another important recent development in the area of simulation is Symbiotic Simulation, a
class of (Dynamic Data Driven Application Systems (DDDAS) [Darema, 2005]).

This is a method where data from a system is absorbed into a simulation of the system
in order to continually adapt the model to the reality, if necessary making changes to the
assumptions on which it is based. The aim of this data-driven adaptation of the model is
to gradually increase the reliability of its forecasts. At the same time the states predicted
by the simulation can be potentially used to steer the observed system as well as the data
selection process.

Symbiotic simulation is increasingly being deployed in simulations of social or socio-
technical systems where the presence of MAS models present new challenges. Issues such
as the assimilation of qualitative data for cognitively-rich agent models, automated con-
sistency checking and semantic matching of MAS events and states with data are at the
heart of research on DDDAS for social-technical simulations. This is the primary aim of the
AIMSS project at Birmingham, UK∗[Kennedy et al., 2007b,a; Kennedy and Theodoropou-
los, 2006a,b, 2005; Darema, 2005].

Symbiotic simulation imposes new requirements on the underlying simulation engine. To
support the data-driven adaptation of the model the simulation engine should incorporate
mechanisms for the preemption of the simulation and the update of the simulation state and
rules. This issue becomes more challenging in the case of parallel MAS simulation engines
where model adaptation can lead to synchronization inconsistencies. For model-driven data
selection, the simulation engine needs to provide support for the configuration of the data
analysis and learning tools.
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A typical characteristic of MAS is an inherent distribution of resources. Agents have
only partial access to the environment. System-wide properties result from the local actions
of the agents and their interactions. Because of the distributed nature of MAS, testing
by simulation becomes imperative in the software development process of MAS. Software
agents can also use agent-based simulation to guide their decisions. This way, agents run a
model of the world to see what might happen under various decision alternatives and make
the decision that leads to the most desirable outcome. This part presents five chapters that
show different uses of simulation for MAS.

In “Polyagents: Simulation for Supporting Agents’ Decision Making”, Parunak and
Brueckner, introduce a construct for multi-agent modeling that encapsulates a technique
of simulation-based decision-making. A polyagent represents an entity in the domain. The
polyagent generates a stream of transient ghosts to explore various issues of interest to the
entity. These ghosts can be applied to explore alternative futures, evaluate plan structures,
compare the usefulness of alternative options, etc. Each ghost explores a possible trajectory
for the entity, which then chooses its behavior based on the experiences of its ghosts.

In “Combining Simulation and Formal Tools for the Development of Self-Organizing
Multi-Agent Systems”, Luca Gardelli, Mirko Viroli, and Andrea Omicini present a system-
atic use of simulation and formal tools in the early design phase of the development of
self-organizing systems. The authors propose an iterative process consisting of modeling,
simulation, verification, and tuning. Due to the state explosion problem inherent to model
checking, the approach is currently limited to verifying only small instances of systems.
However, the authors show that use of model checking techniques is very useful in the first
iterations on small instances of the problem.

Common knowledge in simulation platforms is typically reified in reusable code, libraries,
and software frameworks. In “On the Role of Software Architecture for Simulating Multi-
Agent Systems”, Alexander Helleboogh, Tom Holvoet, and Danny Weyns put forward soft-
ware architecture in addition to such code libraries and software frameworks. Software
architecture captures the essence of a simulation platform in an artifact that amplifies reuse
beyond traditional code libraries and software frameworks. It supports consolidating and
sharing expertise in the domain of multi-agent simulation in a form that has proven its
value for software development.

In “Replicator Dynamics in Discrete and Continuous Strategy Spaces”, Karl Tuyls and
Ronald Westra study multi-agent evolutionary dynamics from a game theoretic perspective.
The authors simulate and analyze the properties and asymptotic behavior of multi-agent
games with discrete and continuous strategy spaces. To this end they use existing models
of the replicator dynamics and introduce a new replicator dynamics model for continuous
strategy spaces. Experiments show that the new model outperforms existing models in a
simple game.

Finally, in “Stigmergic Cues and Their Uses in Coordination: an Evolutionary Approach”,
Luca Tummolini, Marco Mirolli, and Cristiano Castelfranchi, explore the evolution of stig-
mergic behavior adopting a simulative approach. The authors simulate a population of
artificial agents living in a virtual environment containing safe and poisonous fruits. The
behavior of the agents is governed by artificial neural networks whose free parameters (i.e.
the weights of the networks’ connections) are encoded in the genome of the agents and
evolve through a genetic algorithm. By making the transition from a MAS in which agents
individually look for resources to one in which each agent indirectly coordinates with what
the other agents do (stigmergic self-adjustment) and, finally, to a situation in which each
agent sends a message about what kind of resources are available (stigmergic communica-
tion), the simulations offer a precise analysis of the difference between traces that are signs
with a behavioral content and traces that are signals with a behavioral message.
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4.1 Introduction

People often support decisions by thinking through the consequences of alternative courses
of action-in effect, by simulating them mentally. In fact, one of the major uses of simulations
is as decision-support aids.

Software agents can also use simulation to guide their decisions. That is, they may run
a model of the world to see what might happen under various decision alternatives, then
make the decision that leads to the most desirable outcome. Such simulation can be either
equation-based or agent-based. Our focus here is on agent-based simulation,∗ in which
software agents representing the domain entities are situated in a representation of the
environment and interact with the environment and with one another, acting out a possible
trajectory of the future. The agent responsible for making a decision activates an agent-
based simulation of the domain, and chooses an action based on the evolution of that
simulation.

This approach to decision-making is complementary to a number of other decision mech-
anisms. By way of contrast, consider several such mechanisms that are popular in research
on AI and autonomous agents.

∗Elsewhere [Parunak et al., 2006b] we discuss the benefits of agent-based modeling over simulation-based
modeling; more recently, see [Shnerb et al., 2000].
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Derivational methods, such as rule-based reasoning and theorem proving, derive con-
sistent conclusions from axioms and inference rules such as modus ponens or modus tolens.
These methods require translating the domain into a set of well-formed symbolic expressions
with truth values that are amenable to formal manipulation. This translation process, an
aspect of knowledge engineering, can be time-consuming and error-prone.

Constraint-based methods also work with sets of statements about the domain, but
in this case the emphasis is on finding values for variables in these statements that satisfy
certain conditions, rather than on deriving new statements from them. Constraint-based
methods fall into two broad categories. Constraint satisfaction seeks a set of assignments to
the variables that makes all of the statements true, while constraint optimization associates a
cost function with conflicts among statements and seeks a set of assignments that minimizes
the overall cost.

Both derivational and constraint-based methods favor a static world, in which the truth
values of the statements on which they rely can be assumed to remain constant. By con-
trast, game theoretic methods explicitly model the interaction between two adversarial
reasoners. They evaluate the distinct strategy choices on each side, but require enumeration
in advance of all possible choices, and make two assumptions about the adversaries that
may not be true: that the adversaries know the payoffs of the various options, and that they
make their decisions rationally. Iterated game-theoretic methods can be viewed as a version
of simulation, but one that focuses on the players’ strategies and minimizes the impact of
the environment.

These approaches are valuable tools in the decision-maker’s kit. But they have certain
fundamental limitations that agent-based simulation can avoid.

1. Spatial irreducibility recognizes the intractability of logical analysis of spatial
constraints on a domain-independent, purely qualitative representation of space
or shape [Forbus et al., 1987, 1991]. While sophisticated representations of spatio-
temporal information are available (e.g., [Parent et al., 1999; Tryfona et al.,
2003]), relevant reasoning about geometrically constrained problems still requires
direct measurements on a spatial model. Such reasoning is much more natural
using a simulation whose environment embeds the required topological structure.

2. Process irreducibility [Hopcroft and Ullman, 1979] means that for systems
beyond a certain (very low [Wolfram, 2002]) level of complexity, direct emulation
is the most efficient approach to predicting their evolution. Formal logical systems
are rife with intractability barriers [Garey and Johnson, 1979] that require either
restricting their application to small problems or weakening the expressiveness of
the underlying logical formalism. Simulation works with an iconic representation
of the domain rather than a symbolic one, and avoids the formal logical operations
that lead to intractability.

3. Dynamic uncertainty means that nonlinear interactions among domain enti-
ties can generate uncertainty, even if the states and configuration of the entities
are precisely known. Two successive runs of the same system may not yield the
same outcome. The problem is not external noise or nondeterminism, but the
sensitive dependence of an iterated nonlinear system on initial conditions. Clas-
sical reasoning methods are either deterministic or propagate the uncertainty in
the inputs through to the outputs. Simulation can emulate the generation of dy-
namic uncertainty and estimate its impact, if it includes an explicit model of how
the environment actively integrates the actions of various entities [Michel, 2004].

These issues make simulation a valuable tool for decision-making. The agent facing a

© 2009 by Taylor and Francis Group, LLC



Polyagents: Simulation for Supporting Agents’ Decision Making 111

decision runs a simulation of the domain, and consults its results to inform the choice that
it makes.

This chapter describes a particular construct for multi-agent modeling, the polyagent,
that encapsulates the technique of simulation-based decision-making. The construct is highly
imitative, drawing from concepts from a number of disciplines, including computer science,
biology, and physics. In the next section, we define the polyagent. In Section 4.3, we describe
its use in several application domains. In Section 4.4, we outline directions for further
research, and conclude in Section 4.5, summarizing the multidisciplinary inspirations for
the polyagent.

4.2 The Polyagent Model

In spite of the benefits of simulation as a decision tool, it faces a significant challenge. This
section articulates this challenge, motivates two basic principles involved in the construct,
then outlines in detail the polyagent architecture and the environment in which it operates,
and discusses related research.

4.2.1 A Challenge for Simulation-Based Decision Making

Simulation faces an important challenge compared with more traditional decision mech-
anisms. The logical formalisms on which those mechanisms are based impart a certain
generality to their conclusions. A run of a simulation is just that, a single run, with no
way to generalize it. Particularly if the simulation permits the generation of dynamic un-
certainty, multiple runs must be made to sample the possible outcomes of the scenario. The
necessary number of runs is much higher than one might initially think.

Imagine n + 1 entities in discrete time. At each step, each entity interacts with one of the
other n. Thus at time t its interaction history h(t) is a string in nt . Its behavior is a function
of h(t). This toy model generalizes many domains, including predator-prey systems, combat,
innovation, diffusion of ideas, and disease propagation.

It would be convenient if a few runs of such a system told us all we need to know, but
this is not likely to be the case, for three reasons.

1. We may have imperfect knowledge of the agents’ internal states or details of the
environment (for example, in a predator-prey system, the carrying capacity of
the environment). If we change our assumptions about these unknown details,
we can expect the agents’ behaviors to change.

2. The agents may behave non-deterministically, either because of noise in their
perceptions, or because they use a stochastic decision algorithm.

3. Even if the agents’ reasoning and interactions are deterministic and we have ac-
curate knowledge of all state variables, nonlinearities in decision mechanisms or
interactions can result in overall dynamics that are formally chaotic, so that tiny
differences in individual state variables can lead to arbitrarily large divergences
in agent behavior. A nonlinearity can be as simple as a predator’s hunger thresh-
old for eating a prey or a prey’s energy threshold for mating. This process is
responsible for the generation of dynamic uncertainty.

An equation-based model typically deals with aggregate observables across the popula-
tion. In the predator-prey example, such observables might be predator population, prey
population, average predator energy level, or average prey energy level, all as functions of
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time. No attempt is made to model the trajectory of an individual entity. This aggregation
can leads to serious errors in the results of such a model [Shnerb et al., 2000].

An ABM explicitly describes the trajectory of each agent. In a given run of a predator-
prey model (for example), depending on the random number generator, predator 23 and
prey 14 may or may not meet at time 354. If they do meet and predator 23 eats prey 14,
predator 52 cannot later encounter prey 14, but if they do not meet, predator 52 and prey
14 might meet later. If predator 23 happens to meet prey 21 immediately after eating prey
14, it will not be hungry, and so will not eat prey 21, but if it did not first encounter prey
14, it will consume prey 21. And so forth. A single run of the model can capture only one
set of many possible interactions among the agents.

In our general model, during a run of length τ , each entity will experience one of nτ

possible histories. (This estimate is of course worst case, since domain constraints may make
many of these histories inaccessible.) The population of n + 1 entities will sample n + 1 of
these possible histories. It is often the case that the length of a run is orders of magnitude
larger than the number of modeled entities (τ >> n).

Multiple runs with different random seeds offer only a partial solution. Each run only
samples one set of possible interactions. For large populations and scenarios that permit
multiple interactions on the part of each agent, the number of runs needed to sample the
possible alternative interactions thoroughly can quickly become prohibitive. In the appli-
cation described in Section 4.3.3, n ∼ 50 and τ ∼ 10,000, so the sample of the space of
possible entity histories actually sampled by a single run is vanishingly small. We would
need on the order of τ runs to generate a meaningful sample, and executing that many runs
is out of the question.

We need a way to capture the outcome of multiple possible interactions among agents
in a few runs of a system. Polyagents are one solution to this problem. In essence, each
agent uses a lower-level multi-agent system representing itself to explore alternative futures
in guiding its decisions.

4.2.2 Two Big Ideas

The next few sections explain the polyagent modeling construct. To help motivate it, we
begin by introducing two concepts that it embodies: environmentally-mediated interactions,
and continuous short-length prediction.

Environmentally-Mediated Interactions

Because of dynamic uncertainty, we need to explore many possible futures. Computational
expense is a major obstacle to such exploration with conventional agent-based models, and
much of this expense is due to the cost of computing direct agent-to-agent interactions.

Social insects achieve complex coordination tasks with very limited processing resources,
by means of stigmergy [Grassé, 1959] (coordination through a shared environment rather
than by direct interaction). Many insect species deposit and sense chemicals, known as
pheromones, in their environment. A species might have a vocabulary of several dozen such
chemicals. The strengths of the resulting fields reflect the frequency with which individuals
that deposit them have been at the deposit location, and are sufficient to generate a wide
range of cooperative behaviors among the organisms, including generation of minimal path
networks and construction of complex three-dimensional nests [Parunak, 1997].

Insects construct their pheromone fields using chemicals in a physical environment. We
use a digital pheromone field, consisting of scalar variables localized in a structured digital
environment. This field reflects the likelihood that the class of agent that deposits that
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FIGURE 4.1 Tracking a Nonlinear Dynamical System. a = system state space; b = system trajectory
over time; c = recent measurements of system state; d = short-range prediction.

particular flavor is present at a given space-time location. Each agent’s field is generated
by a swarm of representatives, or “ghosts,” that build up the field by their movements and
make their own decisions on the basis of the fields generated by other agents. Thus agents’
decisions take into account a large number of possible interactions in a single run of the
system.

Continuous Short-Range Prediction

Pierre-Simon Laplace was confident that to an observer with enough information about
the present and sufficient computing capability, no detail of the future could remain hid-
den [Laplace, 1820]. His optimism foundered on the sensitivity of nonlinear processes to
initial conditions. Nonlinearities in the dynamics of most realistic systems drive the expo-
nential divergence of trajectories originating close to one another.

In many applications, we can replace a single long-range prediction with a series of short-
range ones. The difference is between driving a car in the daytime and at night. In the
daytime, one may be able to see several miles down the road. At night, one can only see as
far as the headlamps shine, but since the headlamps move with the car, at any moment the
driver has the information needed to make the next round of decisions.

In physical systems, one typically describes the systems with vector differential equations
e.g.,

�dx
dt

= f (�x ).

At each moment, we fit a convenient functional form for f to the system’s trajectory in the
recent past, and then extrapolate this fit (Figure 4.1 [Kantz and Schreiber, 1997]). Constant
repetition of this process provides a limited look-ahead into the future. The process can
be applied in reverse as well, allowing us to project from a series of current observations
into the past to recover likely historical antecedents of the current state. This program is
straightforward with a system described numerically. The architecture described in the next
few sections applies it to agent behavior.

4.2.3 The Architecture

Each polyagent represents a single domain entity. It consists of a single avatar that manages
the correspondence between the domain and the polyagent, and a swarm of ghosts that
explore alternative behaviors of the domain entity. Sometimes it is useful to consider the
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swarm of ghosts in their own right, as a delegate MAS. Let’s discuss each of these concepts
in more detail.

Avatar

The avatar corresponds to the agent representing an entity in a conventional multi-agent
model of the domain. It persists as long as its entity is active, and maintains state infor-
mation reflecting its entity’s state. Its computational mechanisms may range from simple
stigmergic coordination (coordination that is mediated by a shared environment) to sophis-
ticated BDI reasoning. A typical polyagent model incorporates multiple polyagents, and
thus multiple avatars.

The avatar observes its ghosts to decide on its own actions. Depending on the application,
it may simply climb the aggregate pheromone gradient laid down by its ghosts, or evaluate
individual ghost trajectories to select those that maximize some decision criterion. For
example, in a military application, it may select the trajectory offering the least risk, or the
greatest likelihood of success. (The two are often not the same!)

Avatars may also deposit digital pheromones directly. For example, in a military appli-
cation, an avatar modeling a target will emit a target pheromone that attracts the ghosts
of units seeking to attack that target, even if the target avatar does not use ghosts to plan
its own movements (a situation that occurs when the target is stationary).

Ghosts

Each avatar generates a stream of ghost agents, or simply ghosts. Ghosts typically have
limited lifetime, dying off after a fixed period of time or after some defined event to make
room for more ghosts. The avatar controls the rate of generation of its ghosts, and typically
has several ghosts concurrently active.

Ghosts explore alternative possible behaviors for their avatar and generate a digital
pheromone field recording those possible behaviors for reference by other agents. The field is
a function of both location and time, increasing as ghosts make their deposits and decreas-
ing through a constant background evaporation that removes obsolete information. Each
ghost chooses its actions stochastically based on a weighted (not necessarily linear) “com-
bining function” of the strengths of the various pheromone flavors in its immediate vicinity,
and deposits its own pheromone to record its presence. A ghost’s “program” consists of
its combining function, the vector of weights defining its sensitivity to various pheromone
flavors, and any other parameters in its combining function. The ghost simply climbs the
gradient defined by the output of the combining function.

Having multiple ghosts multiplies the number of interactions that a single run of the
system can explore. Instead of one trajectory for each avatar, we now have one trajectory
for each ghost. If each avatar has k concurrent ghosts, we explore k trajectories concurrently.
But the multiplication is in fact greater than this.

The digital pheromone field supports three functions [Brueckner, 2000; Parunak, 2003]:

1. It aggregates deposits from individual agents, fusing information across multiple
agents and through time. In some of our implementations of polyagents, avatars
deposit pheromone; in other, ghosts do. Aggregation of pheromones enables a
single ghost to interact with multiple other ghosts at the same time. It does not
interact with them directly, but only with the pheromone field that they generate,
which is a summary of their individual behaviors.

2. It evaporates pheromones over time. This dynamic is an innovative alternative
to traditional truth maintenance in artificial intelligence. Traditionally, knowl-
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edge bases remember everything they are told unless they have a reason to forget
something, and expend large amounts of computation in the NP-complete prob-
lem of reviewing their holdings to detect inconsistencies that result from changes
in the domain being modeled. Ants immediately begin to forget everything they
learn, unless it is continually reinforced. Thus inconsistencies automatically re-
move themselves within a known period.

3. It propagates pheromones to nearby places, disseminating information.

This third dynamic (propagation) enables each ghost to sense multiple other agents. If
n avatars deposit pheromones, each ghost’s actions are influenced by up to n other agents
(depending on the propagation radius), so that we are exploring in effect n ∗ k interactions
for each entity, or n2 ∗ k interactions overall. If individual ghosts deposit pheromones, the
number of interactions being explored is even greater, on the order of kn . Of course, the
interactions are not played out in the detail they would be in a conventional multi-agent
model. But our empirical experience is that they are reflected with a fidelity that is entirely
adequate for the problems we have addressed.

Pheromone-based interaction not only multiplies the number of interactions that we are
exploring, but also enables extremely efficient execution. In one application, we support
24,000 ghosts concurrently, faster than real time, on a 1 GHz Wintel laptop.

The avatar can do several things with its ghosts, depending on the application.

• It can activate its ghosts when it wants to explore alternative possible futures,
modulating the rate at which it issues new ghosts to determine the number of
alternatives it explores. It initializes the ghosts’ weight vectors to define the
breadth of alternatives it wishes to explore.
• It can evolve its ghosts to learn the best parameters for a given situation. It

monitors the performance of past ghosts against some fitness parameter, and then
breeds the most successful to determine the parameters of the next generation.
• It can review the behavior of its swarm of ghosts to produce a unified estimate of

how its own behavior is likely to evolve and what the range of likely variability
is.

Delegate MAS

The avatar-ghost relationship encapsulates the notion of an agent’s using simulation to
inform its decisions. An avatar’s ghosts are in fact conducting a simulation of the domain
to inform the avatar’s next decision. The swarm of ghosts is a multi-agent system in its
own right. Because it performs a service for its avatar, it can be described as a “delegate
MAS” [Holvoet and Valckenaers, 2006a,b]. Figure 4.2 summarizes the unification of the
polyagent and delegate MAS model, discussed in more detail elsewhere [Parunak et al.,
2007c].

4.2.4 The Environment

The stigmergic coordination among ghosts requires an environment within which they have
a well-defined location at any time. The importance of the environment is not limited
to swarming agents. Even more complex agents are limited by the active role that the
environment plays in integrating their actions, and inattention to this detail can lead to
erroneous results [Michel, 2004]. In addition, the topology of the environment enables agents
to limit their interactions to a subset of other agents, and thus to avoid the computationally
explosive task of interacting with all other agents.
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FIGURE 4.2 Each Polyagent is the combination of an Avatar and one or more delegate MAS. Each
delegate MAS may render a specific service for the Avatar, and the Avatar may use a combination of
delegate MAS to handle a single one of its concerns.

The simplest environment for stigmergic agents is a manifold, such as the surface of the
earth. This is the environment in which the biological antecedents of stigmergy first devel-
oped. It offers a number of benefits, including uniformity in the structure of the topology
seen locally by agents (typically, a lattice), and the existence of a well-defined metric.

Manifolds are natural environments for polyagents, but by no means the only feasible
topologies. The factory scheduling applications discussed in Section 4.3.1 use a process
graph, in which the nodes are process steps and the links indicate the order in which
they may be performed. In such a structure, different nodes may have different numbers
of successors, so that an agent’s local view of the topology changes from one node to
the next. In addition, there may be no well-defined metric on such a graph. In spite of
these shortcomings, our experience shows that polyagents can function effectively on such
a structure.

In our current implementation, the environment consists of a “book” of pheromone maps,
one for each time step of interest. Thus the strength of the pheromone from an avatar’s
ghosts at a given location on a given page reflects the collective estimate of the avatar’s
ghosts that the avatar will be at that location at that time. In some applications, this period
includes the recent past as well as the future through which prediction is desired. As ghosts
move ahead in time, they advance from one page to the next. All agents share a single
book, since the pheromone maps are the only means available for ghosts of different agents
to interact with one another.

4.2.5 Related Work

Our polyagent bears comparison with several previous multi-agent paradigms, two varieties
of enhanced simulation, and three other uses of the term “polyagent.”

Polyagents and Multi-Agent Paradigms

Polyagents are distinct from the common use of agents to model different functions of a
single domain entity. For example, in ARCHON [Wittig, 1992], the domain entity is an
electrical power distribution system, and individual agents represent different functions
or perspectives required to manage the system. In a polyagent, each ghost has the same
function: to explore one possible behavior of the domain entity. The plurality of ghosts
provides, not functional decomposition, but a range of estimates of alternative behaviors.

Many forms of evolutionary computation [Jacob, 2001] allow multiple representatives of
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a single entity to execute concurrently, to compare their fitness. In these systems, each
agent samples only one possible series of interactions with other entities. Pheromone-based
coordination in the polyagent construct permits each ghost to adjust its behavior based on
many possible alternative behaviors of other entities in the domain.

Similarly, the multiple behaviors contemplated in fictitious play [Lambert et al., 2005]
take place against a static model of the rest of the world.

Like the polyagent, ant-colony optimization [Dorigo and Stuetzle, 2004] uses pheromones
to integrate the experiences of parallel searchers. The polyagent’s advance is the notion of
the avatar as a single point of contact for the searchers representing a single domain entity.

Polyagents and Simulation

The need to consider multiple possible futures is widely recognized. Polyagents address,
in a more systematic fashion, three simulation techniques that have been used by others:
repeated stochastic simulation, recursive simulation, and multitrajectory simulation.

Reference [Tolk, 2005] cites an unpublished study at the University of the German Federal
Armed Forces showing that repetitions of a stochastic model offer comparable accuracy to
a deterministic model. This approach reflects the stochastic nature of ghost reasoning, but
each entity in a run still experiences only one possible trajectory of the other entities, rather
than the distribution over possible trajectories that the digital pheromone field presents to
polyagents.

Recursive simulation [Gilmer and Sullivan, 2000] occurs when one simulation invokes
another in support of a local decision. Previous implementations of this idea invoke recursive
simulation only in support of some agent decisions, and the lower-level simulation is another
instance of the same simulation model that invokes it, with restricted scope. Polyagent
avatars base all of their decisions on lower-level simulations, which run in a stigmergic
world of reduced dimensionality to enable computational efficiency.

Polyagents compute multiple futures concurrently in a single run. This technique, called
multitrajectory simulation, has also been explored by Gilmer and Sullivan [Gilmer and Sulli-
van, 1998]. Their approach evaluates possible outcomes at each branch point stochastically,
selects a few of the most likely alternatives, and propagates them. This selection is required
by the high cost of following multiple paths, but avoiding low-probability paths violates
the model’s ergodicity and compromises accuracy [Gilmer and Sullivan, 2001]. Polyagents
avoid this problem, in three ways. 1) They sample the futures it extends from the distribu-
tion of all possible futures, and so does not automatically prune low-probability paths. 2)
The highly efficient numerical execution of ghosts lets them explore more paths than can
qualitative simulators. 3) Newly developed methods for analyzing the effective state space
of a polyagent model let us monitor the model’s coverage dynamically and correct it if it
becomes skewed.

It is important to situate the polyagent construct with regard multimodels [Fishwick
et al., 1994; Yilmaz and Ören, 2005], which Fishwick et al. [Fishwick et al., 1994] define
as employing “more” than one model, each derived from a different perspective, and uti-
lizing correspondingly distinct reasoning and simulation strategies (emphases ours). The
several ghosts representing a single avatar are identical, other than (possibly) their weight
vectors. When the weight vectors vary, one might view the ghosts as having “different
perspective(s),” and thus as forming a multimodel. However, they all use the same “rea-
soning and simulation strategies,” and (unlike multimodels) can be deployed with identical
weight vectors, in order to explore alternative futures that can arise from trajectory diver-
gence. Multimodels emphasize differences within the models themselves, while polyagents
emphasize differences in behavior resulting from nonlinearities in interactions among the
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agents. This difference corresponds to the broader distinction between systems of multiple
BDI agents, where the intelligence resides in the individual agents, and swarming systems,
where the intelligence emerges from interactions among the agents.

The Term “Polyagent”

The term “polyagent” is our neologism for a set of software agents that collectively represent
a domain entity and its alternative behaviors. The term is used in three other contexts that
should not lead to any confusion.

In medicine, “polyagent therapy” uses multiple treatment agents (notably, multiple drugs
combined in chemotherapy).

Closer to our domain, but still distinct, is the use of the term by K. Kijima [Kijima,
2001] to describe a game-theoretic approach to analyzing the social and organizational
interactions of multiple decision-makers. For Kijima, the term “poly-agent” makes sense
only as a description of a system, and does not describe a single agent. In our approach, it
makes sense to talk about a single modeling construct as “a polyagent.”

The term “polyagent” is also used in theoretical archaeology to describe (roughly) an
entity that participates in multiple processes [Normark, 2006].

4.3 Some Applications of Polyagents

In this section, we describe some specific applications of polyagents and delegate MASs.

4.3.1 Factory Scheduling and Control

The first application of polyagents was to real-time job-shop scheduling [Brueckner, 2000].
We prototyped a self-organizing multi-agent system with three species of agents: processing
resources, work-pieces, and policy agents. Avatars of processing resources with different
capabilities and capacities and avatars of work-pieces with dynamically changing processing
needs (due to re-work) jointly optimize the flow of material through a complex, high-volume
manufacturing transport system. In this application, only the avatars of the work-pieces
actually deploy ghosts. The policy agents and avatars of the processing resources (machines)
are single agents in the traditional sense.

In a job shop, work-pieces interact with one another by blocking access to the resources
that they occupy, and thus delaying one another. Depending on the schedule, different work-
pieces may interact, in different orders. Polyagents explore the space of alternative routings
and interactions concurrently in a single model.

Work-piece avatars currently loaded into the manufacturing system continuously deploy
ghosts that emulate their decision processes in moving through various decision points
in the manufacturing process. Each of these decisions is stochastic, based on the relative
concentration of attractive pheromones in the neighborhood of the next decision point.
These pheromones are actually deposited by the policy agents that try to optimize the
balance of the material flow across the transport network, but they are modulated by the
ghosts. Thus, an avatar’s ghosts modulate the pheromone field to which the avatar responds,
establishing an adaptive feedback loop into the future.

The avatars continuously emit ghosts that emulate their current decision process. The
ghosts travel into the future without the delay imposed by physical transport and processing
of the work-pieces. These ghosts may find the next likely processing step and wait there
until it is executed physically, or they may emulate the probabilistic outcome of the step
and assume a new processing state for the work-piece they are representing. In either case,

© 2009 by Taylor and Francis Group, LLC



Polyagents: Simulation for Supporting Agents’ Decision Making 119

while they are active, the ghosts contribute to a pheromone field that reports the currently
predicted relative load along the material flow system. When ghosts for alternative work-
pieces explore the same resource, they interact with one another through the pheromones
that they deposit and sense.

By making stochastic decisions, each ghost explores an alternative possible routing for its
avatar. The pheromone field to which it responds has been modulated by all of the ghosts of
other work-pieces, and represents multiple alternative routings of those work-pieces. Thus
the ghosts for each work-piece explore both alternative futures for that work-piece, and
multiple alternative interactions with other work-pieces.

Policy agents that have been informed either by humans or by other agents of the de-
sired relative load of work-pieces of specific states at a particular location in turn deposit
attractive or repulsive pheromones. Thus, through a local adaptive process, multiple policy
agents supported by the flow of ghost agents adapt the appropriate levels of pheromone
deposits to shape the future flow of material as desired.

By the time the avatar makes its next routing choice, which is delayed by the physical
constraints of the material flow through the system, the ghosts and the policy agents have
adjusted the appropriate pheromones so that the avatar makes the “right” decision. In
effect, the policy agents and the ghosts control the avatar as long as they can converge on
a low-entropy pheromone concentration that the avatar can sample.

Factory scheduling has also been a fertile application area for delegate MAS’s [Holvoet
and Valckenaers, 2006a,b; Valckenaers et al., 2006; Valckenaers and Holvoet, 2006]. The is-
suing agents (“avatars” in the polyagent model) are PROSA (Product-Resource-Order-Staff
Agent) [Valckenaers and Van Brussel, 2005] agents . All PROSA agents have counterparts
in reality, which facilitates integration and consistency (indeed, reality is fully integrated
and consistent). The main PROSA agents in the MAS are:

• Resource agents reflecting the actual factory. They offer a structure in cyber
space on which other agents can virtually travel through the factory.
• Order agents reflecting manufacturing tasks.
• Product agents reflecting task/product types.

Both resource agent and order agents issue delegate MAS. A single agent may have several
delegate MAS. Each delegate MAS has its own responsibility.

Resource agents use a delegate MAS to make their services known throughout the man-
ufacturing system. Ant agents collect information about the processing capabilities of re-
sources while virtually traveling through the factory. These feasibility ants deposit this
information (pheromone) at positions in cyber space that correspond to routing opportuni-
ties.

Each order agent is an issuing agent for a delegate MAS in which exploring ants scout
for suitable task execution scenarios. In addition, each order agent is an issuing agent for
a second delegate MAS that informs the resource agents of its intentions: Intention ants
regularly reconfirm bookings for slots at resources (Figure 4.3). Specific manufacturing exe-
cution systems employ additional delegate MAS to deliver case-specific services [Valckenaers
et al., 2006].

4.3.2 Vehicle Routing

Two pressures require that path planning for robotic vehicles be an ongoing activity. 1)
The agent typically has only partial knowledge of its environment, and must adapt its
behavior as it learns by observation. 2) The environment is dynamic: even if an agent
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FIGURE 4.3 Intention ants notify resource agents about the intentions of their respective order agent
to occupy resources at a specific time slots in the near future. Resource agents use this information to
self-schedule.

has complete knowledge at one moment, a plan based on that knowledge becomes less
useful as the conditions on which it was based change. These problems are particularly
challenging in military applications, where both targets and threats are constantly appearing
and disappearing.

In the DARPA JFACC program, we approached this problem by imitating the dynamics
that ants use in forming paths between their nests and food sources [Parunak, 1997]. The
ants search stochastically, but share their discoveries by depositing and sensing nest and
food pheromone. Ants that are searching for food deposit nest pheromone while climbing
the food pheromone gradient left by successful foragers. Ants carrying food deposit food
pheromone while climbing the nest pheromone gradient. The initial pheromone trails form
a random field, but quickly collapse into an optimal path as the ants interact with one
another’s trails.

The challenge in applying this algorithm to a robotic vehicle is that the algorithm depends
on interactions among many ants, while a vehicle is a single entity that only traverses its
path once. We use a polyagent to represent the vehicle (in our case, an aircraft) whose route
needs to be computed [Parunak et al., 2004a; Sauter et al., 2005]. As the avatar moves
through the battlespace, it continuously emits a swarm of ghosts, whose interactions mimic
the ant dynamics and continuously (re)form the path in front of the avatar. These ghosts
seek targets and then return to the avatar. They respond to several digital pheromones:

• RTarget is emitted by a target.
• GNest is emitted by a ghost that has left the avatar and is seeking a target.
• GTarget is emitted by a ghost that has found a target and is returning to the

avatar.
• RThreat is emitted by a threat (e.g., a missile battery).

Ideally, the digital pheromones are maintained in a distributed network of unattended
ground sensors dispersed throughout the vehicle’s environment, but they can also reside on
a central processor, or even on multiple vehicles. In addition, we provide each ghost with
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FIGURE 4.4 Gauntlet Routing Problem.

Dist, an estimate of how far away the target is.
In general, ghosts are attracted to RTarget pheromone and repelled from RThreat phero-

mone. In addition, before they find a target, they are attracted to GTarget pheromone.
Once they find a target, they are attracted to GNest pheromone. A ghost’s movements are
guided by the relative strengths of these quantities in its current cell and each neighboring
cell in a hexagonal lattice. It computes a weighted combination of these factors for each
adjacent cell and selects stochastically among the cells, with probability proportionate to
the computed value.

Each ghost explores one possible route for the vehicle. The avatar performs two functions
in overseeing its swarm of ghosts:

1. It integrates the information from the several ghosts in their explorations of
alternative routes. It observes the GTarget pheromone strength in its immediate
vicinity, and guides the robot up the GTarget gradient. GTarget pheromone is
deposited only by ghosts that have found the target, and its strength in a given
cell reflects the number of ghosts that traversed that cell on their way home from
the target. So the aggregate pheromone strength estimates the likelihood that a
given cell is on a reasonable path to the target.

2. It modulates its ghosts’ behaviors by adjusting the weights that the ghosts use to
combine the pheromones they sense. Initially, all ghosts used the same hand-tuned
weights, and differences in their paths were due only to the stochastic choices they
made in selecting successive steps. When the avatar randomly varied the weights
around the hand-tuned values, system performance improved by more than 50%,
because the ghosts explored a wider range of routes. We then allowed the avatar
to evolve the weight vector as the system operates, yielding an improvement
nearly an order of magnitude over hand-tuned ghosts [Sauter et al., 2002].

We tested this system’s ability to route an aircraft in simulated combat [Parunak et al.,
2004a]. In one example, it found a path to a target through a gauntlet of threats (Fig-
ure 4.4). A centralized route planner seeking an optimal path by integrating a loss function
and climbing the resulting gradient was unable to solve this problem without manually
introducing a waypoint at the gauntlet’s entrance. The polyagent succeeded because some
of the ghosts, moving stochastically, wandered into the gauntlet, found their way to the
target, and then returned, laying pheromones that other ghosts could reinforce.

Another experiment flew multiple missions through a changing landscape of threats and
targets. The figure of merit was the total surviving strength of the Red and Blue forces.
In two scenarios, the aircraft’s avatar flew a static route planned on the basis of complete
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FIGURE 4.5 Real-Time vs. Advance Planning. “Script” is a conservative advance route based on com-
plete knowledge. “Script narrow” is a more aggressive advance route. “Ghost” is the result when the route
is planned in real time based on partial knowledge.

knowledge of the location of threats and targets, without ghosts. The routes differed based
on how closely the route was allowed to approach threats. A third case used ghosts, but
some threats were invisible until they took action during the simulation. Figure 4.5 compares
these three cases. The polyagent’s ability to deal with partial but up-to-date knowledge both
inflicted more damage on the adversary and offered higher survivability than preplanned
scripts based on complete information.

Route planning shows how a polyagent’s ghosts can explore alternative behaviors con-
currently, and integrate that experience to form a single course of action. Since only one
polyagent is active at a time, this work does not draw on the ability of polyagents to manage
the space of possible interactions among multiple entities.

In a similar vein, delegate MAS’s have been applied to the problem of traffic control for
conventional vehicles [Huard et al., 2006; Weyns et al., 2007], in an experimental traffic
control system that proactively tries to predict and avoid road congestion. Each car in the
system is represented by a task agent, while road segments and crossroads are represented
by resource agents. Task agents use resource agents to book a certain road in advance trying
to avoid road congestion. Three types of delegate MAS are used: (i) resource agents issue
feasibility ants to gather information about the underlying environment (which roads lead
to which destinations); (ii) task agents issue exploration ants to gather information about
the costs of possible routes; (iii) task agents issue intention ants to book the best possible
route. A booking must be refreshed regularly to maintain the reservation. The delegate
MAS approach has been applied to the Leonard crossroad, a well-known Belgian congestion
point between the Brussels Ring and the E411 Motorway (Figure 4.6). Tests for a realistic
morning peak scenario show a reduction of 26% of congestion time for an increase of only
4% of extra traveled distance.

4.3.3 Prediction

The DARPA RAID program [Kott, 2004] focuses on the problem of characterizing an adver-
sary in real-time and predicting its future behavior. Our contribution to this effort [Parunak
and Brueckner, 2006] uses polyagents to evolve a model of each real-world entity (a group
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FIGURE 4.6 A car at the circle (at the bottom right) has three possible routes: straight ahead, left,
and straight on and then right. In the current situation, the car follows the route straight ahead, which has
the minimal cost.

of soldiers known as a fire team) and extrapolate its behavior into the future. Thus we call
the system “the BEE” (Behavior Evolution and Extrapolation).

Figure 4.7 is an overview of the BEE process. Ghosts live on a timeline indexed by that
begins in the past at the insertion horizon and runs into the future to the prediction horizon.
τ is offset with respect to the current time t. The timeline is divided into discrete “pages,”
each representing a successive value of τ . The avatar inserts the ghosts at the insertion
horizon. In our current system, the insertion horizon is at τ - t = -30, meaning that ghosts
are inserted into a page representing the state of the world 30 minutes ago. At the insertion
horizon, the avatar samples each ghost’s rational and emotional parameters (desires and dis-
positions) from distributions to explore alternative personalities of the entity it represents.
The avatar is also responsible for estimating its entity’s goals (using a belief network) and
instantiating them in the environment as pheromone sources that constrain and guide the
ghosts’ behavior. In estimating its entity’s goals and deliberately modulating the distribu-
tion of ghosts, the avatar reasons at a higher cognitive level than do the pheromone-driven
ghosts.

Each page between the insertion horizon and τ = t (“now”) records the historical state of
the world at its point in the past, represented as a pheromone field generated by the avatars
(which at each page know the actual state of the entities they are modeling). As ghosts move
from page to page, they interact with this past state, based on their behavioral parameters.
These interactions mean that their fitness depends not just on their own actions, but also
on the behaviors of the rest of the population, which is also evolving. Because τ advances
faster than real time, eventually τ = t (actual time). At this point, the avatar evaluates each
of its ghosts based on its location compared with the actual location of its corresponding
real-world entity.

The fittest ghosts have three functions:

1. The avatar reports personality of the fittest ghost for each entity to the rest of
the system as the likely personality of the corresponding entity. This information
enables us to characterize individual warriors as unusually cowardly or brave.

2. The avatar breeds the fittest ghosts genetically and reintroduces their offspring
at the insertion horizon to continue the fitting process.
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FIGURE 4.7 Behavioral Emulation and Extrapolation. Each avatar generates a stream of ghosts that
sample the personality space of its entity. They evolve against the entity’s recent observed behavior, and
the fittest ghosts run into the future to generate predictions.

3. The fittest ghosts for each entity run past the avatar’s present into the future.
Each ghost that runs into the future explores a different possible future of the
battle, analogous to how some people plan ahead by mentally simulating different
ways that a situation might unfold. The avatar analyzes the behaviors of these
different possible futures to produce predictions of enemy behavior and recom-
mendations for friendly behavior. In the future, the pheromone field with which
the ghosts interact is generated not by the avatars, but by the ghosts themselves.
Thus it integrates the various possible futures that the system is considering, and
each ghost is interacting with this composite view of what other entities may be
doing.

The first and third functions are analogous to the integrating function of the avatars in
route planning, while the second is analogous to the modulation function.

This model has proven successful both in characterizing the internal state of entities
that we can only observe externally, and in predicting their future behavior. [Parunak
and Brueckner, 2006] details the results of experiments based on multiple wargames with
human participants. We can detect emotional state of entities as well as a human observer,
but faster. Our prediction of the future of the battle is superior both to a human and to
statistical and game-theoretic predictors [Parunak, 2007].

4.4 Future Research

At present, polyagents are an effective technique for agent-based modeling and simulation,
but their theoretical foundations offer a rich and open field for future study, and they have
the potential for even broader application.

4.4.1 Theoretical Opportunities

As with any novel software technology, initial applications of polyagents rely heavily on
experimentation. Our work so far has identified a number of directions for theoretical and
engineering development to make their application more systematic.
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Pheromones as Probabilities. Polyagents enable parallel exploration of multiple pos-
sible behaviors of the avatar because ghosts interact with digital pheromones laid down
by ghosts of other avatars. These pheromones may be interpreted (up to a normalizing
constant) as a probability field over the avatar’s possible behavior. This interpretation
relies heavily on the boundedness of pheromone fields under constant deposit and evapo-
ration [Brueckner, 2000], which makes global normalization well-defined. In addition, for
many ghost decisions (selecting among alternative destinations), all that matters is relative
probabilities across the neighborhood of cells being considered, which requires only local
knowledge of pheromone concentrations in those cells. Further theoretical exploration of
the notion of pheromones-as-probabilities will open the door to integrating polyagents with
more traditional probabilistic reasoning systems.

Parameter Analysis. Polyagents are rife with parameters, all of which need to be tuned.
Some can be tuned by the avatar, as it modulates the generation of ghosts. Others need
to be configured when the system is initialized. Still others may be varied by the ghosts
themselves. A disciplined analysis of the kinds of parameters, the mechanisms available for
tuning them, and the sensitivity of an application to their values is an ongoing need. A
foundation for this agenda is well-defined metrics that can be applied to the behavior of
ghosts. We have made some progress in this area in defining formal similarity metrics over
bundles of trajectories [Parunak et al., 2007b], and features such as the option set entropy
over ghost decisions [Brueckner and Parunak, 2003].

Dynamics. Any look-ahead mechanism in a highly non-linear domain is subject to di-
vergence of trajectories, imposing a prediction horizon beyond which further projection is
worthless. We have reported preliminary evidence of such horizons [Parunak et al., 2007a],
but much work remains to be done. In particular, there appears to be some similarity be-
tween the performance of a polyagent over various time horizons and the performance of
the minority game, a simple model of resource allocation, over different history lengths.
Understanding this similarity may greatly strengthen our application of both models. More
generally, the prediction horizon is an example of an emergent behavior [Shalizi and Crutch-
field, 2001]. Such behavior invites the application of new methods that are being developed
for its detection and characterization [Chen et al., 2007].

Universality. The success of low-dimensional field-based interactions in predicting the
behavior of high-dimensional cognitive systems is on first impression unexpected. We can
associate it by analogy with universality in statistical physics, the observation that when
systems with very different internal structures are similarly constrained, their behaviors can
converge [Parunak et al., 2004b]. While we have empirical evidence for such universality,
we are far from understanding in detail when it arises and how far we can exploit it, and
its theoretical elaboration would be extremely valuable.

Hybrid Symbolic-Subsymbolic Reasoning. Ghosts are lightweight, stigmergic
agents, guided by subsymbolic computations. Their behavior is controlled by their internal
personalities and the environment in which they are immersed. Symbolic processes that
need to interact with them can modulate these two points of contact. This whole matter
of the interface between symbolic processes (which are understandable to humans) and
sub-symbolic ones (swarming ghosts) is full of potential for hybrid systems [Parunak et al.,
2006a] that combine the benefits of both approaches. In principle, the polyagent is already a
hybrid system, since the avatar is not constrained to be stigmergic, and could in principle be
a BDI agent with full symbolic reasoning. In this approach, the swarming ghosts serve the
purpose of the symbolic agent. Other approaches include mixing ghosts and more complex
agents as peers, using a symbolic layer as a user interface to swarming agents, or embed-
ding symbolic structure in the environment that the ghosts manipulate subsymbolically
(discussed in the next section).
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4.4.2 New Applications

Information Fusion. In many domains, multiple reasoning mechanisms are available,
each with its champions who extol its superiority over its rivals. There is growing evidence
both anecdotal and formal [Page, 2007] that a combination of diverse competent reasoners
can often outperform a single reasoner that is superior to any one of them. Combining
mechanisms, such as bagging, boosting, and Bayesian model averaging, are available for
classifiers [Dietterich, 2001]. Polyagents offer a mechanism to fuse less-structured data and
reasoners. In fact, our work on battle prediction (Section 4.3.3) offers a static example of
this, using a geospatial statistical model for threat regions and a Bayesian net reasoner that
identifies likely enemy objectives to modulate the pheromone field to which ghosts respond.

Individual reasoners can constrain a polyagent simulation, in one or more of three ways.

1. As in Section 4.3.3, they can deposit digital pheromones at specified locations.
A field dedicated to a specific predictor enables the ghosts to respond directly to
that predictor.

2. By default, avatars generate ghosts with random personalities and rely on evo-
lution to find personalities with predictive value. A predictor can speed up this
process by setting default values for ghost personalities directly. If these default
values are correct, the evolution will converge more rapidly to high-fitness ghosts.

3. Predictors can change the structure of the simulation environment, adding or
removing nodes and links.

Evolution enables ghosts to prefer the pheromones with greatest predictive value at any
moment, thus selecting dynamically among the predictors, and dynamically adjusts the
population to give appropriate weight to ghost personalities generated by various predictors.
Thus polyagent information fusion automatically prefers the reasoners that can make the
greatest contribution to the system’s objective at any moment, based on recent performance,
and shifts to other reasoners dynamically as circumstances change.

While we have demonstrated polyagent information fusion for a fixed set of reasoners,
there is ample room for new development to enable an open environment for fusion of an
arbitrary set of reasoners in a given domain.

Swarming over Task Networks. Applications of polyagents to factory control and
traffic flow on highways already demonstrates their potential in environments that do not
have the regular structure of a lattice or manifold. These networks are flat, and do not
reflect the hierarchical structure implicit in many planning tasks. We are currently exploring
mechanisms for using polyagents to develop coordinated schedules over hierarchical task
networks, in particular those represented in an extension of the TAEMS formalism [Horling
et al., 2004; Lesser et al., 2004]. A planner may develop such a network to express a set of
high-level tasks that need to be accomplished and the individual actions that can support
them, but the problem of coordinating a set of agents to develop a schedule over this plan
(an assignment of resources and times to specific actions) is combinatorially complex. By
embodying complex symbolic relationships in the environment, we bring the highly efficient
subsymbolic processing of stigmergic agents to bear on intrinsically symbolic problems. In
effect, we have externalized the symbolic aspect of the problem, moving it from within a
single agent to the space within which agents interact.
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4.5 Conclusion

Polyagents are a thorough-going approach to using simulation in support of agent decisions.
They have been applied successfully to a range of problems, and provide the stimulus for a
rich array of ongoing research topics that we and others are pursuing.

Perhaps the most interesting feature of polyagents is their multidisciplinary imitative
origin. For example:

• Their underlying software structure is based on multi-agent simulation.
• The use of stigmergic coordination is modeled on pheromone systems in social

insects.
• The training process used to adapt the ghosts’ weight vectors to the recent ob-

served behavior of the entity being modeled is a genetic algorithm, inspired by
biological evolution.
• The motivation of considering multiple trajectories comes from the realization in

modern physics of the importance of trajectory divergence resulting from sensi-
tivity to initial conditions.
• The reasonableness of using a low-dimensional model to approximate a high-

dimensional reality is inspired by the phenomenon of universality in solid state
physics.

The convergence of these various inspirations yields a construct of great flexibility and
breadth of potential application.

One important alternative to such an imitative approach is a derivational approach
grounded in mathematical formalism. For example, artificial intelligence was for many years
closely identified with programming languages rooted in formal logic, such as Lisp (a direct
expression of Church’s lambda calculus) and Prolog (based on Horn clauses). A number of
the alternative approaches to agent decision-making summarized in Section 4.1 reflect this
more formal orientation.

At base, this distinction reflects the age-old tension between “neats” and “scruffies” in
the AI community. Yet in fact the imitative nature of polyagents opens a door to address
this tension. The various disciplines that inspire this construct have all been the object of
some degree of formal modeling. As polyagents demonstrate their value to an increasingly
broad range of applications, these theories become available to inform design decisions and
interpret the results of polyagent models. The foundation of polyagents is indeed in em-
pirical science rather than abstract formalisms, but the mathematics to develop disciplined
engineering methods for polyagents can be drawn from the same disciplines that inspired
the construct initially, and much of our ongoing research agenda is directed to this end.
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d’interprétation du comportement des termites constructeurs. Insectes Sociaux,
6:41–84, 1959.

T. Holvoet and P. Valckenaers. Beliefs, desires and intentions through the environment.
In Proceedings of 5th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS2006), pages 1052–1054, 2006a.

T. Holvoet and P. Valckenaers. Exploiting the environment for coordinating agent in-
tentions. In Proceedings of Third International Workshop on Environments for
Multi-Agent Systems (E4MAS06), 2006b.

J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading, MA, 1979.

© 2009 by Taylor and Francis Group, LLC

http://www.newvectors.net
http://www.cs.ucl.ac.uk
http://www.newvectors.net


Polyagents: Simulation for Supporting Agents’ Decision Making 129

B. Horling, V. Lesser, R. Vincent, T. Wagner, A. Raja, S. Zhang, K. Decker, and A. Gar-
vey. The taems white paper, 2004. URL dis.cs.umass.edu/research/taems/
white/.

E. Huard, D. Gorissen, and T. Holvoet. Applying delegate multi-agent sytems in a
traffic control system. Technical report, CW 467, Katholieke Universiteit Leuven,
Leuven, Belgium, 2006. URL www.cs.kuleuven.be/publicaties/rapporten/
cw/CW467.abs.html.

C. Jacob. Illustrating Evolutionary Computation With Mathematica. Morgan Kauf-
mann, San Francisco, 2001.

H. Kantz and T. Schreiber. Nonlinear Time Series Analysis. Cambridge University
Press, Cambridge, UK, 1997.

K. Kijima. Why stratification of networks emerges in innovative society: Intelligent
poly-agent systems approach. Computational and Mathematical Organization
Theory, 7(1 (June)):45–62, 2001.

A. Kott. Real-time adversarial intelligence and decision making, 2004. URL dtsn.
darpa.mil/ixo/programdetail.asp?progid=57.

T. Lambert, M. Epelman, and R. Smith. A fictitious play approach to large-scale opti-
mization. Operations Research, 53(3 (May-June)), 2005.

P. Laplace. Essai Philosophique sur les Probabilités. Krieger, 1820.
V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling, D. Neiman, R. Podor-

ozhny, M. Prasad, A. Raja, R. Vincent, P. Xuan, and X. Zhang. Evolution of
the GPGP/TAEMS domain-independent coordination framework. Autonomous
Agents and Multi-Agent Systems, 9(1-2):87–143, 2004.
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L. Yilmaz and T. Ören. Discrete-event multimodels and their agent-supported activation

and update. In Proceedings of The Agent-Directed Simulation Symposium of the
Spring Simulation Multiconference (SMC’05), pages 63–72, 2005. URL www.
site.uottawa.ca/~oren/pubs/2005/0503-ADS-MMs.pdf.

© 2009 by Taylor and Francis Group, LLC

http://www.site.uottawa.ca
http://www.site.uottawa.ca




5
Combining Simulation and Formal

Tools for Developing Self-Organizing
MAS

Luca Gardelli
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5.1 Introduction

Self-organization is increasingly being regarded as an effective approach to tackle the com-
plexity of modern systems. The self-organization approach allows the development of sys-
tems exhibiting complex dynamics and adapting to environmental perturbations without
requiring a complete knowledge of the surrounding conditions to come. Systems developed
according to self-organization principles are composed by simple entities that, locally in-
teracting with others sharing the same environment, collectively produce the target global
patterns and dynamics by emergence. Many biological systems can be effectively mod-
eled using a self-organization approach: well-known examples include food foraging in ant
colonies, nest building in termites societies, comb pattern in honeybees, brood sorting in ants
[Parunak, 1997; Bonabeau et al., 1999; Camazine et al., 2001]. They have inspired the devel-
opment of many artificial systems, such as decentralized coordination for automated guided
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vehicles [Sauter et al., 2005; Weyns et al., 2005], congestion avoidance in circuit switched
telecommunication networks [Steward and Appleby, 1994], manufacturing scheduling and
control for vehicle painting [Cicirello and Smith, 2004], and self-organizing peer-to-peer
infrastructures [Babaoglu et al., 2002]. Furthermore, principles of self-organization are cur-
rently investigated in several research initiatives that may have industrial relevance in a near
future: notable examples include Amorphous Computing [Abelson et al., 2000], Autonomic
Computing [Kephart and Chess, 2003] and Bioinformatics.

The first appearance of the term self-organization with its modern meaning seems to be on
a 1947 paper by the English psychiatrist William Ross Ashby [Ashby, 1947]. Ashby defined
self-organization as the ability of a system to change its own internal organization, rather
being changed from an external force. In this definition the focus is placed on the self aspect,
that is the control flow driving the system must be internal. As far as the organization part
is concerned, there are different viewpoints in the research community: organization may be
interpreted as spatial arrangement of components, system statistical entropy, differentiation
of tasks among system components, establishment of information pathways, and the like.
It can be observed that all these cases include some sort of relation between components,
either topological, structural or functional. Hence, we call a system “self-organizing” if it is
able to re-organize itself by managing the relations between components, either topological,
structural or functional, upon environment perturbations solely via the interactions of its
components, with no requirement of external forces. This definition implies that four key
features are found in every self-organizing system (SOS):

Autonomy: As previously discussed for the term “self”, control must be located
within the system and should be shielded from environmental forces: it is worth
noting that here we do not mean closed systems, since most of the systems will
rely on the environment resources in the shape of information, energy, and matter.

Organization: In the literature self-organizing systems are often described as increas-
ing their own organization: actually, we see no point for this continual increase.
Indeed, it is often the case that self-organizing systems stabilize in sub-optimal
solutions and their organization varies over time both decreasing and increas-
ing. Hence, we prefer just to say that there should be some re-organization, not
necessarily toward a better solution.

Dynamic: Self-organization should always be intended as a process and not as a final
state.

Adaptive: Perturbations may happen within the system as well as in the environ-
ment: a self-organizing system should be able to compensate for these perturba-
tions. Centralized systems characterized by a single-point-of-failure can hardly
be considered self-organizing because of the high sensitivity with respect to per-
turbations.

Self-organization is closely related to emergence, although being distinct concepts [De Wolf
and Holvoet, 2005] Intuitively, the notion of emergence is linked to novelty and an abstrac-
tion gap observed between the actual behavior of a system components and a global system
property. Although the origin of the term emergence can be traced back to Greeks, the first
scientific investigation of emergence is due to philosophers of the British Emergentism in
the 1870s, including J. S. Mill, but flourished only in the 1920s with the work of Alexan-
der and Broad [Goldstein, 1999]. Mill (1872) recognized that the notion of emergence was
highly relevant to chemistry: Chemistry and Biochemistry provide a wide range of examples
involving emergent phenomena, indeed, many chemical compounds exhibit properties that
cannot be inferred from the individual components. According to a modern definition of
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emergence discussed in [Müller, 2004], a phenomenon is emergent if and only if we have

(i) a system of entities in interaction whose expression of the states and dy-
namics is made in an ontology or theory D, (ii) the production of a phenomenon,
which could be a process, a stable state, or an invariant, which is necessarily
global regarding the system of entities, (iii) the interpretation of this global phe-
nomenon either by an observer or by the entities themselves via an inscription
mechanism in another ontology or theory D.

Although being a specific class of distributed system, the development of SOS is driven by
different principles. For instance, engineers typically design systems as the composition of
smaller elements, being either software abstractions or physical devices, where composition
rules depend on the reference paradigm (e.g., the object-oriented one), but typically produce
predictable results. Conversely, SOS display non-linear dynamics, which can hardly be cap-
tured by deterministic models, and, although robust with respect to external perturbations,
are quite sensitive to changes on inner working parameters. In particular, engineering SOS
poses two big challenges: How do we design the individual entities to produce the target
global behavior? And, can we provide guarantees of any sort about the emergence of specific
patterns? Even though the existence of these issues is generally acknowledged, few efforts
have been devoted to the study of an engineering support either from methodologies and
tools—except for a few explorations in the MAS (multi-agent system) community [De Wolf
and Holvoet, 2007; Bernon et al., 2004].

While simulation is effectively exploited in complex system analysis, its potentialities in
software engineering are typically overlooked [von Mayrhauser, 1993; Tichy, 1998]: although
there are examples of simulation in software development, these approaches involve simula-
tion after the software has already been designed and developed—that is, simulations are
performed afterward for profiling purposes. Conversely, we promote the use of simulation
techniques specifically at the early stages of software development. Simulation allows us to
preview overall qualitative system dynamics and devise a coarse set of working parameters
before actually implementing the system.

Specifically, in this chapter, we focus on methodological aspects concerning the early-
design stage of SOS built relying on the agent-oriented paradigm: in particular, we refer to
the A&A meta-model, where MAS are composed by agents and artifacts [Omicini et al.,
2008]. Then, we describe an architectural pattern extracted from a recurrent solution in
designing self-organizing systems: this pattern is based on a MAS environment formed by
artifacts, modeling non-proactive resources, and environmental agents, acting on artifacts
so as to enable self-organizing mechanisms. In this context, we propose an approach for
the engineering of self-organizing systems based on simulation at the early design stage: in
particular, the approach is articulated in four stages, modeling, simulation, formal verifi-
cation, and tuning. In this approach, simulations of an abstract system model are used to
drive design choices until the required quality properties are obtained, thus providing guar-
antees that the subsequent design steps would lead to a correct implementation. However,
system analysis exclusively based on simulation results does not provide sound guarantees
for the engineering of complex systems: to this purpose, we envision the application of for-
mal verification techniques, specifically model checking, in order to exactly characterize the
system behaviors. Given a formal specification a probabilistic model checker determines
whether a specific property is satisfied or not or the actual likelihood value: properties are
specified using different flavors of temporal logic, depending on the model type, e.g., proba-
bilistic, stochastic or non-deterministic. Unfortunately, the applicability of model checking
techniques is hindered by the explosion of state space: nonetheless, in those cases model
checking still a valuable tool for validating simulation results on small problem instances.
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As a case to clarify the approach, we analyze a self-organizing solution to the problem
of plain diffusion [Babaoglu et al., 2006; Gardelli et al., 2007; Canright et al., 2006]: given
a networked set of nodes hosting information, we have to homogeneously distribute the
information across the nodes. In order for a solution to be self-organizing, control must be
decentralized and entities have to interact locally: hence, we consider solutions having at
least one agent for each node whose goal consist in sending information only to neighboring
nodes and agent knowledge is restricted to the local node. We devise a strategy solving this
problem following the methodological approach sketched above.

The main contribution of the chapter consists in the systematic use of simulation and
formal tools in the early design phase of the development of self-organizing systems. The
main limitation of the approach derives from the impossibility of formally verifying arbi-
trarily large systems, hence at the moment it is feasible to verify only small instances of
systems: however this is still useful to have an overall reliability evaluation of simulation
results. The approach is intended for the architectural pattern described, although it may
be successfully applied to other scenarios. With respect to the case study, we provide and
analyze a novel self-organizing strategy for achieving plain diffusion behavior.

The rest of the chapter is organized as follows: in Section 5.2 we describe the role of envi-
ronment, our reference meta-model and an architectural pattern encoding a recurrent solu-
tion when designing self-organizing MAS. In Section 5.3 we discuss the current panorama of
MAS methodologies with respect to self-organization aspects. In Section 5.4 we describe our
methodological approach to the engineering of self-organizing MAS, which is an iterative
process articulated in modeling, simulation, verification and tuning. As far as formal tools
are concerned, we rely on the PRISM Probabilistic Model Checker [PRISM, 2007] for the
entire process, namely, modeling, simulation and verification: so, Section 5.5 describes how
to use the PRISM software tool to support the whole process. In Section 5.6 we apply the
methodology to the case study of plain diffusion, and conclude in Section 5.7.

5.2 The A&A Meta-Model for Self-Organizing Systems

In this section, we describe the A&A meta-model, which is our reference meta-model when
designing self-organizing MAS. In particular, we start by clarifying the role of environment
in both natural and artificial self-organizing systems. Then, we continue describing the ac-
tual meta-model featuring agents and artifacts, the latter wrapping environmental resources.
With respect to the meta-model, we describe an architectural pattern featuring environmen-
tal agents as artifacts manager: furthermore, we consider environmental agents as the most
appropriate locus for encapsulating self-organizing mechanisms. The meta-model combined
with the architectural pattern forms the basis for our methodological approach that will be
the subject matter of Section 5.4.

5.2.1 The Role of Environment in Self-Organizing Systems

From the analysis of natural self-organizing systems [Parunak, 1997; Bonabeau et al., 1999;
Camazine et al., 2001; Solé and Bascompte, 2006] and existing experience in prototyping
artificial ones [Weyns et al., 2005; Sauter et al., 2005; Casadei et al., 2007; Gardelli et al.,
2007; Mamei and Zambonelli, 2005], it is recognized that environment plays a crucial role
in the global SOS dynamics. A typical explanatory example is the case of stigmergy: as
pointed out by [Grassé, 1959], among social insects workers are driven by the environment
in their activity. Indeed, in animal societies self-organization is typically achieved by the
interplay between individuals and the environment, such as the deposition of pheromone by
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ants or the movement of wooden chips by termites [Camazine et al., 2001]. In particular,
these interactions are responsible for the establishment and sustainment of a feedback loop:
in the case of ant colonies, positive feedback is provided by ants depositing pheromones,
while negative feedback is provided by the environment through evaporation [Camazine
et al., 2001].

When moving to artificial systems, and to MAS in particular, there are a few questions
that need to be answered. The first one is where to embed self-organizing mechanisms. The
above discussion promotes the distribution of concerns between active components and the
environment—in the MAS context, between agents and the environment. This partially frees
agents from the burden of system complexity, and provides a more natural mapping for those
non-goal-oriented behaviors. The second question is how to find the minimum requirements
for an environment to support self-organization. From the definition of self-organization
provided by [Camazine et al., 2001] we can identify some basic requirements: (i) the envi-
ronment should support indirect interactions among the components of a system, (ii) the
environment should support some notion of locality, and (iii) locality should affect interac-
tions, e.g., promoting local ones. Moreover, specific self-organizing mechanisms may require
an active environment, i.e. the presence of active processes in the environment making en-
vironment evolve to a suitable state: e.g., in pheromone-based systems, the environment
may either provide a reactive evaporation service, or proactively act upon pheromone-like
components to emulate the effect of evaporation.

5.2.2 Overview of the A&A Meta-Model

Software conceived according to the MAS paradigm is modeled as a composition of agents
(autonomous entities situated in a computational or physical environment) that interact
with each other and with environmental resources to achieve either individual or social
goals. Traditionally, the environment consists of a deployment context that provides com-
munication services and access to physical resources: in this context, MAS engineers design
agents while the environment is just an output of the analysis stage. Recently, the envi-
ronment has been recognized as an actual design dimension: then, MAS engineers can hide
system complexity behind environmental services, freeing agents from specific responsibili-
ties [Weyns et al., 2007; Viroli et al., 2007]. In this chapter, we adopt the latter notion of
environment, i.e. the part of MAS outside agents that engineers should design so as to reach
the objectives of the application at hand.

In order to describe the environment, we have to provide suitable abstractions for envi-
ronmental entities. As pointed out by [Molesini et al., 2009], despite most of the current
AOSE (agent-oriented software engineering) methodologies and meta-models provide little
or no environment support, it is useful to adopt the A&A meta-model where a MAS is mod-
eled by two fundamental abstractions: agents and artifacts [Omicini et al., 2008]. Agents are
autonomous pro-active entities encapsulating control and driven by their internal goal/task.
When developing a MAS, sometimes entities require neither autonomy nor pro-activity to
be correctly characterized. This is typical of entities that serve as tools to provide spe-
cific functionalities: these entities are the so-called artifacts. Artifacts are passive, reactive
entities providing services and functionalities to be exploited by agents through a usage
interface. It is worth noting that artifacts typically realize those behaviors that cannot or
do not require to be characterized as goal-oriented [Omicini et al., 2006; Ricci et al., 2006].
Artifacts mediate agent interactions, support coordination in social activities, and embody
the portion of the environment that is designed and controlled to support MAS activities.
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FIGURE 5.1 An architectural pattern for self-organizing MAS featuring environmental agents respon-
sible for sustaining feedback loop by properly managing artifacts.

5.2.3 An Architectural Pattern

The components of modern computational systems often need to interact with an envi-
ronment populated by legacy systems. Hence, the environment can be either completely or
partially given: this is subject to investigation during the analysis phase [Omicini, 2001]. In
the MAS context, during the design phase, resources are assigned to artifacts, providing a
uniform way for agents to exploit resources. Unfortunately, in a scenario involving legacy
systems, we may only have partial control on the environment, thus making it difficult to
embed self-organizing mechanisms within artifacts. Then, to inject self-* properties in MAS,
we need to add a layer on top of existing environmental resources.

To this purpose, we rely on the notion of environmental agent : such agents are responsible
for managing artifacts to achieve the target self-* property. Hence, environmental agents are
seen as distinct from standard agents, also called user agents, which exploit artifact services
to achieve individual and social goals. This recurrent solution has been encoded in the form
of an architectural pattern [Gardelli et al., 2007] with reference to the A&A meta-model.
As shown in Figure 5.1, environmental agents act upon artifacts through a management
interface: this interface may be public, i.e. accessible to all agents or, most likely, restricted
and allowing access to operations typically granted to system administrators. A similar
approach to achieve self-organization, involving managers and managed entities, has been
adopted also in the Autonomic Computing community [Kephart and Chess, 2003].

Adopting the architecture encoded in this pattern provides several advantages. When
working with legacy environmental resources – e.g., provided by an existing infrastructure
– relying on additional environmental agents is the only viable solution to add new proper-
ties and behaviors, due to a limited control on environmental resources. When developing
systems from scratch, the use of this pattern allows different mechanisms to be isolated,
thus achieving a finer control on the overall system. Furthermore, we are able to identify
and suppress conflicting dynamics that may arise when exploiting different self-organizing
mechanisms at the same time [Gardelli et al., 2007]. It is worth noting that environmen-
tal agents differentiate from user agents because they play a special role in the system,
bound within the environment as perceived by user agents. This is not in contradiction
with previous works such as [Omicini et al., 2008], but rather one step beyond: in fact,
here user agents perceive the environment exactly in the same way, that is, populated only
by artifacts, whereas environmental agents cannot interact with user agents, since they are
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somehow “encapsulated” within MAS environment.
This pattern can be successfully applied to embed self-organizing mechanisms in MAS

environments, especially to environmental services that do not natively support all the self-
organization features required. From a methodological viewpoint, when dealing with self-
organizing MAS relying on the A&A meta-model and the architectural pattern, the designer
focuses its attention to the development of strategies for environmental agents. Indeed,
environmental agents are the locus for encapsulating self-organizing mechanisms, since we
may not have control over environmental resources. In the remainder of the chapter we
provide a brief background on existing MAS methodologies and then describe our systematic
approach for engineering self-organizing systems: then, we apply the method to the case
study of Plain Diffusion.

5.3 Methodological Issues Raised by Self-Organizing
Systems

Currently, the development of agent-oriented systems is supported by several software engi-
neering methodologies. Most methodologies were initially conceived to cover specific issues,
and then evolved to encompass the whole software process: for instance, the Gaia method-
ology [Zambonelli et al., 2003] was mostly concerned with intra-agent problems, while the
initial target of the SODA methodology [Omicini, 2001; Molesini et al., 2006] was to tackle
the social, inter-agent dimension. On the contrary, other methodologies restricted the do-
main of applicability to a specific class of MAS, like ADELFE for the Adaptive MAS theory
[Bernon et al., 2004].

Concerns like embedding self-organizing mechanisms within an existing MAS, or engi-
neering SOS from scratch, raise peculiar issues that are not typical or so crucial in current
AOSE methodologies. Indeed, as pointed out in [Molesini et al., 2009], even core elements
such as the environment are currently explicitly supported by only a few of the existing
AOSE methodologies. Furthermore, AOSE methodologies, as well as object-oriented ones,
tend to focus on design-time aspects rather than run-time ones: in fact, it is common prac-
tice to assume that once a system has been designed, its structure will not change and will
behave according to the specifications. The Autonomic Computing proposal suggests to
consider run-time issues at design-time: then, aspects such as maintenance become a func-
tional requirement of the problem to be solved [Kephart and Chess, 2003], thus increasing
the degree of autonomy and adaptiveness of the target system. Along this line, we pro-
mote the use of techniques that allow us to preview and analyze global system dynamics at
design-time: indeed, when dealing with SOS, more attention should be devoted to observe
the emergence of desired properties early in the design stage rather than waiting for the
final implementation. In particular, when developing SOS, we have to answer the follow-
ing question: how can we design the individual environmental agent’s behavior in order to
ensure the emergence of the desired properties? To tackle this issue, two approaches are typ-
ically exploited: (i) devising an ad-hoc strategy by decomposition that will solve the specific
problem; (ii) observing a system that achieves similar results, and trying to reverse-engineer
its strategy. It is generally acknowledged that the former approach is applicable only to a
limited set of simple scenarios: due to the non-linearity in entity behaviors, global system
dynamics becomes quite difficult to predict. Instead, in the self-organization community, the
latter approach is commonly regarded as more fruitful: in nature, it is possible to recognize
patterns that are effectively applicable to artificial systems [Babaoglu et al., 2006; De Wolf
and Holvoet, 2007; Gardelli et al., 2007; Bonabeau et al., 1999]. Since it is quite unlikely to
find a pattern that completely fits a given problem, it is common practice to rely on some
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modified and adjusted version—in the next section we will elaborate on the implications of
these modifications.

Then, once a suitable strategy has been identified and adapted, how can we guarantee that
it will behave as expected? Given the specifications of a SOS, how to ensure the emergence of
the desired global dynamics is still an open issue. While automatic verification of properties
is typically a viable approach with deterministic models, verification becomes more difficult
and soon intractable when moving to stochastic models: then, it is useful to resort to a
different approach, possibly mixing formal tools and empirical evaluations, so as to support
the analysis of the behavior and qualities of a design.

Before describing our approach in the next section, we would like to point out that it is
not our goal to develop a brand-new complete methodology for MAS engineering. Instead,
we would rather aim at integrating our approach within existing AOSE methodologies, and
addressing the peculiar issues raised by self-organizing MAS. For instance, by considering
Gaia [Zambonelli et al., 2003], our approach could be seen as a way to direct early design
phases: on the one hand, this could help the developer in defining responsibilities for agents
and services of the environment by taking inspiration from patterns found in natural sys-
tems; on the other hand, it could make it possible to preview the global dynamics of the
MAS and tune its behavior before committing to a specific design solution.

5.4 A Methodological Approach for Engineering Self–
Organizing MAS

5.4.1 Overview

In this section we describe a systematic approach for the engineering of self-organizing MAS
according to the A&A meta-model and our architectural pattern. As previously discussed,
since we embed self-organizing mechanisms into environmental agents, our method is mainly
focused on the behavior of such agents. Our method should not be considered a full method-
ology, i.e. encompassing aspects from requirements to maintenance. Conversely, we heavily
rely on existing MAS methodologies for many development stages. Indeed, we mainly con-
centrate in the early design phase, bridging the gap between analysis and the actual design
phase. This is probably the most delicate phase when dealing with self-organization and
emergence because of the complexity in dynamics.

As an inspiration for our methodology one could easily recognize the statement “bringing
science back into computer science” [Tichy, 1998]. Indeed, it is heavily based on existing
tools commonly used in scientific analysis, especially for complex systems, but that are
typically not used in software development. Specifically, our approach is iterative, that is,
cycles are performed before actually converging to the final design. During each cycle four
steps are performed:

1. modeling — proposing a model for the system to engineer taking inspiration from
existing natural models and identify concerns for each entity;

2. simulation — previewing global system dynamics in different scenarios before
continuing with quantitative analysis;

3. verification — verifying that the properties of interest holds and identify working
conditions;

4. tuning — adjusting system behavior and devise a coarse set of parameters for
the actual system.

Across the whole process we rely on the use of formal tools and techniques, in order to pro-
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vide unambiguous specifications and enable automatic processing. In particular, in this work
we exploit the PRISM tool [PRISM, 2007; Kwiatkowska et al., 2004], a Probabilistic Sym-
bolic Model Checker developed at University of Birmingham that provides model-checking
capabilities along with simulation and model editing integrated within the same software.

Working as a MAS designer, it often happens that, before considering the final system
in its actual size, one should first elaborate on a smaller scenario. This is common practice
because it is easier to debug systems and observe global dynamics when less entities are
involved. In our approach, for verification purposes, we also include model checking despite
its well-known problem in tackling large scale systems. Indeed, we envision the use of this
technique mostly in the first cycles of development, whereas in the later cycles – when the
system is considered in its actual size – we will more rely on simulation techniques. In
our opinion, despite its technical limitations, the use of model checking techniques in that
context offers several advantages:

• more precise results;
• it is oriented to the property of interest and does not require raw data manipu-

lation: the user queries the model for the satisfaction of a property;
• evaluate the simulation reliability and variance.

Furthermore, technical advancements and research results are providing us with increasing
computational power and faster formal verification techniques. Hence, in a near future it
will be possible to tackle larger system.

In the remainder of the section we detail each aspect of the approach, and also provide a
brief description of the tool capabilities and formalism.

5.4.2 Modeling

In the modeling phase we develop an abstract model of the system, providing a characteri-
zation for (i) environmental agents, (ii) artifacts, and eventually (iii) user agents. As far as
artifacts are concerned, we can provide an accurate model of their behavior with respect to
the usage interface and set of services exposed—though it is often the case that a detailed
description of the inner working is not available. Conversely, the repertoire of user agent
behavior may be too vast to be accurately modeled. Indeed, in open environments, it is
basically impossible to entirely foresee the dynamics of agents to come—self-organization is
precisely used to adapt to unpredicted situations. Then, it is necessary to abstract from their
peculiarity, resorting to probabilistic or stochastic models of user agent behavior. Models for
these agents are developed in terms of usage of resources, i.e. with respect to the observable
behavior and by abstracting away from inner processes such as planning and reasoning. The
accuracy of the user-agent internal model is not so crucial, since self-organization is built
on top of indirect interactions mediated by the environment. Hence, it is sufficient to know
how user agents perceive and modify their environment.

Once a suitable model for user agents and artifacts is provided, we move to the core
part of modeling, that is, the characterization of environmental agents. A suitable model
for environmental agents is typically built on top of the services provided by artifacts, and
functionally coupled with user agent behavior in order to establish and sustain a feedback
loop: indeed, a feedback loop is a necessary element in every self-organizing system. Consider
for example the case of ant colonies, where ants deposit pheromone which diffuses and
evaporates in the environment. Then, by perceiving pheromone gradient, ants can coordinate
their movement without a priori knowledge of the path to follow.

To find a candidate model for environmental agents, we can take inspiration from known
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SOS and look for a model exhibiting or approximating the target dynamics. This step
implies the existence of some sort of design-pattern catalog, a required tool for an engineer
of SOS. Although this sort of catalog does not exist yet, several efforts by different research
groups are moving along this direction. Indeed, several patterns with important applications
in artificial systems have already been identified and characterized [Bonabeau et al., 1999;
Babaoglu et al., 2006; De Wolf and Holvoet, 2007; Gardelli et al., 2007]. In particular, in
the section about the case study, we analyze a problem encoded as the pattern known as
plain diffusion [Babaoglu et al., 2006; Gardelli et al., 2007]. Hence, even though patterns
that perfectly match the target system dynamics can hardly be found, it is still feasible
to identify some patterns approximating such a dynamics; however, this typically requires
changes of some sort. Given the complex behavior that characterizes SOS, modifications
should be carefully evaluated since they require expertise in mechanisms underlying SOS.

Although the model may be provided in several notations, we favor the use of formal
languages. In fact, formal languages allow both to devise unambiguous specifications and
to perform further automatic analysis, such as simulation and verification. We will discuss
more about simulation and verification in the next two sections.

5.4.3 Simulation

In the first cycles we use simulation tools to quickly and easily preview system dynamics
before actually performing quantitative analysis. Instead in successive cycles, we eventually
rely more on simulation because verification may be unfeasible. However, preliminary verifi-
cation results act as a sound basis for evaluating reliability of simulation. Before performing
simulations, we have to define two key aspects: (i) providing a set of suitable parameters
for the model, and (ii) choosing the test instances, i.e. the initial states we consider repre-
sentative and challenging for the system.

When dealing with self-organizing MAS we mostly rely on stochastic simulation in order
to capture both timing and probability aspects. Parameters for this kind of simulation
are typically expressed in terms of rates of action defined according to suitable statistical
distributions. The exponential distribution is typically used because of the memoryless
property, i.e., to generate new events it is not necessary to know the whole event history
but only the current state. Furthermore, the use of exponential distribution allows the
mapping to Continuous-Time Markov Chains, which are commonly used in simulation and
performance analysis. Then, rates should reflect the conditions in the deployment scenario,
otherwise the results of simulation would be meaningless. While parameters for artifacts
can be accurately measured, user agents provide a major challenge since we cannot foresee
all their possible behaviors. Hence, we have to make assumptions about artifact behaviors
both from the qualitative (e.g., rational exploitation of resources) and quantitative (e.g.,
rate of actions and rate of arrivals/departures) standpoint. Once the parameters of artifacts
and agents are defined, we devise an initial set of parameters for environmental agents.

Testing the dynamics of the system in different scenarios and worst case scenarios is very
important for a reliable evaluation of the quality and robustness of the model. Typically,
we tend to make observations first in very extreme conditions, strictly dependent on the
application at hand, since they quickly reveal the presence of faults in the model. Then, we
continue the analysis with more real scenarios. In the simulation stage we do not perform
quantitative analysis, which is instead a major concern in the verification and tuning stage.
This is especially true during the first iteration cycle, since we still have not sufficiently
characterized the system model.
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5.4.4 Verification

Among the available verification approaches, we are interested in model checking, a formal
technique for automatically verifying the properties of a target system against its model
[Clarke et al., 1999]. The model to be verified is expressed in a formal language, typically in
a transition system fashion: the model checker accepts the finite state system specification
and translates it into an internal representation, e.g., Binary Decision Diagrams (BDD)
[Clarke et al., 1999]. Properties to be verified are expressed using a suitable variant of
temporal logic. Then, the properties are automatically evaluated from the model checker
for every system execution. Hence, with respect to simulation that tests only a subset of all
possible executions, model checking provides more reliable results.

Although model checking was initially targeted to deterministic systems, recent advance-
ments consider also probabilistic as well as stochastic aspects [Kwiatkowska et al., 2007]. A
probabilistic model checker uses a temporal logic extended with the suitable operators for
expressing probabilities. Then, the output of a probabilistic model checker may be either a
boolean answer or the actual probability value for the tested property.

The main drawback of model checking is the state explosion problem: since states space
typically grow in a combinatorial way, the number of states quickly become intractable as
the system grows—and the problem gets even worse with stochastic or probabilistic models.
Although modern techniques allows for the reduction of this problem, state explosion is still
the main limitation of model checking and abstraction is often required [Delzanno, 2002].

In our approach, model checking is exploited mostly in the first cycles to provide strong
guarantees about the emergence of global properties, and in general to precisely characterize
the dynamics of the systems. Eventually, if the actual system size is such to prevent verifica-
tion, in successive cycles we rely mostly on simulation techniques. From the viewpoint of the
model checker, emergent properties are not different from ordinary properties. Conversely,
from the designer viewpoint emergent properties are quite challenging. A model checker
would need properties formulated according to modeled states, however, given the very na-
ture of emergent properties, the states modeled could not be automatically mapped onto
the emergent property. Hence, the designer should shift from the global to the individual
dynamics and identify the micro properties that are a symptom of the emergent property.
This practice will become more clear in Section 5.6.4 when applying the method to the case
study.

5.4.5 Tuning

In the tuning phase, environmental agent behavior and working parameters are successively
adjusted until the desired dynamics are observed. The tuning process is performed exploiting
both simulation and verification tools to devise a coarse set of working parameters for the
actual system. If not supported by the reference tool, the tuning process can be quite
time-consuming. It is worth noting that setting parameters to arbitrary values may lead
to unrealistic scenarios. Furthermore, the working rate of environmental agents may affect
the actual working rate of artifacts. In a realistic scenario, computational resources are
typically limited, hence increasing the working rate of environmental agents may require a
decrease in the service rate of artifacts. Without considering this problem, the dynamics of
the deployed system may significantly deviate from the expected ones.

At the end of the tuning process, we may realize that the devised set of parameters
does not satisfy performance expectations because the values are unrealistic with respect
to the execution environment or the system deviates from the desired behavior. In any
of these scenarios, we cannot proceed to the actual design phase since the system is not
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likely to behave properly when deployed. Hence, it is required to perform another iteration
for reconsidering the modeling choices or evaluating other approaches. Conversely, when a
model meets the target dynamics and the parameters lie within the admissible ranges, we can
proceed by providing a more accurate statistical characterization of the system behaviors.
This can be performed either by simulation, when the problem instance is too big or does
not require strong guarantees, or by model checking which produces more accurate results.

5.5 Using the PRISM Tool to Support the Method

To provide software support to the whole process described in the previous section we
evaluated several software tools. In particular, we chose PRISM-Probabilistic Symbolic
Model Checker, a software tool developed at University of Birmingham [PRISM, 2007;
Kwiatkowska et al., 2004]. PRISM provides facilities supporting most of the stages in
our approach, namely, a modeling language, probabilistic/stochastic model checking and
simulation. We now analyze the PRISM features with respect to the techniques required
at each step.

5.5.1 Modeling

The PRISM modeling language is based on Reactive Modules, and models are speci-
fied in a transition systems fashion. The language is able to represent either probabilis-
tic, non-deterministic and stochastic systems using, respectively, Discrete-Time Markov
Chains (DTMC), Markov Decision Processes (MDP) and Continuous-Time Markov Chains
(CTMC) [Kwiatkowska et al., 2004, 2007]. The components of a system are specified using
modules while the state is encoded as a set of finite-values variables. Furthermore, modules
are allowed to interact using synchronization in a process algebra style, i.e. labeling com-
mands with actions. Module composition is achieved using the standard parallel composition
of Communicating Sequential Processes (CSP) process algebra. As an example consider the
specification of a stochastic cyclic counter having base 100

ctmc
module counter

value : [0..99] init 0;
[] value < 99 -> 1.0 : (value’=value+1);
[] value = 99 -> 1.0 : (value’=0);

endmodule

where ctmc declares that the model is stochastic, modeled as a Continuous Time Markov
Chain, the module definition is wrapped into the block module .. endmodule, value is a
variable ranging between 0 and 99 initialized to 0, and a transition is expressed according to
the syntax [] guard -> rate : (variable-update). For more features and details about
the PRISM language syntax please refer to the PRISM documentation [PRISM, 2007].

5.5.2 Simulation

The PRISM built-in simulator provides enough facilities to support our process. The sim-
ulator engine makes it possible either to perform step-by-step simulation, or to specify the
number of steps to be executed. In particular, the step-by-step mode is very useful for
debugging purposes. The simulator traces the values for each variable in the model. It is
worth noting that variable range is not very important, conversely to model checking, but
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can produce unexpected results since ranges may still affect transition guards. PRISM does
not provide any plotting capability, however it allows simulation traces to be exported in
different formats, so this is not a major concern and can be easily overcome using third-
party plotting software. Unfortunately, PRISM simulator does not allow to automatically
run experiments, i.e. multiple simulations spanning values for several parameters; hence,
the user has to submit several simulation tasks and then collect the results.

5.5.3 Verification

PRISM model checking facilities are very robust: it provides three model checking engines
– namely, MTBDD, Sparse and Hybrid – having different memory and computational costs.
Properties are expressed according to the temporal logics Probabilistic Computational Tree
Logic (PCTL) for DTMC and MDP models, and Continuous Stochastic Logic (CSL) for
CTMC models [Kwiatkowska et al., 2004, 2007]. Beyond boolean properties, PRISM allows
the computation of actual probability values as well as values for reward-based properties.
For instance, referring back to the cyclic counter, the simple property “Which is the steady
state probability for the counter to contain the value 10?” is encoded in the CSL formula
S=? [value=10], and obviously the result is 0.01. Another example, “Which is the proba-
bility for the counter to reach the value 80 within 75 time units?” is encoded in the PCTL
formula P=? [true U<=75 A=80], and the result approximated to four decimals is 0.2968.

A very compelling feature of PRISM, because of the CPU-intensive nature of model
checking algorithms, is the ability to run model checking experiments. Once the values for
parameters range have been defined, the tool automatically performs verification in all the
combinations of parameters values.

Another interesting feature is the possibility to evaluate properties with simulation instead
of model checking. This allows one to extend model checking results when the instance
becomes to large to be formally verified. The user is allowed to set several parameters, e.g.,
confidence, sample, in order to obtain the desired approximation level.

5.5.4 Tuning

Tuning is performed manually by the user exploiting either simulation and model checking
tools. It is mainly a time-consuming trial-and-error approach: given a target set of values,
it should be easy to automatize this step exploiting local search algorithms and iterative
methods. This would allow the user just to set the desired property and delegate the tool
to seek for the right parameters; hence, it worth considering as issues for future works.

5.6 Case Study: Plain Diffusion

In this section we describe a self-organizing strategy for achieving a plain diffusion behavior.
The solution is analyzed according to the methodological approach and the tools previously
described. Due to space constraints, here we just describe the first iteration of our approach.
In order to provide an actual implementation and a more comprehensive characterization
several cycles would be required. We decided to consider the case study of plain diffusion
mainly for two reasons: on the one hand, our solution to the problem of plain diffusion
is very simple but exhibits all the key features of self-organization, hence allowing us to
effectively explain our methodological approach; on the other hand, plain diffusion is a key
element of many chemical and biological phenomena, e.g., in chemotaxis [Murray, 2002] or
in pheromone diffusion in ant colonies [Camazine et al., 2001]. Furthermore, plain diffusion
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FIGURE 5.2 The reference network topology. This network is interesting because it exhibits features
found in real topologies such as cycles, hubs and nodes with limited connectivity.

has been recognized as an important design pattern for self-organizing artificial systems
producing gradients and averaging quantities [Babaoglu et al., 2006; Gardelli et al., 2007].
Indeed, despite its simplicity, the diffusion mechanism plays a key role in every digital
pheromone-based application, e.g., in the case of Autonomous Guided Vehicles [Sauter et al.,
2005; Weyns et al., 2005], and in many distributed systems strategies such as in load-
balancing [Canright et al., 2006].

5.6.1 Problem Statement

Consider a networked set of nodes having an arbitrary topology and where each node is
labeled with a non-negative quantity. We want to devise a strategy that from an arbitrary
initial state eventually evolves into a dynamical state where each node is labelled with the
same quantity. In particular, we require the strategy to be self-organizing, i.e. where each
node is autonomous and transfers quantities according to local knowledge. In this way our
strategy will be independent from the network topology, the distribution of quantities and
the overall amount of quantities. A node knows the identities of neighboring nodes and the
local quantity, while it has no information about network size and quantities in other nodes.

In order to evaluate our proposal, we have to test it against an actual instance of a
network. Specifically, we choose the 6-node topology displayed in Figure 5.2 since it exhibits
features commonly found in actual networks. These features include cycles, hubs and nodes
with limited connectivity. We believe that the 6-node topology is large enough to clarify the
approach, which is our main objective here. Scalability issues are discussed later in Section
5.6.6. For the sake of clarity, from now on when considering system states we use the compact
notation ((A,QA), .., (F ,QF )). The required dynamics for strategy are the following: each

node i having a local quantity Qi has to eventually reach a state where Qavg =
PN

i=1 Qi

N . It
is worth noting that because of the limited knowledge available to each node the strategy
will never converge since it has no criteria regarding the halting condition. The best result
we can achieve is to establish a dynamic equilibrium close to the average value.
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FIGURE 5.3 The picture shows the agents and artifacts diagram equivalent to the previous network
topology. It is worth noting that since the agents/artifacts relation is not symmetric, two association are
required making the diagram appears more cluttered.

5.6.2 Modeling Plain Diffusion

In this section we provide a solution to the previously described problem with respect to
the agents and artifacts meta-model and architectural pattern. The mapping between the
network and the A&A equivalent architecture is straightforward, and basically amounts
to replacing a node with an artifact and its environmental agent, see Figure 5.3. More
precisely,

• each node is represented by an artifact acting as a data repository;
• each artifact is managed by a dedicated environmental agent;
• the connections represent neighborhood information that can be encoded either

within environmental agents or artifacts: both approaches are viable thus mod-
eling different constraints.

The constraints and possible actions then become

• an environmental agent can put/remove an item only in the local artifact and
remote artifacts in its neighborhood;
• an environmental agent knows the number of items contained within the local

artifact;
• an environmental agent knows a limited set of artifacts, which we call neighboring

artifacts;
• the agent does know neither the overall number of artifacts nor the the overall

number of items in the system.

In our approach the first step consists in finding an existing pattern: here we recognize that
the problem can actually be assimilated to Plain Diffusion, which has been recognized as
an important design pattern in [Babaoglu et al., 2006; Gardelli et al., 2007]. However, the
solution proposed in [Babaoglu et al., 2006] requires the exchange of information between
nodes, which is in contrast with our requirements. Hence, we propose a different approach
for achieving plain diffusion: to this purpose, we start by considering the two nodes network
((A, 20), (B , 10)) where B have twice as many items as A. Since they actually do not know
the number of items of the other node the only way to reach an equilibrium is via dynamic
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exchange criteria. Unfortunately if nodes exchange items at the same speed the balance
remains unchanged. Hence, as a first proposal we suggest that nodes send items at a speed
proportional to the number of items possessed. We notice that this basic strategy does
not work for the network ((A, 20), (B , 10), (C , 20)) where A and C are connected only to
B : indeed, we expect a gradient from this situation since B receives items both from A
and C . In order to compensate for this gradient, the working rate of each agent should be
proportional not only to the number of items but also to the number of neighboring nodes.
Hence, the formula for the agent send rate ri becomes

ri =
Qi ∗ Si

P
(5.1)

where Qi is the local number of items, Si is the local star, i.e. number of neighboring nodes,
and P is a global parameter that scales the overall workload.

From the requirements and the basic strategy we now provide a formal model using the
PRISM modeling language: the whole specification is listed in Figure 5.4. Since PRISM

language allows the definition of stochastic transition systems [PRISM, 2007], we have to
re-interpret the system dynamics in terms of transitions. To the purpose of our model, in
this case, we abstract from artifact’s details: since in the plain diffusion model we are only
interested in an artifact’s content, this information can be encoded in a simple variable.
Conversely, agents are encoded in modules, that is, a collection of transitions: hence, agents
manipulate local and neighboring artifacts by simply modifying the corresponding variable.
With respect to the topology defined in Figure 5.2, the definition of the environmental agent
A is

module agentA
[] tA > 0 & tB < MAX & tC < MAX & tD < MAX ->
rA : (tA’=tA-1) & (tB’=tB+1) +
rA : (tA’=tA-1) & (tC’=tC+1) +
rA : (tA’=tA-1) & (tD’=tD+1) +
rA : (tA’=tA-1) & (tE’=tE+1);
endmodule

where tA is the local artifact, tB, tC, tD are neighboring artifacts, rA is the rate of the
transition defined by rA = tA / base_rate. Each transition models the motion of an item
from the local artifact to a neighboring one. The choice between neighbors is probabilistic
and in this case all the transitions are equiprobable. It is worth noting that the rate formula
does not explicitly take into account the number of neighboring nodes: indeed, this factor is
implicitly encoded in the transition rules. Since the model is interpreted as a Markov Chain
the overall rate is the sum of all the transition rates. In the previous code sample we have
four top-level possible transitions with rate rA, hence the overall working rate of agentA
is 4rA. The definition of the other agents is very similar to the one of agentA but for the
number of neighboring artifacts.

5.6.3 Simulating Plain Diffusion

In order to qualitatively evaluate the dynamics of the system, in this section we run some
simulations. PRISM allows the execution of simulations directly from the formal specifica-
tion as long as we provide values for all the parameters. In our model the only parameter
is the base_rate. This parameter allows the tuning of the system speed according to de-
ployment requirements. Since at the moment we are not interested in performance issues
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ctmc

const int MAX = 54;

const double base_rate = 100;

formula rA = tA / base_rate;

formula rB = tB / base_rate;

formula rC = tC / base_rate;

formula rD = tD / base_rate;

formula rE = tE / base_rate;

formula rF = tF / base_rate;

global tA : [0..MAX] init 14;

global tB : [0..MAX] init 0;

global tC : [0..MAX] init 8;

global tD : [0..MAX] init 16;

global tE : [0..MAX] init 12;

global tF : [0..MAX] init 4;

module agentA

[] tA > 0 & tB < MAX & tC < MAX & tD < MAX ->

rA : (tA’=tA-1) & (tB’=tB+1) +

rA : (tA’=tA-1) & (tC’=tC+1) +

rA : (tA’=tA-1) & (tD’=tD+1) +

rA : (tA’=tA-1) & (tE’=tE+1);

endmodule

module agentB

[] tB > 0 & tA < MAX ->

rB : (tB’=tB-1) & (tA’=tA+1);

endmodule

module agentC

[] tC > 0 & tA < MAX & tF < MAX->

rC : (tC’=tC-1) & (tA’=tA+1) +

rC : (tC’=tC-1) & (tF’=tF+1);

endmodule

module agentD

[] tD > 0 & tA < MAX & tE < MAX->

rD : (tD’=tD-1) & (tA’=tA+1) +

rD : (tD’=tD-1) & (tE’=tE+1);

endmodule

module agentE

[] tE > 0 & tA < MAX & tD < MAX ->

rE : (tE’=tE-1) & (tA’=tA+1) +

rE : (tE’=tE-1) & (tD’=tD+1);

endmodule

module agentF

[] tF > 0 & tC < MAX ->

rF : (tF’=tF-1) & (tC’=tC+1);

endmodule

FIGURE 5.4 The PRISM specification of the plain diffusion strategy for the reference 6-node net-
work topology. It is worth noting that each module represents a node in the network and the respective
environmental agent.
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we set it to the arbitrary value of 100. We consider now a few scenarios modeling extreme
deployment scenarios to evaluate the robustness and adaptiveness of the solution.

The first instance we consider has all the items clustered into a single node, specifically
node A, the hub: using the compact notation the system initial state is ((A, 600), (B, 0),
(C, 0), (D, 0), (E, 0), (F, 0)). As can be observed from Figure 5.5, all the nodes eventually
reach the average value of 100 and then stay close to it. In particular, the node F requires
more time to reach the value because it is two hops away from node A, while all the other
nodes are just one hop away.

The next instance we consider is the one having all the items clustered into the peripherical
node F: specifically, the system initial state is ((A, 0), (B, 0), (C, 0), (D, 0),(E, 0), (F, 600)).
As it can be observed from Figure 5.6, all the nodes eventually converge to the average value
of 100: in particular, node C converges quickly because it is one hop away from the node
F, while all the other nodes are two hops away. It is also worth noting that before node
C reaches dynamic equilibrium it goes over the average value. This phenomenon is due to
the fact that node A works many times faster than node C which slowly diffuses items
to neighboring nodes. With respect to the previous instance, this configuration requires
almost twice as much time to establish a dynamic equilibrium. Such a big variance depends
on the fact that while on the previous instance the items were clustered in a node with 4
neighbors, in this instance the items were clustered in a peripherical node with only one
neighbor, causing a bottleneck.

The next instance we consider is the one having items spread across the nodes, specifically
((A, 50), (B, 150), (C, 200), (D, 0), (E, 50), (F, 150)). As can be observed from Figure 5.7,
all the nodes eventually reach the average value of 100 and stay close to it. Since this
configuration was more ordered than the previous ones it reaches dynamic equilibrium
faster.

The next instance we consider models the situation where a node is dynamically added
to the network: specifically the initial state is ((A, 120), (B, 120), (C, 120), (D, 120), (E,
120), (F, 0)) where the nodes from A to E have the same number of items and F is the
newly-added node. As can be observed from Figure 5.8, the nodes move from the average
value of 120 to the new average value of 100 due to the connection of a new node. It is worth
noting that the speed of the adaptation is strongly dependent on the number of connections
of the new node, but also weakly dependent on the network topology.

Since in all the simulated scenarios the strategy seems to behave properly we now move
to the verification of the desired properties.

5.6.4 Verifying Plain Diffusion

The verification process consists of testing whether the properties of interest hold or not.
This process is performed relying on stochastic model checking techniques [Kwiatkowska
et al., 2007; Rutten et al., 2004]. As anticipated in Section 5.4.4, model checking techniques
suffer from the state explosion problem: considering an instance of the same size as done for
the simulations it is just not feasible. Hence, we consider a far smaller instance, specifically,
the system instance having 36 items and expecting an average value of 6 items per node.
In this section, we always refer to the initial configuration ((A, 4), (B, 0), (C, 10), (D, 12),
(E, 6), (F, 4)). Although being a small instance, it is already computationally intensive:
specifically, the instance is defined by 749398 states and by 7896096 transitions, and it
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FIGURE 5.5 The evolution of the instance ((A, 600), (B, 0), (C, 0), (D, 0), (E, 0), (F, 0)): as it can be
noticed the node F converges more slowly because it is two hops far from node A, while all the other nodes
are just one hop away. For the sake of clarity nodes B, D and E have been omitted.

takes about 15 seconds just to compile the model using the PRISM Hybrid Engine∗.
We are here interested in verifying a few system properties: the first property is about the

quality of the strategy with respect to its goal, i.e., producing an average value. Since the
strategy modeled is stochastic, we can provide a statistical characterization of this property:
in particular, we can devise the probability∗∗ distribution for a node to be in a specific state,
that is, being assigned a particular value. In Continuous Stochastic Logic, this property is
equivalent to the statement “Which is the steady-state probability for the variable X to
assume the value Y?” Since we want a probability distribution and not a single value, we
run an experiment where Y spans the range [0..36]. Using the PRISM syntax, this property
translates to S=? [tA=Y] where S is the steady state operator, tA is the variable containing
the actual value and Y is the unbounded constant ranging in the interval 0..36. The chart in
Figure 5.9 displays the results of the model checking experiment over the specific node tA:
the experiment took about 3 hours using the Hybrid Engine and Jacobi iterative method.
Experiments over the other nodes showed an identical probability distribution, providing
evidence of the correctness of the strategy and the independence from initial node value and
placement in the network. As we expected, the maximum probability peak corresponds to
the average value, although being only the 17.59%. The system has a probability of 49.68%

∗The computer used for all the simulations and verifications has the followings processing capabilities:
CPU Intel P4 Hyper Threading 3.0 GHz, RAM 2 GB DDR, System Bus 800 MHz.
∗∗It is worth noting that model checking techniques provide exact probability values rather than esti-
mation as for simulation.
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FIGURE 5.6 The evolution of the instance ((A, 0), (B, 0), (C, 0), (D, 0), (E, 0), (F, 600)). As can be
noticed, node C converges more quickly because it is one hop away from the node F, while all the other
nodes are two hops away. For the sake of clarity nodes B, D and E have been omitted.
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FIGURE 5.7 The evolution of the instance ((A, 50), (B, 150), (C, 200), (D, 0), (E, 50), (F, 150)). As
can be noticed all the nodes eventually converge to the average value. For the sake of clarity nodes B, E
and F have been omitted.
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FIGURE 5.8 The evolution of the instance ((A, 120), (B, 120), (C, 120), (D, 120), (E, 120), (F, 0))
modeling the dynamic connection of a new node. As can be noticed, the average value is moved from 120
to 100 and all the nodes eventually reach the new average value. For the sake of clarity nodes B, C, D and
E have been omitted.
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FIGURE 5.9 The chart displays the distribution of the probability for a node to contain a specific number
of items; further experiments show that the chart is the same for each node. Notice that the probability
peak is located in correspondence with the average value, that is 6. The chart is not symmetrical due to the
asymmetry in the range of values.

of being in the range 6±1, while it has a probability of 73.91% of being in the range 6±2. It
is worth noting that the chart is not symmetrical with respect to the average value because
of the asymmetry of the admissible range.

The next test we consider is about the time for reaching the average value: specifically,
considering the previous test instance ((A, 4), (B, 0), (C, 10), (D, 12), (E, 6), (F, 4)) we
evaluate the time for tB, having an initial value of 0, to reach the average value of 6. Since
CSL does not provide a time operator, we still have to reason in terms of probability. Hence,
the query is “Which is the probability for the node tB to be equal to 6 within Y time steps?”
Using the PRISM syntax, this formula becomes P=? [true U<=Y tB=6] where P is the
probability operator, true U<=Y means to be verified in the next Y time steps, and Y is an
unbounded constant. The chart in Figure 5.10 displays the results of model checking for Y
spanning the range [0..600] at step size equal to 10. Although valid only for node tB, this
sort of chart is very useful since it provides a solid basis for tuning and in-depth performance
evaluation.

5.6.5 Tuning Plain Diffusion

Since the strategy modeled already exhibits a global dynamics which is compliant to our
requirements there is no need for tuning but for performance. In the simulation and ver-
ification sections we assumed the arbitrary value of 100 for the base_rate parameter. If
we want to give guarantees with respect to deployment conditions we have to consider a
meaningful parameter value. For example, we can establish a requirement for all the nodes
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FIGURE 5.10 The chart displays the probability for the node tB to reach the average value from zero:
this chart is very useful for the tuning process since it provide a solid basis for performance evaluation.

to have a probability greater or equal to 90% to reach the average value within T time units
under specific workloads conditions. Then, by performing several tests we can devise the
actual value for the base_rate parameter that meets the target requirement.

In order to evaluate the performances, we consider the worst case scenario, which consists
in all the items clustered in the peripherical node F. Specifically the initial state is ((A, 0),
(B, 0), (C, 0), (D, 0), (E, 0), (F, 36)). As a time constraint, we require the system to
reach dynamic equilibrium before 200 time units, while for the probability constraint we
set the lower bound to 90%. Hence, by adjusting the value of base_rate, we have to test
the following property for all nodes: “Is the probability of reaching dynamic equilibrium
condition within 200 time units greater or equals to 90% ?”. Using the PRISM syntax this
property becomes P>=0.9 [true U<=200 tA=6] for the node tA.

We start by considering the farthest node tB. Since the property must hold for all nodes,
testing first the farthest node saves us a lot of computation. As a first exploration, with
respect to the property P=? [true U<=200 tB=6], we plot the probability values within the
range [10..100]. As can be observed from chart in Figure 5.11, the trend of the probability
is non-linear. Nonetheless, we can guess that the desired value for base_rate lies in the
range [30..40]. Hence, we repeat the experiment zooming in the range [30..40] with unitary
step: the results are plotted in Figure 5.12. As we can observe the value for base_rate that
produces the probability value closest to 90% is 37. Hence, we fix this value for the base
rate and tested if the property is also satisfied for the other nodes. Since the node tB is
the farthest one, as we expected the property is satisfied also for node tA, tC, tD, tE, but
not for tF. Hence, we investigate the property for node tF and results are plotted in Figure
5.13. As can be observed, the property holds for node tF when base_rate=31 and not 37.
This phenomenon can be explained by the fact that we requested a 90% probability for the
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FIGURE 5.11 The chart displays the probability values for the node tB according to the CSL formula
P =?[trueU <= 200tB = 6]. We can guess that the desired value is within the range [30..40].

nodes to reach the target value; hence, there is a 10% probability for each node not to have
reach the target value, which summed up in the source node cause this delay.

Hence, from all the experiments we obtain that the value for the base_rate parameter
to satisfy the property of ≥ 90% probability of convergence within 200 time units is 31. Our
first guess was that the bottleneck should have been the farthest node, conversely it proved
out to be the source node. The parameter base_rate=31 means that initially the system
send about 1 item per unit of time per connection, and decreases while converging to about
1 item per 5 units of time per connection.

As far as the number of transfers is concerned, it is not trivial to evaluate it given the
very nature of the strategy; indeed, it depends upon neighborhood, local number of items,
which changes over time. If there was no dependence on the number of neighbors, assuming
a static topology, the global transfer rate could have been evaluated by the simple formula

rg =
Tot.Items

baserate
(5.2)

Conversely, because of the dependence on the number of neighbors, the instantaneous global
rate is given by the formula

rg(t) =
N∑

i=1

Itemsi(t)× neighborsi

baserate
(5.3)

where i = 1..N is the node selector. This formula explicitly depends on time, and requires
either a simulation or real data to be computed.
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FIGURE 5.12 The chart displays the probability values for the node tB according to the CSL formula
P =?[trueU <= 200tB = 6] within the range [30..40] of base rate.
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FIGURE 5.13 The chart displays the probability values for the node tF according to the CSL formula
P =?[trueU <= 200tF = 6] within the range [25..40] of base rate.
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5.6.6 Preliminary Scalability Analysis

In this section we briefly describe how to perform preliminary scalability analysis using
model checking techniques. Indeed, it might be the case that we are interested in its per-
formance at the early stages since performance may be a major constraint. Hence, before
moving to the problem in its actual size, it could be useful to perform this kind of analysis.
In the next iterations, when considering the large system, scalability measures would be
necessarily obtained via simulations rather than model checking.

Here, concerning the scalability metric, we consider the time required to converge to
the average value with respect to the total number of items within the network. Another
interesting scalability measure could be with respect to the network size rather than content.
The initial state for each trial consists in all the items placed within node A, i.e. A=X,
B=C=D=E=F=0. Since we are using model checking tools to perform such evaluation,
we will limit the number of items to 48. Furthermore, to avoid fractional average values
we consider only quantities multiple of the number of nodes, specifically the set of values
{6, 12, 18, 24, 30, 36, 42, 48}.

The property we are interested in evaluating is the time required to converge with a
probability ≥ 90%. Unfortunately PRISM does not allow time queries, hence, we have to
run several experiments in order to profile probability of convergence with respect to time.
The property we want to verify can be translated into P=? [true U<=T tA=X/6], where
T represents the time value and X is the total number of items. Notice that we do not
have a formula for describing global convergence, hence, we have to provide a formula for
convergence of a single node: we consider the source node since, from previous experiments,
we know this is the most restrictive constraint. The charts in Figures 5.14 and 5.15 display
the probability for the node tA to reach the average value with respect to time. From these
charts it is possible to extrapolate, although with some approximations, the time values for
each initial state having a probability ≥ 90% to reach the average value. Data extracted
from previous charts is depicted in Figure 5.16. As can be easily noticed the trend is sub-
linear. It is worth it to point out that these results have been obtained with respect to
the specific network topology and initial distribution of items. Hence, the characterization
provided here is far from being complete, although we are confident of obtaining similar
results with different distributions of items. Conversely, different topologies may heavily
affect the scalability of the approach.

5.7 Conclusion

In this chapter we described a systematic approach for driving the early design phase of
self-organizing MAS engineering, combining simulation and the use of formal tools. Specif-
ically, it is an iterative approach articulated in four steps—namely, modeling, simulation,
verification and tuning. This method wants to promote the adoption of analysis techniques
and tools in the self-organizing MAS engineering process. While simulation and formal ver-
ification techniques are extensively used for analysis purposes, their advantages are almost
overlooked in the software engineering field [Tichy, 1998; von Mayrhauser, 1993; Uhrma-
cher, 2002]. The limitations on the applicability of the approach are mainly due to the state
explosion problem inherent to model checking, which prevents tackling large scale systems.
Regardless, the use of model checking techniques is quite useful in the first iterations of the
approach on small instances of the problem, allowing also the reliability of the simulations
to be evaluated. Furthermore, because of the rapid advancement of computation capabilities
and efficiency in verification techniques we believe that such techniques will become more
important in the near future.
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FIGURE 5.14 The chart displays the probability values for the node tA to reach the average value with
respect to time and from different initial states.
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FIGURE 5.15 The chart displays the probability values for the node tA to reach the average value with
respect to time and from different initial states: this chart zooms into the range [75..115] with a finer time
step.
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FIGURE 5.16 The chart represents the preliminary scalability analysis performed with model checking
techniques: the metric is time to reach dynamic equilibrium with respect to the initial number of items
contained in the node tA. From these preliminary results we observe that the trend is sub-linear. Since the
results depend on the network topology and distribution of items, further investigation is needed to provide
a complete characterization of the strategy.
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We have applied the methodology to the case study of plain diffusion. Plain diffusion
was chosen because it is a key element of many chemical and biological phenomena, e.g.,
in chemotaxis [Murray, 2002] or in pheromone diffusion in ant colonies [Camazine et al.,
2001], and has been recognized as an important design pattern for self-organizing artificial
systems allowing gradients and averaging quantities [Babaoglu et al., 2006; Gardelli et al.,
2007], which is the foundation for every digital pheromone-based application [Sauter et al.,
2005; Weyns et al., 2005]. To the best of our knowledge, the proposed solution to the plain
diffusion problem is novel with respect to the current research context.

The whole process has been supported by the PRISM tool, a software developed at the
University of Birmingham. Although mainly targeted at probabilistic model checking, the
tool also provides a suitable modeling language and basic simulation capabilities.

Along this research direction, we identify a few future developments:

• Although an earlier version of the approach has been tested on other case studies
– e.g., the Collective Sort case [Gardelli et al., 2008] – we could gain more feed-
back on the suitability of the approach by analyzing further distributed problems
before moving to real applications;
• A higher-level language could be developed on top of PRISM in order to ease

MAS engineers in the specification process. We believe this is a necessary step to
widen the adoption of the approach and the use of formal tools;
• While the state explosion problem of stochastic model checking is the main lim-

itation of the approach, research efforts in the formal methods community in
the last few years have been impressive, and new approaches are currently being
developed. Applying those improved techniques is also part of the future works;
• Since there exist several well-developed agent-oriented methodologies such as

GAIA [Zambonelli et al., 2003] or ADELFE [Bernon et al., 2004], it is worth
evaluating the integration of our approach within these methodologies.
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R. V. Solé and J. Bascompte. Self-Organization in Complex Ecosystems, volume 42 of
Monographs in Population Biology. Princeton University Press, Princeton, NJ,
USA, 2006. ISBN 0691070407.

S. Steward and S. Appleby. Mobile software agents for control of distributed systems
based on principles of social insect behaviour. In International Conference on
Communications Systems (ICCS’94), volume 2, pages 549–553, Singapore, Nov.
1994. IEEE. ISBN 0-7803-2046-8. doi: 10.1109/ICCS.1994.474192. URL http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=474192.

W. F. Tichy. Should computer scientists experiment more? IEEE Computer, 31

© 2009 by Taylor and Francis Group, LLC

http://www.springer.com
http://www.springerlink.com
http://www.prismmodelchecker.org
http://www.prismmodelchecker.org
http://www.springerlink.com
http://www.ams.org
http://www.springer.com
http://www.springerlink.com
http://www.prismmodelchecker.org
http://www.springerlink.com
http://www.ieeexplore.ieee.org
http://www.ieeexplore.ieee.org


Combining Simulation and Formal Tools for Developing Self-Organizing MAS 165

(5):32–40, May 1998. ISSN 0018-9162. doi: 10.1109/2.675631. URL http:
//ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=675631.

A. M. Uhrmacher. Simulation for agent-oriented software engineering. In W. Lunceford
and E. Page, editors, First International Conference on Grand Challenges, San
Antonio, TX, USA, January 2002. SCS, San Diego. URL http://www.scs.org/
getDoc.cfm?id=1328.

M. Viroli, T. Holvoet, A. Ricci, K. Schelfthout, and F. Zambonelli. Infrastructures for the
environment of multiagent systems. Autonomous Agents and Multi-Agent Sys-
tems, 14(1):49–60, Feb. 2007. ISSN 1387-2532. doi: 10.1007/s10458-006-0012-0.
Special Issue on Environments for Multi-agent Systems.

A. von Mayrhauser. The role of simulation in software engineering ex-
perimentation. In Experimental Software Engineering Issues: Critical
Assessment and Future Directions, volume 706 of LNCS, pages 177–
179. Springer, 1993. ISBN 3-540-57092-6. doi: 10.1007/3-540-57092-6
121. URL http://www.springerlink.com/content/75g817r264p186l0/?p=
b791ac69501a476a95fdbebccc5b3e91&pi=1.

D. Weyns, K. Schelfthout, T. Holvoet, and T. Lefever. Decentralized control of E’GV
transportation systems. In M. Pechoucek, D. Steiner, and S. G. Thompson, editors,
Proceedings of the 4rd International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2005) – Special Track for Industrial Appli-
cations, pages 67–74, Utrecht, The Netherlands, 25–29 July 2005. ACM. ISBN
1-59593-093-0.

D. Weyns, A. Omicini, and J. Odell. Environment as a first-class abstraction in
multi-agent systems. Autonomous Agents and Multi-Agent Systems, 14(1):5–
30, Feb. 2007. ISSN 1387-2532. doi: 10.1007/s10458-006-0012-0. URL http:
//springerlink.metapress.com/content/w571550106301124/. Special Is-
sue on Environments for Multi-agent Systems.

F. Zambonelli, N. R. Jennings, and M. J. Wooldridge. Developing multiagent sys-
tems: The Gaia methodology. ACM Transactions on Software Engineering
and Methodology (TOSEM), 12(3):317–370, July 2003. ISSN 1049-331X. doi:
10.1145/958961.958963.

© 2009 by Taylor and Francis Group, LLC

http://www.scs.org
http://www.springerlink.com
http://www.ieeexplore.ieee.org
http://www.ieeexplore.ieee.org
http://www.scs.org
http://www.springerlink.com
http://springerlink.metapress.com




6
On the Role of Software Architecture

for Simulating Multi-Agent Systems

Alexander Helleboogh
Katholieke Universiteit Leuven

Danny Weyns
Katholieke Universiteit Leuven

Tom Holvoet
Katholieke Universiteit Leuven

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A System and Its Environment • Characteristics of
Multi-Agent Control Systems • Software-in-the-Loop
Simulation Mode

6.3 AGV Transportation System . . . . . . . . . . . . . . . . . . . . . . . . 172
Physical Setup of an AGV Transportation System •

AGV Control System • Requirements of an AGV
Simulator

6.4 Modeling Multi-Agent Control Applications in
Dynamic Environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Overview of Modeling Framework • Simulation Model
of the AGV Transportation System

6.5 Architecture of the Simulation Platform . . . . . . . . . . . 185
Requirements • Top-Level Module Decomposition View
of the Simulation
Platform • Component and Connector View of the
Simulated Environment • Component and Connector
View of the Simulation Engine • An Aspect-Oriented
Approach to Embed Control Software • Component
and Connector View of the Execution Tracker

6.6 Evaluating the AGV Simulator. . . . . . . . . . . . . . . . . . . . . . 201
Flexibility of the AGV Simulator • Measurements of
the AGV Simulator • Multi-Agent System
Development Supported by the AGV Simulator

6.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Special-Purpose Simulation Platforms • Embedding the
Control Software

6.8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . 209
Concrete Directions for Future Research • Closing
Reflection

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6.1 Introduction

A control system is a software system connected to an underlying environment. The en-
vironment is the part of the external world with which the control system interacts, and
in which the effects of the control system will be observed [Jackson, 1997]. The task of a
control system is to ensure that particular functionalities are achieved in the environment.
A multi-agent control system is a control system of which the software is a multi-agent
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system, i.e. a system that consists of a number of autonomous software components, called
agents, that collaborate to achieve a common goal. Examples of multi-agent control systems
include manufacturing control systems [Verstraete et al., 2006; Brueckner, 2000], collective
robotic systems [Gu and Hu, 2004; Varshavskaya et al., 2004; Bredenfeld et al., 2006], traf-
fic control systems [Wang, 2005; Roozemond, 1999; Dresner and Stone, 2005] and sensor
networks [Sinopoli et al., 2003; DeLima et al., 2006].

Simulation can be used to support the development of multi-agent control systems. Sim-
ulation offers a safe and cost-effective way for studying, evaluating and configuring the
behavior of a multi-agent control system in a simulated setting [Himmelspach et al., 2003].
In this chapter, we focus on software-in-the-loop simulations for multi-agent control systems
in dynamic environments. This family of simulations has the following characteristics: (1)
the environment to-be-simulated is dynamic. In a dynamic environment, the operating con-
ditions of a multi-agent control system are continuously changing; (2) the control software
of the real multi-agent control system is embedded in the simulation.

Developing software-in-the-loop simulations of multi-agent control systems in dynamic
environments is complex. The system-to-be-simulated comprises two parts: a dynamic envi-
ronment on the one hand and a multi-agent control system embedded in that environment
on the other hand. We illustrate two main challenges when building simulations for such
systems:

• Simulating dynamic environments is complex. In a dynamic environment an agent
cannot determine the outcome of its actions a priori [Ferber and Müller, 1996;
Helleboogh et al., 2005]. Other activities that are happening in the environment
can have a significant impact on the outcome of actions. Consider a robot that
was instructed to start driving north. In a dynamic environment, the action of
the robot can be affected in different ways. For example, another machine could
move into the path of the first robot, blocking it or pushing it aside. Or the
robot’s path could deviate from the intended path due to jitter in the hardware.
Or the robot could run out of energy, causing its movement to stop prematurely.
Even a combination of these phenomena could occur. When simulating dynamic
environments, it is non-trivial to reproduce the variety of possibly cascading
interactions that may occur and the precise way these interactions have an impact
on the actions.
• Integrating the software of a real multi-agent control system in a simulation is

complicated. The devices on which the multi-agent control system is deployed
in the real world determine how fast the control software can execute and con-
sequently how much time it takes the software to react to changes in the en-
vironment. However, the characteristics of the computer platform on which the
simulation is executed, can differ significantly from the devices on which the con-
trol software is deployed in the real world. Moreover, a simulation can be executed
faster or slower than real time. It is non-trivial to reproduce the real-world timing
characteristics of a multi-agent control system in a simulation [Uhrmacher and
Kullick, 2000; Anderson, 1997].

Special-purpose modeling constructs and simulation platforms incorporate a large body
of expertise on building software-in-the-loop simulations of multi-agent control system in
dynamic environments. In simulation platforms this expertise is primarily reified in terms
of reusable code libraries and frameworks. In our own research, we have built up knowledge
and best practices in several cases, including simulations of the Packet-World [Weyns et al.,
2005a], Lego Mindstorms robots [Borgers, 2006], traffic control systems [Weyns et al., 2007]
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and Automated Guided Vehicles [Helleboogh et al., 2006]. We experienced that we could
reuse a lot of expertise across these cases. Nevertheless, a substantial part of this expertise
was reused implicitly, as explicit reuse of code libraries and frameworks was rather limited.

In this chapter, we put forward a software architecture for a simulation platform targeted
at software-in-the-loop simulation of multi-agent control systems in dynamic environments.
This software architecture explicitly documents the knowledge and practice incorporated in
a simulation platform in the form of a reusable artifact, clearly distinguished from the code
of the simulation platform. More than reusable code libraries and software frameworks, a
software architecture captures the essence of a complex software system by identifying key
stakeholder concerns and by explicitly specifying how software needs to be structured and
behave to address the concerns. The software architecture integrates the essential architec-
tural building blocks for such a simulation platform and explicitly documents the rationale
and tradeoffs that underpin its design. Software architecture provides a systematic way to
capture and share expertise that was acquired across several cases in a form that has proven
its value for software development.

This chapter is structured as follows. After presenting some essential background in Sec-
tion 6.2, we introduce an industrial case in Section 6.3, i.e. a AGV transportation sys-
tem that comprises a multi-agent control system for controlling automated guided vehi-
cles (AGVs) that transport loads in a warehouse. This case will be used as an illustration
throughout this chapter. In Section 6.4, we summarize our previous work on special-purpose
modeling constructs for modeling software-in-the-loop simulations of multi-agent control
systems in dynamic environments, and we apply these modeling constructs to describe a
simulation model for the AGV transportation system. In Section 6.5, we describe the soft-
ware architecture for a simulation platform that supports these special-purpose modeling
constructs. We document the architecture and explain how important functional and quality
requirements are achieved. In Section 6.6, we evaluate a simulation platform that implements
this architecture and that was used for conducting simulations of the AGV transportation
system. In Section 6.7 we discuss related work on software-in-the-loop simulations of multi-
agent control systems in dynamic environments. Finally, we point out directions for future
research and we draw conclusions in Section 6.8.

6.2 Background

In this section, we describe the necessary background information. We focus on (1) the
relation between a system and its environment, (2) the characteristics of multi-agent control
systems, and (3) software-in-the-loop simulation.

6.2.1 A System and Its Environment

Software systems are designed to satisfy particular functional and quality requirements.
These requirements are issued by the group of stakeholders involved. For systems that in-
teract with the external world via sensors and actuators, these requirements do not directly
concern the software system [Jackson, 1997]. The requirements primarily concern the envi-
ronment in which the system will be installed [Hayes et al., 2003]. The task of a system is
to ensure that particular functionalities are achieved in the environment.

Jackson defines the environment as the part of the external world with which the system
interacts, and in which the effects of the system will be observed and evaluated [Jackson,
1997]. The distinction between the environment and the system is partly a distinction
between what is given and what is to be constructed.
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Figure 6.1 depicts the relation between a system and its environment. The system inter-
acts with the environment by means of shared phenomena that are directly accessible via
sensors and actuators. However, influencing phenomena that are private to the environment
can only be done in an indirect manner: using sensors and actuators, the system tries to
bring about causal chains to observe and affect private phenomena in the environment.

System

Environment

SA

FIGURE 6.1 The system and its environment [Jackson, 1997].

As an example, consider a car’s cruise control system. The environment of the system
consists of the car, its driver, the atmospheric conditions, the road the car drives on, etc.
The cruise control system interacts with its environment through a sensor that can be used
to observe the car’s speed and an actuator that can be used to adjust the car’s throttle.
The requirements of the cruise control system are expressed in terms of phenomena in its
environment. For example, the cruise control system should ensure that the car drives at
a constant speed across the road. The cruise control system can only affect the car’s speed
indirectly, i.e. by relying on a causal chain between manipulations of the throttle actuator
and alterations in the speed of the car.

Today, the environments in which software systems have to operate are typically dy-
namic [Issarny et al., 2007]. A dynamic environment is an environment that changes fre-
quently. In a dynamic environment, the operating conditions of a system are continuously
changing. For example, the environment of the cruise control system is dynamic: the road
may go uphill or downhill, turbulence or wind may arise that causes additional or reduced
drag. These phenomena affect the causal chains by means of which the cruise control system
affects the environment. For example, in case the road goes uphill, changing the throttle
will affect the car’s speed in a different manner compared to the case that the road goes
downhill.

As a dynamic environment can significantly affect the software system, it is generally
considered good practice to capture properties and assumptions regarding the environment
in an explicit model [Jackson, 1997; Hayes et al., 2003]. Such a model of the environment
includes assumptions about the frequency and nature of the changes in the environment,
the accuracy and latency of sensors and actuators, the assumptions about the causal chain
from activation of an actuator to the changes in the actual environment, etc. Such a model
describes essential characteristics and assumptions about the environment that must be
checked for proper deployment of the system.

6.2.2 Characteristics of Multi-Agent Control Systems

A multi-agent control system is a distributed software application that continuously and
autonomously acts in, and reacts to, an underlying environment. Examples of multi-agent
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control systems include manufacturing control systems [Verstraete et al., 2006; Brueckner,
2000], collective robotic systems [Gu and Hu, 2004; Varshavskaya et al., 2004; Bredenfeld
et al., 2006], traffic control systems [Wang, 2005; Roozemond, 1999; Dresner and Stone,
2005] and sensor networks [Sinopoli et al., 2003; DeLima et al., 2006]. Figure 6.2 gives a
schematic overview of a multi-agent control system in an environment.

Device 2 Device 3Device 1

Agent 3Agent 2Agent 1

Key:
Sensor module

Software component

Information flow

Device

Physical area

S A A C S S A C S A C

S

Actuator moduleA

Communication moduleC
External source of dynamism

Source 1 Source 2

FIGURE 6.2 Schematic view of a multi-agent control system in an environment.

A multi-agent control system consists of several agents. Agents are autonomous software
components that are distributed in the environment and that cooperate to solve a particular
problem in the environment. In Figure 6.2, three agents are depicted: Agent 1, Agent 2
and Agent 3.

The agents of a multi-agent control system are deployed on particular devices in the en-
vironment. A device consists of a software and a hardware part. The software part is one
of the agents that constitutes the multi-agent control system, whereas the hardware part
comprises sensor, actuator and communication modules. An agent can use the sensor, actu-
ator and communication modules of its device to interact with the environment. Figure 6.2
depicts three devices in the environment: Device 1, Device 2 and Device 3.

The environment of a multi-agent control system is the part of the external world in which
the problem resides and in which the effects of the control system, once installed and set
in operation, will be observed [Hayes et al., 2003]. Typically, a multi-agent control system
operates in a dynamic environment, i.e. an environment where other sources of dynamism
are present, e.g., other systems, processes or even humans. These sources of dynamism
are external to the multi-agent control system. Figure 6.2 depicts two external sources of
dynamism present in the environment: Source 1 and Source 2. The operation of external
sources of dynamism can have a significant impact on a multi-agent control system.

Designing and testing a multi-agent control system is complex as it requires an integrated
approach that takes into account the environment in which the application is situated [Hu
and Zeigler, 2005]. A multi-agent control system should take into account dynamism origi-
nating from other systems, processes or humans in the environment and react appropriately
to their presence.
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6.2.3 Software-in-the-Loop Simulation Mode

Software-in-the-loop simulation mode denotes simulations in which the software of the real
control system is embedded in the simulation loop. Software-in-the-loop simulation mode
is depicted in Figure 6.3. The simulation contains parts of the real system, i.e. the control
software, together with simulated parts, i.e. the device hardware and the environment.
The executable code of the real control system is directly embedded in the simulation. In
software-in-the-loop simulation mode, the software of the real control system is deployed
on simulated devices that reside within a simulated environment with simulated sources of
dynamism.

Control
Software

Device
Hardware

Environment

Control
Software

Device
Hardware

Control
Software

Device
Hardware

FIGURE 6.3 Schematic view of software-in-the-loop simulation mode. White blocks are simulated parts.
Grey blocks are parts of the real system that are integrated in the simulation loop.

Software-in-the-loop simulation is typically used during the late stages of application
development, i.e., after the software of the multi-agent control system (or parts thereof) has
been implemented. Software-in-the-loop simulation enables experimenting with the agents
of a multi-agent control system on simulated devices before deployment on real devices.
Software-in-the-loop simulation is extensively used for the development of control systems
for robots. For example, software-in-the-loop simulations enable testing the robustness and
fault-tolerance of control systems for robots [Bräunl et al., 2006; Finkenzeller et al., 2003]
or can facilitate parameter estimation of a control systems for robots [Velez and Agudelo,
2006].

6.3 AGV Transportation System

We introduce a real-world case that will be used as an example throughout this chapter. The
case comprises the development of a multi-agent control system that controls automated
guided vehicles (AGVs) in warehouse environments. An AGV is an unmanned, computer-
controlled transportation vehicle using a battery as its energy source (see Figure 6.4). AGVs
have to perform transports. A transport consists of picking up a load at a particular spot
in the warehouse and bringing it to its destination. A load ranges from raw materials (e.g.,
wood, rolls of paper) to completed products (e.g., tires, cheese).

An AGV control system was developed in the EMC2 (Egemin Modular Controls Concept)
project. Egemin N.V. is a Belgian manufacturer of AGVs, and develops control software for
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FIGURE 6.4 An AGV in a cheese factory.

automating logistics in warehouses and manufactories using AGVs.

6.3.1 Physical Setup of an AGV Transportation System

Figure 6.5 shows a three-dimensional view on an AGV transportation system. The hardware
of an AGV comprises the following. An AGV contains engines to move and turn and a lift
to pick and drop loads. An AGV has sensors to observe its position and battery level.
Finally, each AGV has a computer platform on which control software can be deployed.
The computer platform of an AGV uses wireless communication.

The warehouse is a storage or manufacturing facility that contains various loads positioned
at various locations across the warehouse. Loads are typically stored in racks. Racks are
used to hold loads and are positioned across the warehouse, usually according a geometrical
pattern that combines easy accessibility of the loads, as well as efficient use of the available
room for storage purposes. Typically, also one or several battery chargers for the AGVs are
positioned at particular locations across the warehouse.

To support AGVs, the warehouse is usually customized. This typically involves a custom
configuration of the racks. In addition, a complex layout of magnet strips is built into the
warehouse floor to guide the AGVs to move from one spot in the warehouse to another.
This magnet track allows AGVs to maneuver in an accurate manner according to predefined
pathways. Moreover, as magnets are inexpensive and can be installed easily, magnet-guided
navigation is relatively cost-effective.

6.3.2 AGV Control System

An AGV control system is a software system that controls a set of AGVs. We discuss the
main functionalities of an AGV control system and elaborate on the AGV steering system
that can be used by an AGV control system to instruct AGVs.

Functionalities of an AGV Control System

The main functionality of an AGV control system is handling transports, i.e. moving loads
from one place to another. Transports are typically generated by order management soft-
ware, but a transport can also be introduced manually by employees or operators. Ab-
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AGVs
Magnet
Track

Loads

FIGURE 6.5 Three-dimensional view on an AGV transportation system.

stracting from the origin of the transports, systems that generate transports for the AGV
control system are called client systems. Client systems input transports to the AGV con-
trol system, and expect a confirmation from the AGV control system when the transport
is done.

In order to handle transports, the AGV control system has to use the AGVs under its
control efficiently. The main functionalities to be performed are the following:

• Transport assignment: transports originating from client systems must be as-
signed to an appropriate AGV. The goal is to assign transports in such a way
that overall, transports are handled in an efficient and timely manner.
• Routing: in order to carry out transports, AGVs need to move to certain places.

For the movement of all AGVs, efficient routes through the warehouse must be
determined. Although the road network determined by the magnet track is static,
the best route for an AGV is in general dynamic, and depends on the current
conditions in the system. For example, the shortest route in distance may take a
long time because there is a “traffic jam”. So, routing in general may need to be
adapted dynamically.
• Collision avoidance: while moving around, AGVs may not collide with each other.

Collisions do not exclusively occur at intersections of paths; AGVs also need to
avoid collisions while passing each other on closely located parallel paths.
• Deadlock avoidance: since AGVs cannot divert from their path, they are relatively

constrained in their movement. Therefore, deadlocks can occur when a number
of AGVs are in a situation where no AGV can move anymore without operator
intervention. For example, on a bidirectional path AGVs may be standing head
on toward each other. Since AGVs in general cannot drive in reverse, none of the
two AGVs can move forward or backward. The AGV control system must ensure
that manual intervention for such situations is avoided.
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Besides handling transports efficiently, the AGV control system must also ensure the
continued operation of the AGVs.

• Maintenance: AGVs need regular maintenance, which is typically scheduled in
fixed time intervals. Furthermore, AGVs may need to calibrate their positioning
system regularly.
• Battery charging: when an AGV’s battery runs out, it must drive to a charging

station. Either the AGV must wait until an operator exchanges the old battery
for a full battery, or the battery is charged using contact points in the warehouse
floor.
• Resource saving: AGVs are expensive and must be used as efficiently as possible.

AGVs that are idle must save their resources, and get out of the way of the active
AGVs. Therefore, idle AGVs are parked at park nodes.

AGV Steering System

To control an individual AGV, it is equipped with an AGV steering system developed by
Egemin, called E’nsor∗. E’nsor handles the low-level control of an AGV on the level of
reading out sensors and driving actuators. Main functionalities of E’nsor are keeping the
AGV on a path, turning, determining the AGV’s current position, reading out the battery
level, etc.

E’nsor can handle a number of actions on its own. These actions are called jobs. For
example, picking up a load is a pick job, dropping it is a drop job and moving over a
specific distance is a move job. A transport typically starts with a pick job, followed by a
series of move jobs and ends with a drop job. The AGV control system gives jobs to E’nsor,
which in turn controls the AGV to handle the jobs autonomously.

To be able to indicate to E’nsor where to pick and move, the layout (i.e. all the possible
paths the AGVs can follow in the system) of the warehouse is divided into logical elements:
segments and nodes. Segments determine the path an AGV can follow through the ware-
house, and can be either straight or curved with lengths of typically three to five meters. A
segment can either be unidirectional or bidirectional. In the latter case AGVs can drive over
the segment in both directions. Nodes are at the beginning or end of segments. Nodes are
the places where an AGV can stand still, or do an action like picking up a load. In normal
operation, an AGV can only be at rest when standing on a node. Each segment and node
is given a unique identifier. E’nsor is able to steer an AGV on a segment per segment basis.
An AGV can stop on every node, possibly to change direction. E’nsor can handle five jobs.
None of these jobs route the AGV, so the segment given as argument must be accessible
from the node on which the AGV is currently standing.

• Move(segment): this instructs E’nsor to drive the AGV over the given segment.
• Pick(segment): instructs E’nsor to drive the AGV over the given segment and

pick up the load at the node at the end of the segment.
• Drop(segment): the same as pick, but drops a load the AGV is carrying.
• Park(segment): instructs E’nsor to drive the AGV over the given segment and

park at a park node at the end of the segment.
• Charge(segment): instructs E’nsor to drive the AGV over a given segment to a

∗E’nsor is an acronym for Egemin Navigation System On Robot.
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battery charging node and start charging batteries there.

Furthermore, E’nsor allows the readout of sensor values of the AGV, of which the most
important are battery level; position in coordinates on the floor; position in terms of segment
and node on the layout; orientation; speed.

6.3.3 Requirements of an AGV Simulator

In the context of the EMC2 project, we developed an AGV simulator. The AGV simula-
tor enables (1) safe experimentation and testing of AGV control systems without risk of
damaging the real AGVs, (2) executing experiments faster than real-time, which is essential
when investigating long-term scenarios (3) setting up and monitoring experiments in a less
costly way, e.g., without the cost of buying AGVs or building particular warehouse layouts.

We elaborate on the requirements of an AGV simulator that was developed in the context
of EMC2. The goal of the AGV simulator is to support evaluating new or altered features of a
multi-agent AGV control system by means of software-in-the-loop simulation of AGV agents
in a simulated warehouse environment. Software-in-the-loop simulation enables evaluating
the actual implementation (or parts thereof) of the AGV agents.

The AGV simulator focuses on evaluating routing, collision avoidance, transport assign-
ment and battery charging.

• Support for routing. To evaluate or compare routing behaviors of AGV agents,
the AGV simulator should simulate the movements of real AGVs and realistic
layouts of the warehouse. This enables monitoring the path followed by an AGV,
its travel time, the appearance of traffic jams, etc.
• Support for collision avoidance. To evaluate the appropriateness of collision avoid-

ance techniques of AGV agents, the AGV simulator should simulate the move-
ments of AGVs on a warehouse layout and detect situations in which AGVs could
collide. Moreover, to test the robustness of collision avoidance techniques, the
AGV simulator should simulate unreliable communication between AGVs. This
enables a developer to evaluate the adequacy of collision avoidance techniques
under a variety of circumstances.
• Support for transport assignment. To evaluate transport assignment among AGV

agents, the AGV simulator should simulate several transport profiles generated
by client systems.
• Support for battery charging. To evaluate the charging strategy of AGV agents,

the AGV simulator should simulate the energy consumption of an AGV, the
charging of its battery at a charging station and the interruption of an AGV’s
operation in case it runs out of energy.

When building an AGV control system, these functionalities are typically developed iter-
atively. The AGV simulator should enable testing partial AGV control systems in which
some of these functionalities are present and others not yet (fully) operational.

To support evaluating different functionalities of AGV control systems in a variety of
settings, modifying core parts of the model of the AGV simulator should be relatively easy
and the impact of such modifications should be as local as possible. Important modifications
that should be supported include altering the AGV agent software; the layout of the ware-
house; the number of AGVs and their characteristics (e.g., characteristics of movements,
energy consumption, etc. ); the quality of service of communication between AGVs; the
accuracy of collision detection; the transport profile of the client systems.
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6.4 Modeling Multi-Agent Control Applications in Dynamic
Environments

In this section, we (1) summarize our previous work on a modeling framework for software-
in-the-loop simulations of multi-agent control systems in dynamic environments, and (2)
apply this modeling framework to formulate a simulation model for the AGV transportation
system.

6.4.1 Overview of Modeling Framework

The modeling framework offers special-purpose modeling constructs for formulating a simu-
lation model for software-in-the-loop simulations of multi-agent control systems in dynamic
environments. The modeling framework captures core characteristics of these simulations
in a first-class manner.

The foundation for the constructs of the modeling framework is twofold. On the one
hand, the modeling framework results from our own experience of building simulations for
multi-agent control systems in dynamic environments. Examples include simulations of the
Packet-World [Weyns et al., 2005a], Lego Mindstorms robots [Borgers, 2006] and Automated
Guided Vehicles [Helleboogh et al., 2006]. On the other hand, the modeling constructs are
underpinned by existing practice on modeling dynamic environments of multi-agent control
systems. For a detailed motivation, discussion and a formal description of all modeling
constructs as well as of the evolution of the model, we refer to [Helleboogh et al., 2007;

The modeling framework comprises two complementary parts: an environment part and
a control software part. We give a brief brief overview of the modeling constructs in each
part of the modeling framework.

Modeling Dynamic Environments

The environment part of the modeling framework comprises modeling constructs that cap-
ture in an explicit manner a number of key characteristics and relations that are pertinent
for modeling dynamic environments of multi-agent control systems.

Figure 6.6 gives a graphical overview of the modeling framework for dynamic environ-
ments, depicting all modeling constructs and the relations between the constructs. The
modeling constructs are organized in four groups:

1. Constructs to represent the structure of the environment in the simulation model.
2. Constructs to represent dynamism in the environment in the simulation model.
3. Constructs to represent the manipulation of dynamism in the environment in the

simulation model.
4. Constructs to represent the sources of dynamism in the environment in the sim-

ulation model.

We give an overview of the modeling constructs in each group.

Structure of the Environment.

A first group of modeling constructs captures the structure of the environment. To cap-
ture the constituting parts of the environment in a simulation model, we put forward the
modeling constructs Environmental Entity and Environmental Property. Examples of
environmental entities are all sorts of objects in the environment, such as the robots on
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FIGURE 6.6 Overview of the constructs in the environment part of the modeling framework.

which a multi-agent control system is deployed. An example of an environmental property
is the temperature in the environment. To represent a physical or logical structure that
arranges the different environmental entities and environmental properties with respect to
each other, we put forward the modeling construct Environment Layout. An example of
an environment layout is a two-dimensional geometrical arrangement of the entities.

Dynamism in the Environment.

A second group of modeling constructs captures dynamism in the environment in an ex-
plicit manner. To represent dynamism explicitly in the simulation model, we put forward an
Activity as a modeling construct. The association between Activity and Environmental
Entity and the association between Activity and Environmental Property expresses
that an activity describes a particular evolution of a particular environmental entity or
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property over a particular time interval. Examples of activities are the movement of a robot
or the rolling of a ball.

Manipulation of Dynamism.

A third group of modeling constructs captures the way dynamism in the environment
can alter, i.e. the way activities arise, interact and terminate. We put forward the model-
ing constructs Reaction Law and Interaction Law to capture the way activities in the
environment are manipulated.

A Reaction Law is a modeling construct that specifies what happens in the environment
in reaction to a particular trigger of a source of dynamism. An example is a reaction law
that specifies what happens in the environment in reaction to the trigger of an agent to
start the engines of a robot. The reaction law specifies what kind of activity is created, e.g.,
a movement of that robot characterized by a particular velocity in a particular direction.

An Interaction Law is a modeling construct to specify the way dynamism can interact
in the environment. For example, an interaction law can specify what happens in case a
robot involved in a movement activity hits a wall or another robot.

The associations between Reaction Law and Activity on the one hand, and between
Interaction Law and Activity on the other hand, express that reaction laws and inter-
action laws alter the activities present in the environment.

Sources of Dynamism.

A fourth group of modeling constructs captures the sources of dynamism in the environ-
ment. We put forward the modeling constructs Controller and Environment Source to
represent the behavior of the various sources of dynamism present in the environment.

The Controller is a source of dynamism that is part of the multi-agent control sys-
tem. An example of a controller is an agent program that controls a particular robot. An
Environment Source is a source of dynamism that resides in the environment and that is
external to the multi-agent control system. An example of an environment source is the
behavior of a machine in the environment that is controlled by a human. Controllers and
environment sources are embedded in some of the environmental entities. For example, a
robot contains a source of dynamism, i.e. its controller, whereas a ball is passive and does
not contain a source of dynamism.

Controllers and environment sources can initiate, terminate or alter dynamism in the
environment. We put forward an Influence as a modeling construct to capture the attempt
of the controller or of an environment source to affect the environment. An example of
an influence is the attempt of an agent to start or stop the movement of a robot. The
association between Environment Source and Influence and between Controller and
Influence represents that dynamism can only be manipulated indirectly, i.e. by means of
performing influences in the environment. Reaction laws determine the actual reaction of
the environment in response to influences. This is represented by the association between
Reaction Law and Influence.

Modeling the Software of a Multi-Agent Control System

In software-in-the-loop simulations, the software of the real controllers of the multi-agent
control system is embedded in a simulated environment. The control software part of the
modeling framework comprises modeling constructs that capture key characteristics of the
software of the multi-agent control system that is embedded in the simulation.

Figure 6.7 is a detailed view on the group of modeling constructs to represent the sources
of dynamism in Figure 6.6, with additional modeling constructs for the controller. We give
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FIGURE 6.7 Overview of the modeling constructs for the control software and their associations.

an overview of the modeling constructs in the controller. The modeling constructs focus on
representing the following characteristics of the control software explicitly in the simulation
model:

• Representing the real-world execution time of the software in the simulation
model. The real-world execution time of a controller is the amount of wallclock
time that elapses until that controller triggers its next action. The execution time
of a controller determines the timing of its actions. In a dynamic environment,
the timing of actions is crucial as opportunities come and go.

To capture the real-world execution time of a controller in the simula-
tion model, we put forward the modeling constructs Duration Primitive and
Duration Mapping. A duration primitive represents a code segment that takes
an amount of execution time in the real world that is pertinent for the simula-
tion. An example of a duration primitive is a particular java method foo() in the
software of a particular controller. A duration mapping is a modeling construct
that specifies the execution time for invocations of duration primitives of a con-
troller. For example, a duration mapping can specify that invoking the method
foo() takes 0.338 seconds.

• Capturing the interaction of the software with the environment. The software of a
controller interacts with its environment. Consequently, the execution of the soft-
ware of a controller will trigger particular things to happen in the environment.
When integrating the software of the controllers with the simulated environment,
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it is crucial to identify the set of software instructions that are used by the con-
troller to interact with the environment, and to specify the precise consequences
in the environment that result from triggering these instructions.

To capture the interaction of the software with the environment in a simulation
model, we put forward the modeling constructs Control Primitive, Control
Name Mapping and Control Parameter Mapping. A control primitive represents
a particular software instruction that can be used by the control software to
interact with its environment. An example of a control primitive is a java method
bar() that triggers the engine of a robot to start running at full power. The
modeling constructs Control Name Mapping and Control Parameter Mapping
specify the name and the parameters of the influence that result from invoking
a control primitive. A control name mapping and control parameter mapping
decouple the signature of control primitives from the specific representation of
influences that is used in the simulated environment. For example, a control
name mapping specifies that an invocation of bar() corresponds to an influence
with name startDriving, whereas a control parameter mapping specifies that the
invocation of bar() results in the value 10 to be associated with the parameter of
the startDriving influence to indicate the speed.

6.4.2 Simulation Model of the AGV Transportation System

We apply the modeling framework to formulate a simulation model for an AGV simulator.
The AGV simulator supports the evaluation of new or altered features of a multi-agent
control system that controls automated guided vehicles in warehouse environments.

The constructs of the modeling framework are used to capture key characteristics of the
AGV system in a first-class manner. This enables a developer to adapt the model of the
AGV simulator to the needs of a particular simulation study by activating, deactivating
and customizing first-class elements of the simulation model.

We start with an overview of the simulation model of the warehouse environment. Af-
terward, we focus on the simulation model for integrating the AGV control system. For a
detailed discussion of the simulation model of the AGV Transportation System, we refer to
[Helleboogh, 2007].

Simulation Model of the Warehouse Environment

Figure 6.8 gives a graphical overview of the environment part of the simulation model of
the AGV simulator. This figure shows specific instantiations of the modeling constructs of
Figure 6.6. The simulation model is organized in four parts, in analogy with Figure 6.6. We
discuss a number of examples for each of the parts of the simulation model for warehouse
environments.

Structure of the Warehouse Environment.

The structure of the simulated warehouse environment is modeled in terms of environ-
mental entities and an environmental layout that arranges the entities with respect to
each other. We give examples of environmental entities. Stations are locations that connect
adjacent segments. Each station can be used for one or several purposes, i.e. as routing loca-
tion, as storage location for loads, as parking location and/or as battery charging location;
A WiFi access point enables communication between AGVs and transport bases or among
several AGVs. A transport base is a computer that can be used to broadcast new transport
tasks to the AGVs. A transport generator is embedded in a transport base.
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FIGURE 6.8 Overview of the simulation model of the simulated warehouse environment. The grey parts
are specific instantiations of the modeling constructs for the AGV simulator.

We arrange the entities in the simulated warehouse environment according to a continuous
2D-geometric layout. This layout expresses the spatial positioning of all entities with respect
to each other.

Dynamism in the Warehouse Environment.

Dynamism in the simulated warehouse environment is modeled in terms of activities.
For example, driving activities represent the driving of an AGV across a segment on the
warehouse floor until the station at the other end of that segment is reached. Each driving
activity is characterized by the AGV involved in the movement, the segment over which the
AGV moves, the direction of the movement over that segment, the time interval during which
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the movement takes place and the acceleration profile of the AGV during that movement.
Sending activities represent that a WiFi access point is used to transmit messages from a
transport base to AGVs or among AGVs.

Sources of Dynamism in the Warehouse Environment.

In the warehouse environment, several sources of dynamism reside. We make a distinc-
tion between controllers and environment sources. AGV agents are the control software
that is embedded in an AGV. AGV agents constitute the AGV control system. Each AGV
agent is responsible for controlling an AGV and for coordinating with other AGVs for rout-
ing, collision avoidance, transport assignment and battery charging. A transport generator
broadcasts transport tasks to the AGVs. A transport generator generates transports ac-
cording to a transport profile that specifies the characteristics of the stream of transport
tasks that should be handled by the AGVs. Transport generators are external to the AGV
control system. Consequently, transport generators are environment sources of dynamism.
A transport generator is deployed on a transport base.

Sources of dynamism can manipulate the environment by means of performing
influences. For example, a drive influence represents that attempt of an AGV agent
to start driving over a given segment in a given direction. A send influence represents the
attempt of an AGV agent or a transport generator to send a message.

Manipulation of Dynamism in the Warehouse Environment.

The way dynamism in the warehouse environment can be manipulated is modeled by
means of reaction laws and interaction laws.

An example of a reaction law is a start driving law. Start driving law defines the reaction
of the environment in response to a drive influence or a park influence. A real AGV does
not always start driving when it is instructed to do so. Therefore, start driving law checks
a number of conditions before adding a new driving activity. These conditions are that the
AGV is not already involved in a driving, picking or dropping activity at the time of the
influence; that the segment is adjacent to the station of the AGV; that the AGV is allowed
to drive over the given segment in the given direction (as segments can be unidirectional).
Start driving law does not define an activity in case one of these conditions does not hold,
to reflect that E’nsor discards the instruction in these cases.

An example of an interaction law is a collision law. A collision law defines what happens if
AGVs in the warehouse environment collide. Based on the driving activities, a collision law
determines whether AGVs collide. In case the collision law detects a collision, it transforms
the driving activity/activities involved with driving activity/activities that stop at the time
the collision occurs. A battery law enforces that all activities of an AGV are preempted
in case it runs out of energy. Based on the energy consumption of driving, picking and
dropping activities, a battery law preempts all activities as soon as an AGV runs out of
energy.

Simulation Model for Integrating the AGV Agent Software

Figure 6.9 gives a graphical overview of the control software part of the simulation model of
the AGV simulator. This figure shows specific instantiations of the modeling constructs of
Figure 6.7. We elaborate on the way the AGV agent software interacts with the environment
and the way the execution time of the AGV agent software is captured in the simulation
model.
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FIGURE 6.9 Overview of the simulation model for integrating the AGV control software in a simulation.
The grey parts are specific instantiations of the modeling constructs for the AGV simulator.

Control Interface of AGV Agents.

The interaction of the AGV agent software with the warehouse environment is modeled
in terms of control primitives and a control name mapping and control parameter
mapping.

We discuss two examples of control primitives. Ensor.move(segment) is an E’nsor
control primitive that instructs E’nsor to drive the AGV over the given segment.
Com.send(message) is a control primitive that instructs an AGV’s onboard wireless com-
munication module to send a message.

We employ an Ensor-influence name mapping to determine the name of the influences
that result from the control primitive invocations. The mapping between control primitive
invocations and influences is a straightforward one-to-one mapping. For example, invoca-
tions of the control primitive Ensor.charge will be mapped on charge influences.

We employ an Ensor-influence parameter mapping to determine the parameters of the
influences that result from the control primitive invocations. For example, for all control
primitives that take a segment as argument, the corresponding influence requires two pa-
rameters: the segment on the one hand, and one of both end stations of that segment on the
other hand (to indicate the direction in which an AGV will drive over that segment). For
invocations of the control primitive Com.send(message), the corresponding send influence
requires the receiver which is encapsulated in the message as an explicit parameter. The
Ensor-influence parameter mapping takes care of determining all parameters needed for the
influences.

© 2009 by Taylor and Francis Group, LLC



On the Role of Software Architecture for Simulating Multi-Agent Systems 185

Execution Time of AGV Agents.

The execution time of AGV agent software is modeled in terms of duration primitives
and a duration mapping.

The duration primitives are typically dependent upon the AGV agent software. Therefore,
the developer should specify custom duration primitives for the AGV control software that
is to be embedded in the simulation. There is one default duration primitive captured in
the simulation model: Thread.sleep(millis). Thread.sleep(millis) suspends the execution of
an AGV agent for the specified number of milliseconds. This control primitive is used exten-
sively in controllers, as the real environment typically evolves several orders of magnitude
slower than the control system.

We employ an AGV agent duration mapping to specify the duration of invocations of
duration primitives. By default, the AGV agent duration mapping only associates a duration
to invocations of the duration primitive Thread.sleep(millis). That duration corresponds to
the amount of time specified by the argument millis.

6.5 Architecture of the Simulation Platform

In this section, we describe the software architecture of a simulation platform that supports
the modeling constructs of the modeling framework described in Section 6.4.

The software architecture of a system is defined as “the structure or structures of the
system, which comprise software elements, the externally visible properties of those ele-
ments, and the relationships among them” [Bass et al., 2003]. The software architecture
captures the essence of a complex software system by identifying key stakeholder concerns
and by explicitly specifying how software needs to be structured and behave to address the
concerns. As such, a software architecture is a reusable artifact for the creation of such a
simulation platform. We developed a simulation platform that implements this architec-
ture and we applied this simulation platform to support software-in-the-loop simulations
for evaluating, comparing and integrating several functionalities of a multi-agent control
system for steering AGVs.

We use several architectural views to document the architecture of the simulation plat-
form. A view is a representation of a coherent set of architectural elements and the relations
among them [Bass et al., 2003]. Each view presents a particular perspective on the archi-
tecture or a part thereof. For each view, we start with a general explanation of the goal of
the view and the software elements and relations between elements that are considered in
that view. Afterward, we document each view for the simulation platform using a graphical
notation and we explain how important quality requirements are realized.

This section is structured as follows. In Section 6.5.1, we put forward the functional and
quality requirements of the simulation platform. In the following sections, we elaborate on
the different architectural views. We start with a top-level module decomposition view in
Section 6.5.2. We describe a component and connector view of the functionality to support
dynamic environments in Section 6.5.3. We elaborate on a component and connector to
explain the simulation engine that synchronizes all parts of the simulation in Section 6.5.4. In
Section 6.5.5, we put forward an aspect-oriented approach to integrate the control software
in the simulation. We describe a component and connector view of the functionality that
keeps track of the execution time of an agent in Section 6.5.6.
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6.5.1 Requirements

The goal of the simulation platform is to provide run-time support for software-in-the-loop
simulations of multi-agent control systems in dynamic environments, of which the simulation
model is described in terms of the modeling constructs proposed in Section 6.4. We discuss
the functional and quality requirements that are the main drivers for the architecture of
the simulation platform.

The main functional requirements for the simulation platform are the following:

• Support the modeling constructs for dynamic environments. The simulation plat-
form should encapsulate the functionality to support the modeling constructs
for dynamic environments described in Section 6.4.1. This functionality includes
(1) managing the sources of dynamism and the influences that result from their
execution (2) applying the appropriate reaction laws to determine the reaction
of the environment to the various influences (3) handling all activities in the
environment during a simulation run, and (4) applying the interaction laws to
enforce interactions between activities.
• Support the modeling constructs for the control software. The simulation plat-

form should encapsulate the functionality to support the modeling constructs for
embedding the software of real controllers, described in Section 6.4.1. This func-
tionality includes (1) keeping track of the duration primitives invoked by each of
the controllers (2) keeping track of the control primitives invoked of each of the
controllers, (3) deriving the nature and the timing of the influences that result
from executing the controllers.
• Support consistent simulation runs. The simulation platform should encapsulate

the functionality to carry out simulation runs that are consistent with the de-
scribed simulation model. The simulation model specifies the causal relations
between all influences, activities, reaction and interaction laws by means of simu-
lation time, e.g., by means of specifying the duration of the various controllers in
simulation time, specifying the start and duration of each activity in simulation
time, etc. To obtain causal relations in accordance to the specification of the
simulation model, the progress of all parts of the simulation, i.e. the progress of
the various controllers and environment sources of dynamism and of applying the
various reaction and interaction laws, should happen in the order of increasing
simulation time. Given the unpredictable delays introduced by the underlying
execution platform on which the simulation platform runs, an explicit synchro-
nization between all parts of the simulation is necessary to regulate their relative
progress.

We describe the main quality requirements of the simulation platform:

• Flexibility of embedding the software of the control system. The simulation plat-
form should provide support for embedding the software of the control system in
a flexible way, i.e., with minimal effort from the developer. The fact that some
simulation concerns crosscut with the control system’s functionality hampers em-
bedding the real controllers in a flexible way. We rely on state-of-the-art software
engineering technology to modularize crosscutting simulation concerns in order
to insert and remove them in the control system in a plug-and-play manner.
• Modifiability of the simulation platform. Modifying core parts of the simulation

platform should be relatively easy, and the impact of such modifications should be
as local as possible. Core parts of the simulation platform include the simulation
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engine and the functionality to support simulated environment.
• Performance of the simulation platform. The simulation platform should support

as-fast-as-possible simulation, to enable executing simulation runs faster than
real time. Simulation platforms that support software-in-the-loop simulations are
typically limited to real-time simulation, i.e. simulation time advances in pace
with wallclock time during a simulation run.

6.5.2 Top-Level Module Decomposition View of the Simulation
Platform

The goal of a module decomposition view is to show how the simulation platform is decom-
posed into manageable software implementation units. A module decomposition view is a
static view on a system’s architecture. The elements depicted in a module decomposition
view are modules. A module is an implementation unit of software that provides a coher-
ent unit of functionality. The relationship between the modules is is-part-of that defines
a part/whole relationship between a submodule and the aggregate module. Modules are
recursively refined, revealing more details in each decomposition step. The basic criteria for
module decomposition is the achievement of quality requirements. For example, parts of a
system that are likely to change, are encapsulated in separate modules to support mod-
ifiability. Another example is the separation of functionality of a system that has higher
performance requirements from other functionality.

The module decomposition view includes a description of the interfaces of each module
that documents how a module is used in combination with other modules. The interface
description distinguishes between provided and required interfaces. A provided interface
specifies what functionality the module offers to other modules. A required interface specifies
what functionality the module needs from other modules; it defines constraints of a module
in terms of the services a module requires to provide its functionality.

The top-level module decomposition view of the simulation platform is depicted in Fig-
ure 6.10. We first discuss the main elements and their properties. Afterward, we describe
their interfaces and explain how important qualities are realized.

Elements and Their Properties

The simulation system is decomposed in two main subsystems: Controller and Simulation
Platform.

• Controller is a software module of the real multi-agent control system that is
embedded in the simulation platform in order to test or configure it. A multi-
agent control system consists of several controllers, i.e. agents, working in parallel
and cooperating to solve a problem in the environment. A controller has well-
defined ways to sense the environment and to act upon it. An example of a
controller is an agent program to controls a particular robot in a manufacturing
plant.
• Simulation Platform is the medium in which controllers of a multi-agent control

system are embedded in order to test or configure them. The main responsibilities
of the simulation platform are:

– To simulate the real dynamic environment of the multi-agent control system.

– To manage the execution of all controllers of the multi-agent control system
according to the specified duration model.
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FIGURE 6.10 Top-level module decomposition view of the simulation platform.

– To execute simulation runs as-fast-as-possible, thus enabling simulations
faster than real time.

The simulation platform is further decomposed into three different modules: Simulated
Environment, Simulation Engine and Execution Tracker.

• Simulated Environment is responsible for managing a simulation model of the
real environment of the multi-agent control system. The Simulated Environment
encapsulates all functionality to support the modeling constructs described in
Section 6.4.1.
• Simulation Engine is responsible for managing the evolution of all parts of

the simulation in correspondence to the specifications of the simulation model.
The simulation engine encapsulates all functionality to synchronize the progress
of the simulated environment with the progress of all execution trackers of the
controllers that are embedded in the simulation. This guarantees correct causal
relations in correspondence to the specifications of the simulation model.
• Execution Tracker is responsible for tracing the execution of a particular con-

troller of the multi-agent control system. This module encapsulates all function-
ality to support the modeling constructs for the control software described in
Section 6.4.1. Tracing the execution of a controller includes (1) determining the
execution time consumed by a particular controller of the multi-agent control
system according to the duration mapping, and (2) synchronizing the execution
of that controller with the simulation engine, which is necessary to enable as-fast-
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as-possible simulations. At runtime, there is an instance of the execution tracker
module for each controller.

Interface Descriptions

The simulation platform module provides two interfaces to the controller: Control API and
Trace.

• Control API supports the application concerns of a controller. Control API is
the control interface required by the controller to interact with its environment.
The Control API provided by the simulation platform is identical to the con-
trol interface the controller uses to interact with its sensors and actuators in the
real environment. By providing the Control API interface, the simulation plat-
form cannot be distinguished from the real environment from point of view of a
controller.
• Trace supports the simulation concerns for a controller. Trace is the interface

provided by the simulation platform to manage the execution of a controller. The
Trace interface enables (1) monitoring the execution time consumed by the con-
troller and (2) intercepting and synchronizing the execution of the controller with
the simulation engine. The Trace interface is further explained in Section 6.5.5.

The simulation platform module delegates the Control API interface to the simulated
environment module, and the Trace interface to the execution tracker module.

The simulation engine governs the progress of the simulation by means of the provided
Notify and required Sync interfaces. We elaborate on Notify and Sync in Section 6.5.3.

Architectural Rationale

Each module in the decomposition encapsulates a particular functionality of the simulation
platform. By minimizing the overlap of functionality among modules, the architect can focus
on one particular part of functionality. Allocating different functionalities of the simulation
platform to separate modules results in a clear design. It helps to accommodate change and
to update one module without affecting the others, and it supports reusability. We elaborate
on the core architectural decisions.

Low Coupling between Controller and Simulation Platform.

As we are concerned with software-in-the-loop simulations, one of the main architectural
decisions is a low coupling between the control software on the one hand, i.e. the controllers,
and the simulation platform in which it is embedded on the other hand. The Control API
interface enables all communication, sensing and acting to be directed to the simulation plat-
form transparently. The Trace interface connects the controller with a dedicated Execution
Tracker in the Simulation Platform. Section 6.5.5 illustrates an aspect-oriented approach to
provide existing controllers with support for the Trace interface.

Two advantages of a low coupling between Controller and Simulation platform are
(1) reuse, i.e. the simulation platform can be reused for testing various controllers, and
(2) modifiability, i.e. the controllers can be modified without affecting the simulation plat-
form.

Low Coupling between Simulated Environment and Simulation Engine.

In the simulation platform, we make an explicit distinction between the simulated en-
vironment on the one hand, and the simulation engine on the other hand. The simulated
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environment maintains a model of the real environment. The simulation engine manages
the simulation main loop, i.e. advancing simulation time by synchronizing the progress of
all parts of the simulation. Simulated Environment and Simulation Engine are coupled by
means of well-defined interfaces, i.e. Notify and Sync. This enables (1) the Simulated En-
vironment to make abstraction of how and with whom synchronization is required, and (2)
the Simulation Engine to focus on reliable and efficient synchronization, without knowledge
of the internal working of each party that needs synchronization.

Two advantages of the low coupling between Simulated Environment and Simulation
Engine are (1) reuse, i.e. it facilitates the integration of a different simulation engine into
the simulation platform, and (2) manageability, i.e. the design of the Simulated Environment
is facilitated because abstraction can be made of all synchronization issues.

Explicit Support for as-Fast-as Possible Simulations.

In as-fast-as possible simulations, there is no fixed relation between the progress of the
simulation engine and wallclock time. This enables simulation runs faster than real time. To
support as-fast-as-possible simulation, the execution of each controller must be synchronized
explicitly with the simulation engine in the simulation platform. Execution Trackers and
the Trace interface encapsulate the functionality to Trace and synchronize the execution of
the controllers with the simulation engine in an explicit manner.

6.5.3 Component and Connector View of the Simulated Environment

A component and connector view [Clements et al., 2002; Ivers et al., 2004] shows a system
as a set of cooperating units of execution. A component and connector view is a run-time
view on a system’s architecture. The elements of the component and connector view are
run-time elements of computation and data storage, such as repositories and components.
Components are run-time instances that perform calculations that typically require data
from one or more data repositories. Data repositories store data and mediate the interac-
tions among components. A data repository can provide a trigger mechanism to signal data
consumers of the arrival of interesting data. Besides reading and writing data, a data repos-
itory may provide additional support, such as support for concurrency and persistency. The
relationship between elements within a component and connector view are connectors. A
connector is a path for communication that links connecting ports on two or more elements.
A port is an interaction point on a run-time element through which data is sent and received
according to a specific interface. A port is similar to an interface in that it describes how
an element interacts with its environment, but is different in that each port is a distinct
interaction point of its element [Ivers et al., 2004].

The component and connector view of the Simulated Environment is depicted in Fig-
ure 6.11. This view gives a detailed perspective on the Simulated Environment module of
Figure 6.10. The Simulated Environment supports the modeling constructs for dynamic
environments described in Section 6.4.1. We first discuss the main elements and their prop-
erties. Afterward, we describe how they are connected and explain how important qualities
are realized.

Elements and Their Properties

The Simulated Environment contains various components that are connected to five possible
repositories: State, Activities, Influences, Reaction Laws and Interaction Laws. We elaborate
on each of the five repositories. Afterward, we describe the components they are connected
to.
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FIGURE 6.11 Component and connector view of the simulated environment.

• State repository contains values for all variables to describe the state of the
environment. The values of the state describe a snapshot of the environment at
a particular instant of simulation time, i.e. the snapshot time. The state of the
environment includes the state of all environmental entities and properties of the
environment. Examples are the position and battery level of each robot in the
environment, the position of various objects in the environment, the temperature
of the environment.
• Activity repository maintains the activities as first-class elements. Activities

describe the evolution of the state of the environment over time. Activities
are always expressed relative to the snapshot of the state stored in the States
repository. Examples of activities are an activity that describes the driving of
a robot and an activity describing the rolling of a ball in a RoboCup Soccer
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environment.
• Influence repository contains the influences as first-class elements. Influences are

attempts to start, stop or alter activities. Influences originate from the controllers
of the multi-agent control system on the one hand, and from environment sources
external to the multi-agent control system on the other hand.
• Reaction Law repository maintains the reaction laws of the environment model

as first-class elements. The reaction laws determine the way influences have an
impact on the activities in the simulation.
• Interaction Law repository maintains the interaction laws of the environment

model as first-class elements. The interaction laws determine the way activities
may interact in the environment.

The components are runtime instances of corresponding modules within the Simulated
Environment:

• Environment Inspector acts as the facade that regulates all inspections of both
state and dynamics of the environment. This includes functionality to retrieve
the state of a part of the environment at any particular point in simulation time,
based on the actual content of the State repository and Activity repository.
• State Updater prevents activities from piling up in the Activity repository dur-

ing a simulation run. The State Updater periodically flushes activities from the
Activity repository and updates the corresponding values in the State reposi-
tory such that they represent the state at a later snapshot time.
• Activity Transformer is responsible for applying all laws present in the
Reaction Law repository and Interaction Law repository. The laws are black-
box elements for the Activity Transformer, which only orchestrates applying
all laws. Applying the laws includes (1) checking whether laws are applicable and
(2) manipulating the activities in the Activity repository in correspondence
to the applicable laws. To check whether laws are applicable, the Activity
Transformer verifies for each law whether its conditions are satisfied. For in-
teraction laws, this involves contacting the Environment Inspector; for reac-
tion laws, this this also involves contacting the Influence repository besides the
Environment Inspector. To apply a reaction law, the Activity Transformer
removes the respective influences from the Influence repository, and performs
the activity transformation proposed by the reaction law on the activities in the
Activity repository. To apply an interaction law, the Activity Transformer
performs the activity transformation proposed by the interaction law on the ac-
tivities in the Activity repository.

• API Translator is responsible for translating a controller’s invocations on the
Control API interface into the concepts of the environment model. More specif-
ically, the API Translator maps all triggering of actuators (e.g., (de-)activating
motors or sending communication messages) into influences that are stored in the
Influence repository, according to the control parameter mapping and control
name mapping (see Section 6.4.1). The API Translator realizes all triggering of
sensors (e.g., readout of sensor values or received communication messages) by
querying the Environment Inspector. In Figure 6.11, two API translators are
depicted. Each API translator is connected to a controller of the multi-agent
control system.
• Environment Source is responsible for mimicking the behavior of a source of
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dynamism in the environment that is external to the multi-agent control system.
Environment Sources are capable of performing influences and sensing the en-
vironment. Examples of Environment Sources are other machines or humans
that reside in the environment of the multi-agent control system. In Figure 6.11,
one instance of an Environment Source is depicted.

Interface Descriptions

Figure 6.11 depicts the interconnections between the repositories and the internal compo-
nents of the simulated environment.

The State repository provides two interfaces:

• SQuery is the interface provided by the State repository to read the current values
of the variables.
• Update is the interface provided by the State repository to enable updating the

state to a new snapshot time.

The Activity repository provides three interfaces:

• AQuery is the interface for inspecting activities. Inspection is based on match-
ing: the requester specifies a condition that must hold for all activities that are
returned.
• Flush is the interface to (partially) empty the Activity repository. The requester

specifies a point in simulation time. Flush returns all activities that finish before
the specified time instant. In contrast to the AQuery interface, the activities
returned by the Flush interface are removed from the Activity repository.
• Transform is the interface to manipulate the activities in the Activity reposi-

tory. The requester specifies an activity transformation to be performed on the
activities.

The Reaction Law repository and Interaction Law repository provide one interface:

• Read is the interface that can be used to access the laws in the corresponding
repository.

The Influence repository provides two interfaces:

• Put is the interface for storing new influences in the Influence repository.
• Get is the interface for returning influences out of the Influence repository. The

requester can specify (1) a condition that must be satisfied by each influence that
is returned, and (2) whether the returned influences should be removed from the
Influence repository.

The Environment Inspector provides the Inspect interface that assembles a snapshot of
the state of the environment at any particular instant of simulation time. The Notify and
Sync interfaces are described in Section 6.5.4, when the simulation engine is discussed.

Architectural Rationale

Low Coupling Due to Data Repositories.

The use of data repositories decouples the various components within the simulated envi-
ronment. Low coupling improves modifiability (as the changes in one element do not affect
other elements), and reuse (as elements are not dependent on too many other elements).
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Decoupled elements do not require detailed knowledge about the internal structures or op-
erations of other elements. Furthermore, decoupled elements are easier to understand due
to clear and coherent responsibilities.

For example, the Influence repository gathers all influences, regardless of whether these
influences originate from controller actions that are translated by API translators, or from
Environment Sources external to the multi-agent control system. As such, the Influence
repository decouples the Activity Transformer from the various sources of influences, i.e.
API Translators and various Environment Sources.

Decoupling Synchronization from the Simulated Environment.

The elements that need synchronization are Environment Source, Activity Transformer
and State Updater. All synchronization is delegated to the simulation engine by means of
the Notify and Sync interfaces. Synchronization will be discussed in Section 6.5.4.

Customizable Presentation of the Environment State.

The Environment Inspector acts as a facade to hide the internal representation of the
environment state in terms of state and activities. As such, the internal representation
is decoupled from the way the state is presented toward other components, such as the
API Translators, Environment Sources and the various laws managed by the Activity
Transformer. The Inspect interface enables the use of a custom representation for each
component it is connected to.

Customizable State Updating Strategy.

The strategy to update the state is encapsulated in the State Updater. This offers the
developer the ability to apply a custom updating strategy. For example, in case the execution
trace should be logged, the State Updater can be deactivated easily, such that all activities
are aggregated in the Activity repository and can be inspected afterward.

Reusable Infrastructure.

Finally, we emphasize the reusability of the architecture of the simulated environment.
The internal components and repositories of the simulated environment comprise the in-
frastructure necessary to handle influences, activities, reaction laws and interaction laws.
This infrastructure can be reused for all simulation studies whose simulation models are
described in terms of these constructs.

6.5.4 Component and Connector View of the Simulation Engine

The Simulation Engine is responsible for advancing simulation time by synchronizing all
parts of the simulation such that everything happens in the order of increasing simulation
time. This guarantees correct causal relations in correspondence with the specifications of
the simulation model.

We focus on the way the Simulation Engine regulates the progress of all parts of the
simulation. The component and connector view of the Simulation Engine is depicted in
Figure 6.12. We first discuss the main elements and their properties. Afterward, we describe
how they are connected and explain how important qualities are realized.

Elements and Their Properties

The Simulation Engine is responsible for executing a simulation run by synchronizing the
progress of various components. Synchronization is necessary to ensure causality, i.e., to
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FIGURE 6.12 Component and connector view of the simulation engine.

enforce that everything happens in the order of increasing simulation time. The compo-
nents that need synchronization are the following: the various sources of dynamism that act
in parallel, i.e., the Controllers of the multi-agent control system and the Environment
Sources external to the multi-agent control system, the Activity Transformer that ap-
plies the reaction and interaction laws and the State Updater that updates the state to a
new snapshot time.

We discuss each component, explain why it needs synchronization and the way it relies
on the Simulation Engine for synchronization.

• Environment Source (see Section 6.5.3). An Environment Source can access
the environment in several ways, i.e. by performing an influence or sensing the
environment. To ensure correct causal relations between its environment access
and other things happening in the simulation, an Environment Source synchro-
nizes its execution with the Simulation Engine: before performing an influence
or sensing the environment, an Environment Source notifies the Simulation
Engine at what moment in simulation time it wants to access the environ-
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ment and suspends its execution until it is granted permission to proceed by
the Simulation Engine.

• Execution Tracker (see Section 6.5.5). An Execution Tracker manages the
execution of a Controller. An Execution Tracker keeps track of the execution
time consumed by a Controller to deduce at what moment in simulation time a
Controller accesses the environment. To determine whether a controller accesses
the environment, an execution tracker keeps track of all control primitive invoca-
tions on the Control API. Synchronization is necessary to ensure correct causal
relations between the access of a controller to the environment and other things
happening in the simulation, Each time a control primitive of the Control API is
invoked, the Execution Tracker notifies the Simulation Engine and suspends
that Controller’s execution until it is granted permission to proceed by the
Simulation Engine.
• Activity Transformer (see Section 6.5.3). An Activity Transformer changes

the activities in the Activity repository by applying the reaction and interaction
laws. To ensure correct causal relations between activity transformations and
other things happening in the simulation, the Activity Transformer notifies the
Simulation Engine before applying an activity transformation and suspends its
execution until it is granted permission to proceed by the Simulation Engine.
• State Updater (see Section 6.5.3). A State Updater updates the State repos-

itory to a new snapshot time by flushing activities. To guarantee correct
causal relations with the rest of the simulation, the State Updater notifies the
Simulation Engine of the new snapshot time it wants to update the State
repository to and suspends its execution until permission to proceed is granted
by the Simulation Engine.

Interface Descriptions

Figure 6.12 illustrates how the various components are connected with the Simulation
Engine. The synchronization of all components happens through a uniform interface:

• Notify is the interface provided by the Simulation Engine to enable compo-
nents to publish new events. To notify the Simulation Engine of a new event, a
component specifies (1) the simulation time stamp of the event and (2) a callback
identifier of the component. The callback identifier is used for granting permission
to that component when it is safe to execute that event.
• Sync is the interface required by the Simulation Engine to grant permission to

a component for executing an event.

Architectural Rationale

The Simulation Engine Encapsulates All Synchronization.

An important architectural decision is that the main components within the Simulation
Platform can make abstraction of all synchronization with other components. The Simula-
tion Engine encapsulates the actual synchronization algorithm (in our case a conservative
discrete event synchronization algorithm [Chandy and Misra, 1981]) that maintains and
manages all synchronization partners. The Simulation Engine uses the Notify and Sync
interfaces to synchronize various components. As such, the Simulation Engine does not
depend upon the internal working and functionality of these components.
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6.5.5 An Aspect-Oriented Approach to Embed Control Software

We explain the way the software of the real controllers is embedded in the simulation
platform. Recall that a Controller is connected to the Simulation Platform by means of
two interfaces: the Control API interface the Trace interface, as is depicted in Figures 6.10
and 6.12. The Trace interface enables monitoring the execution of a controller by tracking
its duration primitive invocations and control primitive invocations (see Section 6.4.1).
However, in contrast to the Control API interface, the Trace interface is not a native
interface of a controller. The Trace interface is solely necessary for simulation purposes,
i.e. to enable synchronizing the execution of a controller with the simulation. Consequently,
embedding a controller in the simulation platform would require the developer to modify
the design of the controller such that it supports the Trace interface. This would be a
time-consuming and error-prone job, which we would like to avoid.

We describe an approach to extend a multi-agent control system transparently, i.e., with-
out requiring the developer to perform changes in the design of the controllers. Our approach
uses aspect-oriented programming to achieve this. We first introduce aspect-oriented pro-
gramming in Section 6.5.5. The way aspect-oriented programming is used in the simulation
platform is described in Section 6.5.5. We emphasize how important qualities are realized
in Section 6.5.5.

Aspect-Oriented Programming

Tracking the execution of a controller is a crosscutting concern, i.e. the functionality to do
this crosscuts a multi-agent control system’s basic functionality. The problem of crosscut-
ting concerns is that they can not be modularized with traditional object oriented tech-
niques. This forces the functionality to monitor the execution of a controller to be scattered
throughout the code of the multi-agent control system, resulting in “tangled code” that is
excessively difficult to develop and maintain. Aspect-oriented programming [Kiczales et al.,
1997, 2001] handles crosscutting concerns by providing aspects for expressing these concerns
in a modularized way. An aspect is a modular unit of crosscutting implementation. Aspect-
oriented programming does not replace existing programming paradigms and languages,
but instead, it can be seen as a co-existing, complementary technique that can improve
the utility and expressiveness of existing languages. It enhances the ability to express the
separation of concerns which is necessary for well-designed, maintainable software systems.

A language extension to Java which supports aspect-oriented programming, is AspectJ.
In AspectJ, defining an aspect is based on two main concepts: pointcuts and advice. A
pointcut is a language construct in AspectJ that selects particular join points, based on
well-defined criteria. Each join point represents a particular point in the execution flow
of a program where the aspect can interfere, e.g., a point in the flow when a particular
method is called. As such, pointcuts are a means to express the crosscutting nature of an
aspect. Advice on the other hand is a language construct in AspectJ that defines additional
code that runs at join points specified by an associated pointcut. An aspect encapsulates
a particular crosscutting concern and can contain several pointcut and advice definitions.
The process of inserting all crosscutting code of an aspect at the appropriate join points
within the original program code, is called aspect weaving. Aspect weaving is performed at
compile-time in AspectJ.
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Providing Support for Tracing a Controller’s Execution through
Aspect Weaving

We describe a way to flexibly embed a multi-agent control system in the simulation platform,
i.e., without requiring the developer to alter the design of the controllers. We use aspect-
oriented programming technology to plug and unplug into a multi-agent control system all
functionality required for simulation purposes.

To embed the controller in a simulation platform, the controller must be extended with
the following tracing functionality:

• Tracing duration primitive invocations. The simulation platform tracks the ex-
ecution time consumed by each controller according to the duration mapping,
so it must be able to monitor all duration primitives invocations of a controller.
To support this kind of monitoring, the controller should be extended with func-
tionality that notifies the simulation platform each time the controller executes
a duration primitive.
• Tracing control primitive invocations. The simulation platform synchronizes a

controller’s invocations on the Control API with the rest of the simulation (see
Section 6.5.4). To support such synchronization, the simulation platform must
be capable of intercepting a control primitive invocation and of temporarily sus-
pending a controller’s execution.

Figure 6.13 depicts the way the above tracing functionality is inserted in the controller
software. This figure shows an example Controller that consists of a Decision Taker
module and a Plan Library module.

The left-hand side of the figure depicts the original controller. Note that this controller
does not support the Trace interface. The left-hand side of the figure also depicts an Aspect.
The Aspect is a separate module that encapsulates all tracing functionality. The Aspect
is generated from the specification of the duration primitives and control primitives. The
pointcut definition of the aspect specifies all duration primitive invocations and control
primitive invocations as join points. The advice of the aspect comprises a call to the Trace
interface to notify the simulation platform.

The black arrow on the figure illustrates the process of aspect weaving. Aspect weav-
ing happens at compile time, and automatically extends the Controller with all tracing
functionality necessary to embed it in the simulation platform.

The right hand side of Figure 6.13 depicts the outcome of the weaving process. Within
the Controller, the Decision Taker and Plan Library modules are now extended with
additional tracing functionality that is the result of weaving the aspect’s advice. The added
tracing functionality crosscuts the modules of a controller, as depicted by the grey blocks.
Note that due to aspect weaving, the controller now supports the Trace interface at the
appropriate locations without requiring the developer to perform manual modifications to
the control software.

Architectural Rationale

Flexibility of Embedding a Multi-Agent Control System.

Aspect weaving supports flexibly embedding the multi-agent control system in a sim-
ulation: the developer is no longer bothered to modify a multi-agent control system and
manually insert or remove all code necessary for tracing its execution.
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Separating Simulation from Application Concerns.

Aspect technology enables modularizing simulation concerns that crosscut the multi-agent
control system’s functionality. This leads to a clean separation between application concerns
and simulation concerns, as both are encapsulated in separate modules (as depicted on the
left-hand side of Figure 6.13).

6.5.6 Component and Connector View of the Execution Tracker

We focus on the Execution Tracker. An Execution Tracker is responsible for tracing the
execution of a particular controller of the multi-agent control system. Tracing the execu-
tion of a controller includes (1) determining the execution time consumed by a particular
controller of the multi-agent control system according to the duration mapping, and (2) syn-
chronizing the execution of that controller with the simulation engine, which is necessary
to enable as-fast-as-possible simulations.

Figure 6.14 depicts a component and connector view of two controllers embedded in the
simulation platform. The focus is on the Execution Trackers and the way they interact with
a controller on the one hand, and with the simulation engine on the other hand. We first
discuss an Execution Tracker’s main elements and their properties. Afterward, we describe
how they are connected and explain how important qualities are realized.

Elements and Their Properties

Figure 6.14 depicts two Execution Trackers, each connected to a Controller. Each Ex-
ecution Tracker comprises the following components and repositories:

• Clock Manager is responsible for managing the simulation clock of a particular
Controller. The simulation clock indicates how much execution time that par-
ticular Controller consumed. As a Controller executes, the Clock Manager is
notified of the duration primitives invocations performed by that controller, and
advances the simulation clock with the duration that is specified by the duration
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FIGURE 6.14 Component and connector view of controllers and execution trackers.

mapping (see Section 6.4.1). As such, the simulation clock of the Clock Manager
is kept up-to-date with the execution time of the Controller.
• Duration Mapping repository is responsible for maintaining the duration map-

ping of a particular controller. For each duration primitive invocation, the
Duration Mapping repository specifies a duration in simulation time.
• Execution Blocker is responsible for synchronizing the execution of a
Controller with the Simulation Engine. For each control primitive invocation,
the Execution Blocker can temporarily suspend the execution of a Controller
until access is granted by the Simulation Engine.
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Interface Descriptions

Figure 6.14 depicts the interconnections between the various elements of an Execution
Tracker:

• Trace is the interface provided by the Clock Manager to keep track of the ex-
ecution of a Controller. By means of aspect weaving (see Section 6.5.5) a
Controller’s execution is intercepted and redirected to the Clock Manager
each time a duration primitive invocation or control primitive invocation is per-
formed. The caller of the Trace interface specifies the characteristics of the du-
ration primitive invocation or control primitive invocation (see Section 6.4.1).
• Read is the interface provided by the Duration Mapping repository to enable re-

trieving the duration in simulation time of various duration primitive invocations.
The caller specifies the characteristics of the duration primitive invocation. Read
returns the associated duration for that duration primitive invocation according
to the duration mapping.
• Block is an interface provided by the Execution Blocker to synchronize the

execution of a Controller with the Simulation Engine. The caller of the Block
interface specifies a simulation time instant until which the execution of the
Controller should be suspended. The Clock Manager calls the Block interface
with the current value of its simulation clock in case it traces a control primitive
invocation. This guarantees synchronization with the Simulation Engine each
time a Controller accesses the environment.

Architectural Rationale

Separating Monitoring from Synchronization.

The Clock Manager encapsulates all functionality to monitor the execution time of a
Controller. The Execution Blocker encapsulates the functionality to synchronize the
execution of a Controller with the Simulation Engine. Because both components have
low coupling, a Clock Manager can make abstraction of synchronizing the execution of
a Controller, whereas the Execution Blocker can make abstraction of monitoring a
Controller’s execution time.

Reuseable Infrastructure.

We emphasize the reusability of the architecture of the Execution Tracker. The internal
components of the Execution Tracker are independent of the specified duration mapping.
The duration mapping is encapsulated in the Duration Mapping repository, where it can
be adapted easily.

6.6 Evaluating the AGV Simulator

We developed a simulation platform that implements this architecture and we applied this
simulation platform to support software-in-the-loop simulations for evaluating, comparing
and integrating several functionalities of a multi-agent control system for steering AGVs.
We now focus on evaluating flexibility and performance of the AGV simulator.

In Section 6.6.1, we discuss the flexibility of the AGV simulator. We demonstrate both
flexibility and performance of the AGV simulator by means of experiments in Section 6.6.2.
Finally, in Section 6.6.3 we discuss research on multi-agent control systems in the EMC2

project that was supported by the AGV simulator.
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6.6.1 Flexibility of the AGV Simulator

To use the AGV simulator, the developer specifies the characteristics of the AGV control
software and the simulated warehouse environment.

• To embed the AGV control software in the simulation, the developer specifies
the execution time of the control software. This is done by identifying duration
primitives and configuring a duration mapping for these primitives. The control
primitives and the control mapping are predefined for all E’nsor control primi-
tives.
• The developer can specify the characteristics of the simulated warehouse envi-

ronment in which the control software is embedded. Besides the physical setup of
the warehouse (i.e. the number and positioning of AGVs, nodes, segments, etc.),
the developer can also select appropriate environment sources of dynamism (e.g.,
the transport generator), reaction laws and interaction laws.

Flexibility of the AGV simulator is important to enable experiments with AGV control
software of which the functionality is not yet fully operational. We give a number of examples
of core parts of the AGV simulator that can be customized to suit the needs of a particular
simulation study.

• The battery law can be disabled when performing tests with AGV control software
of which the battery charging functionality is not yet operational. This prevents
AGVs from running out of energy.
• The quality of service of the communication channel can be adjusted by means of

the WiFi QoS law. Disabling this law ensures reliable transmission of all messages.
To simulate degraded quality of service of the communication channel, the law
can be configured with the desired behavior, e.g., reduced communication range,
message loss, message delay, etc.
• Collision detection can be configured by means of the collision law. The collision

law can be configured with the accuracy that is required for detecting collisions.
By deactivating the collision law, AGVs can drive across the warehouse without
affecting each other.
• The activities can be customized to reflect the physical characteristics of the

AGVs. For example, driving activities encapsulate the specific velocity or accel-
eration profile of the AGVs.
• The transport profile of the transport generator can be customized to suit the

needs of a particular simulation study.

6.6.2 Measurements of the AGV Simulator

We measure the performance of the AGV simulator and demonstrate its flexibility. We focus
the collision law, as this law is a dominant factor for the performance of the AGV simulator.

Setup of the Experiments

The goal of the experiments is to illustrate both flexibility and performance of the AGV
simulator. We performed experiments with 4 different configurations with respect to the
collision law:

1. The collision law deactivated. In this particular configuration, the collision law is
not used in the simulation. This setting is typically used in simulation studies in
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which collision avoidance is out of focus.
2. The collision law configured with an accuracy of 10 centimeters. As AGVs drive

at a maximum speed of 1 meter per second, it takes an AGV 0.1 seconds to
move over 10 centimeters. In case two AGVs travel at top speed, their relative
position changes at a maximum rate of 2 meters per second. Consequently, to
detect collisions with an accuracy of 10 centimeters, the snapshot frequency to
detect collisions is 0.05 seconds.

3. The collision law configured with an accuracy of 25 centimeters. This corresponds
to a snapshot frequency of 0.125 seconds.

4. The collision law configured with an accuracy of 100 centimeters. This corre-
sponds to a snapshot frequency of 0.5 seconds.

The setup of the experiments is the following:

• The warehouse consists of 40 stations connected by 69 segments over an area of
1400 by 900 meters.
• The number of AGVs varies from 2 to 12. These are typical sizes of AGV ware-

house transportation systems.
• We use lightweight AGV agents. This enables us to measure the computation time

consumed by the AGV simulator itself, with minimal bias from the controllers
that are embedded in it. Each AGV agent is programmed to poll the status of its
AGV every second. AGVs drive around randomly: as soon an AGV agent notices
it has reached the next station, it randomly selects a next segment to drive on.
AGVs rely on segment locking for avoiding collisions.

The simulations are executed on the following computer platform∗: Intel Pentium 4,
2.8GHz, 512MB of memory, Java 1.5.0.

Measurements

Figure 6.15 shows the measured performance of the AGV simulator for each of the four
configurations of the collision law discussed above. Each configuration of the collision law
was tested in 11 different settings, i.e., from 2 to 12 AGVs. Each point in the graph is the
average of 40 measurements, of which the 99% confidence interval is depicted. We discuss
a number of observations.

From the measurements it is clear that the AGV simulator is not limited to real-time
simulation, but supports as-fast-as-possible simulations. For example, for detecting collisions
of 12 AGVs with an accuracy of 10 centimeters, the simulation speedup is about factor 5,
i.e. to simulate 100 seconds of (simulation) time in the AGV transportation system, the
computer consumes about 20 seconds of wallclock time.

From the measurements it is clear that the collision law dominates the performance of the
AGV simulator. The configuration in which the collision law is deactivated scales linearly as
the number of AGVs increases, whereas all configurations with the collision law activated
scale quadratically with the number of AGVs. This is within the line of expectations, as the
complexity of the collision law is O(n2), with n the number of AGVs.

∗SciMark 2.0 benchmark score: 174.5 Mflops
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FIGURE 6.15 Performance (in seconds of wallclock time) for simulating 100 seconds of simulation time
with the AGV simulator. The four lines correspond to four different configurations of the collision law: the
collision law deactivated and the collision law detecting with an accuracy of 10 centimeters, 25 centimeters
and 100 centimeters respectively. Each point in the graph is the average of 40 measurements, of which the
99% confidence interval is depicted.

6.6.3 Multi-Agent System Development Supported by the
AGV Simulator

The AGV simulator was extensively used during the development of a multi-agent control
system in the EMC2 project. The AGV simulator provides the necessary support for a
developer to evaluate different functionalities an AGV control system in isolation, or to
compare alternative solutions. We give a number of examples.

• Virtual environment based routing [Weyns et al., 2005b]. In this approach, AGV
agents use a middleware, called virtual environment, for routing purposes. The
virtual environment provides a graph-like map of the paths through the ware-
house that the AGV agents use for routing. Signs on the map specify the cost
for the AGVs to drive to a given destination. To warn other AGVs that certain
paths are blocked or have a long waiting time, AGV agents mark segments with
a dynamic cost on the map in the virtual environment. The middleware ensures
consistency of the state of the virtual environment on neighboring AGVs. The
simulated warehouse environment enables AGV agents to drive over the ware-
house layout and it handles the exchange of messages of the middleware.
• Hull-based collision avoidance [Weyns et al., 2005d]. AGV controllers avoid col-

lisions by coordinating with other AGVs using the virtual environment. AGV
agents mark the path they are going to drive using hulls in their virtual environ-
ment. The hull of an AGV is the physical area the AGV occupies. A series of hulls
then describes the physical area an AGV occupies along a certain path. If the area
is not marked by other hulls (the AGV’s own hulls do not intersect with others),
the AGV can move along and actually drive over the reserved path. Afterward,
the AGV removes the markings in the virtual environment. In case of a conflict,
the virtual environments execute a mutual exclusion protocol to determine which
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of AGVs involved can move on. The simulated warehouse environment handles
the exchange of messages between virtual environments.
• Field-based transport assignment [Weyns et al., 2006; Schols, 2005]. In this ap-

proach, transport tasks emit fields into the virtual environment that attract idle
AGVs. To avoid multiple AGVs driving toward the same transport, AGVs emit
repulsive fields. AGVs combine received fields and follow the gradient of the
combined fields that guide them toward locations of transports. The AGVs con-
tinuously reconsider the situation in the environment and task assignment is
delayed until the load is picked, which improves the flexibility of the system. The
simulated warehouse environment provides the infrastructure to add new tasks
in the system and it handles the exchange of messages to spread fields in the
virtual environment.
• Protocol-based transport assignment [Weyns et al., 2008]. Besides field-based

transport assignment, a dynamic version of the Contract Net protocol [Smith,
1980] was developed to assign transports to AGVs. This protocol, called DynC-
NET, allows AGV agents to reconsider the assignment of transports while they
drive toward a transport. An extensive series of simulation tests with real world
warehouse layouts and order profiles show that both approaches have similar
performance characteristics.

The AGV simulator also supports evaluating the integration of different functionalities of an
AGV control system. For example, a modular AGV agent [Delbaere and Lamberigts, 2007]
was developed that manages combinations of functionalities. A combination consists of a
particular approach for routing, a particular approach for collision avoidance, a particular
approach for transport assignment and/or a particular approach for battery charging.

6.7 Related Work

We focus our discussion of related work on two facets. First, in Section 6.7.1, we compare
our approach with existing simulation platforms that are specifically aimed at software-
in-the-loop simulation of multi-agent control systems in dynamic environments. Second, in
Section 6.7.2, we zoom in on integrating the control software in a simulation and compare
our work with existing approaches. For both these facets, we start with an overview of
related approaches, and afterward we compare these approaches with our work.

6.7.1 Special-Purpose Simulation Platforms

Simulation platforms that are specifically aimed at software-in-the-loop simulation of multi-
agent control applications in dynamic environments include:

• XRaptor [Bruns et al.] is a simulation platform that supports two- or three-
dimensional continuous environments to study the behavior of a large number of
agents. XRaptor offers a number of abstractions to support simulations of mobile
devices in an environment: an agent is either a point, a circular area or a spherical
volume that contains a sensor unit for observing the world, an actuator unit for
performing actions and a control kernel for action selection. Ordinary differential
equations are used for modeling movements.
• SPARK [Obst and Rollmann, 2004] is a simulation platform for physical multi-

agent systems in three dimensional environments. Agent programs are external
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processes for the SPARK simulator. There are bodies (i.e. mass and a mass dis-
tribution) for the physical simulation. SPARK relies on the Open Dynamics En-
gine [Smith, 2006], a free library for simulating rigid body dynamics. Additionally,
agents possess perceptors and effectors. Perceptors provide sensory input to the
agent program associated with the representation of the agent in the simulator,
and the agent program uses the effectors to act in its environment. Other objects
in the simulation and the physics of the system can affect the situation of agents;
this is reflected in the respective aspects by changing the positions or velocities.
SPARK relies on SPADES [Riley and Riley, 2003] to track an agent’s execution
time between sense and act events.
• Webots [Michel, 2004] is a commercial agent simulation platform that offers sup-

port for mobile robots. Like Spark, it uses the Open Dynamics Engine for sim-
ulation of physical movements. The focus of Webots is on simulating existing
robot platforms. Webots incorporates fine-grained models of low-level sensors
and actuators that match their real life counterparts.
• Übersim [Browning and Tryzelaar, 2003] is a multi-robot simulation engine for

simulating games of robot soccer for the RoboCup small-size soccer league.
Übersim is a simulator specifically designed as a robot development tool. It pro-
vides a set of predefined robot models. Like SPARK, Übersim is an Open Source
project and uses the Open Dynamics Engine.
• Player/Stage/Gazebo [Gerkey et al., 2003; Koenig and Howard, 2004] is a dis-

tributed multi-robot simulator and can simulate a variety of different robots,
with a range of conventional sensors, interacting in a complex environment. The
Player part of the simulator supports interfaces for the integration of the control
software for a variety of robot hardware models. The Stage part of the simulator
is a 2D environment with low-fidelity dynamics models that are computationally
cheap. The Gazebo part of the simulator is a 3D environment with high-fidelity
dynamics based on the Open Dynamics Engine. Stage and Gazebo devices present
a standard Player interface.

We make the following observations when comparing these simulation platforms with our
approach.

First, similarly to our approach, the aforementioned simulation platforms rely on special-
purpose modeling constructs that are targeted at software-in-the-loop simulations of multi-
agent control systems in dynamic environments. However, in contrast to our approach, the
semantics of the modeling constructs supported by the aforementioned simulation platforms
is only described in an informal manner. Consequently, formulating a simulation model that
complies with these simulation platforms requires detailed knowledge of the design and
implementation of these simulation platforms. In contrast, our approach relies on modeling
constructs that are formally specified to unambiguously define their meaning and relations,
which is crucial to decouple the simulation model from the simulation platform that is used
to execute the model.

Second, the aforementioned simulation platforms support one particular way to simulate
dynamism in the environment, either customly developed or by reusing an existing physics
library, e.g., the Open Dynamics Engine. Whereas the Open Dynamics Engine simulates
dynamism in an accurate way, its high level of detail entails a trade-off in terms of mod-
eling effort and computational efficiency. By putting forward explicit modeling constructs
for dynamism (activities, reaction and interaction laws, etc.) we support the modeler to
capture dynamism at a level of detail that can be customized to fit the needs of a particular
simulation study.
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Third, in contrast to the aforementioned simulation platforms, we take a rigorous, view-
based approach to documenting the software architecture of our simulation platform. We put
forward this software architecture as a reusable artifact, clearly distinguished from the code.
The software architecture explicitly documents the knowledge and practice incorporated in
the simulation platform. In contrast to code libraries and software frameworks, a software
architecture explicitly documents (1) stakeholder concerns, (2) how software needs to be
structured and behave to address the concerns, and (3) the rationale and tradeoffs that
underpin the design of the system. As such, a software architecture captures the essence of
the simulation platform and provides a systematic way to capture and share expertise in a
form that has proven its value for software development.

6.7.2 Embedding the Control Software

Simulation platforms use various approaches to integrate the software of a (multi-agent)
control system in a simulation [Uhrmacher et al., 2003]. We focus on the way simulation
platforms support the execution time of a control system. We make a distinction between
approaches that incorporate execution time based on direct measurement and approaches
that rely on a specification of execution time.

Measurement of Execution Time

A first group of approaches rely on a direct measurement of the execution time during a
simulation run. Examples include:

• Player/Stage/Gazebo [Gerkey et al., 2003; Koenig and Howard, 2004] supports
software-in-the-loop simulations in which the execution time in taken into account
implicitly. The controllers of the distributed control application run on remote
hosts and interact with the simulated environment over a network connection.
The simulation proceeds in real-time. The execution time is taken into account
implicitly: the timing of the actions of the controllers is determined by their
arrival time at the host that manages simulated environment. This means that
the execution time of a controller is influenced by the performance of the remote
host on which the controller is deployed, but also by the latency of the computer
network.
• DGensim [Anderson, 2000] supports software-in-the-loop simulations in which

wall clock time stamps are used to measure the execution time. Each controller
runs on a remote host and interacts with the simulated environment over a net-
work connection. At fixed time intervals, perceptions are given to the controllers,
and a controller has a fixed window of time to react to the perception. Before
transmitting the actions to the simulated environment, the remote host attaches
a time-stamp with the wall clock time of each action. At the host of the simulated
environment, all actions within a time window are arranged according to their
time stamp in wall clock time. The use of wall clock time stamps reduces the
effect of network latencies on the ordering of actions. However, problems arise
in case network latencies cause actions do not reach the simulated environment
within the time window.
• SPADES [Riley and Riley, 2003] supports software-in-the-loop simulations with a

direct measurement of execution time. Each controller of the distributed control
application runs on a dedicated host together with a SPADES communication
server, which sends the actions of that controller to the simulated environment.
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The SPADES communication server supports low-level performance monitoring
by means of perfctr, a linux kernel driver that offers low-level performance mon-
itoring with per-process CPU-cycle counters. The controller operates in a sense-
think-act cycle, and notifies the SPADES communication server of the start and
end of each cycle. The simulation time of the actions corresponds to applying an
linear scale factor to the performance measurement of the perfctr driver.

Measurement is an easy and intuitive way to incorporate the execution time of controllers
of a distributed control application in a simulation. Nevertheless, compared to an explicit
model of the execution time, measuring the execution time during a simulation has a number
of drawbacks [Anderson, 1997].

First, measurements are platform dependent. The computer platform on which a dis-
tributed control application is deployed for simulation purposes typically differs from the
(heterogeneous) devices on which the controllers are deployed in the real world. Conse-
quently, the measurement of the execution time of a controller is not necessarily a decent
estimate of the execution time of that controller in the real world.

Second, measurements are not selective. A measurement takes into account auxiliary code
for debugging, logging to file, configuration, interfacing with the user, although this auxiliary
code is removed from the distributed control application before it is deployed in the real
environment. Auxiliary code can significantly affect the execution time that is measured of
a particular controller.

Third, measurements jeopardize repeatable simulation runs. The measurements that are
employed are non-deterministic, i.e. small random variations are possible when measuring
the execution time. In simulation, non-determinism must always be supported in a controlled
manner, i.e. in a simulation all non-determinism should be based on random numbers orig-
inating from a random number generator with a known seed. Using the same seed for the
random number generator then guarantees the same trace of random numbers during a sim-
ulation run, which is a prerequisite to obtain simulation results that can be repeated over
and over again. However, measuring the execution time of a controller during a simulation
is an example of supporting non-determinism in an uncontrolled manner. As the trace of
measurements of the execution time during a simulation run cannot be controlled, it can
be extremely difficult or even impossible to reproduce the same simulation result twice.

Specification of Execution Time

A second group of approaches specify the execution time of a distributed control application
instead of using measurements. Examples include:

• MESS [Anderson and Cohen, 1996] supports software-in-the-loop simulation of
controllers written in the Common Lisp programming language. To model the
execution time of a controller, individual language instructs of Common Lisp
are associated with a particular duration. MESS relies on TCL (Timed Common
Lisp) to derive the execution time of a controller. TCL is an extended version of
Common Lisp that advances a clock upon execution of each Common Lisp prim-
itive. The duration for each primitive can be specified by the modeler. Auxiliary
code can be annotated such that its duration is not taken into account.
• EyeSim [Bräunl et al., 2006] supports software-in-the-loop simulations of con-

trollers for robotic systems based on the RoBIOS, a list of library functions for
motor control, sensor feedback and multi-tasking. To incorporate the execution
time of a controller, EyeSim employs a duration for each of the RoBIOS system
calls. The duration of all code besides the function calls to the RoBIOS library
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is disregarded.
• The Packet-World [Weyns et al., 2005a] employs a very coarse-grained model to

specify the execution time of a controller. Each controller has a fixed, constant
execution time between consecutive actions, irrespective of the amount of com-
putation it needs to determine its next action. This is a suitable model in case
the execution time of a controller in the real world does not vary a lot, or in case
only a rough estimate is sufficient.
• In Webots [Michel, 2004], the code that deals with execution time is tangled with

the functionality of the control software. The control software must proceed in a
step-like fashion. After each step, the controller must return the amount of time
consumed during that step of the control loop.

We make the following observation when comparing these approaches with our work. By
relying on aspect-oriented programming, our approach has an increased flexibility compared
to the aforementioned approaches. A modeler can declaratively define the duration primi-
tives of the control software in a single aspect, clearly separated from the rest of the code.
We rely on aspect weaving to automatically enforce the tracing of these duration primitives
during the simulation. Aspect weaving avoids that the code to trace the invocation of du-
ration primitives needs to be written and inserted by hand each time the control software
is embedded in a simulation and each time the duration primitives are adjusted by the
modeler. The tradeoff of our approach is that the granularity of the duration primitives
that can be defined is constrained by the expressiveness of the pointcut language, i.e. by he
granularity of the join points that can be specified in AspectJ.

6.8 Conclusions and Future Work

In this concluding section, we first put forward concrete suggestions for future research with
respect to our own work in Section 6.8.1. Afterward, we reflect on the way our work could
stimulate future research on multi-agent simulation in a broader setting in Section 6.8.2.

6.8.1 Concrete Directions for Future Research

We suggest two main areas for future research in the context of our own work: extending
the modeling framework and extending the software architecture.

Extending the Modeling Framework.

The modeling framework for dynamic environments could be extended with additional
constructs. We suggest a number of avenues for future research.

• Supporting perception in dynamic environments. Currently, the modeling frame-
work does not provide modeling constructs to capture the way agents sense or
perceive a dynamic environment. In a dynamic environment, perception is not
limited to a static state snapshot of a part of the environment, but closely related
with dynamism. For example, sensors can be capable of registering the movement
of entities in the environment, rather than their momentary position. Investigat-
ing the relation between perception and dynamism is an interesting challenge.
• Supporting sources of dynamism in the environment. Currently, the modeling

framework does not provide explicit modeling constructs to model the internals
of a source of dynamism in the environment. The internal machinery of a source
of dynamism in the environment is black box, and its behavior is specific for
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a particular simulation study. More elaborate support for sources of dynamism
could focus on modeling constructs for various kinds of behaviors, such as re-
active [Brooks, 1991; Weyns and Holvoet, 2006], behavior-based [Maes, 1991;
Weyns et al., 2005c] or cognitive behaviors [Haddadi and Sundermeyer, 1996;
Rao and Georgeff, 1995].

Extending the Software Architecture.

We indicate a direction for extending the software architecture.

• Distribution of the Simulated Environment. The simulated environment can be-
come a bottleneck in large-scale simulations involving many agents. Currently, the
architecture does not incorporate support for distribution of the simulated envi-
ronment. The challenges of distributing the simulated environment are not of pure
technical nature: as the parts of the simulated environment are explicitly synchro-
nized with the simulation engine, they could technically be distributed across dif-
ferent hosts. The main challenge is determining which distribution scheme is most
suitable for a particular simulation study. On the one hand, distribution adds
computing power which speeds up a simulation, on the other hand, distribution
requires synchronization to happen over a network, which slows down a simula-
tion. Distribution of simulations should be supported in a flexible manner [Ewald
et al., 2006], with distribution schemas that can be adapted or self-adapt to a
particular simulation study. The distribution scheme of the architecture can be
documented using deployment views.

6.8.2 Closing Reflection

As demand for multi-agent control applications increases, more and more simulations are
built to support their development. The way such simulations are built becomes common
knowledge. In recent research, we observe two trends to consolidate common knowledge on
developing such simulations.

With respect to building simulation models, research puts forward special-purpose mod-
eling constructs to reify common knowledge. Special-purpose modeling constructs support
the modeler by capturing key characteristics of such systems in a first-class manner.

With respect to building simulation platforms, common knowledge is typically reified in
reusable code libraries and software frameworks. We put forward software architecture in
addition to such code libraries and software frameworks. A software architecture captures
the essence of a simulation platform in an artifact that amplifies reuse beyond traditional
code libraries and software frameworks. The software architecture we propose explicitly
captures (1) functional and quality requirements (2) how software needs to be structured
to address the requirements, and (3) the rationale and tradeoffs that underpin the design of
the software. We developed a simulation platform that implements this architecture and we
applied this simulation platform to support software-in-the-loop simulations for evaluating,
comparing and integrating several functionalities of a multi-agent control system for steering
AGVs.

We strongly believe that multi-agent simulation can benefit from a more systematic ap-
proach to software architecture. Software architecture supports consolidating and sharing
expertise in the domain of multi-agent simulation in a form that has proven its value for
software development.
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7.1 Introduction

This chapter surveys and investigates the evolutionary dynamics of multiple agents playing
strategic games, in the sense of Game Theory (GT), in discrete and continuous strategy
spaces. We take the biological perspective towards GT, i.e, known as Evolutionary Game
Theory (EGT), to analyze repeated interactions, without perfect information, in multi-agent
settings. More precisely, by the application of GT to biology, John Maynard-Smith invented
EGT and relaxed the premises behind traditional GT. Classical GT is a normative theory, in
the sense that it expects players or agents to be perfectly rational and behave accordingly
[von Neumann and Morgenstern, 1944; Weibull, 1996; Redondo, 2003]. In classical GT,
interactions between rational agents are modeled as games of two or more players that
can choose from a set of strategies and the corresponding preferences. GT is thus the
mathematical study of interactive decision making in the sense that the agents involved in
the decisions take into account their own choices and those of others. Choices are determined
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by stable preferences concerning the outcomes of their possible decisions, and strategic
interaction whereby agents take into account the relation between their own choices and
the decisions of other agents. Players in the classical setting have a perfect knowledge of the
environment and the payoff tables, and try to maximize their individual payoff. However,
under the biological circumstances considered by Maynard-Smith, it becomes impossible to
judge what choices are the most rational. Instead of figuring out, a priori, how to optimize
its actions, the question now facing a player becomes how to learn to optimize its behavior
and maximize its return, and it does this based on local knowledge and through a process of
trial and error. This learning process matches the concept of evolution in biology, and forms
the basis of EGT. In contrast to classical GT, then, EGT is a descriptive theory, describing
this process of learning, and does not need the assumption of complete knowledge and
perfect rationality.

Building models of agents that evolve requires insight into the type and form of these
agents’ interactions with the environment and other agents in the system. In much work on
multi-agent evolution and learning, this modeling is very similar to that used in a standard
game theoretical model: players are assumed to have complete knowledge of the environ-
ment, are hyper-rational and optimize their individual payoff disregarding what this means
for the utility of the entire population. In contrast, the basic properties of multi-agent sys-
tems (MAS) seem to correspond well with those of EGT. First of all, a MAS is a distributed
dynamic system which makes it hard to model using a static theory like GT. Secondly, a
MAS consists of actions and interactions between two or more independent agents, who
each try to accomplish a certain, possibly cooperative or conflicting, goal. No agent has the
guarantee to be completely informed about the other agents’ intentions or goals, nor has
it the guarantee to be completely informed about the complete state of the environment.
Furthermore, EGT offers us a solid basis to understand dynamic iterative situations in the
context of strategic interactions and this fits well with the dynamic nature of a typical
MAS. Not only do the fundamental assumptions of EGT and MAS seem to fit each other
rather well, there is also a formal relationship between the replicator equations of EGT and
reinforcement learning (RL) [Borgers and Sarin, 1997; Tuyls et al., 2003, 2006; Panait et al.,
2008].

In this chapter we investigate the key concepts from EGT in multi-agent games, i.e.,
we look at the stability of strategies in different types of dynamic models, known as the
Replicator Dynamics (RD). We do this for games in which the players can choose from
a discrete set and continuous set of strategies. Whereas the former has been extensively
studied before, the latter has not yet been so thoroughly explored in the context of EGT
and Multi-Agent Systems. The RD are formalized as a system of differential equations. Each
replicator represents one (pure) strategy available to a player. EGT assumes that players
will gradually adjust their strategy over time in response to repeated observations of their
own and others’ payoffs. The RD control this learning, specifying the frequency with which
different pure strategies should be played depending on the mix of strategies played by the
remainder of the population of agents playing the game.

In the first part of this chapter we will survey and simulate evolutionary dynamics for
the entire class of 2 × 2 games and unravel the formal relationship between RD and RL
using discrete strategy spaces for the players. We will draw the connection with multi-agent
Q-learning and illustrate in some experiments where the basins of attraction lie for different
parameter settings of the learning process.

In the second part of this chapter we will have a closer look at the RD in iterated games
with continuous strategy spaces. In many contexts, rather than a discrete set of pure strate-
gies, there is a continuum of strategies, called the continuous strategy space. An example
is, for instance, robot soccer. The decisions faced by the players, such as when and where
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to kick the ball, or where to move when not in possession of the ball are continuous in
nature. A typical approach then is to only allow a small number of discrete actions instead
of one, continuous parameter. For instance in the soccer case this would mean that a player
could only move in a few predefined directions, i.e., the pure or discrete strategies, whereas
opposed to a continuous approach one would allow the player to move in a continuum of
directions represented by one direction-parameter. Classical RD describes the evolution of
a mixture of the discrete strategies, whereas in the case of a continuous parameter it is
necessary to describe a probability distribution over this parameter. Consequently, the RD
must be substituted for a spatiotemporal Partial differential Equation (PDE) in strategy
space and time. The solution of this PDE provides the evolution of the distribution function
over the strategies in time. This ultimately converges to the steady state corresponding to
the stationary solution of the PDE. We focus on a continuous time model with an infi-
nite population in a 2-person game-interaction, such that each agent has a continuum of
available strategies. This approach allows for modeling the effects of evolution by involving
deterministic mutations. Such an approach has been proposed and studied before by Hof-
bauer and Sigmund [Hofbauer and Sigmund, 1998], and Ruijgrok and Ruijgrok [Ruijgrok
and Ruijgrok, 2005], based on the classical RD extended with a simple isotropos diffusion
term containing the mutation rate. We will specifically mimic the effect of anisotropos deter-
ministic mutations, and starting from a continuous time with discrete strategy set RD with
mutations derive a different formulation for the continuous strategy space. The dynamics
of this approach is even more complex as different mutation rates provide entirely different
stationary solutions.

The remainder of this chapter is structured as follows. We start by introducing the basic
concepts from GT and EGT in Section 7.2 necessary to understand models of evolutionary
dynamics. After this we introduce the different RD models under study, in both discrete
and continuous time and strategy spaces, in Section 7.3. Next we continue to elaborate on
evolutionary dynamics in discrete strategy spaces and draw the formal connection with rein-
forcement learning in Section 7.4. Section 7.5 discusses evolutionary dynamics in continuous
strategy spaces. More precisely, we will introduce and discuss continuous models extended
with a mutation term. Section 7.6 shows some simulations with continuous strategy spaces.
Finally we conclude.

7.2 Elementary Concepts from Game Theory

In this section we introduce elementary concepts from game theory and evolutionary game
theory necessary to understand the remainder of this chapter. The familiar reader can easily
skip this section.

This section starts by introducing normal form games with discrete strategy sets. Then
we explain the basic concepts, such as Nash equilibrium, Pareto optimality, Evolutionary
Stable Strategies, using discrete strategy spaces. After this we extend normal form games
to the setting of continuous strategy spaces. For the connection between these concepts we
refer the interested reader to [Tuyls and Nowe, 2005; Redondo, 2003; Weibull, 1996].

7.2.1 Strategic Games with Discrete Strategy Sets

Normal Form Games

In this section we define n-player normal form games as a conflict situation involving gains
and losses between n players. In such a game n players repeatedly interact with each other
by all choosing an action (or strategy) to play. All players choose their strategy at the same
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a21 a22
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„
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b21 b22

a21 a22

FIGURE 7.1 The left matrix (A) defines the payoff for the row player; the right matrix (B) defines the
payoff for the column player; and the strategic form of the game, right, summarizes this information.

time. For reasons of simplicity, we limit the pure strategy set of the players to 2 strategies.
A strategy is defined as a probability distribution over all possible actions. In the 2-pure
strategies case, we have: s1 = (1, 0) and s2 = (0, 1). A mixed strategy sm is then defined by
sm = (x1, x2) with x1, x2 �= 0 and x1 + x2 = 1.

Defining a game more formally we restrict ourselves to the 2-player 2-action game. A
game G = (S1,S2,P1,P2) is defined by the payoff functions P1, P2 and their strategy sets
S1 for the first player and S2 for the second player. In the 2-player 2-strategies case, the
payoff functions P1 : S1×S2 → � and P2 : S1×S2 → � are defined by the payoff matrices, A
for the first player and B for the second player, see Figure 7.1. The payoff tables A,B define
the instantaneous rewards. Element aij is the reward the row-player (player 1) receives for
choosing pure strategy si from set S1 when the column-player (player 2) chooses the pure
strategy sj from set S2. Element bij is the reward for the column-player for choosing the
pure strategy sj from set S2 when the row-player chooses pure strategy si from set S1.

If now aij + bij = 0 for all i and j , we call the game a zero sum game. This means that
the sum of what is won by one agent (positive) and lost by another (negative) equals zero.
This corresponds to a situation of pure competition. In case that aij + bij �= 0 for all i and
j we call the game a general sum game. In this situation it might be very beneficial for the
different agents to cooperate with one another.

Categorization and Examples

The family of 2 × 2 games is usually classified in three subclasses, as follows [Redondo,
2003]:

Subclass 1: if (a11 − a21)(a12 − a22) > 0 or (b11 − b12)(b21 − b22) > 0, at least one of
the 2 players has a dominant strategy, therefore there is just 1 strict equilibrium.

Subclass 2: if (a11−a21)(a12−a22) < 0,(b11−b12)(b21−b22) < 0, and (a11−a21)(b11−
b12) > 0, there are 2 pure equilibria and 1 mixed equilibrium.

Subclass 3: if (a11−a21)(a12−a22) < 0,(b11−b12)(b21−b22) < 0, and (a11−a21)(b11−
b12) < 0, there is just 1 mixed equilibrium.

The first subclass includes those type of games where each player has a dominant strategy,
as for instance the prisoner’s dilemma. However it includes a larger collection of games since
only 1 of the players needs to have a dominant strategy. In the second subclass none of the
players has a dominated strategy. But both players receive the highest payoff by both playing
their first or second strategy. This is expressed in the condition (a11 − a21)(b11 − b12) > 0.
The third subclass only differs from the second in the fact that the players don’t receive
their highest payoff by both playing the first or the second strategy. This is expressed by
the condition (a11 − a21)(b11 − b12) < 0.
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FIGURE 7.2 The strategic form of the Prisoner’s dilemma between the row player A and the column
player B . D is Defect and C is Cooperate.

B
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F 1 0
2 0

O 0 2
0 1

FIGURE 7.3 The strategic form of the Battle of the sexes game. Strategy F is choosing Football and
strategy O is choosing the Opera.

We now have a closer look at some examples. As an example of subclass 1 we consider the
famous Prisoner’s Dilemma (pd) game. In this game 2 prisoners, who committed a crime
together, have a choice to either cooperate with the police (to defect) or work together and
deny everything (to cooperate). If the first criminal (row player) defects and the second one
cooperates, the first one gets off the hook (expressed by a maximum reward of 5) and the
second one gets the most severe punishment. If they both defect, they get the second most
severe punishment one can get (expressed by a payoff of 1). If both cooperate, they both
get a minimum sentence. So each prisoner must make the choice whether he will betray the
other prisoner (defect) or will remain silent (cooperate). Of course it is tempting to defect,
because this possibly yield the highest reward, i.e., freedom. On the other hand, if the
other prisoner also defects they both get a severe sentence. Cooperate is a good alternative,
at least if the other prisoner also plays cooperate, in that case they both get a minimal
sentence. The rewards are summarized in payoff Figure 7.2. The first matrix has to be read
from a row perspective and the second one from a column perspective. For instance if the
row player chooses to Defect (D), the payoff has to be read from the first row. It then
depends on the strategy of the column player what payoff the row player will receive.

As an example of subclass 2 we consider the battle of the sexes game [Gintis, 2001;
Weibull, 1996]. In this game, a married couple loves each other so much they want to do
everything together. One night the husband wants to see a football game and the wife wants
to go to the opera. This situation is described by the payoff matrices of Figure 7.3. If they
both do their activities separately they receive the lowest payoff. This type of games is
known as coordination games.

As an illustration of subclass 3 we consider the matching pennies game. In this game two
children both hold a penny and independently choose which side of the coin to show (Head
or Tails). The first child wins if both coins show the same side, otherwise child 2 wins. This
is an example of a zero-sum game as can be seen from payoff Figure 7.4. Whatever is lost
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FIGURE 7.4 The strategic form of the Matching Pennies game. Strategy H is choosing Head and
strategy T is choosing Tail.

by one player, must be won by the other player.

Nash Equilibrium

In traditional game theory it is assumed that the players are rational, meaning that every
player will choose the action that is best for him, given his beliefs about the other players’
actions. A basic definition of a Nash equilibrium goes as follows. If there is a set of strategies
for a game with the property that no player can increase its payoff by changing his strategy
unilaterally (i.e., while the other players keep their strategies unchanged), then that set of
strategies and the corresponding payoffs constitute a Nash equilibrium.

Formally, a Nash equilibrium is defined as follows. When two players play the strategy
profile s = (si , sj ) belonging to the product set S1 × S2 then s is a Nash equilibrium if

P1(si , sj ) ≥ P1(sx , sj ) ∀ x ∈ {1, ...,n}
P2(si , sj ) ≥ P2(si , sy) ∀ y ∈ {1, ...,m} .

For a definition in terms of best reply or best response functions we refer the reader to
[Weibull, 1996].

We illustrate the definition using our examples of the previous section. In the prisoner’s
dilemma defecting is the dominant strategy for both players and therefore always the best
reply toward any strategy of the opponent. So the Nash equilibrium in this game is for
both players to defect. For the second subclass we considered the battle of the sexes game
[Gintis, 2001; Weibull, 1996]. In this game there are 2 pure strategy Nash equilibriums, i.e.
(football , football) and (opera, opera). There is also 1 mixed Nash equilibrium, i.e. where the
row player (the husband) plays football with 2/3 probability and opera with 1/3 probability
and the column player (the wife) plays opera with 2/3 probability and football with 1/3
probability. The third class consists of the games with a unique mixed equilibrium. In the
case of the matching pennies game, the Nash equilibrium is for both players to play their
action with a uniform distribution (0.5, 0.5).

Pareto Optimality

The concept of Pareto optimality is named after the Italian economist Vilfredo Pareto
(1848-1923). Intuitively a Pareto optimal solution of a game can be defined as follows: a
combination of actions of agents in a game is Pareto optimal if there is no other solution for
which all players do at least as well and at least one agent is strictly better off. More formally
we have: a strategy combination s = (s1, ..., sn) for n agents in a game is Pareto optimal if
there does not exist another strategy combination s ′ for which each player receives at least
the same payoff Pi and at least one player j receives a strictly higher payoff than Pj .
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A related concept is that of Pareto dominance. An outcome of a game is Pareto dominated
if some other outcome would make at least one player better off without hurting any other
player. That is, some other outcome is weakly preferred by all players and strictly preferred
by at least one player. If an outcome is not Pareto dominated by any other, than it is Pareto
optimal.

We discuss an example at the end of the next subsection.

Evolutionary Stable Strategies

The core equilibrium concept of evolutionary game theory is that of an evolutionary stable
strategy (ess), introduced by Maynard-Smith and Price in 1973 [Maynard-Smith and Price,
1973]. One way to understand this idea is to imagine a population of agents playing some
game. After a number of games, the agents breed, producing new agents that play the same
strategy, where the number of offspring of an agent depends on the payoff it has obtained.
Now, in this setting, consider that initially all agents play the same strategy, but then a
small number of agents switch to play a second strategy. If the payoff obtained by this new
strategy is smaller than the payoff obtained by the original one, the second strategy will
be played by fewer agents each generation, and will eventually disappear. In this case we
say that the original strategy is evolutionarily stable against this new appearing strategy.
More generally, we say a strategy is ess if it is robust against evolutionary pressure from
any strategy that appears. (In the context of a strategic game, “any strategy” is simply any
of the other pure or mixed strategies that are available to an agent).

Formally an ess is defined as follows. Suppose that a large population of agents is pro-
grammed to play the (mixed) strategy s, and suppose that this population is invaded by
a small number of agents playing strategy s ′. The population share of agents playing this
mutant strategy is ε ∈ ]0, 1[. When an individual is playing the game against a random
chosen agent, chances that he is playing against a mutant are ε and against a non-mutant
are 1− ε. The payoff for the first player, being a non-mutant is:

P(s, (1− ε)s + εs ′)

and the payoff for being a mutant is:

P(s ′, (1− ε)s + εs ′)

Now we can state that a strategy s is an ess if ∀ s ′ �= s there exists some δ ∈ ]0, 1[ such
that ∀ ε : 0 < ε < δ,

P(s, (1− ε)s + εs ′) > P(s ′, (1− ε)s + εs ′)

holds. The condition ∀ ε : 0 < ε < δ expresses that the share of mutants needs to be
sufficiently small.

Note that one can frame the idea of ess without the need to consider agents breeding.
Instead one can consider agents being able to observe the average payoff of agents playing
different strategies, and making a decision as to which strategy to adopt based on that
payoff. In such a case, the “mutant” strategy is simply a new strategy adopted by some
agents — if other agents observe that they do well, they will switch to this strategy also,
while if the new strategy does not do comparatively well, the agents that play it will switch
back to the original strategy.

As an example, let’s now determine whether the Nash equilibrium of the prisoner’s
dilemma is also an ESS. Suppose ε ∈ [0, 1] is the number of cooperators in the population.
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The expected payoff of a cooperator is 3ε + 0(1− ε) and that of a defector is 5ε + 1(1− ε).
Since for all ε,

5ε + 1(1− ε) > 3ε + 0(1− ε)

defect is an ESS. So the number of defectors will always increase and the population will
eventually only consist of defectors. In Section 7.4 this dynamical process will be illustrated
by the replicator equations.

This equilibrium which is both Nash and ESS, is not a Pareto optimal solution.
This can be easily seen if we look at the payoff tables. The combination (defect , defect)
yields a payoff of (1, 1), which is a smaller payoff for both players than the combi-
nation (cooperate, cooperate) which yields a payoff of (3, 3). Moreover the combination
(cooperate, cooperate) is a Pareto optimal solution. However, if we apply the definition of
Pareto optimality, then also (defect , cooperate) and (cooperate, defect) are Pareto optimal.
But both these Pareto optimal solutions do not Pareto dominate the Nash equilibrium and
therefore are not of interest to us. The combination (cooperate, cooperate) is a Pareto op-
timal solution and Pareto dominates the Nash equilibrium. Finally, we elaborate on the
inter-relationship between the different solution concepts.

7.2.2 Strategic Games with Continuous Strategy Spaces

Traditional 2-player game theory assumes that the agents in the game employ one of a
limited and discrete set of n so-called ’pure’ strategies, which can be enumerated as: S =
{s1, s2, . . . , sn}. If the other agent in the game, indicated as player 2, employs the same set
S of pure strategies, in the standard approach a payoff matrix A defines the payoff of agent
2 using strategy sj against agent 1 using strategy si as: ai,j .

However, there are numerous realistic situations in which the set of strategies is continuous
rather than discrete. For example, consider the case where the agents can select a strategy
that can be indicated by a continuous variable x ∈ [0, 1], such that each value of x defines a
different, pure strategy that the agent can employ. The set of pure strategies here is a one-
dimensional set X = [0, 1]. If two agents interact using the same set of pure strategies X , in
analogy to the discrete case it is possible to define a payoff-matrix A, such that A(x , y) is the
payoff of agent 2 playing pure strategy y ∈ X to agent 1 playing pure strategy x ∈ X . If a
player employs a mix of pure strategies from X , it is similarly possible to define a distribution
function φ on X , such that φ(x ) indicates the probability that a pure strategy x is employed.
This implies that

∫
X

φ(x )dx = 1. In the same way it is possible that a strategy is indicated
by a whole set of D continuous variables rather than one single continuous variable. In this
case, each single strategy can be indicated by a vector x = (x1, x2, ..., xD)T ∈ X ⊂ RD . The
associated distribution function over the pure strategies is now φ(x) with

∫
X

φ(x)dx = 1.
Similarly, the payoff matrix from player 2 playing strategy y to player 1 using strategy x is
A(x,y).

As an example, consider an interaction in which there are two continuously-valued pa-
rameters, indicated as: x = (x , y)T ∈ [0, 1]2. Each point in the (x , y)-plane defines one
individual pure strategy. Let us now define the following ’banana’-game: two monkeys have
to divide one banana. In order to come to a fair division, the first monkey M1 will cut the
banana in two parts, say of relative lengths x1 ∈ [0, 1], and (1−x1) respectively. Subsequently
the second monkey M2 will choose one of these two parts. Let us assume that monkey M2

selects the largest part, i.e. max(x1, 1− x1) with a probability y2 ∈ [0, 1], and therefore the
smallest part min(x1, 1 − x1) with a probability (1 − y2). The direct payoff-matrix A1 to
monkey M1 with (x1, y1) from monkey M2 with parameters (x2, y2) then becomes:

A1(x1, y1, x2, y2) = y2.min(x1, 1− x1) + (1− y2).max(x1, 1− x1) (7.1)
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FIGURE 7.5 The banana-payoff matrix A2(x1, y1, x2, y2) = y2.max(x1, 1 − x1) + (1 −
y2).min(x1, 1− x1) in the (x1, y2)-plane.

Similarly, the direct payoff-matrix A2 from monkey M1 (the ‘divider’) to monkey M2 (the
‘selector’) is:

A2(x1, y1, x2, y2) = y2.max(x1, 1− x1) + (1− y2).min(x1, 1− x1) (7.2)

This is illustrated in Figure 7.5.
These payoffs represent the expected fraction of the banana for each monkey respectively.

Another way to measure the advantage of a certain strategy is to look to the difference
between the fractions that the monkey receive, so for the first monkey (the divider) this
difference is:

A12(x1, y1, x2, y2) = A1(x1, y1, x2, y2)−A2(x1, y1, x2, y2) (7.3)

and for the second monkey (the selector):

A21(x1, y1, x2, y2) = A2(x1, y1, x2, y2)−A1(x1, y1, x2, y2) (7.4)

For each type of player this expresses the advantage of its strategy, defined in terms of its
position (x , y).

We will use this example later to show the complex behavior of the continuous RD. Note
that this game is similar to the famous ultimatum game, in which the divider can propose
a certain amount of the banana to the acceptor. If the acceptor refuses the offer, none
of them gets a single piece. In our instance of the banana game we eliminated this social
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dilemma such as present in the ultimatum game. The reason for this is that we do not
want to complicate things too much at once, and focus our work on how we can derive
and implement continuous replicator dynamics (rather than analyzing the social dilemma
itself).

In this chapter we will not discuss ESS in the context of continuous strategy spaces,
simply because we want to focus on RD. We refer the interested reader for a discussion of
ESS in continuous spaces to [Cressman and Hofbauer, 2005; Cressman et al., 2006].

7.3 Replicator Dynamics

The Replicator Dynamics (RD) [Taylor and Jonker, 1978; Zeeman, 1979, 1981] can be
discussed along three dimensions, i.e., time, strategy space and the number of populations.
In this section we will derive the RD as well in discrete strategy spaces as continuous
strategy spaces and start of by showing how RD can be represented in discrete time with
discrete strategy spaces using one population. From this representation we will compute
a time limit leading to the continuous time version of the RD in discrete strategy spaces.
Next, we will generalize this representation to multiple populations. After this we continue
the elaboration on RD by deriving the equations for continuous strategy spaces.

7.3.1 Replicator Dynamics in Discrete Strategy Spaces

Agents playing a strategic game each hold a vector of proportions over possible actions,
indicating the proportion of “individuals” or “replicators” in an infinite “population” (the
agent) which have adopted a given action. Each timestep, the proportions of actions for
each agent are changed based on the rewards in the payoff tables as well as on the current
probabilities of other agents’ choosing their actions.

An abstraction of an evolutionary process usually combines two basic elements: selection
and mutation. Selection favors some population actions over others, while mutation provides
variety in the population. The most basic form of RD highlights only the role of selection,
i.e., how the most fit actions in a population are selected.

Discrete Time Replicator Dynamics

Suppose there is a single population of actions (or replicators) and consider a discrete time
process t = 1, 2, .... Let A = (aij )ni,j=1 be the reward matrix.

Let us assume that the individuals in the population represent different actions that
the agent can perform. The state of the population can be described by a vector x (t) =
(x1(t), ..., xn(t)), where xi(t) denotes the proportion of individual i in the population.

At each time step t , the state x (t) of the population changes according to the fitness
values of the different individuals. More precisely, the expected number of offspring for
a single individual representing action i equals the ratio between the expected payoff for
such an individual,

∑n
j=1 aij xj (t), and the average payoff

∑n
k=1 xk (t)

(∑n
j=1 akj xj (t)

)
for

all individuals in the population. Therefore, the ratio xi(t + 1) of individuals representing
action i at the next time step equals:

xi(t + 1) = xi(t)

∑n
j=1 aij xj (t)∑n

k=1 xk (t)
(∑n

j=1 akj xj (t)
)
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Dividing both sides by xi(t) leads to:

xi(t + 1)
xi(t)

=

∑n
j=1 aij xj (t)∑n

k=1 xk (t)
(∑n

j=1 akj xj (t)
)

Reordering the fractions leads to the general discrete time replicator dynamics:

Δxi(t)
xi(t)

=

∑n
j=1 aij xi(t)− x (t)Ax (t)

x (t)Ax (t)

This system of equations expresses Darwinian selection as follows: the rate of change Δxi

of a particular action i is the difference between its average payoff,
∑n

j=1 aij xi(t), and the
average payoffs for all actions, x (t)Ax (t).

From a mathematical viewpoint, it is usually more convenient to work in continuous time.
Therefore we now derive the continuous time version of the above replicator equations. To
do this we make time infinitesimal. More precisely, suppose that the amount of time that
passes between two periods is given by δ with δ ∈ [0, 1]. We also assume that during a time
period δ, only a fraction δ of the individuals die and generate offspring. Then the above
equation can be rewritten as follows:

Δxi(t)
xi(t)

=
xi(t + δ)− xi(t)

xi(t)
=

∑n
j=1 δaij xi(t)− x (t)δAx (t)
x (t)δAx (t) + (1− δ)

Now, at the limit when δ approaches 0, the continuous replicator equations are:

dxi

dt
=

[
n∑

j=1

aij xi − x ·Ax

]
xi

which can be rewritten as:

dxi

dt
= [(Ax )i − x ·Ax ] xi (7.5)

In Equation 7.5, xi represents the density of action i in the population, and A is the payoff
matrix that describes the different payoff values that each individual replicator receives when
interacting with other replicators in the population. The state x of the population can be
described as a probability vector x = (x1, x2, ..., xn) which expresses the different densities
of all the different types of replicators in the population. Hence (Ax )i is the payoff that
replicator i receives in a population with state x and x ·Ax describes the average payoff in

the population. The growth rate
dxi
dt

xi
of the proportion of action i in the population equals

the difference between the action’s current payoff and the average payoff in the population.
[Gintis, 2001; Hofbauer and Sigmund, 1998; Weibull, 1996] detail further information on
this issue.

Multi-Population Replicator Dynamics

Usually, we are interested in models of multiple agents that evolve and learn concurrently,
and therefore we need to consider multiple populations. For simplicity, the discussion focuses
on only two such learning agents. As a result, we need two systems of differential equations,
one for each agent. This setup corresponds to an RD for asymmetric games, where the
available actions or strategies of the agents belong to two different populations.

This translates into the following coupled replicator equations for the two populations:
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ṗi = [(Aq)i − p ·Aq ]pi (7.6)

q̇i = [(Bp)i − q ·Bp]qi (7.7)

Equations 7.6 and 7.7 indicate that the growth rate of the types in each population is
additionally determined by the composition of the other population, in contrast to the single
population (learner) case described by Equation 7.5.

Replicator Dynamics with Mutation

In [Hofbauer and Sigmund, 1998] and also in [Ruijgrok and Ruijgrok, 2005] the RD with an
additional mutation term were derived. The most straightforward approach for including
interaction between adjacent strategies is by including a diffusion term in the RD. This
formulation allows for the migration from densely populated areas in strategy space to less
populated ones nearby. This procedure is originally proposed by Hofbauer and Sigmund
[Hofbauer and Sigmund, 1998], for which Ruijgrok and Ruijgrok [Ruijgrok and Ruijgrok,
2005] have provided a rigorous mathematical foundation and subsequent analysis, which we
will follow here. The diffusion process itself can be interpreted as the mutation of strate-
gies to slightly different ones. In this approach, in addition to the discrete strategy RD
of Equation 7.5, Ruijgrok and Ruijgrok add a transition probability per unit time qij for
the spontaneous transfer from a strategy i to a strategy j . This extra term describes the
mutation between strategies at a rate qij . In this way they derive the discrete replicator
equation with mutation as:

dxi

dt
=

[
n∑

j=1

aij xi − x ·Ax

]
xi +

N∑
j=1

(qij xj − qjixi) (7.8)

Now in the course of time, the fraction xi changes at a rate which is proportional to
the difference between the payoff to xi and the average payoff for the whole population. In
addition we assume that for each player of sj there is a transition probability per unit time
to make a spontaneous transfer to strategy si at a rate given by qji .

7.3.2 Replicator Dynamics in Continuous Strategy Spaces

Traditional RD, as seen above, describes the evolution of populations of agents participating
in some kind of interaction, where each individual agent can employ a well-defined, finite and
discrete set of strategies. Essential in this approach is the assumption that for each possible
combination of strategies the gain and loss of each agent can be quantified explicitly as
‘pay-off’ matrices.

However, multi-agent systems, especially in analogy with our biological world, are not
discrete. More precisely, sets of discrete strategies result from basic underlying microscopic
processes that have a more continuous character. Ultimately, any living organism is governed
by microscopic processes on the molecular level. In this setting, the effects of environmental
variables such as light and temperature, the signals of receptor molecules, and the inter-
actions between genes, all types of RNAs, proteins, and other molecules on the behavior
of the organism are continuously varying variables. As a closer example of MAS consider
for instance robot soccer. The decisions faced by the players, such as when and where to
kick the ball, or where to move when not in possession of the ball are continuous in na-
ture. A typical approach then is to only allow a small number of discrete actions instead of
one, continuous parameter. For instance in the soccer case this would mean that a player
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could only move in a few predefined directions, i.e., the pure or discrete strategies, whereas
opposed to a continuous approach one would allow the player to move in a continuum of
directions represented by one direction-parameter This conclusion has implications for the
formulation of a correct fundamental interaction model. We will now study how the RD
model can be extended to include a continuum –rather than a discrete set– of strategies.

As a first step we will now define some basic concepts. Suppose that the relation between
the agent and its environment can be modeled mathematically such that:

i The agent can be fully described by a set of D continuous parameters x =
(x1, x2, . . . , xD), with x ∈ Θ ⊂ RD , and:

ii The interaction between two agents P and P ′, described by the parameter sets
x and x′ respectively, results in a pay-off matrix A(x,x′) from agent P ′ to P .

In this setting we can interpret the parameter set x of the agent as an instance of a
its strategy, or, in other words, there is a continuum of possible strategies each of which is
indexed by its set of values in the x-vector. In case of an entire population of such agents, we
can define the distribution over all possible strategies as a probability distribution function
φ(x, t), depending on x and continuous time t . In the well-studied case of a distribution
x over a discrete set of D strategies, the continuous time propagation of x is given by the
aforementioned RD as:

ṗi = pi(
∑
j

aijpj − pTAp) ≡ pi(Vi − E ) (7.9)

Here the ‘mixed’ strategy pi represents the fraction of ‘players’ with ‘pure’ strategy i , and
therefore

∑
i pi = 1. Moreover, A is the D × D ‘payoff’ matrix such that aij indicates the

amount of payment the ‘row player’ using pure strategy i receives from the ‘column player’
using pure strategy j . It is clear that the evolution of a strategy i is governed entirely by its
difference between its average payoff Vi and the overall average payoff E . In our context,
rather than a discrete set of pure strategies indexed by i , there is a continuum denoted by
x, and consequently the distribution function φ(x, t) assumes the role of p, and summation
over i becomes integration over x. The procedure of how to translate a formulation on
a discrete set of strategies to a continuous strategy space is well-known in the context of
Statistical Mechanics. Following this procedure the continuum limit of Equation 7.9 becomes
a Partial Differential Equation (PDE):

∂φ

∂t
= (V (x, t)− E (t))φ (7.10)

with: ∫
Θ

φ(x, t)dx = 1 (7.11)

In this PDE we used the following definitions:

V (x, t) =
∫

Θ

A(x,x′)φ(x′, t)dx′ (7.12)

E (t) =
∫

Θ

V (x, t)φ(x, t)dx (7.13)

where Θ denotes the set of allowed values of the parameter-vector x, and A(x,x′) the payoff
matrix from strategy x′ to strategy x. Equation 7.10 was obtained and studied by Cressman
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FIGURE 7.6 Direction field plot of the prisoner’s dilemma game.

[Cressman., 2005], and Oechsler and Riedel [Oechsler and Riedel, 2001]. This PDE shows
that the evolution of the fraction φ(x) of the population in strategy x is determined solely
by the difference between the local ‘potential’ V (x) and the global ‘total energy’ E . This
formulation, therefore, does not include any direct interaction between different strategies,
as the fraction of the population in each strategy x only evolves relative to its advantage
–or disadvantage– relative to the average payoff E .

7.4 Evolutionary Dynamics in Discrete Strategy Spaces

In this section we first analyze the dynamics of the different types of games introduced in
Section 7.2.1. More precisely, we will plot and discuss the direction fields of the RDs applied
to the different type of games. This allows us to analyze the different basins of attraction.

Secondly, we will draw the formal connection between the RD and reinforcement learning
algorithms in Section 7.4.2. We will illustrate the strength of this connection for multi-agent
systems with some well chosen experiments.

7.4.1 Analysis of the Evolutionary Dynamics of the Categorization of
Games

Given the RD models of the previous section we can now analyze the evolutionary behavior
of these models in the different type of categories of games by plotting their respective
direction fields. A direction field is a very elegant and excellent tool to understand and
illustrate a system of differential equations. The direction fields presented here consist of a
grid of arrows tangential to the solution curves of the system. It is a graphical illustration
of the vector field indicating the direction of the movement at every point of the grid in the
state space. Filling in the parameters for each game in Equations 7.6 and 7.7, allows to plot
this field.

Lets analyze the game dynamics for each category from Section 7.2.1. In Figure 7.6 we
plot the RD of the prisoner’s dilemma game. The x-axis represents the probability with
which the first player will play defect and the y-axis represents the probability with which
the second player will play defect. So the Nash equilibrium and the ESS lie at coordinates
(1,1). As you can see from the field plot all the movement goes toward this equilibrium and
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FIGURE 7.7 Direction field plot of the battle of the sexes game.
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FIGURE 7.8 Direction field plot of the matching pennies game.

it is immediately clear from the plot that the Nash equilibrium is stable and robust against
evolutionary pressure.

The field plot of the battle of the sexes game is illustrated in Figure 7.7. Recall that this
game has 2 pure Nash equilibria and 1 mixed Nash equilibrium. These equilibria can be seen
in the figure at coordinates (0, 0), (1, 1), (2/3, 1/3). The 2 pure equilibria are ESS as well.
This is also easy to verify from the plot, more precisely, any small perturbation away from
the equilibrium is led back to the equilibrium by the dynamics. The mixed equilibrium,
which is Nash, is not ESS.

Finally, the field plot of the matching pennies game can be found in Figure 7.8. The plot
shows the mixed Nash equilibrium at (0.5, 0.5) which is not evolutionarily stable. Typical for
this class of games is that the interior trajectories define closed orbits around the equilibrium
point as can be seen from the plot.
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7.4.2 Relating Evolutionary Dynamics in Discrete Strategy Spaces with
Reinforcement Learning

In this section we draw the formal connection between replicator dynamics and reinforce-
ment learning (RL). We limit ourselves to one-state games, or non-associative reinforcement
learning tasks. Only recently the connection between multi-state RL problems and EGT
has been drawn. This will not be a topic of this chapter, however we refer the interested
reader to [Vrancx et al., 2008].

Reinforcement Learning (RL) is an established and profound theoretical framework for
learning in stand-alone systems. Yet, extending RL to MAS does not guarantee the same
theoretical grounding. As long as the environment an agent experiences is stationary, and
the agent can experiment enough, RL guarantees convergence to the optimal strategy. In a
MAS however, the reinforcement an agent receives usually depends on the actions taken by
the other agents present in the system. Obviously in these environments, the convergence
results of RL are lost.

Therefore it is important to fully understand the dynamics of reinforcement learning
and the effect of exploration in MAS. For this aim we employ the RD. In this chapter
we summarize the dynamics of Q-learning. For an elaboration on a different reinforcement
learning algorithm, i.e. Learning Automata, we refer the reader to [Tuyls and Nowe, 2005].
As will be shown, these dynamics open a new perspective in understanding and fine tuning
the learning process in games and more general in MAS.

Q-Learning

Common reinforcement learning methods, which can be found in [Sutton and Barto, 1998]
are structured around estimating value functions. A value of a state or state-action pair,
is the total amount of reward an agent can expect to accumulate over the future, starting
from that state. One way to find the optimal policy is to find the optimal value function.
If a perfect model of the environment as a Markov decision process is known, the optimal
value function can be learned with an algorithm called value iteration. Q-learning is an
adaptive value iteration method [Sutton and Barto, 1998], which bootstraps its estimate for
the state-action value Qt+1(s, a) at time t + 1 upon its estimate for Qt(s

′
, a

′
) with s

′
the

state where the learner arrives after taking action a in state s:

Qt+1(s, a)← (1− α)Qt(s, a) + α(r + γ maxa′Qt(s
′
, a

′
)) (7.14)

With α the usual step size parameter, γ a discount factor and r the immediate reinforcement.
The players of the games considered in this chapter can therefore use the algorithm of

(7.14) where the state information s is removed. This is called non-associative Q-learning.
In the next subsection we will concisely discuss the Q-learning dynamics derived in [Tuyls

et al., 2003; ’t Hoen and Tuyls, 2004; Tuyls et al., 2006].

The Dynamics of Q-Learning in Games

In this section we briefly describe the formal relation between Q-learning and the RD.∗ More
precisely we present the dynamical system of Q-learning. These equations are derived by
constructing a continuous time limit of the Q-learning model, where Q-values are interpreted
as Boltzmann probabilities for the action selection. For reasons of simplicity we consider

∗The reader who is interested in the complete derivation, we refer to [Tuyls et al., 2003, 2006].
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games between 2 players. The equations for the first player are,

dxi

dt
= xiατ((Ay)i − x ·Ay) + xiα

∑
j

xj ln(
xj

xi
) (7.15)

analogously for the second player, we have,

dyi

dt
= yiατ((Bx)i − y ·Bx) + yiα

∑
j

yj ln(
yj

yi
) (7.16)

Equations 7.15 and 7.16 express the dynamics of both Q-learners in terms of Boltzmann
probabilities. Each agent(or player) has a probability vector over his action set, more pre-
cisely x1, ..., xn over action set a1, ..., an for the first player and y1, ..., ym over b1, ..., bm for
the second player.

For a complete discussion on this equations we refer to [Tuyls et al., 2003, 2006]. Com-
paring (7.15) or (7.16) with the RD in (7.5), we see that the first term of (7.15) or (7.16)
is exactly the RD and thus takes care of the selection mechanism, see [Weibull, 1996]. The
mutation mechanism for Q-learning is therefore left in the second term, and can be rewritten
as:

xiα
∑
j

xj ln(xj )− ln(xi) (7.17)

In Equation 7.17, we recognize 2 entropy terms, one over the entire probability distribution
x , and one over strategy xi .

Relating entropy and mutation is not new. It is a well-known fact [Schneider, 2000;
Stauffer, 1999] that mutation increases entropy. In [Stauffer, 1999], it is stated that the
concepts are familiar with thermodynamics in the following sense: the selection mechanism
is analogous to energy and mutation to entropy. So generally speaking, mutations tend to
increase entropy. Exploration can be considered as the mutation concept, as both concepts
take care of providing variety.

The Q-Learning Experiments

We only describe the experiments of subclass 2. All the experiments can be found in [Tuyls
et al., 2003, 2006]. The important aspect is that obtaining convergence to a Nash equilibrium
with Q-learning is more cumbersome than with other learning algorithms. In Figure 7.9 the
direction field plot of the differential equations of this game is plotted. The fields are plotted
for 3 values of τ , more precisely 1, 2, 10. In the first 2 plots τ isn’t big enough to reach for one
of the three Nash equilibria. Only in the last one the dynamics attain the Nash equilibria
(the 3 attractors in the last plot) for the game at the coordinates (1, 1), (0, 0) and (2

3 , 1
3 ).

The mixed equilibrium though is very unstable. Any small perturbation away from this
equilibrium will typically lead the dynamics to one of the 2 pure equilibria.

In Figure 7.10 we also plotted the Q-learning process for the same game with the same
settings as for the system of differential equations. At the chosen points a learning path
starts and converges to a particular point. If you compare the plots with the direction
field plots for the same value of τ you can see that the sample paths of the learning process
approximate the paths of the differential equations. The instability of the mixed equilibrium
is the reason why this equilibrium doesn’t emerge from the learning process.
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FIGURE 7.9 The direction field plots of the battle of the sexes (subclass 2) game with τ = 1, 2, 10.
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FIGURE 7.10 The Q-learning plots of the battle of the sexes (subclass 2) game with τ = 1, 2, 10.

7.5 Evolutionary Dynamics in Continuous Strategy Spaces

In this section we start by elaborating on how to include mutation in continuous strategy
RD. We start of by follow the approach of Hofbauer et al. [Hofbauer and Sigmund, 1998]
and Ruijgrok et al. [Ruijgrok and Ruijgrok, 2005] by introducing a diffusion term.

Next, we drop the strong assumption of the diffusion term which assumes that muta-
tions only occur between adjacent strategies. We will introduce an anisotropos continuous
replicator model with isotropos and anisotropos mutation matrix.

7.5.1 Mutation as Engine for Diffusion in Continuous Strategy Spaces

In Section 7.3.1 we derived the RD in discrete strategy spaces with an additional mutation
term. We will now transfer Equation 7.8 to a continuous strategy space version according to
the description of [Ruijgrok and Ruijgrok, 2005]. Recall from Section 7.3.1 that in addition to
the discrete strategy RD of Equation 7.9, Ruijgrok and Ruijgrok add a transition probability
per unit time qij for the spontaneous transfer from a strategy i to a strategy j . This
extra term describes the mutation between strategies at a rate qij . In this way the discrete
replicator equations with mutation look as follows:

ṗi = pi(Vi − E ) +
N∑

j=1

(qijpj − qjipi) (7.18)

Now we will focus on the continuum limit of the mutation term –which we shall denote as
M (x, t) – in this equation:∑N

j=1(qijpj − qjipi)→ M (x, t) ≡ ∫
Θ

[m(x | x′)φ(x′, t)−m(x′ | x)φ(x, t)]dx′ (7.19)
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With the restriction that only infinitesimally small changes in strategy space are allowed,
Ruijgrok and Ruijgrok follow the method of van Kampen [van Kampen, 1992] to derive the
Fokker-Planck equation from a master equation. For small ‖x′ − x‖, the Taylor-expansion
of the mutation term M (x, t) results to:

M (x, t) = ∇{Q1(x)φ(x, t)}+
1
2
∇2{Q2(x)φ(x, t)} (7.20)

with:

Q1(x) =
∫

Θ

(x′ − x)m(x′,x)dx′ (7.21)

and:

Q2(x) =
∫

Θ

(x′ − x)(x′ − x)Tm(x′,x)dx′ (7.22)

Equation 7.21 represents the average resulting change in strategy due to mutations, and
Equation 7.22 indicates the covariance matrix between the mutations. By assuming that
there is no net change we obtain that Q1 = 0, and by assuming that the covariance is an
isotropic matrix–and therefore a constant, say 2 μ, the continuum limit of the mutation
term becomes a pure diffusion term:

M (x, t) = μ∇2φ(x, t) (7.23)

Using this approach, Ruijgrok and Ruijgrok arrive at the same continuous replicator equa-
tion as Hofbauer an Sigmund:

∂φ

∂t
= μ∇2φ + (V (x)− E )φ (7.24)

Integration of this equation over strategy space Θ yields:

∂N (t)
∂t

= μ

∫
Θ

∇2φdx + E (1−N (t)) (7.25)

where:

N (t) =
∫

Θ

φ(x, t)dx (7.26)

The condition that the distribution φ is normalized, so that Equation 7.11 holds, is satisfied
when the Neumann boundary condition holds, and ∇φ is perpendicular to the boundary of
Θ:

n(x)T · ∇φ(x) |∂Θ= 0 (7.27)

where n(x) is a local normal vector to the boundary ∂Θ to the domain Θ. Basically, this
equation allows undirected and unbiased evolution over short distances in strategy space.
Ruijgrok and Ruijgrok study this equation for a number of games that have been trans-
formed to a continuous setting.

More realistic effects can be obtained by adding stochastic terms in this equation.
There is, however, no reason to assume that mutations are only restricted to adjacent

strategies, or in other words, that strategy space is a good representation of the genotypes.
In fact, in most cases strategy space is a straightforward representation of phenotype space.

In the following sections, we will consider a few alternatives for this approach.
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7.5.2 Non-Isotropic Mutations and Evolutionary Flows in
Strategy Spaces

The continuous replicator equation 7.24 was derived under a number of restrictions:

1 Only infinitesimally small changes in strategy space are allowed;
2 The average change in strategy due to mutations is equal to zero, so Q1 = 0

(equation 7.21);
3 The covariance matrix is a constant: Q2 = 2 μ (equation 7.22);
4 The Neumann (a.k.a. reflecting) boundary condition holds (equation 7.27).

Lifting the second and third condition leads to an anisotropic diffusion equation:

∂φ

∂t
= ∇T · μ(x)∇φ + (V (x)− E )φ (7.28)

where μ(x), the spatial diffusion coefficient, is a D × D spatially dependent symmetric
matrix, such that its components μij (x) indicate the rate of mutation from a pure strategy
relating to parameter xi to a pure strategy relating to parameter xj at a position x in
strategy space.

This may introduce a bias in the propagation of φ as certain directions in strategy space
are ‘blocked’ or preferred by matrix μ at position x. This condition occurs, for instance,
in the evolution of genetic networks, where certain mutations are less likely for physical or
chemical reasons.

Integration of Equation 7.28 over strategy space Θ again yields a condition similar to
Equation 7.25:

∂N (t)
∂t

=
∫

Θ

∇T · μ(x)∇φdx + E (1−N (t)) (7.29)

Therefore, N (t) = 1 when the reflecting boundary condition holds, so that μ∇φ is perpen-
dicular to the boundary of Θ:

n(x)T · μ∇φ(x) |∂Θ= 0 (7.30)

and therefore the distribution φ is normalized. This implies that there is no net flux into or
out of the strategy space Θ, and therefore the integral probability inside Θ is conserved to
1.

Equation 7.28 is a diffusion-type of partial differential equation, reminiscent of the
Fitzhugh-Nagumo model for the propagation of electrophysiological waves over cardiac
walls. However, in this formulation, certain optimal solutions are not ’found’ from a given
initial position, as there exists no viable path in the direction field of phase space that is
governed by μ(x). This contrasts with the continuous replicator Equation 7.24, that exhibits
isotropous diffusion. This again is known in the Fitzhugh-Nagumo model as a ‘block’ that
blocks the propagation of a electrophysiological wave over the cardiac walls, as in atrium
fibrilation, possibly leading to arrhythmias.

7.5.3 Draining of Pay-Off Streams in Strategy Space

There exists an alternative formulation for the discrete RD that models the influence of
nearby strategies on the evolution due to mutation from one pure strategy to another. This
formulation is provided by Hofbauer and Sigmund in [Hofbauer and Sigmund, 1998]. Here,
we provide a modification of this formulation that is consistent with the master equation
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for the strategy probability distribution, as it also allows for migration from the studied
state:

ṗi =
∑
j ,k

ajkpk{qjipj − qijpi} − pi(pTAp) (7.31)

Here the same variables are employed as in Equation 7.18. Rather than diffusion due to
high probability densities, here the propagation of φ is driven by the average payoff-stream
between the states i and j : piaijpj .

Following the continuum approach described in Section 7.5.3, and allowing for anisotropic
diffusion, Equation 7.31 can be reformulated as a continuous RD:

∂φ(x, t)
∂t

= ∇T · μ(x)∇{V (x)φ(x, t)}+ (V (x)− E )φ(x, t) (7.32)

Similar to the approach described above for the integral N (t) of equation 7.32 over
strategy space Θ yields:

∂N (t)
∂t

=
∫

Θ

∇T · μ(x)∇{V (x)φ(x, t)}dx + E (1−N (t)) (7.33)

This implies that the distribution φ is conserved to 1, i.e. N (t) =
∫
Θ

φdDx = 1, when the
reflecting boundary condition holds:

n(x)T · μ(x)∇{V (x)φ(x, t)} |∂Θ= 0 (7.34)

Our new formulation is able to capture certain aspects of an evolution driven by game
theoretic interactions that are absent in the original formulation of Hofbauer, Sigmund,
Ruijgrok and Ruijgrok in Equation 7.24. This is mainly caused by following two aspects of
this formulation.

i. The inclusion of the scalar ‘potential’ V (x) into the Laplacean term in equation
7.32. Remember that the potential V was defined in equation 7.12 as an integral
over strategy space of the product A(x,x′)φ(x′, t). This function V (x) therefore
denotes locations x in D-dimensional strategy space Θ where high payoffs can be
obtained, given the payoff matrix A and the current distribution φ. In equation
7.32, the gradient ∇{V φ} points toward increasing values of the product V φ.
This means that it is not so much pointing to densely populated areas in Θ, but
to areas with current potentially high payoffs – the product of the population
density φ and the expected payoff potential V . Ignoring the anisotropic and non-
local effects of μ(x), this reasoning also applies to the divergence ∇T that acts
on this gradient. So, the combined term ∇T . μ .∇{V φ} is high at the borders of
the areas where the product V φ is high. This forces φ to grow especially at the
borders of (relative) ‘hills’ in the potential reward landscape, i.e., where V (x)φ(x)
is high, and likewise to decrease at the borders of (relative) ‘depressions’ in the
same landscape.

ii. The addition of the non-isotropic local mutation D ×D matrix μ(x) rather than
a global scalar μ that we proposed in Equation 7.28. As described above, this
may distract the flow of the evolution. In terms of the aforementioned Fitzhugh-
Nagumo equation, Equation 7.32 can be reformulated as the flow of an electro-
physiological wave on a cardiac substrate:

∂φ

∂t
+∇T · J = ρ(x, t) (7.35)
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with
(a)ρ = (V − E )φ,
(b)F = −∇{V φ)},
(c)J = μF.

(7.36)

Equation 7.35 is the conservation law for probability φ and probability flow J,
with a local source/sink term ρ(x, t) that according to Equation 7.36a gives
the surplus of potential payoff relative to the global average. Equation 7.36b de-
notes the ‘field strength vector’ F(x) as derived from the potential reward V (x)φ.
Equation 7.36c describes an analogon of the famous ‘Law-of-Ohm’: ‘ΔV = I ×R’
between the field strength F (compare to ΔV ), and the resulting density flow
J (compare to I ), where μ(x) acts as the analogon of the local conductivity,
i.e., inverse resistance (compare to 1/R). Here the conductivity is local and
anisotropous, meaning that the resulting flow J is not necessarily directed ac-
cording to the field strength F.

Together with the conservation of probability in Equation 7.11 these factors make that
probability φ flow according to the local direction field–induced by the local column-space of
μ–from areas where the potential reward is below-average to areas where it is above-average.

Note that from Equations 7.11, 7.12, 7.13, and 7.32, after some calculation, it follows that
the rate of change of the total energy E satisfies:

Ė =
∫

Θ

φ(y, t){A(x,y) + A(y,x)}T (x)φ(x, t)dxdy (7.37)

where A(x,y) is the payoff matrix, and T (x)φ(x, t) is a differential operator defined as:

T (x)φ(x, t) = ∇T · μ(x)∇{V (x)φ(x, t)} (7.38)

Equation 7.37 can be written more concisely as an inner-product of the strategies | φ〉 and
| φ′〉 (using the so-called bra-ket notation of Dirac):

Ė = 〈φ | (A + AT )T | φ′〉 (7.39)

This shows clearly that E is a constant for all games that obey A = −AT . These are the
so-called symmetric or zero-sum games. In this notation it follows that: E = 〈φ | A | φ′〉 =
〈φ | AT | φ′〉 = 1

2 〈φ | A + AT | φ′〉 = 0, so that for symmetric games the value of constant
E is indeed zero. Moreover, it also appears that the energy is conserved, i.e. Ė = 0, when:

T (x)φ(x, t) = ∇T · μ(x)∇{V (x)φ(x, t)} = 0 (7.40)

In that case Equation 7.32 reduces to Equation 7.10, and there is no direct interaction
between the strategies.

In the case that μ is isotropic and homogeneous, i.e. μ(x) = μ I for some scalar constant
μ and identity matrix I , we find that

∂φ

∂t
= μ∇2{V φ}+ (V − E )φ (7.41)

This expression is comparable to Equation 7.24, but where now the diffusion does not
originate from high-probability areas, but from areas with a potentially high reward.
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7.6 Example of the Resulting Dynamics of the Continu-
ous Replicator Equations

The continuous replicator equations in Equation 7.32 are mathematically similar to the
non-linear Schrödinger equation and the Fitzhugh-Nagumo model, which are both known
for their complex and intricate non-linear dynamics. In order to obtain an impression of
the complex behavior exhibited here, a number of numerical simulations is performed, with
different scenarios for the payoff matrix and different values for the mutation tensor μ.

We will now follow the example of the ‘banana-game’ as defined in Section 7.2.2, and
consider a population of ‘dividers’ that evolve according to the continuous replicator dy-
namics. This population is represented by its distribution function φ(x , y) that measures
the fraction of the population that employs a strategy indexed by parameter x in the role
of a ‘divider’ and a strategy indexed by parameter y in the role of a ‘selector’. We will now
compare the four scenarios for the Continuous Replicator Dynamics (CRD):

i. model CRD1: The continuous replicator equation without diffusion as in equation
7.10,

ii. model CRD2: the Hofbauer-Sigmund-Ruijgrok & Ruijgrok continuous replicator
model defined in equation 7.24,

iii. model CRD3: our anisotropous continuous replicator model as in equation 7.32

with isotropous mutation matrix μ(x) ≡
(

1 0
0 1

)
.

iv. model CRD4: again equation 7.32 but now with the diagonal reflection mutation

matrix μ(x) ≡
(

0 1
1 0

)
.

The payoff matrix that is employed here is A12 in equation 7.3, that gives the advantage
for the divider to employ strategy ‘divide in parts x and 1 − x ’, when playing against
itself. From first principles it follows that this payoff matrix measures the advantage for the
divider and not the disadvantage for the selector. This means that a fair selection, x = 1

2
provides the best solution. Let us furthermore assume that the population starts from an
evenly distributed over the strategy space [0, 1]2, it is: φ(x , y , 0) ≡ 1 as this ensures that∫ 1

0

∫ 1

0
φ(x , y , 0)dxdy = 1.

The continuous replicator dynamics in all scenarios is observed to converge to an equilib-
rium state. These equilibrium states φe are obtained by setting ∂φ/∂t = 0 in the associated
Equations 7.10, 7.24, and 7.32, and solving the obtained spatial partial differential equation
in x (but not in t). The results of these experiments are given in Figures 7.11, 7.12, 7.13,
and 7.14.

From these experiments it is obvious that only model CRD3 in Equation 7.32 is able
to find the correct solution x = 1

2 . Model CRD1 converges to a situation where φe(x) is a
constant (when starting from a uniform distribution), as is obvious from equating ∂φ/∂t = 0
in Equation 7.10. Model CRD2 finds a solution that is symmetrical around x = 1

2 , but which
is not the ideal solution that is found by model CRD3. Furthermore, using a mutation matrix
as in scenario iv thwarts the model CRD3 from finding the optimal solution as the flow of
mutations is directed in the ’wrong’ direction. The latter may occur in biochemical reaction
networks where a certain mutation is not possible for physical or chemical reasons.
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FIGURE 7.11 The equilibrium solution φe(x , y) for model CRD1 for the banana game for the ‘divider’
with payoff matrix A12 in Equation 7.3.
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FIGURE 7.12 The equilibrium solution φe(x , y) for model CRD2 for the banana game for the ‘divider’
with payoff matrix A12 in Equation 7.3.
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FIGURE 7.13 The equilibrium solution φe(x , y) for model CRD3 for the banana game for the ‘divider’
with payoff matrix A12 in Equation 7.3 with isotropic mutation matrix.
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FIGURE 7.14 The equilibrium solution φe(x , y) for model CRD3 for the banana game for the ‘divider’
with payoff matrix A12 in Equation 7.3 with the diagonal reflection matrix.
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7.7 Conclusions

In this chapter we provided an in-depth survey of evolutionary dynamics (or replicator
dynamics) from Evolutionary Game Theory in games with discrete and continuous strategy
spaces. More precisely, we provided an introduction to the basic notions of EGT necessary to
understand this chapter. Next we derived the replicator equations along three dimensions,
i.e., time, strategy space and multiple populations. Moreover, we also considered, besides
selection, a formal description of the mutation mechanism. Then we illustrated the use of
the RD in a variety of games with discrete strategy sets and we laid out the important link
with Reinforcement Learning. This link is critical for the successful application of learning
in multi-agent systems. Finally, we gave a current state of affairs on the application of the
replicator equations in games with continuous strategy spaces. Moreover we introduced a
new model to describe mutations in this setting, i.e., a anisotropos continuous replicator
model with isotropos and anisotropos mutation matrix. Our initial experiments show that
our model is more accurate with respect to finding an optimal solution in the banana game,
as opposed to the other models. In future work, we plan to do more investigation of this
new model in a wide variety of games like for instance the continuous strategy prisoner’s
dilemma.

In current research we also explore the possibility of applying these models on real world
data of ’no limit’ poker games. What we see is that by applying our RD models to this real
world data, we get a view on the behavior and success of the different strategies employed
by human players. This is interesting for several reasons: one, it is possible to analyze how
likely it is that a certain strategy will be successful by examining the sizes of the basins of
attraction; two, you can compare the dynamics of different learning models in real world
examples, just by analyzing the phase plots; and three, it gives a means to examine the
evolutionary stability of the present Nash equilibria.

The games presented in this study are essentially stateless (or have one state). Currently,
we are also trying to incorporate switching dynamics in our study, which allows to analyze
multi-state problems or games. In theory, this would allow to represent and analyze sim-
plified versions of for instance robot soccer in the same manner as done for the stateless
multi-agent games.
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8.1 Introduction

Since its origins, the field of Multi-Agent Systems (MAS) has been entrenched with the
notion of direct communication [Hewitt, 1977; Smith, 1980; Bond and Gasser, 1988; Durfee,
1988].

In particular, the shift from blackboard systems [Engelmore and Morgan, 1988], as proto-
MAS, to proper MAS was characterized by abandoning a form of indirect coordination in
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favor of a more direct strategy. The ‘agents’ in a blackboard system used to leave their
partial solutions to a problem in a data structure shared with other ‘agents’ and each
reacted to the product of the work of other agents by producing new work (i.e. new partial
solutions). At the time, a single thread of control in writing in the blackboard created a
bottleneck in problem solving. This constraint was overcome, at the beginning, by adopting
direct communication between multiple blackboard systems (via message passing) and then,
eventually, by dropping the indirect approach altogether. Though a new seminal approach
was born, the baby, or at least a useful toy of his, was thrown out with the bath water.

From there on, in fact, the crucial coordination mechanism for Multi-Agent systems
has been modeled on the most important communication tool available to humans: verbal
language. With the help of a shared conventional language, humans in fact coordinate their
activities thanks to verbal exchanges in the forms of speech acts [Searle, 1969]. Inspired by
their crucial role in human societies, speech acts have been studied and approximated also
for the coordination of artificial agents in distributed systems [Cohen and Levesque, 1990;
Sadek, 1992]. Direct communication soon began to be considered as necessary to achieve
an effective MAS: in order to build autonomous agents capable of coordinating with each
other, such agents must be provided with an Agent Communication Language to exchange
messages (e.g., FIPA-ACL ∗) on the background of shared ontologies.

However, direct communication by means of an agent language is just one possible mech-
anism to design an effective MAS that, together with several benefits, bears also many com-
putational costs. To overcome these limitations many practitioners are nowadays turning
their attention to approaches based on self-organizing techniques. In fact, taking inspira-
tion from the biological sciences, agents have been molded on social insects and their ca-
pacity to interact “indirectly” through environmental modifications (a phenomenon known
as stigmergy, see [Grassé, 1959]). The importance of this mechanism has been investigated
both in biological [Wenzel, 1991; Karsai and Theraulaz, 1995; Camazine et al., 2001] and
artificial organisms [Parunak, 1997; Bonabeau et al., 1998; Parunak et al., 2005; Mamei
and Zambonelli, 2007]. Though self-organization and stigmergy are orthogonal phenomena
[Theraulaz and Bonabeau, 1999], the narrow and unclear definition of what stigmergy is and
its too close association with self-organizing approaches has also impeded the detachment
of this coordination mechanism from the original domains of investigation (i.e. collaborative
collective behaviors), and so has limited the impact of this approach for a wider range of
problems that can be relevant for the MAS community.

Somehow ironically, indirect coordination is quite reminiscent of the blackboard system
approach that was stigmergic in its very essence. By bringing the best of these two worlds
together, the rehabilitation of indirect forms of coordination might be a critical step toward
the next generation of agent technologies.

8.1.1 Overview

The general aim of this chapter is to clarify the notion of stigmergy and its uses for coordi-
nation by means of conceptual and operational models obtained with a set of evolutionary
agent-based simulations.

In a series of recent papers we have argued that stigmergy is best understood as a pe-
culiar form of communication [Castelfranchi, 2006b; Tummolini et al., 2005; Tummolini

∗See the Communicative Act Library Specification of the Foundation for Intelligent Physical Agents
(FIPA): http:// www.fipa.org
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and Castelfranchi, 2007]. In particular, stigmergic behavior has been analyzed as a kind
of indirect communicative behavior, i.e. asynchronous communication enabled by a shared
environment used as a repository for signals. Here we partially correct our previous view
by distinguishing the notion of stigmergic cue from its uses in coordination: stigmergic
self-adjustment and stigmergic communication.

In the first part of the chapter, we review current definitions adopted by leading scholars in
different fields. Though the core properties of stigmergic behavior have been acknowledged,
a clear-cut conception is still missing. Occasionally the phenomenon is classified as a kind of
coordination, other times as communication. To better clarify what stigmergy is as well as
when it is communication and when it is not, we introduce the general theory of behavioral
implicit communication and we clarify what is peculiar of the stigmergic case.

In the second part of the chapter, we explore the evolution of stigmergic behavior adopting
a simulative approach. In particular, we have simulated a population of artificial agents
living in a virtual environment containing safe and poisonous items (‘fruits’): eating safe
fruits increases the fitness of an individual, while eating poisonous ones decreases it. The
behavior of the agents is governed by artificial neural networks whose free parameters (i.e.
the weights of the networks’ connections) are encoded in the genome of the agents and
evolve through a genetic algorithm. Agents interact with their environment and between
each other through the traces that their behaviors leave in such an environment.

Biological plausibility aside, the simulations are designed to provide an operational model
of stigmergic cues together with a principled way to understand their possible uses. By
making explicit the transition from (1) a multi-agent system in which agents individually
look for their resources to one in which (2) each agent indirectly coordinates with what
the other agents do (stigmergic self-adjustment) and, finally, (3) to a situation in which
each agent acts also to send a message about what kind of resources are available in a
risky environment (stigmergic communication), the simulations offer a precise analysis of
the difference between traces that are just signs with a behavioral content and traces that
are signals with a behavioral message.

8.2 Stigmergy: Widening the Notion but Not Too Much

8.2.1 A Tale of a Wrong Story

The term stigmergy has been coined by the French entomologist Pierre-Paul Grassé to ex-
plain the behavior of termites during nest-construction [Grassé, 1959]. The term comes from
the combination of two Greek words: “stigma”, meaning a puncture or sting (by extension,
whatever provokes a reaction), and “ergon”, meaning work. Stigmergy, then, refers to the
role of work in stimulating a reaction of other agents or, with Grassé: “the stimulation
of the workers by the very performances they have achieved” [Grassé, 1959]. Stigmergy is
considered by Grassé as a peculiar kind of stimulation: the consequence of previously ac-
complished work. It is such consequence that drives and orients additional construction:
“the significant stimuli imperatively direct workers’ responses” [Grassé, 1967].

The concept was introduced as the key factor to explain how complex structures such as
termites’ nests [Grassé, 1959] (or a complex problem-solving like rebuilding a tunnel-gallery
after a sudden damage [Grassé, 1967]) can be regulated without, clearly, any complete plan
being known by the termites. The complexity of a nest is astonishing and requires the
collaborative coordination of a huge number of workers. Exploiting the stimulating factor
of accomplished work was considered as the key to success.
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Though many were able to replicate the original findings of Grassé, soon the importance
of stigmergy was also somehow challenged (see [Downing and Jeanne, 1988] for a review of
these critiques). Several researchers remained skeptical about the fact the stigmergy could
be sufficient for the coordination of complex building tasks, especially when the construction
behavior was not strictly sequential (i.e., composed of an ordered succession of phases, one
causally connected with the other in a sequential fashion). Other cues were also suggested
to be necessary in order to shift between different activities or to stop the whole endeavor
once completed.

Curiously enough, in the very same year in which Grassé published his considerations
on termites’ construction behavior, another great entomologist, Edward O. Wilson, had
discovered that ants, by leaving pheromones in their environment, create odor trails that
attract other ants [Wilson, 1959].

It is, however, due to the work of Bruinsma [Bruinsma, 1979] that the role of pheromones
also in coordinating termites’ nest construction was finally unraveled. Bruinsma discovered
that both pheromone trails and the impregnation of soil pellets with pheromone are critical
factors in attracting other termites and orienting their activities. The existence of an initial
deposit of soil pellets impregnated with pheromone stimulates workers to accumulate more
material. This reaction originates a positive feedback mechanism because the accumulation
of material reinforces the attractivity of deposits through the pheromones emitted by those
materials.

The emergence of pillars, walls and royal chambers in termite nests can be accounted for
once the self-organizing properties of this kind of interactions are understood. In particular
it has been suggested that termites’ behavior follows just a single pattern (i.e. picking
up and depositing a soil pellet, if pheromone is present) [Bonabeau et al., 1997] and this
building behavior is modulated by several environmental conditions (e.g., when an air stream
drives molecules of pheromones in a given direction the pattern is influenced), not last the
fact that the environment is changed by work of other termites. It is self-organization that
explains the emergence of a structure at the global level from interactions among its low level
components, without any explicit coding of this process in the individual agents [Garnier
et al., 2007].

The basic intuition of Grassé was in the end right: no sophisticated cognitive processing is
performed by the termites in order to construct their nest. However it is the self-organizing
dynamics enabled by the properties of pheromone (i.e. its additivity and its decadence rate)
that regulate and modulate termites’ behaviors.

Unfortunately, it seems that stigmergy, defined by Grassé himself as a particular kind of
stimulation, does not play a distinct role in this process: it is not the nest under construction
that functions as significant stimulus for other termites. Environmental modifications due to
the construction activity do play a crucial role in modulating termites’ behavioral patterns
but not as stimuli for the termites.

If this fact is too embarrassing, one can, as Theraulaz and Bonabeau has done [Theraulaz
and Bonabeau, 1999], change the original conception of Grassé to include also the influence
of pheromone when left in the environment as a kind of stigmergy.

Indeed, as it has been explicitly recognized by Holland and Melhuish [Holland and Mel-
huish, 1999], the modern practice is to extend the definition of stigmergy by replacing
the sense of “work” crucial for Grassé (stigmergy as the product of work functioning as a
significant stimulus) to that of “any environmental change produced by the animal”.

Though for us this apparently innocent extension is to be resisted (see Sections 8.2.3 and
8.5.2 below), it has been a fortunate one. So much that, today, the fact that there exist two
main varieties of stigmergy is commonly accepted: the first being characterized by leaving
special markers in the environment (i.e. pheromones), the second being the exploitation of
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the results of the work so far achieved by the agents [Theraulaz and Bonabeau, 1999; Dorigo
et al., 2000; Parunak, 2006].

8.2.2 Is It Communication?

Though Grassé never mentioned it, stigmergy is also usually considered as a form of com-
munication.

Wilson has been the first to explicitly link stigmergy to a communicative process and
coined the name sematectonic communication (from the Greek “sema” for sign or token
and “tekton” for craftsman, builder) [Wilson, 1975]. Reviewing different communication
strategies in social animals, Wilson naturally conceived stigmergy as a particular kind of
communication exploiting the “structures built by animals”.

More recently, many researchers have been explicit in considering stigmergy as a peculiar
form of indirect communication, and more precisely: “communication by altering the state of
the environment in a way that will affect the behaviors of others for whom the environment
is a stimulus” [Kennedy et al., 2001] (see also [Dorigo et al., 2000; Mataric, 1995; Tummolini
and Castelfranchi, 2007]).

Though clearly, there are cases that can be defined as stigmergic communication, stig-
mergy by itself is not necessarily so (see Section 8.3.4 and the simulation results described
in 8.6.4). The main reason why stigmergy is so commonly seen as a part of a commu-
nicative process lies in the fact that stigmergy has been always approached in the limited
context of collaborative activities (i.e. nest construction, collective sorting, collaborative
foraging, division of labor, clustering etc.), and collaborative tasks such these immediately
create the conditions for communicative behaviors in which an agent aims (functionally or
intentionally) to influence another one.

Though stigmergic communication is useful as a coordination mechanism in cooperative
behavior, there is room for a different use which we name stigmergic self-adjustment. In Sec-
tion 8.3.4 by providing a principled distinction between self-adjustment and communication
as two ways to coordinate one’s behavior, we will fill that room.

8.2.3 Stigmergic Cues as Practical Behavioral Traces

Apart from his classification of stigmergy as a kind of communication, Wilson also noticed
that the role of stigmergy in eliciting additional work was clearly a special case and offered
the example of male crabs that build structures to attract females for reproductive pur-
poses. He felt that Grassé’s characterization was too restricted, and wanted stigmergy “to
denote the evocation of any form of behavior or physiological change by the evidences of
work performed by other animals, including the special case of the guidance of additional
work” [Wilson, 1975].

Though this is certainly sensible, the use of work in a strict sense is dispensable too. Why
do we want to restrict the phenomenon to the construction of something? Why excluding
a simple footprint?

On the other hand, Holland and Melhuish [Holland and Melhuish, 1999] suggestion
(“any environmental change produced by the animal”) is too broad, because it would over-
generalize the original intuition of the French entomologist. Stigmergy would simply refer
to any kind of indirect influence, and any road sign would qualify as a case of stigmergy.

How can we reasonably generalize the notion of stigmergy?
Here is our proposal. The basic intuition of Grassé was that the traces of “work” left in

the environment might become significant stimuli by themselves for an agent. A trace is the
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effect of any behavior persisting in the environment. But what behaviors are the relevant
ones?

At a first approximation, we can say that relevant behaviors are those whose goal or func-
tion is a practical one: i.e. any behavior that is not adapted just to influence another agent
counts as a relevant practical one. Hence, from this perspective, stigmergy occurs whenever
another agent’s behavioral trace (a persistent effect of a practical behavior whatsoever) is
used as guide for one’s own future behavior.

In other words, there is a case of stigmergy whenever a behavioral trace of an agent is
also a cue for another organism. Cue is a notion used by biologists precisely to refer to
any (animate or inanimate) feature in the environment, that an agent is adapted (thanks
to evolution or learning) to use as a guide for future actions [Hasson, 1994]. Though many
stimuli are in principle detectable by the sensory organs of an animal, only a subset of them
are actually cues (i.e. are guides for action).

Very close to the spirit of Grassé’s original intuition, in our approach, stigmergy refers
to a subset of cues and, in particular, to the practical behavioral ‘traces’ we leave around
whenever we act in a physical world.

The heuristic value of this precise definition, of course, is to be judged against its prag-
matic consequences, that is, by the way it helps to identify and understand phenomena
that would be, otherwise, obscured. The next two sections are thus devoted to explore such
consequences.

8.3 Two Uses of Stigmergy in Coordination

The most dramatic fact of living in the same world is that the actions of an agent can
interfere with the success of those undertaken by others [Castelfranchi, 1998]. Sociality is
first of all due to this very basic condition. In fact, beyond one’s own individual qualities,
there is a social component behind the evolutionary and practical success of an organism.
And this social component is mainly due to interference, and the opportunities and obsta-
cles it creates. How do agents deal with interference? Is communication necessary to solve
interference problems?

In order to set the stage for understanding two distinct uses of stigmergic cues, in this
section we clarify the relationship between coordination and communication.

8.3.1 Coordination and Cues of Interference

At the simplest level coordination is a form of individual social action [Castelfranchi, 1997].
Coordination is coping with positive and negative interference by means of adaptation
(thanks to evolution, learning, reasoning or design). In particular, to coordinate in a social
context, an individual agent takes into account the interference created by another agent in
one’s own action, or better, coordination is adaptation to another agent’s behavior in order
to increase one’s success∗.

While in negative interference the behavior is adapted to an obstacle, in positive inter-
ference the behavior is adapted to an opportunity. In cases of reciprocal coordination, the
agents’ behaviors are adapted to each others.

∗In this chapter, we are interested only in “social” coordination between the behaviors of different
agents. Non-social kinds of coordination such as the coordination of distinct behaviors of a single agent
are therefore excluded.
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More precisely, the agents need to detect some cue in the environment which predicts
such interfering conditions. As stated above, a cue is whatever one is adapted to use as
a guide for future actions [Hasson, 1994]. On this basis coordination can be more clearly
defined as adaptation by reading cues of interference.

There are, however, two fundamental ways to adapt by means of these cues of interference:
(1) the agent changes his own behavior to avoid the obstacle or to exploit the opportunity
(self- adjustment) or (2) the agent changes his behavior in order to influence the behavior
of the interfering agent either by impeding or inducing such behavior (hetero-adjustment
or influence). See Table 8.1.

TABLE 8.1 Two strategies for solving interference problems
Coordination by self-adjustment Coordination by hetero-adjustement or influence

Negative Interference Avoidance Impediment
Positive Interference Exploitation Inducement

Finally, though coordination is based on such cues of interference, this does not mean
that coordination can only be direct : via the detection of those cues that are the interfering
behaviors themselves. Indirect coordination is possible whenever acting on the basis of some
cue other than the behavior of some agent, one is also adapting one’s own behavior to those
of others. In traffic, for example, each of us individually act on the visual cues provided by
the traffic lights, while at the same time, we also coordinate indirectly with all the others
whose behavior we do not directly perceive.

8.3.2 Communication and Signals

We have seen that an agent can solve an interference problem in a more active way than
by mere self-adjustment. The agent, in fact, can actively eliminate an obstacle or create an
opportunity. In other words, one can influence the others to one’s own benefit. Coercion is
an obvious way to do so. Another is communication.

The most general approach to communication can be found in biology, where it is usually
approached as the transfer of a signal from an agent to another one. When communication
is defined in this way, of course, all the explanatory burden is on a clear notion of signal,
which two leading scholars, Maynard-Smith and Harper, define as: “any act or structure
which alters the behavior of other organisms, which evolved because of that effect, and
which is effective because the receiver’s response has also evolved” [Maynard-Smith and
Harper, 2003].

This way of understanding communication as signaling has the immediate advantage of
making explicit that, at its core, communication is a form of influence, hence a peculiar
kind of coordination. Communication, however, is distinct from coercion because the “the
receiver’s response has also evolved”. Being the product of evolution, learning, reasoning
or design, receiver’s response is in her own interests, while in coercive coordination this is
not the case. If a stag pushes another one backwards, this behavior is not a signal. If the
stag roars and the other animal retreats it is a signal because the retreating is evolved (or
learned, decided or designed).

Moreover, the fact that the action or structure is also evolved because of its influencing
effect makes clear that the action or structure is not only a cue. While a cue is defined only
relatively to the agent using it, a signal is defined relative to its influencing effect on the
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behavior of others which benefit, first of all, the agent who produces or manifests it.
Given this definition of communication, it is also simple to distinguish its direct and

indirect varieties. In direct communication, the signaler’s behavior or structure itself is the
signal which is interpreted by another agent. Differently, indirect communication exploits
signals that persist in the environment and that are effective in their influencing function
notwithstanding the absence of the signaler itself.

8.3.3 Behavioral Communication and Implicit Signals

The above definition of communication, however, also suggests that signals are essentially
products of cooperation in which both parties benefit from their exchange. Though a reliable
communicative system is one that is evolutionary stable, an unstable but deceitful system, in
which only the signaler benefits from the exchange, is still a communicative system after-all.

What is sufficient for a signal, for us, is just that it is defined relatively to the signaler’s
benefit and that it is at least a cue for some other agent who has evolved to respond to
it as a cue but not necessarily as a signal: a signal is any behavior or structure that alters
the behavior of other organisms, which evolved because of that effect, and which is effective
because that behavior or structure is a cue for the receiver. The evolutionary advantages of
the signaler and the receiver might diverge.

This is the kind of signal that we call implicit, and that characterizes a peculiar kind of
communication: behavioral implicit communication [Castelfranchi, 2000, 2006a].

Usual practical behaviors in fact are meaningful and can become cues for other agents to
be used as guides for future actions. Interference is the reason why agents living in a shared
world will become attuned to such cues, and will become behavior readers to improve their
coordination abilities. However, once agents are behavior readers, those, whose behavior is
read, can start exploiting this fact to their own advantage. Though their behaviors maintain
their practical aim (i.e., in traffic, a U-turn behavior), by being read and understood by other
agents observing it, the practical behavior can be done also for influencing other agents by
the very production of this behavioral cue (i.e. an agent can wait to see if other drivers are
noticing the U-turn behavior before doing it because he intends to use this behavior also as a
signal with the content: “I’m doing a U-turn” and so provoking their slowing down). As this
example clarifies, beyond being a sub-case of coordination, a specific use of communication
can also be a coordination mechanism. Since coordination is in general any adaptation by
means of cues of interference, communication can also be an instrument for coordination
by self-adjustment. In fact, when communication is focused on the production of cues of
interference (e.g., by signaling an action one is going to perform), then communication is
clearly one of the most powerful coordination mechanisms that we, and our agents, can take
advantage of.

8.3.4 Stigmergic Self-Adjustment and Stigmergic Communication

It is now possible to specify two distinct uses of stigmergy as analyzed in Section 8.2.3:
stigmergic self-adjustment and stigmergic communication.

Stigmergic self-adjustment amounts to the process of coordination merely by means of
stigmergic cues. That is, adaptation by the detection of practical behavioral traces, i.e. the
effects of practical behaviors registered in the environment. Because the cue is the effect
of a behavior and not the behavior itself, stigmergic self-adjustment is a kind of indirect
coordination.

Differently, stigmergic communication is influence by an evolved (or learned, reasoned,
designed) production of these stigmergic cues. Given the notion of behavioral implicit com-
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munication, it is also clear that stigmergic communication is implicit in the sense that the
stigmergic signals are effective because the effects of practical actions are cues for other
agents (i.e. traces left and accessible in a shared environment that function as implicit sig-
nals). In stigmergic communication, the messages that are transmitted are behavioral ones,
i.e. the implicit signals primarily refer to the agents’ behaviors or what a behavior can be
a diagnostic or prognostic sign of (for an analysis of the kinds of meanings that can be
transmitted with stigmergic communication see [Tummolini and Castelfranchi, 2007]). Fi-
nally, because the signal is an effect of a behavior and not the behavior itself, stigmergic
communication is a kind of indirect communication.

As for the more general case, stigmergic communication is also a powerful coordination
mechanism for at least two reasons: firstly, because it is indirect, and, secondly, because it
can exploit practical behavioral traces as cue of interference. While the former property is
almost universally acknowledged, the latter has been too quickly forgotten. One of the main
aims of this chapter is precisely to rectify such mistake.

8.4 Stigmergy in Cooperation and Competition

Stigmergy has been discovered in the particular context of collaborative nest construction.
However, the focus on the role of stigmergy in collaboration has turned to be a bias orig-
inated from this initial domain of investigation. Limiting the attention to collaborative
scenarios have impeded to notice, for example, that there are natural uses of stigmergic
cues also in competitive and conflict situations.

8.4.1 Cooperative and Competitive Interference

In particular, when the goals or the fitness of the agents are such that each benefits from
others’ success there is room for cooperation. More precisely, when interference is positive
this entails that the behavior of an agent facilitates the success of the others such that acting
for a common goal (i.e. cooperate) can be mutually advantageous. On the contrary, very
often it is the case that an increase in fitness or the fulfillment of one’s goals compromises
the success of others (negative interference). In this case, the agents acting in ways that are
reciprocally destructive are, even if unaware, in competition.

Of these very basic kinds of interference, there also more specific instances. Cooperation,
for example, can be obtained thanks to collaboration, which means that not only the agents
functionally or intentionally favor each other, but also that they adopt the goal of each
other. Goal adoption is the process of internalizing the goal of another agent as one’s own
and acting for another agent [Conte and Castelfranchi, 1995]. Hence, collaboration is a
specific way to achieve cooperation: it is cooperation via mutual goal adoption.

Differently, competition can originate conflict which is, again, a specific way in which
agents might compete. In conflict in fact, agents are motivated by the fact that the others
should not fulfill their goals. As in the case of collaboration, also in conflict the agents take
into consideration the goals of the others but in order to frustrate them.

In-between pure cases of cooperation and competition, there are of course many situations
that are partly cooperative and partly competitive but a simpler picture is enough for the
aims of this chapter.
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8.4.2 Collaborative and Conflictual Stigmergic Coordination

Notwithstanding its relevance for cooperation and collaboration, it is evident that there is
plenty of competitive and conflict situations in which stigmergy is used.

Collaborative activities, where the agents are ready to help each other to reach a common
goal, are contexts in which stigmergy is obviously natural. Take for example the cooperative
task in which two agents collaborate in answering customers’ orders in an Italian bar.
It is common, during breakfast for example, that many people ask at the same time for
very different things: a coffee, a cappuccino and a sandwich for instance. How can the
different orders be correctly processed? Who has ordered what? Which is the guy who
ordered the cappuccino? A very diffuse strategy to solve this problem is to employ stigmergic
collaborative communication. While, for instance, a waiter executes the orders and starts
preparing the coffee, the cappuccino and picking the sandwich, the other adaptively changes
the environment. Given that the shapes of the dishes where the three items are delivered
to the customers are distinctively different, one waiter immediately reacts to the orders by
associating each customer with her appropriate dish. In this way, when the items are ready,
the other waiter can easily associate each customer with the correct order. While no verbal
communication is usually employed, the collaborative task is smoothly solved relying only
on indirect communication through stigmergic cues.

Differently, consider the role of fences. Clearly such constructions are there to function as
physical obstacles for strangers. Fences are built to avoid that strangers enter in a protected
area, hence they are conflictual structures. Though they provide physical interference if
somebody intends to trespass them, more than often they are not unavoidable obstacles.
How can a fence be effective? The answer turns to be simple: by being also a stigmergic
signal. In fact, as a practical behavioral trace left there by somebody, every fence has also
a behavioral content related to the conflictual action of erecting it. The combination of
its practical function and its being a stigmergic cue, for those that understand it, is often
enough to achieve its intended purpose.

8.5 Why Pheromonal Communication Is Not Stigmergic

At the end of Section 8.2.1, we have suggested that the common practice of acknowledging
the exploitation of special markers left in the environment is a misleading extension of the
notion of stigmergy. Pheromones are probably the most diffuse example of stigmergy be-
tween the practitioners in fields like Artificial Life, Swarm Intelligence, Collective Robotics
and, more recently, Multi-Agent Systems. Being so widely accepted as the prototypical case,
our insistence on their being not stigmergic will arise much skepticism.

In this section, we intend to clarify this issue and to explore the relevance of stigmergy
in the evolution of pheromonal communication.

8.5.1 Pheromones Are Not Stigmergic Cues

The use of pheromones is not a case of stigmergy because these chemical molecules are not
practical behavioral cues. A pheromone in fact is not only a cue. It is a chemical molecule
whose sole function is to excite another agent (again from the Greek, “pherein”, to carry or
transfer and “hormon”, to excite or stimulate), that has evolved for this influencing effect,
and which is effective because the response has also evolved [Karlson and Luscher, 1959;
Wyatt, 2003]. Hence a pheromone is, by definition, an explicit signal.

What pheromones and stigmergic cues have in common is that they are traces, i.e.,
products of behavior that persist in the environment and this property can have useful

© 2009 by Taylor and Francis Group, LLC



Stigmergic Cues and Their Uses in Coordination: An Evolutionary Approach 253

consequences, not least by enabling self-organization or self-assembly. But widening the
notion to include all kinds of indirect communication is, on the other hand, losing sight of
what is peculiar of the stigmergic case.

Consider a familiar example. When driving in traffic, it is one thing to stop because there
is a red light in front of you, it is another one to stop because the car in front of you has
stopped. While the red light is an explicit signal left in the environment by somebody, the
car in front of you is just a cue of a practical behavioral kind, a stigmergic kind.

Beside restoring Grassé’s first conceptualization (see Section 8.2.3), our more restrictive
notion avoids collapsing stigmergic communication into any kind of indirect communication.

8.5.2 The Role of Stigmergy in the Evolution of Pheromonal Commu-
nication

Understanding stigmergy from this perspective is also a contribution for a better explana-
tion of explicit communicative systems themselves.

How in fact can an explicit communicative system evolve if not from an implicit one? As it
has been suggested in the biological study of animal communication, a signaling system can
evolve from a process of “ritualization” of a behavior that did not evolve for communication
at the beginning [Tinbergen, 1952] but was already used as a cue by other individuals to
gain information. And the same is true for pheromonal communication.

As stated in Section 8.5, pheromones are not stigmergic cues but chemical ones emitted
only for communicative purposes. Pheromones are explicit signals which, most probably,
derived from stigmergic cues. In [Sorensen and Stacey, 1999], it is, for instance, offered a
model of the evolution of pheromonal communication between goldfishes for reproductive
purposes. In this model it is speculated that, at the beginning, hormonal products were
released by females to water just as a side effect of ovulation. Given the relevance of these
hormonal traces as predictors of the biological state of a female, the male soon became
attuned to these traces as reproductive cues. Finally, by exploiting this fact, evolution has
driven toward a specialization in the production of these hormones just for influencing pur-
poses, and turning the hormones into real pheromones. Hormonal cues are in our approach
stigmergic because they are traces of a process other than communication (i.e., ovulation).
When specialized in pheromones, they become explicit signals.

Though the evolutionary transition from implicit to explicit signals is a matter for fur-
ther research, keeping stigmergic communication clearly apart from other kinds of indirect
communication is of extreme importance if we want to understand explicit communication
system themselves (i.e., their evolution).

8.6 Understanding Stigmergy through Evolution

In order to clarify even further the notions so far discussed, in this section we describe a set
of agent-based simulations intended as operational models of stigmergic cues and their uses
in coordination. In particular, we simulate a population of artificial agents living in a virtual
environment containing safe and poisonous items (‘fruits’): eating safe fruits increases the
energy (fitness) of an individual, while eating poisonous ones decreases it. If nothing in the
physical properties of these items can be used for discriminating the good resources from
the bad ones, how can the agents be successful in such a risky environment?

Knowledge of this properties is the prototypical kind of knowledge that is acquired by
direct experience with the external environment. However when the risks associated with
experience are high, an evolutionary pressure exists to learn indirectly exploiting the experi-
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ence made by others. Omnivores, for example [Visalberghi and Addessi, 2000], are character-
ized by food neophobia, i.e., a form of hesitancy to eat novel food. Neophobia is considered
as an efficient behavioral strategy to avoid the risk of ingesting poisonous substances. It is
also known, however, that social context affects the acceptance of novel food by moderating
such instinctive hesitancy.

In this Section, we explore a possible strategy to solve this problem by showing that,
given specific circumstances, the individual capacity to categorize some natural kinds as
‘safe’ or ‘poisonous’ might rely on stigmergic cues left by other agents that, moreover, act
in order to facilitate such individual categorization.

In our simulations, the behavior of the agents is governed by artificial neural networks
whose free parameters (i.e., the weights of the networks’ connections) are encoded in the
genome of the agents and evolve through a genetic algorithm. Agents interact with their
environment and between each other through the traces that their behaviors leave in such
an environment. By way of such an agent-based model, we explore the evolution of three
kinds of behaviors:

1. the basic practical behavior;
2. the use of practical behavioral traces as cues of positive interference (stigmergic

self-adjustment);
3. the use of such stimergic cues as implicit signals (stigmergic communication).

Though the simulations are offered only as operational definitions of our domain of in-
vestigation (i.e., stigmergy) and not as a plausible biological explanation of this form of
social facilitation, they may also suggest that a communicative process might be discov-
ered, whereas today biologists seem to overlook this possibility.

8.6.1 The Basic Model

We simulate a population of 100 agents living in an environment composed of 5 ‘islands’
(Figure 8.1). Each island contains 2 ‘trees’ with 20 ‘fruits’ each. One of the trees produces
edible fruits, while the fruits produced by the other tree are poisonous. Eating an edible
fruit increases an agent’s fitness (i.e., its probability of reproduction) of 1 unit, while eating
a poisonous fruit decreases an agent’s fitness of 2 units. Poisonous and edible fruits (and
trees) are perceptually identical, so agents cannot rely on direct perceptual cues to decide
from which tree to feed. Each agent visits all the 5 islands where it can stay for at most
4 time steps. In each time step an agent can decide whether to eat a fruit from one of the
two trees or to leave the island.

Agent’s behavior is governed by an artificial neural network with 4 groups of input units
sending connections to a single group of 5 hidden units which in turn connects to a group
of three action units (Figure 8.2). The three possible actions are: (a) eat a fruit from the
first tree, (b) eat a fruit from the second tree, or (c) leave the island.

Actions are decided according to a winner-takes-all mechanism: in each time-step the
agent performs the action corresponding to the action unit with the maximal activation.
When the agent decides to eat a fruit from a given tree, a random fruit disappears from that
tree and the fitness of the agent is updated according to the quality of the eaten fruit (+1
for edible fruits, −2 for poisonous ones). The first two groups of input units are composed
by 20 units each, with each unit representing the presence/absence of a particular fruit in
one of the two trees of an island.

Activation is binary: if the fruit is present, the corresponding unit is activated (1), oth-
erwise it is not (0). The third group of input units is composed by 2 units representing the
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i 1 i 2

i 3

i 4i 5

FIGURE 8.1 The environment. The five islands (i 1-5) with two trees each (one with edible and one
with poisonous fruits. At the beginning of a trial each tree has 20 fruits). See the main text for details.

feedback from the agent’s ‘body’ regarding the quality of the last eaten fruit: during the
first time step in an island, no fruit has been eaten hence both units are silent (0); during
the successive time steps, one of the two units is highly activated (10) depending on whether
the last eaten fruit was edible or poisonous. The last group of 3 input units constitutes a
memory of the last performed action: each unit corresponds to one action and it is highly
activated (10) if that action has been the last to be performed and silent otherwise (0).
(During the first time step in an island, no action has been performed; hence, all the three
units are silent.)

We simulate a population of 100 individuals evolving through a genetic algorithm. Each
individual lives for 5 trials, where a trial consists in visiting all the five island (eaten fruits
re-grow between one trial and the other). After all individuals have lived their lives, their
fitness is calculated according to the following formula:

f (x ) =
∑T

t=1

∑I
i=1 ene − pnp

TIC
(8.1)

where ne and np are, respectively, the number of edible and poisonous fruits eaten by x , e
and p are two constants (set to 1 and 2, respectively), and T , I , and C are the number of
trials (5), islands (5), and maximum cycles spent in an island (4), respectively.

The genome of individuals contains all the connection weights of the neural network,
with each free parameter being encoded as an 8-bits string, whose value is then uniformly
projected in the range [−5.0, +5.0]. The 20 best individuals of each generations are selected
for reproduction and generate 5 offsprings each, which inherit their parent’s genome with
a 0.04 probability for each bit of being replaced with a new randomly selected value. The
evolutionary process lasts 250 generations.
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Fruits Tree 1 (20)

Hidden (5)

Eating feed-back (2)Fruits Tree 2 (20) Action memory (3)

Actions (3)

FIGURE 8.2 The neural network. Each block corresponds to a group of neurons. Numbers in parentheses
correspond to the numbers of units of the group. Arrows represent all-to-all connections between groups.

8.6.2 Evolution of Practical Behavior

In this kind of simulation, which we will call “base-line,” individuals never interact with
each other, so they cannot evolve any form of social behavior. Since at their arrival on an
island the two trees are perceptually identical and contain the same number of fruits, agents
cannot but choose randomly from which tree to feed.

On the other hand, once they have eaten a fruit from a tree, agents can decide whether
to keep on eating from the same tree or to change tree depending on the bodily feedback
about the quality of the eaten fruit: if the fruit was poisonous agents have to change tree,
while if the fruit was edible agents have to keep on eating from the same tree.

Since there is no learning during individuals’ life, this kind of behavioral strategy must
evolve phylogenetically. This is in fact what happens in our simulations. Figure 8.3 shows
the average results of 10 replications (with different random initial conditions) of this base-
line simulation. Figure 8.3 (left) shows average fitness and the fitness of the best individual
during the 250 generations, while Figure 8.3 (right) shows average number of edible and
poisonous fruits eaten by the best individual of the last generation during each staying on
an island.
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FIGURE 8.3 Results of the base-line simulation. Left: Average and best fitness along the 250 generations.
Right: Average number of edible and poisonous fruits eaten by the best individual of the last generation
during each staying on an island. Average results of 10 replications of the simulation.
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Agents possessing the optimal behavioral strategy discussed above will eat on average 3.5
edible fruits and 0.5 poisonous ones during each visit on an island (0.5 poisonous fruits on
average when they have to randomly guess, and 0.5 + 3 edible, since during the second,
third and fourth choices the information about the previous action together with the bodily
feedback can be used for eating the fruits from the right tree).

Hence, the average expected maximal fitness would be (3.5 + 0.5 · (−2))/4 = 0.625.
The described optimal behavioral strategy did manage to evolve, indeed: at the end of

the 250 generations the best evolved individual has eaten on average about 3.7 edible fruits
and about 0.3 poisonous ones (Figure 8.3, right), thus reaching a fitness of about 0.8 (Figure
8.3, left).

The reason why the best individual reaches a fitness which is higher than the maximal
expected one is just chance: in each generation the best individual will happen to be the
one which, beyond possessing an optimal behavioral strategy, is also the luckiest, having
discovered the edible tree at the first choice more than the expected 50% of the times.

8.6.3 Evolution of Stigmergic Self-Adjustment and Indirect
Coordination

Living in a solipsistic world, agents of the base-line simulation can evolve only individual
practical abilities. In order to test whether our agents might evolve even social abilities, we
run a second set of simulations in which individuals are allowed to live in a social world.

This ‘social’ simulation runs exactly like the base-line one but for the following modifica-
tion. Each individual of the population shares its environment with 4 of its own clones (i.e.,
individuals possessing the same genome and hence the same neural controller). We make
agents interact (through their environmental modifications) only with their own clones be-
cause we are interested in the emergence of (stigmergic) communication, but we are not
interested in the problems of altruism which are typically posed by the evolution of com-
municative behaviors [Mirolli and Parisi, 2005, 2008]. Allowing interactions only between
clones assures us that no problem of altruism can arise, since in this way any possible al-
truistic behavior will favor only individuals possessing the same altruistic genes which code
for the behavior, thus guaranteeing that the behavior can pass through generations (this is
the strongest possible form of kin selection, [Hamilton, 1964]).

At the beginning of each trial, each clone is put in a different island where it stays for a
maximum of 4 cycles (less if it decides to leave the island earlier). After that, all the clones
change their islands so that during each round each island is visited by a different clone
and, after 5 rounds, each clone has visited each island. Like in the base-line simulation, the
same process is applied for 5 trials.

What makes this simulation interesting for our purposes is that, while in-between different
trials all the fruits of all the trees re-grow, within each trial they do not. The consequence
is that in this simulation the environment in which the agents live registers the traces of the
behavior of other agents.

In particular, in all but the very first round within a trial, the trees of an island will lack
the fruits eaten by the agents which have already visited that island. Since, as shown by the
results of the previous simulation, individuals do not eat randomly, but rather they tend to
eat much more edible fruits than poisonous ones, practical behavioral traces are meaningful :
the tree lacking more fruits is the edible one.

The results of this simulation (Figure 8.4) show that agents in the social condition are
in fact able to exploit the information provided by the traces left in the environment by
other individuals. In fact, in this condition the best evolved individual reaches a fitness of

© 2009 by Taylor and Francis Group, LLC



258 Multi-Agent Systems: Simulation and Applications

about 0.9 (Figure 8.4, left), which is significantly higher than the fitness reached by the best
individual of the base-line, individual condition.

This fitness increase is explained by the fact that the best individual of the social condition
eats an average of about 3.9 edible fruits and only about 0.1 poisonous fruits for each staying
on an island (Figure 8.4, right). This is in turn due to the fact that, in the social condition,
agents have to choose randomly which tree to feed to only during the first round of each
trials. During the other four rounds they can eat from the tree containing less fruits thus
avoiding more poisonous fruits and eating more edible fruits than the agents of the individual
condition.
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FIGURE 8.4 Results of the ‘social’ simulation. Left: Average and best fitness along the 250 generations.
Right: Average number of edible and poisonous fruits eaten by the best individual during each staying on
an island. Average results of 10 replications of the simulation.

This ability of exploiting the traces left in the environment by the actions of other agents
is a paradigmatic example of what we call stigmergic self-adjustment. In fact, the traces
left from previous eating behaviors become cues, stigmergic cues to which agents’ behaviors
are now sensitive. By acting on these cues, the agents indirectly coordinate their behaviors
toward the edible items, and avoiding the poisonous ones.

8.6.4 Evolution of Stigmergic Communication

In the social simulation just described the traces in the environment left by the practical
behaviors of eating fruits become stigmergic cues because they carry valuable information
which is exploited by the agents who perceive the traces so to increase their own individual
fitness.

On the other hand, they are still not (implicit) signals in that these cues are produced
exclusively for the practical purposes of isolated individuals, and not also for social ones
(i.e., in order to influence the behavior of others), as required by our definition of implicit
signals.

The practical behavior which produces the cues, i.e., the behavior of eating from the tree
with edible fruits whenever you can, is not affected in any way by the fact that there are
other agents which might use the traces of that behavior as cues.

In fact, agents of the social condition differ from the agents of the individual condition
just for the way they react to environmental cues. When there are no environmental cues,
i.e., in the first cycle of the first round of a trial, the behavior of the ‘social’ agents is exactly
the same as the behavior of the isolated agents: i.e., choose a random tree. And agents of
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the two conditions behave exactly in the same way also when the information about the
quality of the fruits is directly available to an agent from its own body. For instance, after
a fruit has been eaten, the behavioral rule of both kinds of agents is ‘change tree if the fruit
was poisonous while keep on feeding from the same tree if the fruit was edible’.

To distinguish proper stigmergic communication from mere stigmergic self-adjustment, it
is necessary that not only the perceiver of the trace modifies its behavior in order to exploit
the information provided by the trace, but also the trace producing behavior must, in some
way, be modified (for influencing). This does not necessarily mean that the behavior itself
will change in its morphology. It is also possible that the behavior remains the same, while
it is the conditions under which exactly the same behavior is produced which may vary.

In order to show how this is be possible we run a third set of simulations in which we
slightly modify the set-up of the social simulation in the following way.

In this new simulation, the increase of fitness provided by eating an edible fruit is no more
constant, but is proportional to the hungriness (h) of the eating individual. Hungriness is
1 each time the individual arrives in an island and decreases of 0.5 each time the individual
eats an edible fruit. Furthermore, each eating action has a cost (c) of 0.1 on individual
fitness. Hence, the fitness function used in this condition, which we will call the ‘hungriness’
simulation, is the following:

f (x ) =
∑T

t=1

∑I
i=1 hene − pnp − cna

TIC
(8.2)

where na is the number of eating actions performed by the individual.
The results of this simulation are shown in Figure 8.5. The results in terms of fitness

(Figure 8.5, left) are not surprising: both average and best fitness significantly decrease
with respect to the other two conditions because in this case edible fruits tend to provide
less energy (depending on hungriness) and because there is always a cost to be paid when
eating a fruit.

What is interesting here are the results regarding the average number of fruits eaten by
the best individual during each staying on an island (Figure 8.5, right). Given the conditions
of this simulation, an individual should never eat more than 2 edible fruits for each island:
in fact, after it has eaten 2 edible fruits an individual hungriness has decreased to 0, and
hence eating a third fruit would not increase fitness at all. On the contrary, it would in fact
decrease fitness since the individual would pay the cost associated to the eating action. But
the best individual of the last generation of this ‘hungriness’ simulation eats an average of
2.5 edible fruits for each island.

This pattern of eating behavior clearly cannot be explained by referring only to individual
advantages. The only function that eating more than 2 edible fruits can have is a social
function: that is, leaving more informative traces to forthcoming agents. If during the first
round on an island an individual would eat only two edible fruits before leaving the island,
then the next agent would have to discriminate between trees differing only of one or two
fruits (depending on whether the previous agent had chosen the edible tree first or had eaten
also a poisonous fruit). This would be of course theoretically possible, but it is evidently
too difficult for the simple neural networks possessed by our agents. In fact, consider that,
beyond this discrimination ability, the neural networks also have to encode all the other
behavioral rules described above, and that fruits are eaten randomly from a tree. Hence,
the discrimination ability must be general to all the positions of fruits in the trees.

The number of poisonous fruits eaten by the best individual of the hungriness simulation is
significantly less than that of the best individual of the individual simulation (i.e., about 0.5),
and quite the same as that of the best individual of the social simulation (i.e., about 0.1).
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FIGURE 8.5 Results of the ‘hungriness’ simulation. Left: Average and best fitness along the 250 gen-
erations. Right: Average number of edible and poisonous fruits eaten by the best individual during each
staying on an island. Average results of 10 replications of the simulation.

This means that the individuals of this condition do indeed exploit the information provided
by the traces left by other agents as efficiently as the individuals in the social condition. But
in this case the traces are proper signals and not mere cues because the behavior responsible
for the trace production has not only the practical function of increasing individual fitness
but also the social function of producing more informative traces for the individuals to
come∗.

Hence, this is a paradigmatic case of indirect behavioral implicit (i.e., stigmergic) commu-
nication. It is indirect because it exploits the traces left in the environment; it is behavioral
because these traces are the results of practical actions; it is implicit because the behavior of
producing traces has not lost its practical individual function (agents still need to eat, and,
in general, do eat for the individual selective advantage provided by eating); it is commu-
nication because the same practical behavior (in this case the conditions of its production)
has been slightly modified for influencing purposes, thus acquiring also the communicative
function of leaving more readable traces.

8.7 Future Work

Stigmergic approaches are nowadays gaining consensus in several distinct fields of com-
puter science. Due to its relevance for situatedness, stigmergy has been straightforwardly
adopted in robotics, and especially by bio-inspired approaches such as Swarm Intelligence
or Behavior-based Robotics. As a general mechanism for indirect interaction, it is now rais-
ing interest also in Multi-Agent Systems where open environments and huge numbers of
heterogeneous agents require new coordination mechanisms. To be fully integrated as first-
level abstraction, stigmergy, however, must be more clearly understood than is today. We
contend in fact that a principled approach to stigmergy will be essential for providing a new
engineering framework for MAS in which both direct and indirect communicative behaviors
will be possible at the same time.

∗The communicative behavior of eating more fruits than expected from a purely individualistic point
of view so to leave more informative traces for the agents to come is clearly an altruistic behavior. The
evolution of such a behavior is explained by the fact that interacting individuals are clones, meaning
that the producer and the receiver of the altruistic behavior always share the same (altruistic) genes.
Hence, the altruistic behavior can arise just because the cost for the agent eating one more edible fruit
is inferior to the advantage for the forthcoming agent of finding more informative traces.
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In this chapter, we have contributed to a more advanced understanding of this very
basic phenomenon by providing a precise definition of what stigmergy is, by distinguishing
stigmergic self-adjustment from stigmergic communication, and by presenting operational
definitions of these phenomena by means of a set of evolutionary agent-based simulations.

However, indirect and direct communicative systems still need further research in order
to understand their specific roles and possibly their mutual advantages and disadvantages.
Effective design of computational systems employing these mechanisms needs more research
on how these mechanisms might co-exist together by supplementing each the limits of the
other one.

Similarly, explicit and implicit kinds of communication will also be essential at the same
time because each of them fits different needs as natural societies, both of human and
animal agents, clearly show. In fact, natural language heavily relies upon more implicit
communicative capacities to expand the kind of meaning that can be communicated (i.e.
behavioral implicit communication is needed to formalize the Gricean speaker’s meaning).
The interplay between implicit and explicit communicative behaviors is however still an
open challenge that is left out for future research.

Even more than this, one of the major future challenges for the MAS community lies, in
our opinion, in designing self-organizing multi-agent systems capable of evolving by them-
selves their explicit communicative protocols on the basis of more primitive communicative
capacities like the ones we have explored in this chapter.

While in this chapter we have mainly adopted an evolutionary perspective with very
simple reactive agents as prototypical models, stigmergy and its uses are available also
for “cognitive” agents of the Belief-Desire-Intention kind. The relative benefits of enabling
stigmergy between deliberative agents is still however an open issue.

Finally, we are convinced that in human-human, human-agent, human-robot, agent-agent,
and robot-robot interaction the possibility of communicating through an action and its
effects and products could be extremely relevant. In fact, behavioral communication for
coordination (in particular stigmergy) has some nice properties and advantages that deserve
to be stressed. It is naturally and intrinsically ‘situated’ in space and time, and thus it
transmits information in a perceptual, non-mediated way without any special, arbitrary
codification of this kind of information which will necessary be somewhat ‘abstract’. This
information has also the very nice feature of not being discrete, digitalized, a characteristic
that sometimes might be critical.∗

8.8 Conclusion

Good old commercial airplanes were flown by the captain and the first officer by means
of physically connected control wheels. When the captain was in charge of conducting the
plane, the first officer was aware of his steering decisions just by sensing the movements
through his own wheel. Differently, modern cockpits took advantage of the advancements
in electronics, and have been designed with much more nice and small control wheels very
similar to contemporary joysticks. Invisible one from the other, both the captain and first
officer now have independent wheels that control the airplane once the corresponding of-
ficer is in charge. An unfortunate consequence of this technological innovation has been,
however, that the quality of the situation awareness in the cockpit has been compromised

∗We thank Stefano Nolfi with whom we discussed this point.
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[Norman, 1993]. In fact, the officers in these new cockpits need to rely much more on verbal
communication to understand what is happening, while situation awareness was guaranteed
before by means of a very simple case of stigmergic communication.

This story taken from aviation bears few similarities with what we have discussed in the
introduction. The shift from blackboard systems to multi-agent systems has been analo-
gously characterized by the abandonment of a form of stigmergic communication between
the agents to adopt the computational variety of verbal communication, that is Agent Com-
munication Languages.

Adopting the perspective defended in this chapter, Multi-Agent Systems are, in fact,
characterized by the use of direct explicit communication between the agents, that, as it is
nowadays widely contested, are difficult to employ in open systems with an unpredictable
number of heterogeneous agents. Shared and fixed ontologies and common communication
protocols cannot always cope with this complex dynamics.

In this chapter, we have argued for the relevance of a different coordination mechanism:
indirect implicit communication via practical behavioral traces (i.e., stigmergic communica-
tion). To do so, we have provided a clear definition of stigmergic cues as practical behavioral
traces. We have also distinguished two varieties of stigmergic uses in self-adjustment and
communication, and clarified the difference between explicit and implicit communicative
systems.

Though direct and explicit communication and indirect and implicit communication seem,
at a first glance, incompatible and alternative strategies, the problems in aviation teach
us an important morals: they are not! Having understood the importance of stigmergic
communication has helped aviation designers to exploit the relative advantages of both
communicative systems without relying only on the properties of one of them. Today’s
cockpits are designed to take advantage both of implicit and explicit communication between
the crew and exploit useful redundancies for safety reasons.

Similarly, the next generation of multi-agent systems should take advantage of all these
mechanisms in order to combine them in ways that today are still not foreseeable.

8.9 Acknowledgments

This research has been supported by the project SOCCOP (The Social and Mental Dynam-
ics of Cooperation), funded by the European Science Foundation under the TECT scheme.

References
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Multi-agent systems are used as a metaphor in modeling and simulation. At the level
of modeling it supports a view of the system under study as a community of interacting
autonomous entities. At the level of simulation it helps the design of simulation systems as
distributed concurrent entities that interact with their physical environment. The former
constitutes a consequent progression of micro-oriented modeling, whereas the latter builds
on distributed and online simulation approaches.

The agent metaphor has particularly propelled research on human behavior modeling.
Technical questions such as how to facilitate the modeling and simulation of multiple delib-
erative agents, have received a lot of attention (see also Part IV). However, often the more
urgent problem is to find the knowledge and data upon which developing and validating
these models can be based. This problem is addressed in the chapter “Challenges of Country
Modeling Databases, Newsfeeds, and Expert Surveys” by Barry G. Silverman, Gnana K.
Bharathy, and G. Jiyun Kim. Three different sources of knowledge are exploited, i.e., web
corpus of empirical materials, specific domain databases, and questionnaires, to construct
realistic profiles for the actors and issues at play in ethno-political conflict regions. Whereas
in these scenarios detailed models of individual actors play a central role, other applications
are content with comparatively coarse behavior models which describe many individuals.
To those belong crowd and traffic simulation.

Crowd simulation is concerned with analyzing the behavior of many individuals in too
little space. This behavior is determined by individual and collective behavior patterns, a
mix of competition for shared space, and collaboration due to, not necessarily explicit but
shared, social norms. The purpose of simulation studies ranges from a better understanding
of certain emergent phenomena to the concrete management of crowds in certain settings.
In the later case, we can further distinguish between offline analysis of the effects of different
infrastructures on crowd behavior and online support to handle specific strategies in crises
situations. Whereas traditionally cellular automata have been exploited for crowd simula-
tion, situated agent-based approaches offer new possibilities as they allow one to treat the
environment and the entities that inhabit it as first class citizens as Stefania Bandini, Sara
Manzoni, and Giuseppe Vizzari describe in the chapter “Crowd Behavior Modeling: From
Cellular Automata to Multi-Agent Systems”.

Vehicular traffic is another classical example of a multi-agent system: Autonomous agents
(i.e., the drivers) operate in a shared environment which is given by the road infrastructure.
Typically, agent-based models are built on a microscopic modeling approach describing the
motion of each individual vehicle. Scientists described the physical propagation of traffic
flows by means of dynamic models already in the 1950s. Since then the microscopic approach
has grown gradually in popularity because of higher computational power. This development
has been accelerated in the last decade by agent oriented modeling and simulation. In the
chapter “Agents for Traffic Simulation” Arne Kesting, Martin Treiber and Dirk Helbing
provide an overview of the state-of-the-art in traffic modeling and simulation. Detailed
driver models and the implications for an effective and efficient simulation of these micro
models are presented. Entirely new simulation approaches are required when it comes to
using vehicle to vehicle communication and predicting traffic based on incomplete knowledge
quasi online in vehicles.

Symbiotic simulation is one particular form of online simulation, which stresses the joint
benefit of a close interaction between simulation and physical environment for both. This
benefit is due to the data that allow a simulation to adapt itself to more precisely predict
dynamics, the physical environment in turn will benefit from these more reliable predictions.
As this type of simulation is driven by data, there is also a close relation to dynamic
data driven application systems. In the chapter “An Agent-Based Generic Framework for
Symbiotic Simulation” Heiko Aydt, Stephen John Turner, Wentong Cai, and Malcolm Yoke
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Hean Low present a range of symbiotic simulation approaches. At the core of designing these
different systems we find the agent metaphor, as the systems comprise multiple, concurrently
active units, whose composition and interaction is highly adaptive and which are in frequent
interaction with the environment.

Whereas in the above chapters, modeling and simulation of human behavior is at the core
of interest, the chapter on “Agent-Based Modeling of Stem Cells” by Mark d’Inverno, Paul
Howells, Sara Montagna, and Rob Saunders is dedicated to a new emerging area for model-
ing and simulation methods: Systems Biology. Systems Biology brings together researchers
from diverse areas such as Biology, Medicine, Physics, and Computer Science. Thereby, in-
silico experimentation is aimed at complementing wet-lab experimentation. Whereas con-
tinuous, deterministic macro models still prevail, discrete micro models are gaining ground
as well. In this context also agent-oriented approaches receive increasingly attention, as
they allow interpreting biological systems as a community of interacting entities that can
be individually traced. Particularly, in combination with suitable visualization techniques,
agent-based approaches allow a comprehensive and realistic modeling of biological systems
and can reveal new insights into the behavior of complex cellular systems.
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9.1 Introduction

According to expert practitioners and researchers in the field of human behavior modeling
([Silverman et al., 2002; Pew and Mavor, 1998; Ritter et al., 2003]), a common central
challenge now confronting designers of HBM (human-behavior-modeling) applications is
to increase the realism of the synthetic agents’ behavior and coping abilities. It is well
accepted in the HBM (human-behavior-modeling) community that cognitively detailed,
“thick” models are required to provide realism. These models require that synthetic agents
be endowed with cognition and personality, physiology, and emotive components. (We will
hereafter refer to these rich models as “cognitively detailed models” or “thick agents.”) To
make these models work, one must find ways to integrate scientific know-how from many
disciplines, and to integrate concepts and insights from hitherto fragmented and partial
models from the social sciences, particularly from psychology, cultural studies, and political
science. One consequence of this kind of integration of multiple and heterogeneous concepts
and models is that we frequently end up with a large feature space of parameters that then
need to be filled in with data.
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In recent years, modeling methodologies have been developed that help to construct mod-
els, integrate heterogeneous models, elicit knowledge from diverse sources, and also test,
verify, and validate models (see [Bharathy, 2006] for example). However, these methodolo-
gies have required extensive use of manual labor to develop each model. The development
of automatic techniques would significantly improve the efficiency of this process. In this
chapter, we will explore how a modeler can navigate, sift, and harvest the vast ocean of
data that today can be accessed with a keystroke in certain cases. We will use country
data as our theme. By “country data” we mean all possible sources of information that
can be used to instantiate agent-based models of complex social systems. Country data are
especially important when we integrate several models in order to build a realistic complex
social system. This kind of integration of models tends to produce a large feature space of
parameters that then needs to be filled in with data. There is no dearth of country data.
However, the challenge lies in finding the right data for the right slots.

The state-of-the-art for extracting relevant data is summarized in Figure 9.1, which shows
three parallel extraction pathways including (1) webscraping of newsfeeds, (2) extraction of
data from country databases, and (3) self-explanatory expert survey forms. These pathways
are the focus of this chapter. We examine what they consist of, how they may be utilized,
and what issues and challenges arise as we exploit them to rapidly generate agent-based
models. This is an exciting time to be working in this field; important breakthroughs seem
possible. At the same time, there are also many unsolved issues, and we review these in this
chapter as well. In the end, we believe that there is no single best route to obtaining our
information of interest, namely the information we need to determine our model parameters.
Instead, it seems wisest to fully utilize all three routes and to try to elicit the best possible
information through a careful triangulation. Accordingly, Figure 9.1 thus shows how we
conceptualize this triangulation.

To understand these issues, one must take an in-depth look at an exemplary agent-based
model and consider its data needs in relation to what the three previously mentioned auto-
mated extraction pathways can readily produce. As we explore our example, we will ask: In
what ways can the modeling and simulation community best marshal the volumes of coun-
try data now being made available in databases assembled by social scientists, area studies
specialists, and various governmental agencies, and international organizations (databases
that track not only the socio-demographics and politico-economic data, but also signifi-
cant events and the needs/values/preferences/norms of populations of interest)? Currently,
these databases- consisting, variously, of expert and mass surveys and opinion polls, con-
flict and event databases, socio-cultural and politico-economic indicators, human terrain
systems [Kipp et al., 2006], automated scraping of newsfeeds and websites, and more-are
not all updated frequently enough to capture the most up-to-date information and may not
be user-friendly enough to develop a unified database under a common format. Nonethe-
less, they are collected and maintained by regional and subject-area experts with in-depth
local knowledge and wisdom using cutting-edge survey methods and other reliable data
collection methodologies. Moreover, the growing interest in the development of various au-
tomated data extraction and consolidation techniques (e.g., General Inquirer [Stone et al.,
1966], Kansas Event Data System (KEDS) [Schrodt and Gerner, 1996], Opinion Analysis
System (OASYS) [Cesarano et al., 2006], Profiler+ [Young, 2001], ReadMe [Hopkins et al.,
2007], STORY [Fayzullin et al., 2007], to mention just a few) highlights both the possibility
and the promise of making these databases more user-friendly and the actual process of
data collection more efficient, especially with regard to capturing real-time news feeds from
various (web-based) sources around the world.

These automated techniques currently complement and can substitute to a certain ex-
tent most standard, labor-intensive data collection efforts. Our chapter provides a cursory
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FIGURE 9.1 Overview of New Approaches to Data Extraction and Rapid Generation of Agent-Based
Models. (Note: SMEs– Subject Matter Experts; DIME– Diplomatic, Informational, Military, and Economic
actions; PMESII– Political, Military, Social, Economic, Informational, and Infrastructure effects; HTT–
Human Terrain Tool; Intel/ESS– Intelligence collections/Every Soldier a Sensor– a military program; CMA–
Civil Military Affairs. Also, all arrows in all figures of this chapter indicate process direction and/or flow of
information.)

overview of these databases and techniques and suggests the next steps for the use of this
resource. These datasets and techniques are key assets, as we argue, for those interested in
the synthesis of two major agent-based modeling paradigms – the cognitive and the social.
Consequently, the modeling and simulation community loses a significant opportunity if it
fails to tap into this valuable resource. We pursue this argument by means of a case study
integrating a cognitive agent environment (PMFserv) and a social agent environment (Fac-
tionSim), which we then apply to various countries, regions, and topics of interest (Iraq,
Southeast Asia, the Crusades) to assess their validity and realism. Using the information
from these databases to populate such models with realistic agents improves their realism
and facilitates their refinement. Some information will also be set aside for later empirical
testing of these models and their observable implications with a view to achieving external
validity

As we explore this new frontier of (auto-generated) agent-based modeling using country
databases and newsfeeds, we ask: What can the field of modeling and simulation add to the
conventional studies of countries and regions typically performed by social scientists and
area specialists? Country databases have been assembled in order to add depth to the study
of countries and regions. In order for the data requirements of modeling and simulation to be
met by any one of these sources, a dialog must be initiated to determine what sorts of data
that the models actually need versus what is now collected. It is also worth studying whether
the modeling and simulation community can seamlessly exchange data with various social
science communities. Building on our experience at viewing countries as complex social
systems, we aim to outline what agent-based simulation might offer. That is, if we use the
data from country databases to help model the “parts” and their micro-decision processes,
can we observe macro-behaviors emerging that will aid the work of country analysts? We
recognize that, if our aim is to model and simulate a social system from the bottom up, then
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we need to approach this system with agent technology that covers both the social processes
that influence people and also the cognitive processes individuals use as they reason and
as they experience emotion. That is, we are interested in discovering what socio-cognitive
agents can offer to the study of specific countries or social systems, and we wish particularly
to model how diplomatic, intelligence, military, and economic (DIME) actions might affect
the political, military, economic, social, informational, and infrastructure (PMESII) systems
of a given country of interest.

Finally, as Sun [Sun, 2006] points out in his useful survey of the respective fields of social
agents and cognitive agents, there are very few environments that straddle both topics and,
consequently, provide socio-cognitive architectures. In this chapter, we illustrate one such
architecture to provide insight into its operations, its uses, and the validity of its outputs.
More importantly, we argue that this particular socio-cognitive architecture can serve as an
ultimate test-bed for evaluating numerous paper-based theories regarding the operations
(political, economic, and more) of our countries of interest. We further suggest that all
paper-based theories should be tested and implemented in relation to this architecture.
While this framework is relatively mature Commercial Off The Shelf (COTS) software,
we close with a discussion of future research needs focused on making new software tools
better able to support varied analyses of the PMESII (Political, Military, Economic, Social,
Informational, and Infrastructure) systems of the country of interest.

This chapter consists of eight additional sections following the introduction and corre-
sponding to many of the blocks of Figure 9.1: Section 9.2 – Cognitive Agent Modeling and
Major PMF Models; Section 9.3 – Social Agents, Factions, and the FactionSim Testbed;
Section 9.4 – Overview of Some Existing Country Databases; Section 9.5 – Overview of
Automated Data Extraction Technology; Section 9.6 – Overview of Subject Matter Expert
Studies/Surveys; Section 9.7 – Overview of the Integrative Knowledge Engineering Pro-
cess (evidence tables, differential diagnosis); and Section 9.8 – Concluding Remarks. In its
broadest reach, this chapter introduces and explores a new direction for the modeling and
simulation community aimed at capitalizing on a potentially rich symbiotic relationship
with the social science/area studies community.

9.2 Cognitive Agent Modeling

We will illustrate the data issue using PMFserv, a COTS (Commercial Off The Shelf)
human behavior emulator that drives agents in simulated gameworlds. This software was
developed over the past eight years at the University of Pennsylvania as an architecture
to synthesize many best available models and best practice theories of human behavior
modeling. PMFserv agents are unscripted, but use their micro-decision making, as described
below, to react to actions as they unfold and to plan out responses.

A performance moderator function (PMF) is a micro-model covering how human perfor-
mance (e.g., perception, memory, or decision-making) might vary as a function of a single
factor (e.g., sleep, temperature, boredom, grievance, and so on). PMFserv synthesizes dozens
of best available PMFs within a unifying mind-body framework and thereby offers a family
of models where micro-decisions lead to the emergence of macro-behaviors within an indi-
vidual. None of these PMFs are “home-grown”; instead they are culled from the literature
of the behavioral sciences. Users can turn on or off different PMFs to focus on particular
aspects of interest. These PMFs are synthesized according to the inter-relationships between
the parts and with each subsystem treated as a system in itself.
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9.2.1 Major PMF Models within Each PMFserv Subsystem

The unifying architecture in Figure 9.2 shows how different subsystems are connected. For
each agent, PMFserv operates what is sometimes known as an observe, orient, decide, and
act (OODA) loop. PMFserv runs the agents perception (observe) and then orients the
entire physiology and personality/value system to determine levels of fatigues and hunger,
injuries and related stressors, grievances, tension buildup, impact of rumors and speech acts,
emotions, and various mobilizations and social relationship changes since the last tick of the
simulator clock. Once all these modules and their parameters are oriented to the current
stimuli/inputs, the upper right module (decision-making/cognition) runs a best response
algorithm to try to determine what to do next. The algorithm it runs is determined by its
stress and emotional levels. In optimal times, it is in vigilant mode and runs an expected
subjective utility algorithm that reinvokes all the other modules to assess what impact each
potential next step might have on its internal parameters. When very bored, it tends to
lose focus (perception degrades) and it runs a decision algorithm known as unconflicted
adherence mode. When highly stressed, it will reach panic mode, its perception basically
shuts down and it can only do one of two things: cower in place or drop everything and flee.
In order to instantiate or parameterize these modules and models, PMFserv requires that
the developer profile individuals in terms of each of the module’s parameters (physiology,
stress thresholds, value system, social relationships, etc.).

As an illustration of one of the modules in Figure 9.2 and of some of the best-of-breed
theories that PMFserv runs, let us consider “cognitive appraisal” (Personality, Culture,
Emotion module) – the bottom left module in Figure 9.2. This is where an agent (or person)
compares the perceived state of the real world to its value system and appraises which of its
values are satisfied or violated. This in turn activates emotional arousals. For the emotion
model, we have implemented one as described in [Silverman et al., 2006b]. Implementing
a person’s value system requires every agent to have its goals, standards, and preference
(GSP) trees filled out. Most significant from the perspective of data production are GSP
trees. These are multi-attribute value structures where each tree node is weighted with
Bayesian importance weights. A Preference Tree represents an agent’s long-term desires
for world situations and relations (for instance, no weapons of mass destruction, an end
to global warming, etc.) that may or may not be achieved within the scope of a scenario.
Among our agents, this set of “desires” translates into a weighted hierarchy of territories
and constituencies (e.g., no tokens of leader X in resource Y of territory Z).

The Standards Tree defines the methods an agent is willing to employ to attain his/her
preferences. The Standard Tree nodes merge several best available personality and cul-
ture profiling instruments such as, among others, Hermann traits governing personal and
cultural norms [Hermann, 1999], standards from the GLOBE study [House et al., 2004],
top-level guidelines related to Economic and Military Doctrine, and sensitivity to life (hu-
manitarianism). Personal, cultural, and social conventions render inappropriate the purely
Machiavellian action choices (“One shouldn’t destroy a weak ally simply because they are
currently useless”). It is within these sets of guidelines that many of the pitfalls associated
with shortsighted Artificial Intelligence (AI) can be sidestepped. Standards (and prefer-
ences) allow for the expression of strategic mindsets.

Finally, the Goal Tree covers short-term needs and motivations that drive progress toward
preferences. In the Machiavellian [Machiavelli, 1965, 1988] and Hermann-profiled [Hermann,
2005] world of leaders, the Goal Tree reduces to the duality of growing/developing versus
protecting the resources in one’s constituency. Expressing goals in terms of power and
vulnerability provides a high-fidelity means of evaluating the short-term consequences of
actions. For non-leader agents (or followers), the Goal Tree also includes traits covering
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FIGURE 9.2 PMFserv, an example of Cognitive Architecture.

basic Maslovian type needs.
Figure 9.3 not only graphically lists some of the example∗ performance moderator func-

tions (PMFs) in the collection, but also shows how these different functions are synthesized
to create the whole (PMFserv). In this sense, Figure 9.3 is simply a more detailed repre-
sentation of Figure 9.2. The details of these PMFserv models are beyond the scope of this
chapter. Interested readers should consult [Silverman et al., 2006b, 2007] for details.

PMFserv has been deployed in a number of applications, gameworlds, and scenarios. A
few of these are listed below in Table 9.1.∗∗ To facilitate the rapid composition of new casts
of characters we have created an Integrated Development Environment (IDE) in which one

∗It is worth noting that because our research goal is to study best available performance moderator
functions (PMFs), we avoid committing to particular performance moderator functions. Instead, every
performance moderator function explored in this research must be readily replaceable. The performance
moderator functions that we synthesized are workable defaults that we expect our users will research and
improve on as time goes on. From the data and modeling perspective, the consequence of not committing
to any single approach or theory is that we have to come up with ways to readily study and then assimilate
alternative models that show some benefit for understanding our phenomena of interest. This means that
any computer implementation we embrace must support plugin/plugout/override capabilities, and that
specific performance moderator functions as illustrated in Figure 9.3 should be testable and validatable
against field data such as the data they were originally derived from.
∗∗Many of these previous applications have movie clips, tech reports, and validity assessment studies
available at http://www.seas.upenn.edu/∼barryg/hbmr. Several historical correspondence tests indicate
that PMFserv mimics decisions of the real actors/population with a correlation of approximately 80%
(see [Silverman et al., 2006a, 2008]). Some of these applications are discussed in greater detail in the
subsequent section.
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FIGURE 9.3 Summary of Implemented Theories in PMFserv (Note: NfC – Need for Cognition).
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knowledge engineers archetypical individuals (leaders, followers, suicide bombers, financiers,
etc.) and assembles them into casts of characters useful for creating or editing scenarios.

TABLE 9.1 PMFserv and Its Applications
Domestic Applications International Applications

• Consumer modeling

– buyer behavior

– ad campaign

• Petworld

– pet behavior

• Gang members

– hooligans

• Crowd Scenes

– milling

– protesting

– rioting

– looting

• Intifadah Recreation (leaders, fol-
lowers) – Roadmap sim

• Somalia Crowds – Black Hawk
Down (males, females, trained mili-
tia, clan leaders

• Thailand recreation (Buddhists
vs. Muslims – radicalization)

• Iraq DIME-PMESII sim – three eth-
nic groups, parliament (leaders and
15,000 followers)

• Urban Resolve 2015 – Sim-Red
(multiple insurgent cell)

• Many world leaders profiled

9.3 Social Agents, Factions, and the FactionSim Testbed

The previous section overviewed the modules of a cognitive agent and some of the com-
ponents that give it a social orientation. In this section we turn to additional modules
that turn the cognitive agent into a socio-cognitive one. Specifically, we introduce Faction-
Sim, an environment that captures a globally recurring socio-cultural “game” that focuses
upon inter-group competition for control of resources (Security/Economics/Political Tanks).
This environment implements PMFserv within a game theory/PMESII (Political, Military,
Economy, Social, Informational, and Infrastructure) Campaign framework. Many of the ap-
plications listed above have this game embedded in them. Each group of agents manages
the following set of models:

Security Model (Skirmish, Urban Lanchester)

Power-Vulneraility Computations [Johns, 2006]

Skirmish Model (force size, training, etc.)

Urban Lanchester Model (probability of kill)

Economy Model (Harrod-Domar model [Harrod, 1960])

Black Market

Undeclared Market [Lewis, 1954; Schneider and Enste, 2000]

Formal Capital Economy

Political Model (loyalty, membership, mobilization, etc.) [Hirschman, 1970]
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FIGURE 9.4 Models and Components that must be synthesized for a FactionSim Testbed (Note: DIME–
Diplomatic, Informational, Military, and Economic; DBs– Databases; Heidelberg Index [Heidelberg Conflict
Barometer]; PMESII–Political, Military, Economic, Social, Informational, and Infrastructure).

Institution Sustainment Dynamics

Follower Social Network – Cellular Automata [Axelrod, 1998; Epstein, 2002;
Lustick et al., 2004]

Small World Theory/Info Propagation [Milgram, 1967]

This environment facilitates the codification of alternative theories of factional interaction
and the evaluation of policy alternatives. FactionSim is a tool that allows conflict scenarios
to be established in which the factional leader and follower agents all run autonomously and
are free to employ their micro-decision making as the situation requires. A single human
player interacts with the environment and attempts to employ a set of DIME (Diplomatic,
Informational, Military, and Economic) actions to influence outcomes and PMESII (Politi-
cal, Military, Economy, Social, Informational, and Infrastructure) effects.

Factions are modeled as in the center of Figure 9.4 where each typically has a leader, two
sub-faction leaders (loyal and fringe), a set of starting resources (Economy, E, Security, S,
and Political support, P), and a representative set of over 1,000 follower agents. A leader
is assumed to manage his faction’s E- and S- tanks so as to appeal to his followers and to
each of the other tribes or factions he wants in his alliance. Each of the leaders of those
factions, however, will similarly manage their own E and S assets in trying to keep their
sub-factions and memberships happy. Followers determine the level of the P-tank by voting
their membership level. A high P-tank means that there are more members to recruit for
security missions and/or to train and deploy in economic ventures. As a result, leaders
often find it difficult to move to alignments and positions that diverge very far from the
motivations of their memberships.

FactionSim allows one to edit the profiles of all the factions of interest to match a given
scenario including:

Faction = { Properties {name, identity repertoire, demographics, salience-entry,
salience-exit, other} }
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Alignments {alignment-matrix, relationship valence and strength, dynamic alliances}
Roles {leader, sub-leader, loyal-follower, fringe-follower, population-member}
Resources (R) = Set of all resources, r: {econ-tank, security-tank, political support-

tank}
rr, f = {Resource level for resource r owned by faction f, rr, f ranges from 1 to 100}
Δr(a,b) = {Change in r on group a by group b} = Δr

T = Time horizon for storing previous tank values
Dev-Level = {Maturity of a resource where 1=corrupt/dysfunctional, 3=neutral,

5=capable/effective}
Actions (A) = { Leader-actions (target) = {Speak (seek-blessing, seek-merge, me-

diate, brag, threaten), Act (attack-security, attack-economy, invest-own-faction,
invest-ally-faction, defend-economy, defend-security)} }

Follower-actions (target) = {Go on Attacks for, Support (econ), Vote for, Join Fac-
tion, Agree with, Remain-Neutral, Disagree with, Vote against, Join Opposition
Faction, Oppose with Non-Violence (Voice), Rebel-against/Fight for Opposition,
Exit Faction}

Despite efforts at simplicity, stochastic simulation models for domains of this sort rapidly
become complex. The strategy space for each leader facing only two other leaders grows
impossibly large to explore. As a result, FactionSim’s Experiment Dashboard (left side
of Figure 9.4) permits inputs ranging from one course of action to a set of parameter
experiments the player is curious about. On the bottom left is the profile editor governing
the personalities of the leaders and sub-leaders, and of the key parameters that define the
starting conditions of each of the factions and sub-factions. Certain actions by the player that
are thought to alter the starting attitudes or behavior of the factions can flow between these
two components, e.g., a discussion beforehand that might alter the attitudes of certain key
leaders (Note: this action is often attempted in settings with real Subject Matter Experts,
or SMEs, and diplomats playing our various games).

All data from PMFserv and the socio-cultural game is captured into log files. At present we
are developing an after-action report summary module, as well as analytical capabilities for
design of experiments, for repeated Monte Carlo trials, and for outcome pattern recognition
and strategy assessment.

Now, with this framework in mind, let us look at different types of actors required to
construct the kind of social system models we have built. Frequently, we create two different
types of individual actors:

• individually named personae, such as leaders, who could be profiled, and
• archetypical members∗ of the society or of a particular group whose model pa-

rameters are dependent on societal level estimates.

In addition, we also have groups (collections of agents with leaders and followers) that
display some emergent properties of their own that are more than the sum of their parts.

∗For each archetype, what’s interesting is not strictly the mean behavior pattern, but what emerges from
the collective. To understand that, one expects to instantiate many instances of each archetype where
each agent instance is a perturbation of the parameters of the set of PMFs whose mean values codify the
archetypical class of agent they are drawn from. This means that any computerization of PMFs should
support stochastic experimentation of behavior possibilities. It also means that individual differences,
even within instances of an archetype, will be explicitly accounted for.
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We also model institutions and resources including institutional infrastructures and sup-
port plug-in of more detailed models of these dimensions. Typical institutions include the
economy (markets, jobs, banking), educational system, the health system, the judicial sys-
tem, the police and security forces, the utilities/infrastructure (e.g., energy sector, the trans-
portation system, and communication systems), as well as various institutions of civil soci-
ety.

Types of parameters for typical social system models in PMFserv entities are given below:

Agents (Decision Making Individual Actors):

• Value System/ GSP Tree: Hierarchically organized values such as short term
goals, long term preferences and likes, and standards of behavior including
sacred values and cultural norms

• Ethno-Linguistic-Religious-Economic/Professional Identities

• Level of Education

• Level of Health

• Level of Wealth

• Savings Rate

• Contribution Rate

• Extent of Authority over the Group

Groups:

• Philosophy

• Leadership

• Relationship to other groups

• Barriers to exit and entry

• Group Level Resources such as Political, Economic and Security Strengths

• Institutional infrastructures owned by the group

• Access to institutional benefits for the group members (Level Available to
Group)

• Fiscal, Monetary and Consumption Philosophy

• Disparity

Institutions:

• Capital Investment

• Damage / Decay

• Level of Corruption (indicates usage vs. misuse)

A toolset such as FactionSim (and PMFserv) will only be useful to the extent that it
can offer valid recreations of the actual leaders, followers, and populations of interest. In
terms of the validity of the current socio-cognitive agent synthesis, this research has tried
hard to examine its robustness and cross-sample fitness. FactionSim agents passed validity
assessment tests in both of two conflict scenarios attempted to date, as described fully in
[Silverman et al., 2008]. In the first scenario, a group of 21 named Iraqi leader agents in
5 factions (FactionSim agents) passed a Turing Test after extensive subject matter expert
evaluation by US military personnel, and in the second a separatist movement recreation
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involving a SE Asian leader (Buddhist) and his Muslim followers (also, FactionSim agents)
passed separate correspondence tests (with correlations of over 79% to real world counter-
parts). In the version of the Turing test we employed, a group of domain experts attempted
to distinguish between the behaviors generated using the models of the agents from those in
fact generated by the corresponding actual actors. Consequently, this validation procedure
may count as both a rigorous face validation test as well as a Turing test. Validity is a
difficult goal to achieve, and one can always devise new tests. A strong test, however, is the
out-of-sample test that these agents also passed. Thus the SE Asian leader and his followers
were trained on different data than they were tested against. Further, a complete model of
leader behavior was originally derived from earlier studies of the ancient Crusades [Silver-
man et al., 2005] and this model was applied to and evolved into the SE Asian and Iraqi
domains. The only features updated were the values of the weights for the value trees and
various other group relations and membership parameters – all derived from open sources.
So the structure of the leader model also survived scrutiny and passed two out-of-sample
tests relative to the Crusades dataset. While these may not be definitive tests, they are suf-
ficient for our purposes at this point as we establish that our descriptive agents are useful
components for computational what-if experiments, for training worlds, and to drive agents
in third party simulators.

In the subsequent three sections, elaborating on what was presented schematically in
Figure 9.1, we will overview the three main sources of empirical information we rely on
when building complex social systems using our socio-cognitive agent-based model. The
three main sources are: (1) country databases in Section 9.4, (2) empirical materials from
the world wide web in Section 9.5, and (3) subject matter experts in Section 9.6. In Section
9.5, we will focus on surveying the kinds of automated data extraction technologies that are
available today to obtain empirical materials from the web.

9.4 Overview of Some Existing Country Databases

Existing country databases, broadly speaking, fall into one of two categories.∗ The first
consists of event databases that record significant events of interest in numerous countries
around the world. These event databases are valuable resources in terms of providing in-
formation about parties and factions, their relative alignment, and the resources on which
they can draw in various internal conflict and crisis situations that include civil wars, coup
d’états, crackdowns, democratic and non-democratic extrications and internal power transi-
tions, mass killings, terrorist activities, and revolutions. The most up-to-date and extensive
event database (in terms of the scope and the extent of database coverage) arguably is
the Uppsala Conflict Database (UCD) [Uppsala Conflict Data Program], an expanded ver-
sion of its predecessor, the Correlates of War (COW) [Sarkees, 2000] database. Both UCD
(Uppsala Conflict Database) and COW (Correlates of War) contain both inter- and also
intra-state conflict information. Given our present goal of studying complex social systems
at the country-level, the discussion will focus on the intra-state event databases. COW (Cor-
relates of War)’s intra-state war data has been known as “the granddaddy of all intra-state
conflict datasets” and identifies intra-state wars and their participants between 1816 and

∗Of course, this is only one of the many possible ways to categorize existing country databases. For
example, see [Cioffi-Revilla and O’Brien, 2007] for another possible taxonomy of existing databases
and, more generally, a good overview of the use of computational analysis in defense and foreign policy
research.
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1997. The UCD (Uppsala Conflict Database) database significantly improves its coverage
in comparison with COW (Correlates of War) by lowering the threshold for conflict iden-
tification (from COW (Correlates of War)’s 100 annual conflict deaths to 25) and by more
frequently updating its database to cover current developments around the world. Any re-
searcher wanting to gather good snapshots of the histories of significant events of interest
from around the world should be able to do so with the combined use of COW (Corre-
lates of War) and UCD (Uppsala Conflict Database). At a minimum, these two databases
provide some necessary information on relevant faction identification, relative alignment,
and some relative resource estimates. Additional information from other excellent event
databases such as the Political Instability Task Force (PIT) [Esty et al., 1998], Minorities
at Risk (MAR) [Minorities at Risk Project], Atrocities Event Data (AED) [Political Insta-
bility Task Force], Intra-state conflict and Interventions (ICI) [Regan, 2000], and Global
Terrorism databases (GTD) [Lafree and Dugan, 2007] can certainly supplement and im-
prove the quality of information for events of interest at the intra-state level. In addition
to these significant events of interest, some databases such as Protest and Coercion (PCD)
[University of Kansas] and Ethnic Conflict and Civil Life (ECC) [Varshney and Wilkinson,
2006] databases even record events of smaller scale (or involving less violence) such as acts
of civil disobediences, demonstrations, rallies, riots, sit-ins, work-stoppages, and strikes. De-
spite the respectable quality and availability of the aforementioned event databases, these
event databases by themselves do not provide sufficient information to populate models
such as our joint PMFserv/FactionSim mainly because the unit of analysis used by these
databases is events rather than factions. The utility of these event databases is thus lim-
ited in terms of providing us with quantified snapshots of our events of interest with readily
available faction identification, alignment, and strength information, and we need additional
information from a second type of database that focuses on country specific opinion polls
and mass attitude surveys.

Populating our joint PMFserv/FactionSim framework with realistic agents requires com-
prehensive and reliable socio-cognitive information about the people of a particular country
at the level of our factions of interest. Gathering sufficient information for one PMFserv
subsystem of our Value Systems Module, namely, GSP trees, requires a high level of detailed
information about people’s goals, standards, and preferences, and obtaining this informa-
tion can be a daunting task. To our relief, we have access to an extensive collection of
survey results complied by survey researchers around the world. The three main publicly
available databases in this field are the World Values Survey (WVS) [European Values
Study Group and World Values Survey Association], the Global Barometer Surveys (GBS)
[Global Barometer Surveys Program], and the Comparative Study of Electoral Systems
(CSE) [Comparative Study of Electoral Systems Secretariat]. Both WVS (World Values
Survey) and GBS (Global Barometer Surveys) are surveys that are administered in more
than 50 countries around the world to measure public opinion on cultural, social, politi-
cal, and economic issues. The key difference between the two surveys lies in the fact that
WVS (World Values Survey) uses a standardized survey questionnaire, while GBS (Global
Barometer Surveys) is administered more frequently. Similar to WVS (World Values Survey)
and GBS (Global Barometer Surveys), CSE (Comparative Study of Electoral Systems) also
tracks public opinion, except that it is held only in countries where there are periodic and
reasonably fair elections and focuses on micro-level information on vote choice, candidate
and party evaluations, and other relevant information regarding voters’ attitudes and values,
in addition to standardized socio-demographic measures and aggregate level information on
electoral returns and turnouts. It seems, then, that we should be in a position to extract
the information we need from these three surveys. Yet, there are two difficulties we face in
using the results from these survey instruments for our purpose. The first difficulty lies in
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the fact that it is hard to find a one-to-one correspondence between a survey questionnaire
item and a parameter of, say, our GSP tree. This is an obvious and unavoidable difficulty
given that survey researchers did not design their surveys with our GSP tree parameters in
mind. This difficulty, however, is not insurmountable; with some effort, we can select survey
questionnaire items that can serve as proxy measures for our parameters of interest. The
second difficulty lies in the fact that the unit of analysis for these public opinion surveys is
countries while, for many modelers of complex social systems-such as countries-use a unit
of analysis that is smaller than a whole country.∗ For our joint socio-cognitive PMFserv/
FactionSim framework, the appropriate unit of analysis is at the faction level. Again, this
difficulty that results from the discordance in the unit of analysis can be overcome simply by
cross tabulating and sorting these survey databases according to properties that categorize
survey respondents into specific groups that match our interests. The surveys are sufficiently
detailed to allow us, for example, to infer information about whether an average supporter
of a particular political party has a more or less materialistic vision of life than another
average supporter of another political party or a different faction. We may even be able to
infer a more “elite-level” information (leader-level information within out PMFserv/Fac-
tionSim framework) by cross-tabulating our proxy survey items for a particular parameter
of interest with the socio-economic information about the respondents, given that leaders
are more likely to have higher educational attainment and income and/or are more likely
to spend more time in a particular organizational grouping.

In sum, the existing country databases – both the event and the survey ones – are great
assets for those of us in the modeling and simulation community who are committed to
using realistic agent types to populate our simulated world. However, as noted previously,
using existing databases at this stage of their development requires efforts by the modeling
and simulation community to study the structure of the available databases and to take
into account their strengths, weaknesses, terminology, and idiosyncrasies. In this regard,
we need to be creative in finding proxy measures that can reasonably approximate our
parameters of interest, and we would need to be imaginative in restructuring our databases
in ways that are conducive to extracting the information we want at the level of analysis
we want. Finally, it is important to note that the preceding overview of some existing
country databases is not exhaustive. There are obviously more event and survey databases
than the ones mentioned, not to mention other specialized economic, social, demographic,
human capabilities, and political violence databases. We guide interested readers to the
Penn Conflict Database Catalogue [Kim and Bharathy, 2007] for a more comprehensive
overview of the existing databases that may be of relevance to the modeling and simulation
community.

9.5 Overview of Automated Data Extraction Technology

As discussed in the preceding overview of existing country databases, our use of these
databases is not as efficient and convenient as we might like it to be; nonetheless, these
databases are invaluable to our project of building realistic agents and validating our mod-
els. Still, it is important to note that we may not be able to gather all the empirical
information we need from these databases alone, and we will at times be forced to collect

∗One can make an argument that the unit of analysis can also be individual survey respondents in
particular countries. In this case, many modelers of complex social systems – such as countries – would
be using a unit of analysis that is larger than an individual of a particular country.
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TABLE 9.2 A Summary of Some Existing Country Databases
Atrocities Event
Data (AED)

Event A database collected by Kansas Event Data System to provide a sys-
tematic sample of atrocities occurring around the world.

Correlates of War
(COW)

Event This database is known as “the granddaddy of all conflict datasets”
and most other conflict event datasets either extend or improve this
pioneering database.

Comparative Study
of Electoral Systems
(CSE)

Survey This database provides individual level information on vote choice, can-
didate and party evaluations, current and retrospective economic eval-
uations, etc. as well as aggregate level information on electoral returns
and turnouts.

Ethnic Conflict and
Civil Life (ECC)

Event This database provides comprehensive information on all Hindu-Muslim
riots reported in the major Indian newspapers in India and Pakistan.
The database is expanding to cover other countries in Southeast Asia.

Global Barometer
Surveys (GBS)

Survey This database is one of the two most comprehensive survey databases of
public opinion of people around the world. Administered by regions and
decentralized.

Global Terrorism
Database (GTD)

Event This database contains information on both domestic and international
terrorist events around the world since 1970. For each event, information
is available on the date and location of the incident, the weapons used
and nature of the target, the number of casualties, and the identity of
the perpetrator.

Intrastate Conflict
Interventions (ICI)

Event Unlike some other event databases, this conflict database contains infor-
mation about external/foreign interveners who play a role in intrastate
conflicts in addition to the standard information (time, location, involved
actors, etc.) in an events database.

Minorities at Risk
(MAR)

Event This database provides comprehensive information on the status and
plight of politically-salient communal/minority groups in countries
around the world.

Protest and Coercion
Data (PCD)

Event This database provides comprehensive information on protest and co-
ercion in 32 countries around the world. Information concerning date,
day, action type, location, protest groups, targets, and the strength of
the protesters are provided. This database is collected using the Kansas
Event Data System.

Political Instability
Task Force (PIT)

Event This database contains standard event information on political instabil-
ity events in most countries around the world. The political instability
events include ethnic wars, revolutionary wars, genocides and politicides,
and adverse regime changes. Adverse regime changes do not include tran-
sitions to more open and democratic forms of governance.

Uppsala Conflict
Database (UCD)

Event This database probably is one of the most comprehensive and widely
used event databases by social scientists. It contains information on the
location of the conflict, the source of incompatibility, opposition organi-
zations, date and duration, conflict intensity level, the nature of conflict
settlement, the quantity and quality of arms, and the duration of peace
settlement.

World Values Survey
(WVS)

Survey This database is the other most comprehensive survey of databases of
public opinion around the world. Unlike GBS, it has a standardized
survey questionnaire but is administered less frequently.
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some information by ourselves. Instead of going through the typically labor-intensive data
collection process with an army of undergraduate and graduate research assistants, we have
a new set of tools and technologies that can streamline our data collection efforts, making
them less arduous and more efficient. The most promising approach seems to be the use of
various automated semantic analysis tools such as Automap [Carley et al., 2006], General
Inquirer, Cultural Simulation Model (CSM) by IndaSea [Park and Fables, 2007], Profiler+,
Kansas Event Data System (KEDS), ReadMe, The Resource Description Framework Ex-
tractor (T-Rex) [Subrahmanian, 2007], OASYS, and STORY to extract our information of
interest from various newsfeeds and web scrapings.

The majority of these automated content analysis tools work according to a similar un-
derlying logic. They contain a list of terms of interest together with their synonyms. They
then count the frequency with which these terms and their synonyms appear in an actual
text to provide us with usable data. For example, if we want to collect information from
various newsfeed and web scripts about a faction leader’s propensity to use violence, we
would build a list consisting of both generic and also highly specific words pertaining to the
use of violence by this leader (words ranging from “killing” to “tire necklace,” for example)
and let these programs count the frequency of such words in various texts. This procedure
requires some degree of simplification of the phenomenon under study. However, no mat-
ter how sophisticated, all automated data extraction tools follow this essential underlying
logic. Many have specialized search algorithms that allow the program to look for more
fine-grained information of interest.

There are more than two dozen available automated content analysis tools. We briefly
survey a few of them that we have used or are planning to use for our data collection efforts.
AutoMap is an extraction tool that specializes in collecting information about key actors,
their relationships, and their relation to an event or a set of events of interest. Automap also
provides the attributes of actors including roles (leaders / followers), psychological factors,
and resources. On the basis of such information extracted using AutoMap, we can then
extract further information concerning groups and the entire structure of social networks of
individuals and groups with the use of additional tools such as Organizational Risk Analyzer
[Carley and Reminga, 2004]. T-Rex (The Resource Description Framework Extractor) uses
cultural, economic, political, social, and religious variables provided by social scientists in
conjunction with other data sources such as surveys and event databases and automatically
extracts relevant data from news outlets, blogs, newsgroups, and wikis. STORY crawls
the web at 50,000 pages/day and extracts facts and schemas. OASYS (Opinion Analysis
System) is a specialized content analysis tool that is designed to extract information in real
time from over 100 news sites in 8 languages and 12 countries regarding actors’ opinions
about any given topic, together with a measure of the intensity of these opinions. General
Inquirer and ReadMe are more generic and less specialized examples of automated content
analysis software that takes a set of text documents as input and processes these texts
into various categories chosen by the user. The seminal tool of this field, KEDS (Kansas
Event Data System), is specialized for generating event data and has the most extensive
databases constructed using its system while Profiler+ performs leadership style analysis by
looking for specific words that indicate leadership traits. Table 9.3 summarizes these tools
by specialty.

The prospect of using these tools is exciting. However, there are at least six challenges
of varying degrees of difficulty that confront potential users. As a test case, IndaSea helped
us to use their CSM (Cultural Simulation Model) tool to profile President Musharraf of
Pakistan. One strand of the results is shown in Table 9.4. Here we are looking at one of
the standards of the GSP trees dealing with military doctrine – specifically, the tendency
to shun violence.
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TABLE 9.3 A Summary of Some Automated Data Extraction Tools
Name Specialty
AutoMap Relevant actor identification and relationship extraction
CSM by IndaSea Generic
General Inquirer Generic
KEDS Event data extraction
OASYS Opinion on any given topic
Profiler+ Leadership style/trait extraction
ReadMe Generic
STORY Generic
T-REX Generic

TABLE 9.4 Example Output of One of the Automated Web-Scraping Tools
Targeting a Personality Trait of an Illustrative Leader (Musharraf’s tendency to
shun violence)

Standards: Shun Violence
Keywords Peace (Some search terms for the opposite of shunning

violence: military, army, tactics, strategy, operation, op-
erations, tactic)

Positive Evidence

05-06-2007 You are saying that this problem will not
be solved by fighting, but it will not be solved by
peace either. This problem will not be solved unless
the main sources and centres of this movement –
the Pakistani ISI – is not shut down.

06-18-2007 In addition to disturbing the people in
Afghanistan, the ISI has another programme which
is to defame Islam across the world. It also com-
ments on the Islamic instructions which urge peo-
ple to make every possible effort to ensure peace
and stability and prevent bloodshed.

Negative Evidence

04-01-2007 According to the Washington Post, officers
within Pakistan’s intelligence agency, the Inter-
Services Intelligence Agency, proposed the follow-
ing idea to address the vulnerability of its nuclear
weapons to an Indian attack: “Let’s hide them in
Afghanistan-the Indians will never be able to at-
tack them there.”

04-02-2007 There have been violent clashes in the tribal
area in the past few days between tribal militia
groups, which are difficult to distinguish from the
Taleban linked to the ISI, and those groups that
cooperate with foreign terrorists. In all likelihood,
the ISI is behind this development, because an ISI
patrol has been ambushed for the very first time,
almost certainly in retaliation.

04-10-2007 According to her, in the fall of 1993 her as-
sassination was ordered and the “chosen assassin
was a Pakistani with ties to the ISI during the
Afghan Jihad. His name was Ramzi Yusef. He had
participated in the first attack on the World Trade
Centre in New York earlier that same year, on
February 26.”
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(1) Coverage, as already mentioned, is a concern with the databases, but not any more
than it is with the newsfeeds. Any given country may or may not have an open, free
press, so the viewpoints available and indeed, the veracity of what is published may be
called into question. Where there is a free press, one must be sure that all views across
the political spectrum are captured and appropriately tagged. These issues may render the
newsfeed extraction problematic for certain of the parameter sets of interest. In Table 9.4,
Musharraf’s case, while there may not be a totally free press within Pakistan, the Pakistani
president is a high visibility individual, and there is coverage at least by the Western press,
a press with its own worldview.

(2) Another challenge in using automated content analysis tools lies in building the catalog
that contains the necessary categories of key words and their combinations, both (or all) of
which represent our model parameters. The main snag we face on this front lies in building a
truly comprehensive and accurate catalog of keywords for the machine to use in extracting
information from the exponentially growing quantity of available machine-readable text.
Programming software that looks for such keywords and their combinations and counts
their frequency is not difficult to build, and such programs already exist. There are also
readily available generic catalogs or “dictionaries” that contain categories of words for us to
import into a program and use for content analysis. However, these categories are sometimes
too broad and generic for our purpose of extracting very specific information of interest,
and thus these available “dictionaries” may be of only limited use. Table 9.5 shows a simple
search with a single keyword (“peace”).

(3) In addition to having proper keyword synonyms, it also may be that a schema or
model of a given parameter has to be constructed to accommodate the interpretation and
transformation of proxy variables. For example, in the row designated “positive evidence”
in Table 9.4, the second item found is not necessarily proof that Musharraf (via the ISI
(Inter-Services Intelligence)) shuns violence so much as it is evidence that he has a program
to defame Islam. This suggests that perhaps a schema of typical human actions that do and
do constitute “shunning violence” might be able to weed out such an item by classifying
it as “inconclusive.” It is possible that this can be learned automatically if we provide our
prior hand-coded models. However, that is still an untested assumption.

(4) One needs to test the error rates of all the extraction tools. This implies assembling
a test corpus in addition to a training data set where all the ground truth is known. One
can then measure precision and recall rates and determine if the extraction tools are doing
a credible job or not. While they may work well on other test sets for which they were
designed for, one must always recalibrate their performance for the types of searches and
extractions of interest to a given model. For example, Table 9.4 shows the retrieval of two
bits of positive evidence and three bits that are negative. Are these all the items to be found?
If we extend the keyword list and add a model/schema of the behavior, what happens to
precision and recall? This is an aspect of our project that merits some research.

(5) Seamless integration is a desirable objective and one would like whatever extraction
technology is adopted to be invisible to end users. In many cases there are setup issues and
challenges for using the output of these tools. This is mostly a question of effort needed to
embed these tools so the end user will not need to deal directly with them.

(6) Even if all the other challenges are eliminated, a remaining issue is how to weigh
all the evidence collected assess its reliability, and transform it into actual parameter es-
timates. For example, how do we get the computer to summarize Table 9.4? Is it just a
matter of adding two positives and three negatives? Obviously that would be simplistic and
misleading, particularly when some of the positives are mild or inconclusive whereas some
of the negatives are extreme items such as assassination attempts that may or may not
be tied to Musharraf’s ISI (Inter-Services Intelligence). How do we combine such bits of
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evidence? Some of the more difficult aspects of a text and knowledge extraction tool have
to do with understanding a personality and determining its underlying motivations. This
is a hard problem, and human analysts who work at a “country desk” or a “leader desk”
tackle it according to a well-developed methodology that we recap in Section 9.7.

9.6 Overview of Subject Matter Expert Studies/Surveys

The most obvious and intuitive method of obtaining information we need for our model
parameters is to simply to ask subject matter experts (SMEs) to provide this information
in our preferred format for our countries of interest. Let us suppose that we are modify-
ing and populating our joint PMFserv/FactionSim framework to build a virtual country
for the purpose of, say, better understanding and simulating potential political instabilities
in this particular country of interest. In this scenario, we would be particularly interested
in modeling and analyzing how Diplomatic, Intelligence, Military and Economic (DIME)
actions might affect the Political, Military, Economic, Social, Informational, and Infrastruc-
ture (PMESII) systems of the country, and, given the importance of this kind of project, we
would like to use the most up-to-date and accurate information for our country of interest.
Knowing the limitations of the two previously discussed means of extracting information–
namely, country databases and automated data extraction tools–in the short term at least,
we might in fact be better off by gathering information directly from the best available
country experts, tapping their expertise by means of a survey questionnaire to them or
by conducting open-ended interviews. For our purposes, administering a structured, self-
explanatory web survey tailored to elicit exactly the information we need would in most
cases be preferable to conducting unstructured, open-ended interviews (partly because these
interviews would elicit a wealth of information that would then need to be sorted and coded).

There are three main difficulties associated with using subject matter experts to elicit the
information we need. First, administering interviews with experts in either form – expert
survey or open – ended interview-requires significant financial and human resources. This
method of collecting information costs at least as much as – and in most cases considerably
more than – the other previously discussed options. Unless we are fortunate enough to have
high quality SMEs available to us on a pro-bono basis, seeking their expertise for a task
such as filling the more than fifty parameters for the GSP Tree alone may be prohibitively
complicated and expensive. Second, subject matter experts, by definition of being subject
matter experts and by virtue of being human and therefore fallible, may sometimes pro-
vide us with biased and, from time to time, even blatantly incorrect information: e.g., see
[Tetlock, 2005; Heuer, 1999]. To limit this bias, we would probably want to consult more
than one subject matter expert on any particular country or topic. More importantly, being
a country expert does not mean that one has complete and comprehensive knowledge; a
country expert does not know everything there is to know about a country. Third and fi-
nally, simply finding subject matter experts for a particular country of interest may by itself
pose a significant challenge. Social scientists, historians, and area studies scholars with spe-
cific country expertise are not in short supply, but their expertise is not evenly distributed
around the globe; given the structural constraints that exist in academia, certain parts of
the world and certain countries receive disproportionate attention, while others are rela-
tively neglected (for example, there is a glut of available expertise on China, but much less
expertise on countries such as Bangladesh and Fiji). In sum, while at first this most direct
route of getting parameters from experts looks easy and straightforward, it is also beset
with difficulties.

Authoring a survey (or a set of slider-bar GUI screens) that is self-explanatory and has
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validated questions about each parameter needed in a socio-cognitive agent model is time
consuming, but not intellectually difficult. Such a survey is needed for eliciting knowledge
from country or leader desk experts. A different approach that is an extension of this one
involves a distributed set of experts, each knowledgeable about a sub-part of the ethno-
political region to be modeled. The US military today, for example, currently plans for
three sets of multi-person teams to perform this task for an area of operations. These
three types of teams were listed earlier in Figure 9.1 as the Human Terrain Team (HTT),
Intel and Every Soldier a Sensor (ESS) team, and Civil Military Affairs (CMA) team.
The Human Terrain team includes anthropologists and social experts who collect data
that is directly relevant to profiling agent personas, their clan structures, attributes, and
kinship links. The Intel and Every Soldier a Sensor group tends to collect data pertaining
to biometrics, demographics, intent, and information flow patterns in the target region. The
Civil Military Affairs team focuses on quantitative estimates of resources, facilities, jobs,
economic activity, infrastructure, and the like. For a model like FactionSim-PMFserv, all
of this data is important. At present most of it is collected and entered into databases. In
the future, one can envision the agent-based models as being the main repositories of such
information. This would both improve the data collection focus and provide tools for the
analyst and trainee that are sensitized to the DIME-PMESII issues of the area of operation.
Getting to that point may be a grand challenge worthy of a DARPA (Defense Advanced
Research Projects Agency) style program given the scale-up entailed by such a distributed
activity.

9.7 Overview of Integrative Knowledge Engineering Process

Some of the more difficult aspects of a text and knowledge extraction tool have to do with
understanding a personality and determining its underlying motivations. This is a hard
problem, and human analysts who work at a “country desk” or a “leader desk” approach
it according to a well-developed methodology, though even they are subject to errors of
omission and commission, biases, or slipups. We have studied that methodology during the
years of assembling the Athena’s Prism diplomatic role playing game [Silverman et al., 2005]
and have adopted our own version of it for the leaders and followers we have profiled. We
published an account of that methodology in [Silverman and Bharathy, 2005] and recap it
very briefly here since it is the essence of the automated knowledge extraction workbench
we are trying to assemble.

Since multiple sources of data are involved, a process is required to integrate and bring
all the information together. We employ a process centered around differential diagnosis.
This design is also based on the fact that directly usable numerical data are limited and one
has to work with qualitative, empirical materials. Therefore, in the course of constructing
these models, there is the risk of contamination by cognitive biases and human error.

The burden of this integrative modeling process is to systematically transform empirical
evidence, tacit knowledge and expert knowledge from diverse sources into data for modeling;
to reduce, if not eliminate, the human errors and cognitive biases (for example, for confirm-
ing evidence); to ensure that the uncertainties in the input parameters are addressed; and
to verify and validate the model as a whole, and the knowledge base in particular.

For lack of a better term, the process has been conveniently referred to as a Knowledge
Engineering (KE) process due to extensive involvement of knowledge engineering techniques
and construction of the knowledge models. A diagrammatic representation of the knowledge
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FIGURE 9.5 Knowledge Engineering Process Summary.

engineering process is given in Figure 9.5.∗ The details of the process are beyond the scope
of this chapter, but a summary of the methodology has been given below in Figure 9.5. Let
us describe the salient features of the method.

Firstly, the body or corpus of qualitative information from different sources is aggre-
gated and thematically organized in an evidence table. The input from experts and country
database output, which directly pertains to the parameters, may be employed to help set
the initial parameter values in the model, while anecdotal expert inputs and tangential
estimates from the country databases are also incorporated in the evidence table. In order
to ensure separation of model building (training and verification) and validation data, the
empirical materials concerned are longitudinally divided into two different parts. One part
is set aside for validation. The model is constructed and verified using the remaining part.

Since organizing information from otherwise diverse or amalgamated sources is critical
to the success of the remaining modeling activities, a modified content analysis process
is employed to collate and organize the evidence thematically. The themes of relevance
are obtained from the high-level goals, standards, and preferences as well as from people
and general potential behaviors of interest in the domain. The body of materials describing
behavior in the model is split up into records, with each representing one and only one theme.
Then, these are assigned theme codes, relevance, and reliability (subjective estimate of the
source or info), and sorted according to the themes. The output is organized information

∗This is a simplified view. Full details can be found in [Bharathy, 2006].
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in tabular form with additional attributes such as reliability, frequency of occurrence, and
relevance. Alternative hypotheses are selected at this juncture. The following table shows
an excerpt from the evidence table, pertaining to the behavior of Richard the Lionheart in
the Crusades.

TABLE 9.5 Sample Evidence Table
Theme Evidence Reliability Relevance
Economy Amasses wealth in battles Very High . . .
Military Conquers territory 1, etc. Very High . . .

Having collected the data, one must integrate the data to arrive at the estimate of the
parameters. Several tools and techniques have been devised for this purpose. Among them
are tools for differential diagnosis (differential diagnoser) and pairwise comparison, which
help elicit parameters in the graphical models through a systematic, defensible and trans-
parent process. These tools accompany a mathematical framework, and contain provisions
for estimating uncertainties in the expert inputs and empirical evidence.

When constructing models of behavior from evidence (be it from empirical evidence taken
from the literature or from expert input), the modelers (or experts) employ the cognitive
process of determining the motives of someone’s behavior. This is subject to several biases
[Kahneman et al., 1982; Gilovich and Griffin, 2002]. Foremost among these is confirmation
bias, which may also subsume other biases such as availability bias and attribution bias.
Simultaneous evaluation of multiple, competing hypotheses is very difficult to do and is
against the cognitive bias of the human mind. Without an instrument designed to counter
this fundamental bias, a modeler attempting to build Value Tree Models may easily be
misled. The tendency to build models by confirming a plausible but favorite hypothesis will
have enormous and grave implications at the next stage, when collating evidence provided
by experts and empirical materials and building Value Tree Models. The human mind
works though a “satisfying strategy.” The process of selecting a favorite hypothesis is highly
influenced by ones own conditioning, and the tendency is to see what one is looking for,
and to overlook alternatives. Assessing evidence and attributing behavioral traits should
ensure that no external cause explains the same behavior, that other competing traits do
not explain the same behavior, and that confirmation bias is eliminated by a disconfirming
hypothesis [Gorman and Gorman, 1984; Heuer, 1999].

In order to minimize the risk of not considering alternatives and considering non-
diagnostic evidence, we have provided a tabular design, to carry out Differential Diagnosis,
for generating and weighting alternative hypotheses, explanations or conclusions. Accord-
ingly, the process forces one to look at competing hypotheses, and methodically disconfirm
these alternatives rather than simply confirming a first hypothesis using available evidence.
Once again, testing the usefulness and effectiveness of this differential diagnosis tool will be
an important part of this project. Later, we will look at how this tabular structure can be
exploited quantitatively.

The hypotheses in this case are parameters such as the nodes in the Value Trees (goals,
standards and preferences of the characters being assessed). On the left, the framework
includes the Organizer containing key evidence, thematically coded and attributed with
reliability and relevance. However, the tool for Differential Diagnosis is centered on the hy-
potheses and evidence. Essentially, the hypotheses are pitted against the evidence through
this matrix. If reliable evidence rejects a hypothesis, then the likelihood of that hypothesis
is diminished significantly. We advocate including reliability and relevance for each piece of
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evidence. Relevance (from the Organizer) identifies which items are most helpful in judging
the relative likelihood of the hypotheses, and helps control the time spent on what appears
to be irrelevant evidence. Using the Bayesian framework, we have developed a quantitative
technique for the differential diagnosis, which attributes higher weight (an order of mag-
nitude or more) to disconfirming evidence. We also established that otherwise rare events
weigh more when they do occur as evidence. Essentially, the hypotheses are pitted against
the evidence through this matrix.

The approach we suggest is to take all competing hypotheses (Hj ) that explain a set of
evidence and then pit them against this evidence (Ei). We find it best to work with a confir-
mation index that weighs disconfirming evidence about an order of magnitude higher than
confirming evidence. Let us call this process of estimation based on disconfirming evidence
“differential diagnosis,” a term found in medical decision-making. Differential diagnosis is
nothing but a triangulation technique. This technique much used in the field of medicine,
where observing and discovering evidence leads gradually to a consideration of a short list of
illnesses most likely to be behind a particular set of symptoms. While we share with medical
diagnosis the same intent of unearthing the most likely hypotheses, there are some minor
differences in terms of means and ends. Our purpose is not to identify a specific cause, but
instead to attribute behavioral evidence to hypotheses of causes. While medical diagnosis
tends to favor testing hypotheses largely serially and in a qualitative fashion, our models
involve running several tests simultaneously by considering a set of competing hypothe-
ses and triangulating a large set of evidence, as quantitatively (or quasi-quantitatively) as
possible.

While both methods give more weight to disconfirming evidence, we give some (but lesser)
consideration to confirming or supporting evidence. While disconfirmation is a much more
powerful technique compared to confirmation, the latter provides some weak, yet economi-
cal, diagnosis in the absence of disconfirming evidence. We also take into consideration the
reliability of data and typicality of events. The main difference might be in our employment
of an explicit and simple tool that is amenable to both Bayesian analysis and also simple,
score-based decision support.

This results in the following simplified expression for a metric called Confidence Index.
Mathematically, Confidence Index (CIAvg) for a given Hypothesis (Hj ) may be defined as
the weighted average measure of all the confirmations (and disconfirmations) associated
with a hypothesis (with the subscript denoting that it is an average index over the given
hypothesis):

CIAvg (Hj ) =
1
n
×

n∑
i=1

K × Cij × Ri × fi
fRi

where K = {w1 when Cij ≥ 0, and w2 when Cij < 0}.
Essentially, K is used to assign a higher weight (say an order of magnitude) to discon-

firming evidence (w2 � w1). We have used w1 value of 1 and w2 value of 20. fi is the
frequency of the evidence, if the evidence given summarizes separate occurrences of be-
havioral evidence. Similarly, fRi

is the typicality of the evidence (indicator of frequency of
seeing that type of evidence in the real world. That is a measure of P [Ei ]). Reliability (Ri)
is subjectively estimated based on the source of the evidence as well as the confidence with
which the evidence has been outlined by the source. For the sake of illustration, ignoring fi
and fRi

, the expression for CIAvg , this may also be simplified as:

1
n
×

n∑
i=1

K × Cij × Ri
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FIGURE 9.6 Segment of Goal Tree.

The competing hypothesis that has the highest positive confidence wins only if the hy-
potheses are mutually exclusive, if the difference in CI is significant (CIAvg > 1.0), and
if the variance is small. For hypotheses which are not mutually exclusive, ordinal ranking
might be obtained. When mutually exclusive hypotheses cannot be clearly distinguished by
their confidence score, multiple competing hypotheses might have to be entertained during
the course of the sensitivity analysis. Differential diagnosis allows one to consider all relevant
evidence at once, and also gives higher weight to disconfirming evidence as described above.
It allows one to find out whether these hypotheses could be ranked in the context of all
available evidence. The details pertaining to the derivation and use of differential diagnosis
have been taken from [Bharathy, 2006].

Now, let us consider the following cases to illustrate this technique. Differential diagnosis
in the Crusade example has been illustrated through the following stylized cases. Note that
simplifications have been made to introduce and illustrate the technique.

Example Question Again, consider the character of Richard the Lionheart. There
are a few hypotheses (that could form the basis for some selected nodes of the GSP
Tree) offered to explain Richard’s spending time on a number of wars. Is Richard’s
inclination to grow any of the following resources (expansion of empire, wealth,
religious blessings, or military prowess) more influential than other inclinations
in explaining his behavior? Could his inclinations be ranked?

Let us formulate the above questions into the following competing hypotheses: Growth and
expansion of the empire (Authority: H1), wealth (Economy: H2), religion (Religion: H3), or
whether he loves warfare for its own sake (Military prowess: H4).

H1: Grow Authority, Expand and Rule: Richard is an expansionist and wanted
to expand his kingdom and authority.

H2: Protect Authority & Govern: Richard fought to protect his authority from
enemies, and the wars were thrust upon him.

H3: Fill the Coffers/ Max Econ Benefits: Richard wants to grow his economic
assets through fighting wars.
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TABLE 9.6 Stylized Example of Differential Diagnosis

H4: Religious Duty: Richard wants to protect and grow his religious blessings.
H5: War for the War’s Sake: loves the battlefields and wants to fight wars for the

war’s sake.

Then, we construct the table (Tables 9.6, 9.7)∗ and pit all of these hypotheses against the
available sets of evidences. As one can see in Tables 9.6, 9.7, a number of rows of evidence
disconfirm Richard’s religious inclination, while there is little that contradicts Richard’s
inclination to grow military assets. It should not surprise the reader that Richard seems
most inclined to grow his military prowess, followed by his desire for wealth, and his desire
to govern, in that order. Therefore, this is a behavior that may not provide much additional
information for identifying and sifting through his values. However, his other behaviors
begin to contradict some of the existing the hypotheses.

In addition to the above use of differential diagnosis, where we illustrated the process
of disconfirming hypothesis with available evidence, the same technique could be employed
in different forms. For example, an expert could be encouraged to come up with different
plausible scenarios. Once such a set of scenarios has been gathered and recorded, the expert
could be asked to carry out differential diagnosis using these scenarios. The expert then
attempts to disconfirm the hypothesis using the scenarios he or she has generated. This
thought experiment could work as a powerful technique.

Introspection, Revision and Dialog: The degree of disagreement can be used to
generate feedback to the experts themselves, and their assumptions can thereby
be made transparent. Then the expert can redesign the GSP Tree while con-

∗For the sake of simplicity, I have used the expression that CIAvg = 1/n
Pn

i=1 K × Cij × Ri , where
K = w1 when Cij ≥ 0 and K = w2 with Cij < 0. Essentially, K is used to assign a higher weight (say
an order of magnitude) to disconfirming evidence (w2 � w1). Other forms of this relationship are being
investigated. Additionally, thought experimenting the plausibility of generated scenarios disconfirming
hypotheses may be employed as another input in this process.
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TABLE 9.7 Stylized Example of Differential Diagnosis

sciously bracketing one or more assumptions. This kind of exercise can also be
useful in group sessions to discuss the differences. In essence, it can create intro-
spection and dialog, which will often focus attention on the root of the actual
problem being studied. In a more superficial treatment, a structure could be
adopted through a consensus seeking process, or by bootstrapping, or differently
weighing expert and lay designs.

Uncertainty Estimation: The estimates can also provide estimates of the uncer-
tainty (or confidence) in the GSP Tree.

We have employed this process manually in the past to create several models of lead-
ers, followers, crowd members, rebels, agitators in conflict situations. We have been able
to validate our integrative process under naturalistic conditions by testing, verifying and
validating these models. As mentioned earlier, the process does get very laborious when
constructing multiple models by hand. Therefore, we are in the process of automating the
previously described manual process, incorporating text-mining, semantic analysis as well
as Bayesian update.

9.8 Concluding Remarks

Our community would be remiss if it did not try to respond to the ideas of leaders in mili-
tary and diplomatic circles who are now facing the challenge of promoting deeper thought,
creating rehearsal environments, and developing analytic capability about cultural issues
and local population needs/wants around the globe. They have funded programs that col-
lect country data and conduct link analysis and social network studies. At the same time,
they may lack the experience or expertise to appreciate the tools that the field of human
behavior modeling currently has to offer, or is now in the process of developing.

In this chapter, we have argued that the available country datasets are an invaluable
resource that will permit us in the human behavior M&S (Modeling and Simulation) field to
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more realistically profile factions, and their leaders and followers. This in turn will help us to
develop tools for those interested in analyzing alternative competing hypotheses for DIME-
PMESII (Diplomatic, Informational, Military, and Economic actions – Political, Military,
Economic, Social, Informational, and Infrastructure effects) studies. At the same time, there
are significant growing pains and challenges involved in trying to put the country data to
use. This chapter reviewed those challenges by looking at three pathways for extracting and
parameterizing the data – webscraping of newsfeeds, extracting and translating data from
country databases, and (semi-) automated surveying (i.e., web questionnaires with data
translation and model instantiation capacity) of subject matter experts. In each of these
areas there are significant challenges and obstacles to seamless integration, not the least
of which is that profiling individuals and groups is difficult even for the smartest humans.
By using a triangulation of the three approaches, and a knowledge engineering approach
that mimics how country and leader experts currently do the job (alternative competing
hypotheses), we believe that one can move ahead as outlined in this chapter.

This chapter examined how to use this approach with the help of a case study involving a
socio-cognitive agent architecture (FactionSim-PMFserv). The hope is that the automated
extraction will speed the development of gameworlds and scenarios with a tool like this.
This push seems doubly pertinent since a parallel development in recent years has been
the scientific struggles of those working to unify multi-resolution frameworks that permit
modeling “deep” modeling of a small number of cognitively-detailed agents able to interact
with and influence large numbers of “light” socio-political agents. This work is necessary if
we are to have more realistic “socio-cognitive” agents, ones that are useful for the types of
analysis and training/rehearsal M&S worlds envisioned here. This is part of the wider effort
to have more realistic agents and detailed worlds that influence their decisions.

The validity of the models and theories inside the agents has not been a focus of this
chapter. However, “correctness” is in equal parts about the data used and the generative
mechanisms inside the agents. Both of these are finally more important than whether any
particular predictions turn out to be accurate. Much of this chapter dealt with how to
obtain the best possible data. We should close by also pointing out that if the generative
mechanisms are roughly or in principle “correct,” then one can trust that experiments with
the agents will yield useful insights about various policies and how these policies in turn will
influence the agents. That is why one attempts to equip social agents with more and more
advanced cognitive capabilities. This work suggests some words of advice and also caution
to those attempting simulations with various country databases – start with best available
models (with higher internal validity), then conduct adequacy tests, validity assessments,
and replication of results across samples. Even after all that, social system simulations
will rarely yield precise forecasts and predictions. Rather, their utility lies in exploring the
possibility space and in understanding mechanisms and causalities so that one can see how
alternative DIME (Diplomatic, Informational, Military, and Economic) actions might lead
to the same or unexpected PMESII (Political, Military, Economic, Social, Informational,
and Infrastructure) effects.
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10.1 Introduction

Crowds of pedestrians are complex entities from different points of view, starting from
the difficulty in providing a satisfactory definition of the term “crowd”. “(Too) many peo-
ple in (too) little space” [Kruse, 1986] is a pedestrian crowd definition aggregating several
disciplinary interpretations, and the range of this definition sites its fuzzy borders in the tra-
ditional opposition between humanistic and scientific cultures in these studies. The range
of individual and collective behaviors that take place in a crowd, the composite mix of
competition for the shared space but also collaboration due to, not necessarily explicit but
shared, social norms, the possibility to detect self-organization and emergent phenomena;
they are all indicators of the intrinsic complexity of a crowd. Nonetheless, the relevance of
human behavior, and especially of the movements of pedestrians in a built environment in
normal and extraordinary situations (e.g., evacuation), and its implications for the activities
of architects, designers and urban planners are apparent (see, e.g., [Batty, 2001] and [Willis
et al., 2004]), especially given recent dramatic episodes such as terrorist attacks, riots and
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fires, but also due to the growing issues in facing the organization and management of pub-
lic events (ceremonies, races, carnivals, concerts, parties/social gatherings, and so on) and
in designing naturally crowded places (e.g., stations, arenas, airports). Crowd models and
simulators are thus increasingly being investigated in the scientific context, sold by firms∗,
and used by decision makers. In fact, even if research on this topic is still quite lively and
far from a complete understanding of the complex phenomena related to crowds of pedes-
trians in the environment, models and simulators have shown their usefulness in supporting
architectural designers and urban planners in their decisions by creating the possibility to
envision the behavior/movement of crowds of pedestrians in specific designs/environments,
to elaborate what-if scenarios and evaluate their decisions with reference to specific metrics
and criteria.

The current state of the art in crowd simulation approaches comprises very different types
of models, ranging from a physical approach to the representation of pedestrians (viewed
in terms of particles subject to forces generated by points of reference/interest of the en-
vironment and by pedestrians themselves; see, e.g., [Helbing et al., 1997]), to a discrete
modeling of the environment in terms of a lattice in which pedestrians are viewed as par-
ticular states of a cell, in a Cellular Automata (CA) approach (see, e.g., [Schadschneider
et al., 2002]), to agent based approaches (see, e.g., [Klügl and Rindsfüser, 2007]), more
clearly separating the representations of the environment and the entities that inhabit it,
acting and interacting according to their perceptive capabilities and behavioral specification.
This significant difference in the ways pedestrians are represented in terms of properties,
internal state, motivations, behaviors, also reflects the growing range of the applications
of the simulators based on these models. The encouraging results obtained by relevant ap-
proaches to modeling and simulating pedestrians in normal and egress situations [Helbing
et al., 2001] have in fact led to consider, on the one hand, the possibility of extending the
range of applications of these models to other application areas, for instance to simulate
the behaviors of pedestrians in shopping centers (see, e.g., [Kitazawa and Batty, 2004; Di-
jkstra et al., 2007]). On the other hand, the possibility of integrating the current pedestrian
models (i) with more complex interpersonal interaction mechanisms (e.g., from those that
lead people moving in pairs and small groups, to those guiding the spreading of emotional
states [Adamatzky, 2005]), (ii) with models related to additional relevant phenomena (e.g.,
smoke or fires diffusion∗∗), (iii) with more complex perception mechanisms, and in general
with more complex models of pedestrian motivations, goals and agendas [Dijkstra et al.,
2005]. It must be noted that these developments call for field data and (whenever possible),
experimental studies to make models more realistic; however, it must also be noted that
in several of the aforementioned studies the role and relevance of the single pedestrian, of
his/her goals, characteristics, relationships with the others in a given simulation scenario,
are all factors that make the agent-based approach and Multi-Agent Systems (MAS) [Ferber,
1999] a natural way of analyzing, describing and modeling crowds as systems of pedestrians,
with their own features, their environment, the ways they interact with it and with other
pedestrians.

The MAS approach to the modeling and simulation of complex systems has been applied
in very different contexts, ranging from the study of social systems [Axtell, 2000], to bio-
logical systems (see, e.g., [Christley et al., 2007]), and it is considered as one of the most

∗See, e.g., Legion Ltd. (http://www.legion.com), Crowd Dynamics Ltd.
(http://www.crowddynamics.com/), Savannah Simulations AG (http://www.savannah-simulations.ch).
∗∗Like in the EXODUS evacuation tool (http://fseg.gre.ac.uk/exodus/index.html)
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successful perspectives of agent–based computing [Luck et al., 2005], even if this approach
is still relatively young, compared, for instance, to analytical equation-based modeling. The
main aim of this chapter is to introduce a formal and computational framework based on
MAS principles and related guidelines for its adoption to represent and simulate crowds
of pedestrians. The described approach is rooted on basic principles of discrete modeling
approaches based on Cellular Automata, but it clearly separates the active entities (i.e.,
pedestrians) from the environment they inhabit. This approach has two main long term
goals, namely (i) the definition of a MAS model for crowds capable of generating phenom-
ena that are currently described by more analytical and CA-based approaches, but that can
also be integrated with more complex models of pedestrian motivations, perceptive capabil-
ities and behaviors, as well as with other models related to phenomena that can take place
in the environment, and (ii) to realize an integrated and extensible instrument support-
ing experts in their studies and analysis on crowd phenomena and pedestrian behaviors in
crowded spaces, without requiring particular technical skills, such as proficiency in software
engineering.

This chapter describes the current advancement of this research project covering the dif-
ferent aspects of the above mentioned framework. In particular, after an analysis of the
related works in particular within pedestrian dynamics research context, Section 10.3 in-
troduces Situated Cellular Agents (SCA) [Bandini et al., 2006b], the MAS-based model
adopted for this project. This section also introduces the guidelines of the proposed model-
ing approach and Section 10.4 describes a case study related to the simulation of complex
underground station crowd dynamics. Section 10.5 discusses one of the roles of tools sup-
porting; conclusions and future trends of research in this specific application area will end
the chapter.

10.2 Pedestrian Dynamics Context: An Overview

It is not a simple task to provide a compact yet comprehensive overview of the differ-
ent approaches and models for the representation and simulation of crowd dynamics. In
fact, entire scientific interdisciplinary workshops and conferences are focused on this topic
(see, e.g., the proceedings of the first edition of the International Conference on Pedestrian
and Evacuation Dynamics [Schreckenberg and Sharma, 2001]). However, most approaches
can be classified according to the way pedestrians are represented and managed, and in
particular:

• pedestrians as particles subject to forces of attraction/repulsion;
• pedestrians as particular states of cells in a CA;
• pedestrians as autonomous agents, situated in an environment.

10.2.1 Pedestrians as Particles

Several models for pedestrian dynamics are based on an analytical approach, representing
pedestrians as particles subject to forces, modeling the interaction between pedestrian and
the environment (and also among pedestrians themselves, in the case of active walker mod-
els [Helbing et al., 1997]). Forces of attraction lead the pedestrians/particles towards their
destinations (modeling thus their goals), while forces of repulsion are used to represent the
tendency to stay at a distance from other points of the environment. Figure 10.1 shows
a diagram exemplifying the application of this approach to the representation of an inter-
section that is being crossed by three pedestrians. In particular, the velocity of the gray
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FIGURE 10.1 A diagram exemplifying an analytical model for pedestrian movement: the gray pedes-
trian, in the intersection, has an overall velocity v that is the result of an aggregation of the contributions
related to the effects of attraction by its own reference point (a), and the repulsion by other pedestrians (b
and c).

pedestrian is determined as an aggregation of the influences it is subject to, that are the
attraction to its reference point (the top exit) and the repulsion from the other pedestrians.
This kind of effect was introduced by a relevant and successful example of this modeling
approach, the social force model [Helbing and Molnár, 1995]; this approach introduces the
notion of social force, representing the tendency of pedestrians to stay at a certain distance
from one another; other relevant approaches take inspiration from fluid-dynamic [Helbing,
1992] and magnetic forces [Okazaki, 1979] for the representation of mechanisms governing
flows of pedestrians.

While this approach is based on a precise methodology and has provided relevant results,
it represents pedestrian as mere particles, whose goals, characteristics and interactions must
be represented through equations, and thus it is not simple to incorporate heterogeneity
and complex pedestrian behaviors in this kind of model.

10.2.2 Pedestrians as States of CA

A different approach to crowd modeling is characterized by the adoption of Cellular Au-
tomata (CA) [Wolfram, 1986], with a discrete spatial representation and discrete time-steps,
to represent the simulated environment and the entities it comprises. The cellular space thus
includes both a representation of the environment and an indication of its state, in terms
of occupancy of the sites it is divided into, by static obstacles as well as human beings.
Transition rules must be defined in order to specify the evolution of every cell’s state; they
are based on the concept of neighborhood of a cell, a specific set of cells whose state will
be considered in the computation of its transition rule. The transition rule, in this kind
of model, generates the illusion of movement, that is mapped to a coordinated change of
cells state. To make a simple example, an atomic step of a pedestrian is realized through
the change of state of two cells, the first characterized by an “occupied” state that becomes
“vacant”, and an adjacent one that was previously “vacant” and that becomes “occupied”.
Figure 10.2 shows a sample effect of movement generated by the subsequent application of
a transition rule in the cellular space. This kind of application of CA-based models is es-
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FIGURE 10.2 A diagram showing a sample effect of movement generated through the coordinated
change of state of adjacent cells in a CA. The black cell is occupied by a pedestrian that moves to the right
in turn 0 and down in turn 1, but these effects are obtained through the contemporary change of state
among adjacent cells (previously occupied becoming vacant and vice versa).

sentially based on previous works adopting the same approach for traffic simulation [Nagel
and Schreckenberg, 1992].

Local cell interactions are thus the uniform (and only) way to represent the motion of
an individual in the space (and the choice of the destination of every movement step). The
sequential application of this rule to the whole cell space may bring to emergent effects and
collective behaviors. Relevant examples of crowd collective behaviors that were modeled
through CAs are the formation of lanes in bidirectional pedestrian flows [Blue and Adler,
2000a], the resolution of conflicts in multidirectional crossing pedestrian flows [Blue and
Adler, 2000b]. In this kind of example, different states of the cells represent pedestrians
moving towards different exits; this particular state activates a particular branch of the
transition rule causing the transition of the related pedestrian to the direction associated
to that particular state. Additional branches of the transition rule manage conflicts in the
movement of pedestrians, for instance through changes of lanes in case of pedestrians that
would occupy the same cell coming from opposite directions.

It must be noted, however, that the potential need to represent goal driven behaviors
(i.e., the desire to reach a certain position in space) has often led to extend the basic
CA model to include features and mechanisms breaking the strictly locality principle. A
relevant example of this kind of development is represented by a CA based approach to
pedestrian dynamics in evacuation configurations [Schadschneider et al., 2002]. In this case,
the cellular structure of the environment is also characterized by a predefined desirability
level, associated to each cell, that, combined with more dynamic effects generated by the
passage of other pedestrians, guide the transition of states associated to pedestrians.

10.2.3 Pedestrians as Autonomous Agents

Recent developments in this line of research (e.g., [Henein and White, 2005; Dijkstra et al.,
2006]), introduce modifications to the basic CA approach that are so deep that the resulting
models are effectively agent-based and Multi Agent Systems (MAS) models exploiting a cel-
lular space representing spatial aspects of agents’ environment. A MAS is a system made up
of a set of autonomous components which interact, for instance according to collaboration
or competition schemes, in order to contribute in realizing an overall behavior that could
not be generated by single entities by themselves. As previously introduced, MAS models
have been successfully applied to the modeling and simulation of several situations charac-
terized by the presence of autonomous entities whose action and interaction determines the
evolution of the system, and they are increasingly being adopted also to model crowds of
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pedestrians [Batty, 2001; Gloor et al., 2004; Toyama et al., 2006]. All these approaches are
characterized by the fact that the agents encapsulate some form of behavior inspired by the
above described approaches, that is, forms of attractions/repulsion generated by points of
interest or reference in the environment but also by other pedestrians.

Other agent based approaches to the modeling of pedestrians and crowds were developed
with the primary goal of providing an effective 3D visualization of the simulated dynamics.
The approaches described in [Musse and Thalmann, 2001] and in [Shao and Terzopoulos,
2007] are characterized by a very composite model of pedestrian behavior, including basic
reactive behaviors as well as a cognitive control layer; moreover, actions available to agents
are not strictly related to their movement, but they also allow forms of direct interaction
among pedestrians and interaction with objects situated in the environment. Another rele-
vant approach, described in [Murakami et al., 2003], is less focused on visual effectiveness of
the simulation dynamics, and it supports a flexible definition of the simulation scenario also
without requiring the intervention of a computer programmer. However, these virtual real-
ity focused approaches to pedestrian and crowd simulation were not tested in paradigmatic
case studies, modeled adopting analytical approaches or cellular automata and validated
against real data.

10.3 Guidelines for Crowds Modeling with Situated Cellular
Agents Approach

The activity of modeling complex simulation scenarios to study crowds and their dynamic
phenomena with a MAS-based approach consists in a complex activity, that generally, at
least requires a deep knowledge of the domain, proficiency in computational modeling (with
specific reference to MAS models), the skills of a programmer, a deep acquaintance with
the simulation platform. Rarely such heterogeneous competences can be found in the same
person. Even in these rare cases, the difficulty of building a software simulation directly
from a domain level theory or model without specific methodologies and implementation
tools, with the risk of hiding the complexity of the overall process, several often necessary
intermediate choices and assumptions. In the following we describe a methodology, a set
of guidelines directed to experts but also to non-experts, developed to tackle these issues
and provide users that wish to create models for pedestrian (and crowds) dynamics with a
formal and computational reference framework. We describe the process of building a model
based on Situated Cellular Agent (SCA) of a system of pedestrians, basically defined by the
specification of three elements: the spatial abstraction in which the simulated entities are
situated, the relevant elements of this structure which are able to shape and influence crowd
behavior, and the behavioral specification of moving entities. Figure 10.3 summarizes the
overall process, in which starting from an abstract scenario, a computational model is built
with the reference guidelines of a formal model. Software tools, designed and developed
according to the same reference framework, can effectively support model implementation
and execution to run specific experiments.

The Situated Cellular Agent (SCA) model is a specific class of Multilayered Multi-Agent
Situated System (MMASS) [Bandini et al., 2002] and, among MAS-based approaches to
complex systems modeling, it provides an explicit structured spatial representation of the
agents, environment and space-dependent agent behavioral and interaction mechanisms. A
thorough description of the model is out of the scope of this chapter; the syntax and se-
mantics of SCA basic elements will be briefly introduced when required for sake of clarity.
A Situated Cellular Agent is defined by the triple

〈
Space,F ,A

〉
where Space models the

environment where the set A of agents is situated, acts autonomously and interacts at-a-
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FIGURE 10.3 A diagram showing the main phases of the modeling approach.

distance, through the propagation of the set F of fields, and locally through synchronous
reaction operator. Figure 10.4 shows a diagram of the two interaction mechanisms provided
by the model. More precisely Space consists of a set P of sites arranged in a network (i.e.,
an undirected graph of sites). The structure of the space can be represented as a neighbor-
hood function, N : P −→ 2P so that N (p) ⊆ P is the set of sites adjacent to p ∈ P ; the
previously introduced Space element is thus the pair

〈
P ,N

〉
. Focusing instead on the single

basic environmental elements, a site p ∈ P can contain at most one agent and is defined by
the 3–tuple

〈
ap ,Fp ,Pp

〉
where:

• ap ∈ A ∪ {⊥} is the agent situated in p (ap = ⊥ when no agent is situated in p
that is, p is empty);
• Fp ⊂ F is the set of fields active in p (Fp = ∅ when no field is active in p);
• Pp ⊂ P is the set of sites adjacent to p (i.e., N (p)).

A SCA agent is defined by the 3–tuple
〈
s, p, τ

〉
where τ is the agent type, s ∈ Στ denotes

the agent state and can assume one of the values specified by its type (see below for Στ

definition), and p ∈ P is the site of the Space where the agent is situated. As previously
stated, agent type is a specification of agent state set, perceptive capabilities and behavior.
It is defined by the 3–tuple

〈
Στ ,Perceptionτ ,Actionτ

〉
. Στ defines the set of states that

agents of type τ can assume. Perceptionτ : Στ → [N ×Wf1 ] . . . [N ×Wf|F| ] is a function
associating to each agent state a vector of pairs representing the receptiveness coefficient
and sensitivity thresholds for that kind of field. Actionτ represents instead the behavioral
specification for agents of type τ . Each SCA agent is thus provided with a set of sensors (i.e.,

B

A

A

B

C

FIGURE 10.4 A diagram showing the two interaction mechanisms provided by Situated Cellular Agent:
on the left, two reacting agents in a coordinated way change their states, and, on the right, an agent emitting
a field that diffuse within the space structure.
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defined in terms of perception function) that allows its interaction with the environment
and other agents. At the same time, agents can be the source of fields that diffusing within
the structured SCA space can be perceived by other agents endowed with suitable sensors
(e.g., noise emitted by a talking agent that can be perceived at-a-distance).

The behavior of each type of SCA agent can be specified using a language that defines
the following primitives:

• emit(s, f , p): to start the diffusion of a field f from site p, where the agent is
situated;
• react(s, ap1 , ap2 , . . . , apn , s ′): it allows the specification of a coordinated change

of state among adjacent agents. In order to preserve agents’ autonomy, a com-
patible primitive must be included in the behavioral specification of all the in-
volved agents; moreover when this coordination process takes place, every in-
volved agents may dynamically decide to effectively agree to perform this oper-
ation;
• transport(p, f , q): it allows one to define agent movement from site p to site q

(that must be adjacent and vacant);
• trigger(s, f , s ′): it specifies that an agent must change its state when it senses

a particular condition in its local context (i.e., its own site and the adjacent
ones); this operation has the same effect of a reaction, but does not require a
coordination with other agents.

10.3.1 Spatial Infrastructure and Active Elements of the Environment

SCA agents’ actions take place in a discrete and finite space. In order to obtain an ap-
propriate abstraction of space suitable for the SCA model, a discrete abstraction of the
space in which the pedestrian dynamics has to be studied must be defined as an undirected
graph: nodes represent the positions that can be occupied by single pedestrians. SCA space
represents thus an abstraction of a walking pavement, but it can be sufficiently detailed to
be considered an approximation of the real environment surface, and it allows a realistic
representation of the movements and paths that individuals would follow. The scale of dis-
cretization can vary, but according to [Schadschneider et al., 2002] a cell dimension of 40
× 40 cm2 is adequate to represent the typical space occupied by a pedestrian in a dense
crowd. Since active elements of the environment can be perceived and thus influence, or
even determine, the movement of pedestrians, SCA approach suggests representing them
as agents endowed with the ability of emitting a sort of presence field that can be per-
ceived by all agents situated on sites reached by its diffusion and endowed with a suitable
perceptive ability (i.e., perception function). Typically the latter are objects of the envi-
ronment which constrain agent movement (e.g., gateways, doors), but also objects that can
transmit some kind of conceptual information (e.g., exit signs or indications). To adopt
field emission–diffusion–perception mechanism as a basic instrument to model at-a-distance
influences between agents, a specific field type must be defined (i.e., diffusion, composition
and comparison functions). This mechanism allows one to represent several types of fields;
for instance, visual and acoustic perception of a signal may be modeled taking into account
the different influence of obstacles in their diffusion (e.g., a sound can pass through a door
even if at reduced intensity). A library of signal types can easily be build to support this
phase. By selecting a predefined field type the modeler is actually specifying the 4-tuple〈
Wt , Diffusiont ,Comparet ,Composet

〉
, that defines a field type (i.e., the set of values it

can assume, how it diffuses within the spatial structure, how different emissions of the
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same field type combine and how to perform comparisons, e.g., to evaluate if a given field
overcomes a threshold when non-numerical values are allowed).

The behavioral specification of an agent representing an active element of the environment
always include the following action:

action :emit(p, ft)
condition:a = 〈s, p, τ〉
effect :added(ft , p)

where ft is a field of type t and a = 〈s, p, τ〉 specifies that the agent a of type τ is in state
s and occupying site p. The effect of this emit action (i.e., added(f , p)) is a modification
in a set of sites in the space (determined by function Diffusiont) to notify its presence
to other agents. In particular, the set Pe of sites that will be affected by this action is
Pe =

{
q ∈ P | Diffusiont(p, ft , q) �= 0} (i.e., the set of sites for which the diffusion

function is not the null field). Given q ∈ Pe , the set F ′q of fields active in it after the
diffusion will be:

• Fq ∪
{
〈Diffusiont(p, ft , q),Composet ,Comparet〉

}
if Fq (i.e., the set of fields

that were active in the site q before the emission) does not include fields of type
t ;

•
(
Fq − {f ′t }

)
∪
{
〈Composet

(
Diffusiont(p, ft , q),w ′t

)
,Composet ,Comparet〉

}
where f ′t = 〈w ′t ,Composet ,Comparet〉 was the unique non null field of type t
active in q before the emission.

More complex behaviors for active elements of the environment can also be defined if
required, for instance to model active elements whose emission starts or stops only under
specific conditions.

10.3.2 Pedestrians

The modeling of pedestrians populating the environment whose spatial structure and rele-
vant elements have been specified as above can take into account the possibility of modeling
non homogeneous systems, where pedestrians with different behavioral specifications, per-
ceptive abilities and capabilities can interact thanks to homogeneous interaction mechanisms
specified by SCA (i.e., field emission-diffusion-perception and local reaction). SCA model
in fact supports the definition of heterogeneous agent systems thanks to the notion of agent
type.

The specification of agent behaviors can for instance represent different preferences of
pedestrians toward one of multiple movement directions but also support more complex
behavioral models in which reasoning, planning, scheduling and other abilities has to be
properly integrated in the model. The basic agent behavioral specification of pedestrians is
based on transport action that is, in the specification of how agents select next destination
site:

action : transport(p, q)
condition: a = 〈s, p, τ〉,Aq = ⊥, q ∈ Pp , best(s, q)
effect : a = 〈s, q , τ〉,Ap = ⊥
where a = 〈s, p, τ〉 specifies that the agent a (for which the action is specified) is in state
s, is occupying site p, and is of type τ ; q ∈ Pp belongs to the set of sites adjacent to p
and best(s, q) is verified if, for state s, �r ∈ Pp | utility(s, r) > utility(s, q) ∧ ar = ⊥. A
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possible way to define agent behavior, coherently with traditional notion of agents utility in
Artificial Intelligence, can be: utility(s, r) =

∑
t∈T wt(s) · fval(t , r) where wt(s) denotes the

weight associated to fields of type t for agents with a given attitude (i.e., the desirability of
that kind of signal represented by or as function of agent state) and fval(t , r) denotes the
value of field of type t in site r . In case of more sites having the same utility value the agent
can make a non deterministic choice among them or adopt other strategies. The effect of
the action is to free site p, and correspondingly change the position of agent a to site q .

For each agent type, the modeler can specify fields emitted by the agent and the sensitivity
to fields emitted by other agents. A change in agent’s attitude can be defined either by a
trigger or a react primitive. Both primitives in fact determine an agent state change. The
first option can be used when the change of attitude can be mapped to a specific condition
associated to a field, such as the fact that the current intensity of a signal exceeds a given
threshold (i.e., the agent is close enough to a given point of interest):

action : trigger(s1, fg , s2)
condition: a = 〈s1, p, τ〉, perceive(fg), compare(fg , ft)
effect : a = 〈s2, p, τ〉
where ft represents the above introduced threshold. The second option, the react primitive,
can be adopted when two agents coordinate themselves to state change:

action : react(s1, b, s2)
condition: a = 〈s1, p, τ1〉, b = 〈sb , q , τ2〉, q ∈ Pp , agreed(b)
effect : a = 〈s2, p, τ1〉
where the agreed(b) specifies that agent b has agreed to perform a coordinated change of
state, a necessary condition for the reaction to take place. It must be noted that a compatible
react action must be specified in another agent (that could be of the same type or not).
The effect of both actions is to change the state of agent a from s1 to s2, but in different
conditions and exploiting different primitives. It must be noted that these are just sample
action specifications, and that additional conditional elements can be defined to better fit
the specific situation.

10.4 A Pedestrian Modeling Scenario

10.4.1 The Scenario

An underground station is an environment where various crowd behaviors take place. Pas-
sengers’ behaviors are difficult to predict, because crowd dynamics emerge from interactions
between passengers, and between single passengers and parts of the environment, such as
signals (e.g., current stop indicator), doors, seats and handles. The behavior of passengers
changes noticeably in relation to the different priorities that characterize each phase of their
trips. That means, for instance, that passengers close to each other may display very dif-
ferent behaviors because of their distinct aims in that moment. Passengers on board may
have to get off and thus try to reach for the door, while other ones are instead looking
for a seat or standing beside a handle. Moreover when trains stop and doors open very
complex crowd dynamics happen, as people that have to get on the train have to allow the
exit of passengers that are getting off. Passengers have to match their own priority with
the obstacles of the environment, with the intentions of other passengers, and with implicit
behavioral rules that govern the social interaction in those kind of transit stations, in a
mixture of competition and collaboration, to avoid stall situations. Given the complexity of
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FIGURE 10.5 Discretization of a portion of the environment and extension of fields associated to the
doors of the wagon, in the tool supporting the definition of the simulated space.

FIGURE 10.6 Immobile active elements of the environment.

the overall scenario, we decided to focus on a specific portion of this environment in which
some of the most complex patterns of interaction take place: the part of the platform in the
presence of a standing wagon from which some passengers are attempting to get off while
other waiting travelers are trying to get on.

10.4.2 The Modeling Assumptions

To build up our simulation we made some behavioral assumptions, now we will make some
brief examples of the kind of behaviors we wanted to capture. Passengers that do not have
to get off at a train stop tend to remain still, if they do not constitute an obstacle to
the passengers that are descending. Passengers will move only to give way to a descending
passenger, to reach some seat that has became available, or to reach a better position like
places at the side of the doors or close to the handles. On the other hand in very crowded
situations it often happens that people that do not have to get off can constitute an obstacle
to the descent of other passengers, and they “are forced to” get off and wait for the moment
to get on the wagon again. Passengers that have to get off have a tendency to go around
still agents to find their route toward the exit, if it is possible. Once the train is almost
stopped the waiting passengers on the platform identify the entrance that is closer to them,
and try to move toward it. If they perceive some passengers bound to get off, they first let
them get off and then get on the wagon.
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FIGURE 10.7 A diagram showing various attitudes for agent type passenger and the allowed transitions
between attitudes.

10.4.3 The Environment

In reference to the modeling approach stated in the previous paragraph, to build an en-
vironment suitable for SCA platform, first of all we need to define a discrete structure
representing the actual space in which the simulation is set. In our case study we started
from an available diagram of an underground wagon. A discrete abstraction of this map
was defined, devoting to each node the space generally occupied by one standing person, as
shown in Figure 10.5.

The elements of the environment that were considered relevant in determining the crowd
dynamics of this scenario are the following: Station Exits, Doors, Seats and Handles (see
Figure 10.6 for their disposition). Station exits emit fixed fields, constant in intensity and in
emission, that will be exploited by agents headed toward the exit of the station, that perceive
them as attractive. Agent-doors emit another type of field which can guide passengers that
have to get off the wagon, toward the platform, and passengers that are on the platform
and are bound to get in the wagon. Seats may instead have two states: occupied and free.
In the second state they emit a field that indicates their presence, and that is perceived as
attractive by passengers, and they become occupied by reacting with agents that effectively
occupy them. Handles also emit a field type very similar to the one emitted by seats, whose
attractive effect is however less intense.

10.4.4 The Passengers

The above introduced elements support the definition of agents able to move in this en-
vironment evaluating the related signals according to their attitudes. We have identified
the following attitudes for agent of type passengers: waiting (w), passenger (p), get-off (g),
seated (s), exiting (e). In relation to its attitude, an agent will be sensitive to some fields,
and not to others, and attribute different relevance to the perceived signals. In this way,
the changing of attitude will determine a change of priorities. Attitude w is associated to
an agent that is waiting to enter in the wagon. In this condition, agents perceive the fields
generated by the doors as attractive, but they also perceive as repulsive the fields generated
by passengers that are getting off, in other words those in attitude g . In attitude w the
agent “ignores” (is not sensitive to) the fields generated by other active elements of the en-
vironment, such as exits’ attractive fields, chairs attractive field and so on. Once inside the
wagon, w agents change their attitude to p (passenger), through a trigger action activated
by the perception of the maximum intensity of field generated by agent-door type. Agent
in attitude p is attracted by fields generated by seats and handles, and repulsed by fields
related to passengers that are getting off. In attitude g the agent will instead emit a field
warning other agents of its presence, while it is attracted by fields generated by the doors.
Once passed through the wagon door a g agent changes its attitude to e (exiting) and its
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priority will become to find the exits of the station. Figure 10.7 summarizes the various
agent attitudes and the allowed transitions among them (that are modeled by means of
trigger or react actions).

Table 10.1 describes instead the sensitiveness of the passenger to various fields in relation
to their attitude. The table’s cells provide also the indication about if the perceived field
is considered attractive or repulsive, as well as the relevance associated to that field type.
This table can be used as a guide for the definition of the utility function associated to the
transport action characterizing passenger agents.

It must be noted that all passengers, except those in state g , emit a field of type Presence
that generally has a repulsive effect, but a much lesser one with respect to the one generated
by fields of type Exit pressure emitted by agents in get-off state.

10.4.5 Simulation Results

A simulator implementing the previously introduced model was realized exploiting the SCA
model: only a subset of the overall introduced model was implemented, and more precisely
active objects of the environment and passenger agents in state w , g , e, p. State s was
omitted, to focus on the conflicts between agents in state w and g , which represent the
most characteristic element of the overall system dynamic.

Figure 10.8 shows a screen-shot of this simulation system, in which waiting agents move
to generate room for passenger agents that are going to get off the train. The system is syn-
chronous, meaning that every agent performs one single action per turn; the turn duration
is about one–fourth of second of simulated time. The goal of a small experimentation as this
one is to qualitatively evaluate the modeling of the scenario and the developed simulator.
The execution and analysis of several simulations shows that the overall system dynamics
and the behavior of the agents in the environment is consistent with a realistic scenario,
and fits with our expectations. To determine this evaluation, we executed over 100 simu-
lations in the same starting configuration, which provides 6 passengers located on a metro
train in state g (i.e., willing to get off), and 8 agents that are outside the train in state w
(i.e., waiting to get on). A campaign of tests was necessary since in this specific application
pedestrians perform a non-deterministic choice whenever they can move to different sites
characterized by the same utility value.

In all simulations the agents achieved their goals (i.e., get on the train or get out of
the station) in a number of turns between 40 and 60, with an average of about 50 turns.
Nonetheless we noticed some undesired transient effects, and precisely oscillations, “forth
and back” movements and in few simulations static forms providing “groups” facing them-
selves for a few turns, until the groups dispersed because of the movement of a periph-
eral element. These phenomena, which represent minor glitches under the described ini-
tial conditions, could lead to problems in case of high pedestrian density in the simulated
environment.

Instead of modifying the general model, in order to introduce a sort of agent “facing” (not

TABLE 10.1 The table shows, for every agent state, the relevance of perceived signals.
State Exits Doors Seats Handles Presence Exit press.
W (getting on) not perc. attr. (2) not perc. not perc. rep. (3) rep. (1)
P (on board) not perc. not perc. attr. (1) attr. (2) rep. (3) rep. (2)
G (getting off) not perc. attr. (1) not perc. not perc. rep. (2) not perc.
S (seated) not perc. attr. (1)* not perc. not perc. not perc. not perc.
E (exiting) attr. (1) not perc. not perc. not perc. rep. (2) not perc.

* = The door signal also conveys the current stop indication.
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FIGURE 10.8 Two screenshots of the underground station simulation. On the first one 6 light gray
agents are inside the train and going to get off, while 8 dark agents are standing outside and are going to
get on. On the second, the latter have made some room for the former to get off.

provided by the SCA model), we allowed agents to keep track of their previous position,
in order to understand if a certain movement is a step back. The utility of this kind of
movement can thus be penalized. Instead, in order to avoid stall situations, the memory of
the past position can also be exploited to penalize immobility, lowering the utility of the site
currently occupied by the agent whenever it was also its previous position. These correctives
were introduced in the behavioral specification of mobile agents, and a new campaign of
tests was performed to evaluate the effect of these modifications in the overall system
dynamics. By introducing these correctives, the occurrence of oscillating agent movement
was drastically reduced, and the penalization of immobility simplified the solution of stall
situations among facing groups. In all simulations the agents were able to achieve their
goals, but the number of turns required to complete agents movement is between 20 and
40, with an average of about 30 turns. The analysis and identification of other significant
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FIGURE 10.9 A screenshot of a Netlogo simulation applet, on the left, and a Repast simulation model,
on the right.

parameters to be monitored, in this specific simulation context and in general for crowding
situations, are objects of future developments.

10.5 From a SCA Model to Its Implementation

To effectively realize a simulator based on the introduced MAS model, even before consid-
ering the possibility of realizing tools supporting the specific aspects of its application to
pedestrian dynamics, we considered several existing software frameworks for agent–based
simulation systems.

This kind of framework comprises abstractions and mechanisms for the specification of
agents and their environments, to support their interaction, but also additional function-
alities such as the management of the simulation (e.g., set-up, configuration, turn man-
agement), its visualization, monitoring and the acquisition of data about the simulated
dynamics. We will not introduce a detailed review of the current state of the art in this
sector, but we will introduce some classes of instruments that have been considered for the
implementation of SCA-based simulations.

A first category of these tools provides general purpose frameworks in which agents mainly
represent passive abstractions, sort of data structures that are manipulated by an overall
simulation process. A successful representative of such tools is NetLogo∗, a dialect of the
Logo language specifically aimed at modeling phenomena characterized by a decentralized,
interconnected nature. NetLogo does not even adopt the term agent to denote individuals,
but it rather calls them turtles; a typical simulation consists in a cycle choosing and per-
forming an action for every turtle, considering its current situation and state. The choice of
a very simple programming language that does not require a background on informatics, the
possibility to deploy in a very simple way simulations as Java applets, and the availability
of simple yet effective visualization tools, made NetLogo extremely popular.

A second category of these tools is frameworks that are developed with a similar rationale,
providing for very similar support tools, but these instruments are based on general purpose

∗http://ccl.northwestern.edu/netlogo/
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programming languages (generally object oriented). Repast∗ [North et al., 2006], represents
a successful representative of this category, being a widely employed agent-based simulation
platform based on the Java language. The object-oriented nature of the underlying program-
ming language supports the definition of computational elements that make these agents
more autonomous, closer to the common definitions of agents, supporting the encapsula-
tion of state (and state manipulation mechanisms), actions and action choice mechanism in
the agent’s class. The choice of adopting a general purpose programming language, on one
hand, makes the adoption of these instruments harder for modelers without a background
in informatics but, on the other, it simplifies the integration with external and existing li-
braries. Repast, in its current version, can be easily connected to instruments for statistical
analysis, data visualization, reporting and also Geographic Information Systems.

While the above introduced frameworks offer functionalities that are surely important in
simplifying the development of an effective simulator, it must be noted that their neutrality
with respect to the specific adopted agent model leads to a necessary preliminary phase of
adaptation of the platform to the specific features of the model that is being implemented.
If the latter defines specific abstractions and mechanisms for agents, their decision making
activities, their environment and the way they interact, then the modeler must in general
develop proper computational supports to be able to fruitfully employ the platform. These
platforms, in fact, are not endowed with specific supports to the realization of agent delib-
eration mechanisms or infrastructures for interaction models, either direct or indirect (even
if it must be noted that all the above platforms generally provide some form of support to
agent environment definition, such as grid-like or graph structures).

These considerations are the main motivations for the efforts that lead to the development
of tools belonging to a third category of frameworks, providing a higher level linguistic
support in an effort aimed at reducing the distance between agent-based models and their
implementations. The latest version of Repast, for instance, is characterized by the presence
of a high level interface for “point-and-click” definition of agent’s behaviors, that is based
on a set of primitives for the specification of agent’s actions. SimSesam∗∗ [Klügl et al., 2003]
defines a set of primitive functions as basic elements for describing agents’ behaviors, and it
also provides visual tools supporting model implementation. At the extreme border of this
category, we can mention efforts that are specifically aimed at supporting the development
of simulations based on a precise agent model, approach and sometimes even for a specific
area of application.

Given the overall aims of this research effort, the availability of a formal model that can
represent a proper level for the specification of agents and their behaviors, our choice for the
implementation of a simulator based on the SCA model was to realize an ad hoc framework,
specifically suited to this model, the introduced abstractions and mechanisms.

10.5.1 Supporting and Executing SCA Models

The framework that we developed for this project is essentially a library developed in
C++ providing proper classes to realize notions and mechanisms related to the SCA and
MMASS models; this library is based on a previous experience [Bandini et al., 2006a], in
which a Java framework for MMASS models was developed. The reason for this change
in the adopted programming language was mainly the need of integrating the simulation

∗http://repast.sourceforge.net/
∗∗http://www.simsesam.de/
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FIGURE 10.10 Simplified class diagrams respectively related to the part of the framework devoted to
the realization of MMASS concepts and mechanisms, on the left, and to the management of the visualization
of the dynamics generated by the model, on the right.

model with an effective realtime 3D engine, to realize a module for an effective visualization
of the dynamics generated by the simulation models. In particular, to realize the second
component we adopted Irrlicht∗, an open-source 3D engine and usable in C++ language.
It is cross-platform and it provides a performance level that we considered suitable for our
requirements. It provides a high level API that was adopted for several projects related to
3D and 2D applications like games or scientific visualizations.

In particular, a simplified class diagram of the framework is shown in Figure 10.10 on the
left. The lower part of the diagram is devoted to the environment, and it is built around the
BasicSite class. The latter is essentially a graph node (i.e., it inherits from the GraphNode
class) that is characterized by the association with a FieldManager. The latter provides the
services devoted to field management (diffusion, composition and comparison, defined as ab-
stract classes). An abstract space is essentially an aggregation of sites, whose concretizations
define proper adjacency geometries (e.g., regular spaces characterized by a Von Neumann
adjacency or possibly irregular graphs). An abstract agent is necessarily situated in exactly
one site. Concrete agents defined for this specific framework are active objects (that are used
to define concrete points of interest/reference to be adopted in a virtual environment) and
pedestrians (that are basic agents capable of moving in the environment). Actual pedestri-
ans and mobile agents that a developer wants to include to the virtual environment must be
defined as subclasses of Pedestrian, overriding the basic behavioral methods and specifically
the action method. Figure 10.11 shows the methods defined by the AbstractAgent class,
on the left, and the pseudo-code description of the Pedestrian agent action method, on the
right. This particular method encapsulates the sub-steps that are carried out by an agent
every time it evaluates what action should be performed. In particular, in the underground
simulation example, the agent must (i) process the relevant perceptions (i.e., essentially
gather the perceivable fields in the site it occupies and on the adjacent ones), (ii) evaluate
the possibility to alter its own attitude, (iii) choose the destination site and (iv) move to
it. It must be noted that in this application, the pedestrian agents automatically emit a
presence field every turn, before their actions are effectively triggered.

∗http://irrlicht.sourceforge.net/
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FIGURE 10.11 Methods defined by the AbstractAgent class, on the left, and the pseudo-code description
of the Pedestrian agent action method, on the right.

While the previous elements of the framework are devoted to the management of the
behaviors of autonomous entities and of the environment in which they are situated, another
relevant part of the described framework is devoted to the visualization of these dynamics.
More than entering in the details of how the visualization library was employed in this
specific context, we will now focus on how the visualization modules were integrated with the
previously introduced MMASS framework in order to obtain indications on the scene that
must be effectively visualized. Figure 10.10, on the right, shows a simplified class diagram
of the main elements of the 3D Engine Library. The diagram also includes the main classes
that are effectively in charge of inspecting the state of the MMASS environment and agents,
and of providing the relevant information to the SceneManager that will translate it into
a scene to be visualized. The Project class acts as a container of the 3D models providing
the graphical representation of the virtual environment (Model3D objects), as well as the
graph related to the adopted discretization of this physical space (a Graph object visually
representing the previously discussed physical layer). It also includes a set of Avatar objects,
that are three dimensional representations of Pedestrian objects (introduced in the previous
subsection).

The framework must be able to manage in a coordinated way the execution of the model
defined for the specific virtual environment and the updating of its visualization. To manage
this coordinated execution of different modules and procedures three main operative modes
have been defined and are supported by the framework. The first two are characterized by
the fact that agents are not provided with a thread of control of their own. A notion of turn
is defined and agents are activated to execute one action per turn, in a sequential way or in
a conceptually parallel way (as for a Cellular Automaton). In this case, respectively after
each agent action or after a whole turn the scene manager can update the visualization. On
the other hand, agents might be associated with a thread of control of their own and no
particular fairness policy is enforced. The environment, and more precisely the sites of the
MMASS space, is in charge of managing possible conflicts on the shared resource. However,
in order to support a fluid visualization of the dynamics generated by the execution of the
MAS, the Pedestrian object before executing an action must coordinate with the related
Avatar: the Pedestrian action will be temporarily blocked until the visualization engine has
updated the scene, moving the Avatar according to the previous Pedestrian movement. It
must be noted that in all the introduced activation modes the environment is in charge
of a regulation function [Bandini and Vizzari, 2007] limiting agents’ autonomy for sake of
managing the consistency of the overall model or to manage a proper form of visualization.
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FIGURE 10.12 Four screenshots of the application of the SCA simulation framework to the underground
scenario.

The framework was also applied in the underground simulation example; some screenshots
of this application are shown in Figure 10.12. The framework comprises tools supporting
the definition of the spatial structure of the environment and for positioning and configuring
active elements of the environment, as well as agents included in a pre-defined library. In
the future, we aim at supporting the dynamic configuration of pedestrian agents’ behaviors
as well. The visualization can show or hide the discrete structure of the environment, and
it can use visually effective or simplified models for pedestrians. Additional examples of
applications of this framework are presented in [Vizzari et al., 2008].

10.6 Conclusions

The chapter has introduced and discussed issues and approaches to the modeling and simu-
lation of crowds of pedestrians. A brief discussion of the existing modeling approaches was
provided, and a modeling approach for the representation of crowds with SCAs has been
described and adopted in the sample simulation scenario. Preliminary results of this case
study have also been illustrated and discussed. Finally different approaches to the gener-
ation of an effective 3D visualization of simulated dynamics, that can be used for a more
effective communication of simulation results, have been described.

The model has been applied to paradigmatic cases and it was able to generate dynamics
and phenomena (i.e., formation of lanes in corridors, freezing by heating) that were previ-
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FIGURE 10.13 A diagram illustrating a multilayered environment specification: the bottom layer is a
fine grained discretization of Scala Square and the top layer represents its points of interest.

ously by models adopting different approaches [Bandini et al., 2007]. On the other hand, the
SCA model supports the definition of heterogeneous agent types, and thus of different types
of pedestrians, and it was adopted to design and realize tools supporting the definition and
execution of SCA based pedestrian simulations.

In this line of research, we proposed a possible enhancement of the described modeling
approach to improve its expressive power, starting from the representation of the environ-
ment. In particular, by adopting the MMASS multilayered environmental structure, the
different points of interest/reference might be represented on a graph whose links represent
proximity or direct reachability relations among the related points, realizing a sort of ab-
stract map of the environment. This layer might be interfaced to the previously introduced
more fine-grained representation of the environment (i.e., the physical layer), and it could
be the effective source of fields generated by infrastructural elements, that are diffused to
the physical layer by means of interfaces. A sample diagram illustrating this approach to
the modeling of a physical environment is shown in Figure 10.13: the bottom layer is a fine
grained discretization of Scala Square, and the top layer represents its points of interest that
are associated with agents emitting a proper distinctive presence field. The abstract map
could also be (at least partly) known by an agent, that could thus make decisions on what
attitude toward movement should be selected according to its own goals and according to
the current context by reasoning on/about the map, instead of following a predefined script.
These kinds of considerations do not only emphasize the possible use of a multiple layered
representations of the environment, but they also point out the possibility of enhancing the
current agents (that are characterized by a reactive architecture) by endowing them with
proper forms of deliberation, toward a hybrid agent architecture. A complete definition of
these deliberative elements of the situated agents is the object of current and future works.
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10.7 Discussion and Future Research Directions

One of the future trends of research related to the topic of pedestrian and crowd modeling
and simulation is focused on data acquisition: the current landscape on approaches to data
acquisition about crowds of pedestrians is quickly evolving, due to the growing availability
of innovative localization technologies (GPS, RFID, UWB) and to the improvement of
existing techniques based on analysis of video footage. However, proper methodologies for
the acquisition of data to characterize crowds of pedestrians in complex situations are still
missing.

Moreover, the presence of (i) recent works focusing on the analysis of the (empirical)
relation between density and velocity of pedestrians [Seyfried et al., 2005] (also as a very
general test for the evaluation of the currently available pedestrian simulation models and
platforms) and (ii) contrasting models taking a very different perspective on pedestrians’
movement conflicts, some preventing them, by activating asynchronously agents in a random
order (i.e., shuffling) [Klüpfel, 2003], other ones considering conflicts a relevant phenomenon
to be modeled and considered [Kirchner et al., 2003], suggests the fact that there are still
open methodological issues to be clarified.

These two lines of research will hopefully converge and provide new results that will
support the definition of proper methodological framework for pedestrian modeling and
simulation, and more effective validation techniques [Klügl, 2008] that would help the
field in advancing beyond the already empirically studied paradigmatic cases [Helbing et al.,
2001].

Finally, a very lively and promising research trend is focused on the integration of psy-
cho/sociological considerations in crowd models. Most models of pedestrian behaviors
effectively disregard differences among individuals that make up a crowd. The integration
of psycho/sociological considerations on human behavior (such as the inclusion of emotions
and their effects influencing pedestrian movement) could provide an improvement to the
expressiveness of crowd models that could also extend the range of applications, for instance
toward the modeling of consumers’ behaviors in shopping spaces.
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F. Klügl. A validation methodology for agent-based simulations. In Wainwright and
Haddad [2008], pages 39–43. ISBN 978-1-59593-753-7.
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11.1 Introduction

Efficient transportation systems are essential to the functioning and prosperity of modern,
industrialized societies. Mobility is also an integral part of our quality of life, sense of self-
fulfillment and personal freedom. Our traffic demands of today are predominantly served by
individual motor vehicle travel which is the primary means of transportation. However, the
limited road capacity and ensuing traffic congestion have become a severe problem in many
countries. Nowadays, we additionally have to balance the human desire for personal mobility
with the societal concerns about its environmental impact and energy consumption. On the
one hand, traffic demand can only be affected indirectly by means of policy measures. On
the other hand, an extension of transport infrastructure is no longer an appropriate or de-
sirable option in densely populated areas. Moreover, construction requires high investments
and maintenance is costly in the long run. Therefore, engineers are now seeking solutions
to the questions of how the capacity of the road network could be used more efficiently and
how operations can be improved by way of intelligent transportation systems (ITS).

In the presence of increasing computing power, realistic microscopic traffic simulations
are becoming a more and more important tool for diverse purposes ranging from generating
surrounding traffic in a virtual reality driving simulator to large-scale network simulations
for a model-based prediction of travel times and traffic conditions [Ministry of Transport,
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TABLE 11.1 Subjects in transportation systems sorted by typical time scales involved.
Time Scale Subject Models Aspects

0.1 s Vehicle Dynamics Sub-microscopic Drive-train, brake, ESP
1 s

Traffic Dynamics
Car-following models
Fluid-dynamic models

Reaction time, Time gap
10 s Accelerating and braking

1 min Traffic light period
10 min Period of stop-and-go wave

1 h

Transport. Planning

Traffic assignment models
Traffic demand model

Peak hour
1 day Day-to-day human behavior
1 year Building measures

5 years Statistics Changes in spatial structure
50 years Prognosis Changes in Demography

Energy and Spatial Planning of Nordrhein-Westfalen, 2007]. The primary application for
traffic simulations is the evaluation of hypothetical scenarios for their impact on traffic.
Computer simulations can be valuable in making these analyses in a cost-effective way.
For example, simulations can be used to estimate the impact of future driver assistance
systems and wireless communication technologies on traffic dynamics. Another example is
the prediction of congestion levels in the future, based on demographic forecasts.

Before going into detail about possible traffic flow models, it is worth mentioning differ-
ences between modeling the short-term traffic dynamics on a single road section and the
approach used for transportation planning describing behavioral pattern in a network on a
larger time scale. Table 11.1 shows typical time scales ranging over nine orders of magnitude
including vehicle dynamics, traffic dynamics and transportation planning. While dynamic
flow models explicitly describe the physical propagation of traffic flows of a given traffic
volume in a road network, transportation planning tools deal with the calculation of the
traffic demand by considering the decisions of travelers to participate in economical, so-
cial and cultural activities. The need for transportation arises because these activities are
spatially separated. The classical approach in trip-based transportation models is based on
a four-step methodology of trip generation, trip distribution, mode split and traffic assign-
ment [De Dios Ortúzar and Willumsen, 2001; Schnabel and Lohse, 1997; Daganzo, 1997;
Maerivoet and De Moo, 2005; Helbing and Nagel, 2004]. In the fourth step, the origin-
destination matrix of trips with a typical minimum disaggregation of one hour (comprising
a typical peak-hour analysis) is assigned to routes in the actual (or prospective) transporta-
tion network while taking into account the limited capacity of the road infrastructure by
means of simplified effective models. Recently, even large-scale multi-agent transportation
simulations have been performed in which each traveler is represented individually [Nagel
et al., 2000; Raney et al.; Charypar, 2005]. For the purposes of demand-modeling, mobility-
simulation and infrastructure re-planning the open-source software MATSim provides a
toolbox to implement large-scale agent-based transport simulations [MATSim, 2008].

11.1.1 Aim and Overview

The chapter will review the state-of-the-art in microscopic traffic flow modeling and the
implications for simulation techniques. In Section 11.2, we will introduce the concept of a
driver-vehicle agent within in the context of common traffic modeling approaches.

In order to perform traffic simulations, we will take a “bottom-up” approach and present
concrete models for describing the behavior of an agent. In Section 11.3.1, the Intelligent
Driver Model [Treiber et al., 2000] serves as a basic example of a car-following model repre-
senting the operational level of driving. As a first contribution, we will give special attention
to the heterogeneity in traffic. Different drivers behave differently in the same situation
(so called “inter-driver variability”) but can also change their behavior over the course of
time (“intra-driver variability”). While the first aspect can be addressed by individual pa-
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rameter sets for the agents (Section 11.3.2), the latter can be modeled by introducing a
time-dependency of some parameters (e.g., to model the frustration of drivers after being
in a traffic jam for a period, Section 11.3.3).

Realistic simulations of multi-lane freeway traffic and traffic in city networks also require
discrete decisions by the agents. For example, lane-changing decisions allow faster cars to
pass slower trucks. Another decision is related to the decision process of whether to brake or
not to brake when approaching a traffic light turning from green to amber. In Section 11.4.1,
we will introduce a general framework for dealing with these discrete decision processes. The
presented “meta-model” MOBIL [Kesting et al., 2007a] is an example of how complexity
can in fact be reduced by falling back on the agent’s model for calculating longitudinal
accelerations.

After having modeled the agent’s acceleration and lane-changing behavior, we will con-
sider multi-agent simulations. Section 11.5 addresses the design of microscopic traffic sim-
ulators. In order to be specific, we will discuss the explicit numerical integration scheme,
input and output quantities and visualization possibilities.

In Section 11.6, we will demonstrate the expressive power of the agent-based approach
for handling current research questions. Traffic simulations will illustrate the emergence of
collective dynamics from local interaction between agents. By way of example, we will show
how the desired individual behavior of agents to move forward fast can lead to contrary
effects such as the breakdown of traffic and self-organized stop-and-go waves. Another sim-
ulation will evaluate the effect of traffic flow homogenization by means of a speed limit
(Section 11.6.2). Last but not least, we will discuss an application of inter-vehicle com-
munication for propagating traffic-related information in a decentralized way. Inter-vehicle
communication has recently received much attention in the academic and engineering world
as it is expected to be a challenging issue for the next generation of vehicle-based Intelligent
Transportation Systems (ITS). Finally, in Section 11.7, we will discuss such trends in traffic
modeling and simulation.

11.2 Agents for Traffic Simulation

Vehicular traffic is a typical example of a multi-agent system: Autonomous agents (the
drivers) operate in a shared environment provided by the road infrastructure and react to
the neighboring vehicles. Therefore, the activities include both human interaction (with
the dominant influence originating from the directly leading vehicle) and man-machine-
interactions (driver interaction with the vehicle and the physical road environment). The
microscopic modeling or agent-based approach describing the motion of each individual
vehicle has grown in popularity over the last decade. The following Section 11.2.1 will
provide an overview of common mathematical approaches for describing traffic dynamics.
In Section 11.2.2, we will introduce the concept of a “driver-vehicle agent” within the context
of microscopic traffic modeling.

11.2.1 Macroscopic vs. Microscopic Approaches

The mathematical description of the dynamics of traffic flow has a long history already.
The scientific activity had its beginnings in the 1930s with the pioneering studies on the
fundamental relations of traffic flow, velocity and density conducted by Greenshields [Green-
shields, 1959]. By the 1950s, scientists had started to describing the physical propagation of
traffic flows by means of dynamic macroscopic and microscopic models. During the 1990s,
the number of scientists engaged in traffic modeling grew rapidly because of the availability
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Cellular automaton

Microscopic model

Macroscopic model

FIGURE 11.1 Illustration of different traffic modeling approaches: A snapshot of a road section at time
t0 is either characterized by macroscopic traffic quantities like traffic density ρ(x , t0), flow Q(x , t0) or
average velocity V (x , t0), or, microscopically, by the positions xα(t0) of single driver-vehicle agent α. For
cellular automata, the road is divided into cells which can be either occupied by a vehicle or empty.

of better traffic data and higher computational power for numerical analysis.
Traffic models have been successful in reproducing the observed collective, self-organized

traffic dynamics including phenomena such as breakdowns of traffic flow, the propagation
of stop-and-go waves (with a characteristic propagation velocity), the capacity drop, and
different spatiotemporal patterns of congested traffic due to instabilities and nonlinear in-
teractions [Helbing, 2001; Kerner, 2004; Kerner and Rehborn, 1996a; Cassidy and Bertini,
1999; Schönhof and Helbing, 2007]. For an overview of experimental studies and the devel-
opment of miscellaneous traffic models, we refer to the recently published extensive review
literature [Helbing, 2001; Chowdhury et al., 2000; Nagatani, 2002; Maerivoet and De Moor,
2005; Hoogendoorn and Bovy, 2001; Leutzbach, 1988].

As mentioned, there are two major approaches to describe the spatiotemporal propaga-
tion of traffic flows. Macroscopic traffic flow models make use of the picture of traffic flow as
a physical flow of a fluid. They describe the traffic dynamics in terms of aggregated macro-
scopic quantities like the traffic density, traffic flow or the average velocity as a function of
space and time corresponding to partial differential equations (cf. Fig. 11.1). The underlying
assumption of all macroscopic models is the conservation of vehicles (expressed by the conti-
nuity equation) which was initially considered by Lighthill, Whitham and Richards [Lighthill
and Whitham, 1955; Richards, 1956]. More advanced, so-called “second-order” models ad-
ditionally treat the macroscopic velocity as a dynamic variable in order to also consider the
finite acceleration capability of vehicles [Kerner and Konhäuser, 1994; Treiber et al., 1999].

By way of contrast, microscopic traffic models describe the motion of each individual
vehicle. They model the action such as accelerations, decelerations and lane changes of each
driver as a response to the surrounding traffic. Microscopic traffic models are especially
suited to the study of heterogeneous traffic streams consisting of different and individual
types of driver-vehicle units or agents. The result is individual trajectories of all vehicles and,
consequently, any macroscopic information by appropriate aggregation. Specifically, one can
distinguish the following major subclasses of microscopic traffic models (cf. Fig. 11.1):

• Time-continuous models are formulated as ordinary or delay-differential equa-
tions and, consequently, space and time are treated as continuous variables. Car-
following models are the most prominent examples of this approach [Bando et al.,
1995; Treiber et al., 2000; Jiang et al., 2001; Helbing and Tilch, 1998]. In gen-
eral, these models are deterministic but stochasticity can be added in a natural
way [Treiber et al., 2006b]. For example, a modified version of the Wiedemann
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model [Wiedemann, 1974] is used in the commercial traffic simulation software
PTV-VISSIMTM.

• Cellular automata (CA) use integer variables to describe the dynamic state of
the system. The time is discretized and the road is divided into cells which can be
either occupied by a vehicle or empty. Besides rules for accelerating and braking,
most CA models require additional stochasticity. The first CA for describing
traffic was proposed by Nagel and Schreckenberg [K. Nagel and Schreckenberg,
1992]. Although CA lack the accuracy of time-continuous models, they are able to
reproduce some traffic phenomena [Lee et al., 2004; Helbing and Schreckenberg,
1999; Knospe et al., 2001]. Due to their simplicity, they can be implemented
very efficiently and are suited to simulating large road networks [Ministry of
Transport, Energy and Spatial Planning of Nordrhein-Westfalen, 2007].
• Iterated coupled maps are between CA and time-continuous models. In this

class of model, the update time is considered as an explicit model parameter
rather than an auxiliary parameter needed for numerical integration [Kesting
and Treiber, 2008b]. Consequently, the time is discretized while the spatial coor-
dinate remains continuous. Popular examples are the Gipps model [Gipps, 1981]
and the Newell model [Newell, 1961]. However, these models are typically asso-
ciated with car-following models as well.

At first glance, it may be surprising that simple (and deterministic) mathematical models
aimed at describing the complexity of and variations in the human behavior, individual
skills and driving attitudes would lead to reasonable results. However, a traffic flow can (in
a good approximation) be considered as a one-dimensional system (with reduced degrees of
freedom). Furthermore, traffic models typically assume rational and safe driving behavior
as a reaction to the surrounding traffic while at the same time taking into account the
fundamental laws of kinematics.

Another aspect concerns the important issue of traffic safety. The traditional models for
describing traffic dynamics assume rational drivers that are programmed to avoid collisions.∗

Therefore, traffic safety simulation belongs to the field of human centered simulation where
the perception-reaction system of drivers with all its weak points has to be described. Up
to now, a general modeling approach is still lacking.

11.2.2 Driver-Vehicle Agents

Let us now adopt the concept of an agent to implicate the complex human driving behavior
into a general modeling framework. We therefore introduce the term driver-vehicle agent
which refers to the idea that an atomic entity includes internal characteristics of human
drivers as well as external properties of a vehicle. Figure 11.2 provides an overview of
relevant influences and features affecting human driving. In this context, the relevant time
scales are a first characteristic feature: The short-term operations are constituted by control
tasks such as acceleration and braking, and typically take place in the range of a second.
Specific behavioral attributes vary between individual drivers and affect the resulting driving
characteristics on an intermediate time scale of seconds up to minutes. Finally, a strategic
level of driving includes time periods of hours, e.g., the decision to start a trip or to find a
route in a network.

∗Of course, collisions happen in numerical simulations due to instable models and for kinematic reasons.
However, these collisions do not have explanatory or predictive power.
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FIGURE 11.2 Characteristics of a driver-vehicle agent. The operation of driving can be classified ac-
cording the involved time scales ranging from short-term actions in terms of acceleration and braking via
intermediate time scales describing behavioral characteristics to long-term strategic decisions. In addition,
the agent’s behavior is influenced by the physical properties of the vehicle, by interactions with other agents
and by the environment.

The driving task can be considered as a cognitive and therefore internal process of an
agent: The driver’s perception is limited to the observable external objects in the neigh-
borhood while his or her reaction is delayed due to a non-negligible reaction time as a
consequence of the physiological aspects of sensing, perceiving, deciding, and performing an
action. On the intermediate time scale, the agent’s actions are affected by his or her indi-
vidual driving behavior which may be characterized in terms of, e.g., preferred time gaps
when following a vehicle and smooth driving with a desired acceleration and a comfortable
deceleration. Moreover, the individual driving style may be influenced by the experience
and history of driving. For example, it is observed that people change their behavior after
being stuck in traffic congestion for a period [Brilon and Ponzlet, 1996; Fukui et al., 2003].
Such features can be incorporated by internal state variables corresponding to the agent’s
“mind” or “memory”.

However, short-time driving operations are mainly direct responses to the stimulus of
the surrounding traffic. The driver’s behavior is externally influenced by environmental
input such as limited motorization and braking power of the vehicle, visibility conditions,
road characteristics such as horizontal curves, lane narrowings, ramps, gradients and road
traffic regulations. In the following sections, we will address a number of these defining
characteristics of a driver-vehicle agent.

© 2009 by Taylor and Francis Group, LLC



Agents for Traffic Simulation 331

11.3 Models for the Driving Task

Microscopic traffic models describe the motion in longitudinal direction of each individual
vehicle. They model the action of a driver such as accelerations and decelerations as a
response to the surrounding traffic by means of an acceleration strategy toward a desired
speed in the free-flow regime, a braking strategy for approaching other vehicles or obstacles,
and a car-driving strategy for maintaining a safe distance when driving behind another
vehicle. Microscopic traffic models typically assume that human drivers react to the stimulus
from neighboring vehicles with the dominant influence originating from the directly leading
vehicle known as “follow-the-leader” or “car-following” approximation.

By way of example, we will consider the Intelligent Driver Model (IDM) [Treiber et al.,
2000] in Section 11.3.1. The IDM belongs to the class of deterministic follow-the-leader
models. Like other car-following models, the IDM is formulated as an ordinary differential
equation and, consequently, space and time are treated as continuous variables. This model
class is characterized by an acceleration function v̇ := dv

dt that depends on the actual speed
v(t), the gap s(t) and the velocity difference Δv(t) to the leading vehicle (see Fig. 11.3).
Note that the dot is the usual shorthand notation for the time derivative of a function. The
acceleration is therefore defined as the time derivative of the velocity v̇ := dv/dt .

In Section 11.3.2, we will model inter-driver variability by defining different classes of
drivers which is an inherent feature of microscopic agent approaches. A model for intra-
driver variability (changing behavior over the course of time) will then be discussed in
Section 11.3.3.

FIGURE 11.3 Illustration of the input quantities of a car-following model: The bumper-to-bumper
distance s for a vehicle α with respect to the vehicle (α−1) in front is given by sα = xα−1− xα− lα−1,
where lα is the vehicle length and x the position on the considered road stretch. The approaching rate
(relative speed) is defined by Δvα := va − vα−1. Notice that the vehicle indices α are ordered such that
(α− 1) denotes the preceding vehicle.

11.3.1 The Intelligent Driver Model

The IDM acceleration is a continuous function incorporating different driving modes for all
velocities in freeway traffic as well as city traffic. Besides the distance to the leading vehicle
s and the actual speed v , the IDM also takes into account velocity differences Δv , which
play an essential stabilizing role in real traffic, especially when approaching traffic jams and
avoiding rear-end collisions (see Fig. 11.3). The IDM acceleration function is given by

dvα

dt
= f (sα, vα, Δvα) = a

[
1−
(

vα

v0

)δ

−
(

s∗(vα, Δvα)
sα

)2
]

. (11.1)

This expression combines the acceleration strategy v̇free(v) = a[1 − (v/v0)δ] toward a de-
sired speed v0 on a free road with the parameter a for the maximum acceleration with a
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braking strategy v̇brake(s, v , Δv) = −a(s∗/s)2 serving as repulsive interaction when vehicle
α comes too close to the vehicle ahead. If the distance to the leading vehicle, sα, is large,
the interaction term v̇brake is negligible and the IDM equation is reduced to the free-road
acceleration v̇free(v), which is a decreasing function of the velocity with the maximum value
v̇(0) = a and the minimum value v̇(v0) = 0 at the desired speed v0. For denser traffic, the
deceleration term becomes relevant. It depends on the ratio between the effective “desired
minimum gap”

s∗(v , Δv) = s0 + vT +
vΔv
2
√

ab
, (11.2)

and the actual gap sα. The minimum distance s0 in congested traffic is significant for low
velocities only. The main contribution in stationary traffic is the term vT which corresponds
to following the leading vehicle with a constant desired time gap T . The last term is only
active in non-stationary traffic corresponding to situations in which Δv �= 0 and implements
an “intelligent” driving behavior including a braking strategy that, in nearly all situations,
limits braking decelerations to the comfortable deceleration b. Note, however, that the IDM
brakes stronger than b if the gap becomes too small. This braking strategy makes the IDM
collision-free [Treiber et al., 2000]. All IDM parameters v0, T , s0, a and b are defined
by positive values. These parameters have a reasonable interpretation, are known to be
relevant, are empirically measurable and have realistic values [Kesting and Treiber, 2008a].
We will discuss parameter values in detail in Section 11.3.2 and will use their clear meaning
to characterize different driving styles, that is, inter-driver variability.

For a simulation scenario with a speed limit (which we will study in Section 11.6.2), we
consider a refinement of the IDM for the case when the actual speed is higher than the
desired speed, v > v0. For example, an excess of v = 2v0 would lead to an unrealistic
braking of −15a for δ = 4. This situation may occur when simulating, e.g., a speed limit
on a road segment that reduces the desired speed locally. Therefore, we replace the free
acceleration for the case v > v0 by

v̇free(v) = −b
[
1−
(v0

v

)δ
]

. (11.3)

That is, the IDM vehicle brakes with the comfortable deceleration b in the limit v � v0.
Further extensions of the IDM can be found in Refs. [Treiber et al., 2006a; Kesting and
Treiber, 2008b; Treiber et al., 2006b].

The dynamic properties of the IDM are controlled by the maximum acceleration a, the
acceleration exponent δ and the parameter for the comfortable braking deceleration b. Let us
now consider the following scenario: If the distance s is large (corresponding to the situation
of a nearly empty road), the interaction v̇brake is negligible and the IDM equation (11.1) is
reduced to the free-road acceleration v̇free(v). The driver accelerates to his or her desired
speed v0 with the maximum acceleration v̇(0) = a. The acceleration exponent δ specifies how
the acceleration decreases when approaching the desired speed. The limiting case δ → ∞
corresponds to approaching v0 with a constant acceleration a while δ = 1 corresponds to an
exponential relaxation to the desired speed with the relaxation time τ = v0/a. In the latter
case, the free-traffic acceleration is equivalent to that of the Optimal Velocity Model [Bando
et al., 1995]. However, the most realistic behavior is expected between the two limiting cases
of exponential acceleration (for δ = 1) and constant acceleration (for δ → ∞). Therefore,
we set the acceleration exponent constant to δ = 4.

In Fig. 11.4, acceleration periods from a standstill to the desired speed v0 = 120 km/h are
simulated for two different settings of the maximum acceleration (the other model parame-
ters are listed in the caption): For a = 1.4 m/s2, the acceleration phase takes approximately
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40 s while an increased maximum acceleration of a = 3 m/s2 reduces the acceleration period
to ∼ 15 s. Notice that the acceleration parameter a of 1.4 m/s2 (3 m/s2) corresponds to a
free-road acceleration from v = 0 to v = 100 km/h within 23 s (10.5 s).
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FIGURE 11.4 Simulation of a single driver-vehicle agent modeled by the IDM: The diagrams show the
acceleration to the desired speed v0 = 120 km/h followed by braking as a reaction to a standing obstacle
located 3000 m ahead for several combinations of the IDM acceleration parameters a [in diagram (a)] and
b [in (b)]. The remaining parameters are a = 1.4 m/s2, b = 2.0 m/s2, T = 1.5 s, s0 = 2 m.

The equilibrium properties of the IDM are influenced by the parameters for the desired
time gap T the desired speed v0 and the minimum distance between vehicles at a standstill
s0. Equilibrium traffic is defined by vanishing speed differences and accelerations of the
driver-vehicle agents α:

Δvα = 0, (11.4)
dvα

dt
= 0, (11.5)

and
dvα−1

dt
= 0. (11.6)

Under these stationary traffic conditions, drivers tend to keep a velocity-dependent equilib-
rium gap se(vα) to the leading vehicle. In the following, we consider a homogeneous ensemble
of identical driver-vehicle agents corresponding to identical parameter settings. Then, the
IDM acceleration equation (11.1) with the constant setting δ = 4 simplifies to

se(v) =
s0 + vT√
1−
(

v
v0

)4
. (11.7)

The equilibrium distance depends only on the minimum jam distance s0, the safety time
gap T and the desired speed v0. The diagrams (a) and (b) in Fig. 11.5 show the equilibrium
distance as a function of the velocity, se(v), for different v0 and T parameter settings
while keeping the minimum distance constant at s0 = 2 m. In particular, the equilibrium
gap of homogeneous congested traffic (with v � v0) is essentially equal to the desired
gap, se(v) ≈ s∗(v , 0) = s0 + vT . It is therefore composed of the minimum bumper-to-
bumper distance s0 kept in stationary traffic at v = 0 and an additional velocity-dependent
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contribution vT corresponding to a constant safety time gap T as shown in the diagrams
by straight lines. For v → 0, the equilibrium distance approaches the minimum distance s0.
If the velocity is close to the desired speed, v ≈ v0, the equilibrium distance se is clearly
larger than the distance vT according to the safety time gap parameter. For v → v0, the
equilibrium distance diverges due to the vanishing denominator in Eq. (11.7). That is, the
free speed is reached exactly only on a free road.
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FIGURE 11.5 Equilibrium distance se(v) according to Eq. (11.7) as functions of the speed for different
settings of the desired speed v0 and the safety time gap T . The deviations from the dotted lines are discussed
in the main text. The other parameters are those listed in the caption of Fig. 11.4.

In the literature, the equilibrium state of homogeneous and stationary traffic is often
formulated in macroscopic quantities such as traffic flow Q , (local) average velocity V and
traffic density ρ. The translation from the microscopic net distance s into the density is
given by the micro-macro relation

s =
1
ρ
− l , (11.8)

where l is the vehicle length. In equilibrium traffic, ρ is therefore given by se , the mean
velocity is simply V = ve and the traffic flow follows from the hydrodynamic relation

Q = ρV . (11.9)

So, the equilibrium velocity ve is needed as a function of the distance se . An analytical
expression for the inverse of Eq. (11.7), that is the equilibrium velocity as a function of the
gap, ve(s), is only available for the acceleration exponents δ = 1, 2 or δ →∞ [Treiber et al.,
2000]. For δ = 4, we only have a parametric representation ρ(v) with v ∈ [0, v0] resulting
from Eqs. (11.8) and (11.7). Figures 11.6(a) and (b) show the equilibrium velocity-density
relation Ve(ρ) for the same parameter settings as in Fig. 11.5. The assumed vehicle length
l = 5 m together with the minimum jam distance s0 = 2 m results in a maximum density
ρmax = 1/(s0 + l) ≈ 143 vehicles/km. Using the relation (11.9), we obtain the so-called
fundamental diagram between the traffic flow and the vehicle density, Q(ρ) = V ρ(v) which
is displayed in Fig. 11.6(c) and (d). Notice that Q is typically given in units of vehicles per
hour and the density ρ in units of vehicles per km.

According to Eqs. (11.7) and (11.8), the fundamental relations of homogeneous traffic
depend on the desired speed v0 (low density), the safety time gap T (high density) and the
jam distance s0 (jammed traffic). In the low-density limit ρ � 1/(v0T ), the equilibrium
flow can be approximated by Q ≈ v0ρ. In the high density regime, one has a linear decrease
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FIGURE 11.6 Equilibrium velocity-density relations of the IDM (top) and corresponding flow-density
relations, so-called fundamental diagrams (bottom). The equilibrium properties depend on the minimum
distance s0 (here set to 2 m), the desired speed v0 (here displayed for 120 and 80 km/h) and the time gap T
(here 1.0, 1.5 and 2.0 s). The safety time gap is the most important parameter determining the maximum
flow (stationary freeway capacity).

of the flow,

Q(ρ) ≈ 1− ρ(l + s0)
T

, (11.10)

which can be used to determine the effective length l + s0 and T . Notice that the vehicle
length is not a model parameter but only a scaling quantity that determines the (static)
maximum density ρmax together with the IDM parameter s0.

11.3.2 Inter-Driver Variability

An important aspect of vehicular traffic is the heterogeneity of agents, a term which includes
characteristics of the drivers as well as features of the vehicle. The multi-agent simulation
approach is appropriate for representing this heterogeneity on a microscopic level. In order
to address inter-driver variability (different drivers behave differently in identical traffic
situations) and vehicle properties (such as length, width, weight and motorization) we pro-
pose to group driver-vehicle agents into classes defining their specific driving styles and
vehicle properties. For this purpose, it is advantageous that the parameters of the Intelli-
gent Driver Model do have an intuitive meaning and are directly related to driving behavior.
In the following, we discuss the parameter settings for three classes of passenger car drivers
representing “normal”, “timid” and “aggressive” driving styles. In addition, we model a
typical truck driver. The corresponding parameter values are listed in Table 11.2.

• The desired speed v0 is the maximum speed a driver-vehicle agent aims to reach
under unobstructed driving conditions. A natural value and upper limit for this
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TABLE 11.2 Model parameters of the Intelligent Driver Model for
three classes of passenger car drivers and a typical truck driver.

IDM Parameter Normal Timid Aggressive Truck
Desired speed v0 in km/h 120 100 140 85
Desired time gap T in s 1.5 1.8 1.0 2.0
Jam distance s0 in m 2.0 4.0 1.0 4.0
Maximum acceleration a in m/s2 1.4 1.0 2.0 0.7
Desired deceleration b in m/s2 2.0 1.0 3.0 2.0

parameter would be the typical (highest) speed on the considered road element.
The normal driver chooses for instance 120 km/h on a freeway while a timid driver
prefers a lower value and a more aggressive driver likes to go faster. The desired
speed could be limited by legislation. In city traffic, the speed is typically limited
to 50 km/h (cf. the simulation scenario in Section 11.4.2). In this case, a timid
driver likes to drive a bit below this limit while an aggressive driver can easily be
modeled by an individual “disobedience factor”. Notice that strict speed limits
apply to trucks on the whole road network in most countries.
• The desired time gap T refers to the preferred distance vT while driving at speed

v , cf. Eq. (11.2), and mainly determines the maximum capacity (cf. Figure 11.6).
A typical value in dense traffic is about 1.4 s while German road authorities
recommend 1.8 s. A common observation on European freeways is that very small
time gaps are kept [Treiber et al., 2006b; Knospe et al., 2002].
• The parameter s0 describes the minimum bumper-to-bumper distance at a stand-

still, cf. Eq. (11.2). Typical gaps in a queue of vehicles standing at traffic lights
are in the range between 1 m and 5 m. While a normal driver typically keeps a
minimum gap of 2 m, a cautious driver prefers larger gaps and an aggressive driver
likes tailgating. It is natural to assume that truck drivers prefer slightly larger
gap than the normal car driver due to larger vehicle dimensions. Notice that the
vehicle length is not a model parameter. However, it determines the maximum
density together with the minimum distance s0 according to Eq. (11.8). Typical
vehicle lengths are for instance 5 m for cars and 12 m for trucks.
• The desired acceleration a describes the acceleration behavior of the driver. No-

tice that the acceleration depends on the actual vehicle speed as shown, for
example, in Figure 11.4. Since the acceleration behavior is based on a physical
movement, the value of a has to respect the limits of motorization. Consequently,
a truck has to be modeled by a lower desired acceleration a than a passenger car.
An aggressive driver prefers to accelerate fast (e.g., 3 m/s2) while a timid driver
prefers a lower value (e.g., 1 m/s2). The acceleration exponent δ = 4 is kept
constant for all driver classes, cf. Eq. (11.1).
• The comfortable braking deceleration b determines the approaching process to-

ward slower leaders or stationary objects such as traffic lights (see Section 11.4.2).
As the IDM tries to limit the braking deceleration to b, a low value (b = 1 m/s2)
represents a driver who breaks accurately in an anticipative way corresponding to
a smooth driving style. By way of contrast, a higher value (b = 3 m/s2) describes
an aggressive driver who prefers to approach the leader with a large velocity
difference.

Taking these average parameters for each driver class as a starting point, it is straightforward
to distribute individual agent parameters randomly within given limits, e.g., according to a
uniform distribution with a variation of 20%.
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11.3.3 Intra-Driver Variability

Besides reacting to the immediate traffic environment, human drivers adapt their driving
style on longer time scales to the traffic situation. Thus, the actual driving style depends
on the traffic conditions of the last few minutes which we call memory effect [Treiber
and Helbing, 2003]. For example, it is observed that most drivers increase their preferred
temporal headway after being stuck in congested traffic for some time [Brilon and Ponzlet,
1996; Fukui et al., 2003]. Furthermore, when larger gaps appear or when reaching the
downstream front of the congested zone, human drivers accelerate less and possibly decrease
their desired speed as compared to a free-traffic situation.

In contrast to inter-driver variability considered in Section 11.3.2, the memory effect is
an example of intra-driver variability meaning that a driver behaves differently in similar
traffic situations depending on his or her individual driving history and experience. Again,
the multi-agent approach can easily cope with this extension of driving behavior as soon
as one has a specific model to implement. By way of example, we present a model that
introduces a time-dependency of some parameters of the Intelligent Driver Model to describe
the frustration of drivers being in a traffic jam for a period [Treiber and Helbing, 2003].

We assume that adaptations of the driving style are controlled by a single internal dy-
namical variable λ(t) that represents the “subjective level of service” ranging from 0 (in a
standstill) to 1 (on a free road). The subjective level of service λ(t) relaxes to the instan-
taneous level of service λ0(v) depending on the agent’s speed v(t) with a relaxation time τ
according to

d λ

dt
=

λ0(v)− λ

τ
. (11.11)

This means that for each driver, the subjective level of service is given by the exponential
moving average of the instantaneous level of service experienced in the past:

λ(t) =
∫ t

0

λ0(v(t ′)) e−(t−t′)/τ dt ′. (11.12)

We have assumed the instantaneous level of service λ0(v) to be a function of the actual
velocity v(t). Obviously, λ0(v) should be a monotonically increasing function with λ0(0) = 0
and λ0(v0) = 1 when driving with the desired speed v0. The most simple “level-of-service
function” satisfying these conditions is the linear relation

λ0(v) =
v
v0

. (11.13)

Notice that this equation reflects the level of service or efficiency of movement from the
agent’s point of view, with λ0 = 1 meaning zero hindrance and λ0 = 0 meaning maximum
hindrance. If one models inter-driver variability (Section 11.3.2) where different drivers have
different desired velocities, there is no objective level of service, but rather only an individual
and an average one.

Having defined how the traffic environment influences the degree of adaptation λ(t) of
each agent, we now specify how this internal variable influences driving behavior. A be-
havioral variable that is both measurable and strongly influences the traffic dynamics is
the desired time gap T of the IDM. It is observed that, in congested traffic, the whole
distribution of time gaps is shifted to the right when compared with the data of free traf-
fic [Treiber and Helbing, 2003; Treiber et al., 2006b]. We model this increase by varying
the corresponding IDM parameter in the range between T0 (free traffic) and Tjam = βTT0

(traffic jam) according to

T (λ) = λT0 + (1− λ)Tjam = T0 [βT + λ(1− βT )] . (11.14)
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Herein, the adaptation factor βT is a model parameter. A value for the frustration effect is
βT = Tjam/T0 = 1.8 which is consistent with empirical observations. A typical relaxation
time for the driver’s adaptation is τ = 5 min. Notice that other parameters of the driving
style are probably influenced as well, such as the acceleration a, the comfortable deceleration
b or the desired velocity v0. This could be implemented by analogous equations for these
parameters. Furthermore, other adaption processes as well as the presented frustration effect
are also relevant [Treiber et al., 2006b].

11.4 Modeling Discrete Decisions

On the road network, drivers encounter many situations where a decision between two or
more alternatives is required. This relates not only to lane-changing decisions but also to
considerations as to whether or not it is safe to enter the priority road at an unsignalized
junction, to cross such a junction or to start an overtaking maneuver on a rural road. An-
other question concerns whether or not to stop at an amber-phase traffic light. All of the
above problems belong to the class of discrete-choice problems that, since the pioneering
work of McFadden [Hausman and McFadden, 1984], has been extensively investigated in
an economic context as well as in the context of transportation planning. In spite of the
relevance to everyday driving situations, there are fewer investigations attempting to in-
corporate the aforementioned discrete-choice tasks into microscopic models of traffic flow,
and most of them are restricted to modeling lane changes [Gipps, 1986]. Only very recently
have acceleration and discrete-choice tasks been treated more systematically [Toledo et al.,
2007; Kesting et al., 2007a].

The modeling of lane changes is typically considered as a multi-step process. On a strategic
level, the driver knows about his or her route on the network which influences the lane choice,
e.g., with regard to lane blockages, on-ramps, off-ramps or other mandatory merges [Toledo
et al., 2005]. In the tactical stage, an intended lane change is prepared and initiated by
advance accelerations or decelerations of the driver, and possibly by cooperation of drivers
in the target lane [Hidas, 2005]. Finally, in the operational stage, one determines if an
immediate lane change is both safe and desired [Gipps, 1986]. While mandatory changes
are performed for strategic reasons, the driver’s motivation for discretionary lane changes
is a perceived improvement of the driving conditions in the target lane compared with the
current situation.

In the following, we will present a recently formulated general framework for modeling
traffic-related discrete-choice situations in terms of the acceleration function of a longi-
tudinal model [Kesting et al., 2007a]. For the purpose of illustration, we will apply the
concept to model mandatory and discretionary lane changes (Section 11.4.1). Furthermore,
we will consider the decision process whether or not to brake when approaching a traffic
light turning from green to amber (Section 11.4.2).

11.4.1 Modeling Lane Changes

Complementary to the longitudinal movement, lane-changing is a required ingredient for
simulations of multi-lane traffic. The realistic description of multi-agent systems is only
possible within a multi-lane modeling framework allowing faster driver-vehicle agents to
improve their driving conditions by passing slower vehicles.

When considering a lane change, a driver typically makes a trade-off between the expected
own advantage and the disadvantage imposed on other drivers. For a driver considering a
lane change, the subjective utility of a change increases with the gap to the new leader in
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the target lane. However, if the speed of this leader is lower, it may be favorable to stay in
the present lane despite the smaller gap. A criterion for the utility including both situations
is the difference between the accelerations after and before the lane change. This is the core
idea of the lane-changing algorithm MOBIL [Kesting et al., 2007a] that is based on the
expected (dis)advantage in the new lane in terms of the difference in the acceleration which
is calculated with an underlying microscopic longitudinal traffic model, e.g., the Intelligent
Driver Model (Section 11.3.1).

For the lane-changing decision, we first consider a safety constraint. In order to avoid
accidents by the follower in the prospective target lane, the safety criterion

v̇follow ≥ −bsafe (11.15)

guarantees that the deceleration of the successor v̇follow in the target lane does not exceed a
safe limit bsafe � 4 m/s2 after the lane change. In other words, the safety criterion essentially
restricts the deceleration of the lag vehicle on the target lane to values below bsafe. Although
formulated as a simple inequality, this condition contains all the information provided by the
longitudinal model via the acceleration v̇follow. In particular, if the longitudinal model has
a built-in sensitivity with respect to velocity differences (such as the IDM) this dependence
is transfered to the lane-changing decisions. In this way, larger gaps between the following
vehicle in the target lane and the own position are required to satisfy the safety constraint
if the speed of the following vehicle is higher than one’s own speed. In contrast, lower values
for the gap are allowed if the back vehicle is slower. Moreover, by formulating the criterion
in terms of safe braking decelerations of the longitudinal model, crashes due to lane changes
are automatically excluded as long as the longitudinal model itself guarantees crash-free
dynamics.

For discretionary lane changes, an additional incentive criterion favors lane changes when-
ever the acceleration in one of the target lanes is higher. The incentive criterion for a lane
change is also formulated in terms of accelerations. A lane change is executed if the sum
of the own acceleration and those of the affected neighboring vehicle-driver agent is higher
in the prospective situation than in the current local traffic state (and if the safety crite-
rion (11.15) is satisfied of course). The innovation of the MOBIL framework [Kesting et al.,
2007a] is that the immediately affected neighbors are considered by the “politeness fac-
tor” p. For an egoistic driver corresponding to p = 0, this incentive criterion simplifies to
v̇new > v̇old. However, for p = 1, lane changes are only carried out if this increases the com-
bined accelerations of the lane-changing driver and all affected neighbors. This strategy can
be paraphrased by the acronym “Minimizing Overall Braking Induced by Lane Changes”
(MOBIL). We observed realistic lane-changing behavior for politeness parameters in the
range 0.2 < p < 1 [Kesting et al., 2007a]. Additional restrictions can easily be included. For
example, the “keep-right” directive of most European countries is implemented by adding a
bias to the incentive criterion. A “keep-lane” behavior is modeled by an additional constant
threshold when considering a lane change.

11.4.2 Approaching a Traffic Light

When approaching a traffic light that switches from green to amber, a decision has to
be made whether to stop just at the traffic light or to pass the amber-phase light with
unchanged speed. For an empirical study on the stopping/running decision at the onset
of an amber phase we refer to Ref. [Rakha et al., 2007]. If the first option is selected, the
traffic light will be modeled by a standing “virtual” vehicle at the position of the light.
Otherwise, the traffic light will be ignored. The criterion is satisfied for the “stop at the
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light” option if the own braking deceleration at the time of the decision does not exceed the
safe deceleration bsafe. The situation is illustrated in Figure 11.7. Denoting the distance to
the traffic light by sc and the velocity at decision time by vc and assuming a longitudinal
model of the form (11.1), the safety criterion (11.15) can be written as

v̇(sc , vc , vc) ≥ −bsafe. (11.16)

Notice that the approaching rate and the velocity are equal (Δvc = vc) in this case. The
incentive criterion is governed by the bias toward the stopping decision because legislation
requires that one stop at an amber-phase traffic light if it is safe to do so. As a consequence,
the incentive criterion is always fulfilled, and Eq. (11.16) is the only decision criterion in
this situation.

Similarly to the lane-changing rules, the “stopping criterion” (11.16) will inherit all the
sophistication of the underlying car-following model. In particular, when using realistic
longitudinal models, one obtains a realistic stopping criterion with only one additional
parameter bsafe. Conversely, unrealistic microscopic models such as the Optimal Velocity
Model [Bando et al., 1995] or the Nagel-Schreckenberg cellular automaton [K. Nagel and
Schreckenberg, 1992] will lead to unrealistic stopping-decisions. In the case of the Optimal
Velocity Model, it is not even guaranteed that drivers deciding to stop will be able to stop
at the lights.

cs

?cv

FIGURE 11.7 Approaching a traffic switching from green to amber. The two options of the decision
situation are to stop in front of the light or to pass the amber-phase traffic light with unchanged speed.

For the purpose of illustration, we apply the concept to the following situation in city
traffic: A car is driving at speed vc = 50 km/h toward an amber traffic light located at a
distance sc = 50 m. Applying the IDM parameters of a “normal” driver listed in Table 11.2 in
combination with an adapted desired speed of v0 = 50 km/h, the acceleration function (11.1)
results in an initial braking of v̇(0) ≈ 3.6 m/s2 at t = 0 s. For a safe deceleration equal to
the desired deceleration of the IDM, that is bsafe = b = 2.0 m/s2, the MOBIL decision
says “drive on”. If, however, a safe braking deceleration of bsafe = 4 m/s2 is assumed,
the driver agent would decide to brake resulting in the approaching maneuver shown in
Figure 11.8. The initial braking stronger than −2 m/s2 makes the situation manageable for
the agent. After 2 s, the situation is “under control” and the vehicle brakes approximately
with the comfortable deceleration b = 2 m/s2. In order to reach a standstill in a smooth way,
the deceleration is reduced to limit the jerk which defines the change in the acceleration.
In addition, Figure 11.8 shows the behavior of the second vehicle following the leader.
The acceleration time series shows the important feature of the IDM in limiting braking
decelerations to the comfortable limit b as long as safety is warranted. From these results it
is obvious that the setting bsafe = b is a natural assumption to model the decision process
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realistically. Notice, however, that a human reaction time of about 1 s [Green, 2000] has to
be taken into account as well.
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FIGURE 11.8 Maneuver of approaching a traffic light initially 50 m with a speed of 50 km/h according
to the Intelligent Driver Model. The braking deceleration is limited to the comfortable braking deceleration
(IDM parameter b) whenever possible. The stronger braking of the first car is needed to keep the situation
under control. The parameters for the simulation are listed in Table 11.2.

11.5 Microscopic Traffic Simulation Software

So far, we have discussed models describing the longitudinal movement and discrete de-
cisions of individual driver-vehicle agents. Let us now address the issue of a simulation
framework that integrates these components into a microscopic multi-lane traffic simulator.
Typical relations among functions in a microscopic traffic simulator are shown in Figure 11.9.
On the level of input data, simulation settings can be provided by input files, e.g., encoded
in XML, by command line or via a graphical user interface (GUI). The main simulation
loop is organized by a Simulation Controller which keeps track of the program operations
and user actions. This central control unit calls the update methods of the road-section
objects. We will elaborate on these components in Section 11.5.1. Since the calculation of
the vehicle accelerations is the very core of a traffic simulation, we will pinpoint the issue
in Section 11.5.2. Simulation results can be written to data files and, in addition, visualized
by 2D and 3D computer graphics on the screen (see Section 11.5.3). Furthermore, we will
extend the simulator in order to simulate inter-vehicle communication (see Section 11.6.3
below).
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FIGURE 11.9 Illustration of possible relations among functions in a traffic simulation framework. The
input data defining a simulation setting can be provided by data files, the command line or a graphical
user interface (GUI). The main simulation loop is organized by a “Simulation Controller” which controls
the update of the road network, the graphical representation (“SimViewer”) and the output functions
corresponding to measurements of several microscopic and macroscopic quantities.

There are a number of interactive simulators available publicly. The website [Treiber,
2007] deploys the Intelligent Driver Model [Treiber et al., 2000] introduced in Section 11.3.1
for cars and trucks together with the lane-changing algorithm MOBIL [Kesting et al., 2007a].
This demonstrator simulates typical bottleneck scenarios such as on-ramps, lane-closings,
uphill grades and or traffic lights. Another open source simulator for whole traffic networks
is SUMO [, Simulation of Urban MObility]. The software uses the Krauss model [Krauss
et al., 1997]. Recently, FreeSim has been made available to the public [Miller, 2007]. Fur-
thermore, commercial traffic simulation software tools (for instance VISSIM

TM, AIMSUN
TM

or PARAMICS
TM) offer a variety of additional modules such as emission or pedestrian

models and interfaces, e.g., for controlling simulation runs by remote and for implement-
ing additional features. These commercial products incorporate sophisticated virtual en-
vironment 3D engines. Note, however, that the underlying models are generally not well
documented.
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11.5.1 Simulator Design

Next to the functional view shown in Figure 11.9, a hierarchical view can be used to repre-
sent the dependencies and inherited properties which makes use of the object-oriented pro-
gramming paradigm by representing and abstracting functional units as classes. The best
example is the representation of a driver-vehicle agent as an abstract class with several possi-
ble designs for human drivers, vehicles equipped with adaptive cruise control [Kesting et al.,
2007b, 2008] or even driverless ones as recently demonstrated in reality [DARPA].However,
each agent has a number of defining properties such as length, width, weight, form and
color. Furthermore, each agent requires a model for the lengthwise movement which is in
turn an abstract class with the presented IDM as a specific implementation. Further compo-
nents are required in order to model other aspects of driver behavior such as lane changes,
memory, etc. Since each agent is represented by an individual object, it is straightforward
to assign individual parameter values to account for driver diversity (Section 11.3.2).

The road network can be represented by connected road sections such as main roads, on-
ramps and off-ramps. A road section is defined by its properties like length, number of lanes,
etc. In addition, an element may contain attributes representing the concrete infrastructure
relevant to the driver-vehicle agents such as lane closures, lane narrowings, speed limits,
uphill gradients and/or traffic lights. Notice that the set of attributes which is relevant for
the behavior and decision-making has to be available to the agent.

The most detailed view on the innermost update loop of a road section is given in terms
of the following pseudo code:

updateRoadSection(){
updateNeigborhood(); // organizing set of vehicles in multiple lanes
updateInfrastruture(); // active road attributes (e.g., traffic lights)
updateAgentsRoadConditions(); // attributes affect agents
calculateAccelerations(); //evaluate longitudinal models of agents
laneChanges(); // decision making and performing lane changes
updatePositionsAndSpeeds(); // integration within discrete update
updateBoundaries(); // inflow and outflow
updateOutput(); // log observable quantities and update detectors

}

11.5.2 Numerical Integration

The explicit integration in the updatePositionsAndSpeeds function of all driver-vehicle
agents α is the very core of a traffic simulator. In general, the longitudinal movement of the
vehicles is described by car-following models which take into account the direct leader and
result in expressions for the acceleration function of the form

dvα

dt
= f (sα, vα, Δvα) , (11.17)

that is the acceleration depends only on the own speed vα, the gap sα, and the velocity
difference (approaching rate) Δvα = vα − vα−1 to the leading vehicle (α − 1). Note that
we discussed the Intelligent Driver Model (IDM) as an example for a car-following model
in Section 11.3.1. Together with the gap sα(t) = xα−1(t) − xα(t) − lα−1 and the general
equation of motion,

dxα

dt
= vα, (11.18)
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Eq. (11.17) represents a (locally) coupled system of ordinary differential equations (ODEs)
for the positions xα and velocities vα of all vehicles α.

As the considered acceleration functions f are in general nonlinear, we have to solve the
set of ODEs by means of numerical integration. In the context of car-following models, it is
natural to use an explicit scheme assuming constant accelerations within each update time
interval Δt . This leads to the explicit numerical update rules

vα(t + Δt) = vα(t) + v̇α(t)Δt ,

xα(t + Δt) = xα(t) + vα(t)Δt +
1
2
v̇α(t)(Δt)2,

(11.19)

where v̇α(t) is an abbreviation for the acceleration function f (sα(t), vα(t), Δvα(t)). For
Δt → 0 s, this scheme locally converges to the exact solution of (11.17) with consistency
order 1 for the velocities (“Euler update”, cf. [Press et al., 1992]) and consistency order 2
for the positions (“modified Euler update”) with respect to the L2-norm.∗ Because of the
intuitive meaning of this update procedure in the context of traffic, the update rule (11.19)
or similar rules are sometimes considered to be part of the model itself rather than as a
numerical approximation [Kesting and Treiber, 2008b]. A typical update time interval Δt
for the IDM is between 0.1 s and 0.2 s. Nevertheless, the IDM is approximately numerically
stable up to an update interval of Δt ≈ T/2, that is half of the desired time gap parameter
T .

11.5.3 Visualization

Besides the implementation of the simulation controller with the focus on quantitative
models, the visualization of vehicle movements is also an important aspect of simulation
software. In the case of vehicular traffic it is straightforward to envision the vehicle trajecto-
ries over the course of time whether in 2D or 3D. The latter representation is of course more
demanding. Figure 11.10 illustrated an example of a “bird’s eye view” of a two-lane freeway
with an on-ramp, while Figure 11.11 illustrates a “cockpit perspective” of a driving vehicle
on the road. Note that the 3D engine was programmed from scratch as an exercise by the
authors. However, higher level tools and open source 3D engines for OpenGL are available.

The animated visualization demonstrates both the individual interactions and the result-
ing collective dynamics. In particular, the graphical visualization turns out to be an im-
portant tool when developing and testing lane-changing models and other decisions based
on complex interactions with neighboring vehicles for their plausibility. In fact, the driving
experiences of programmers offer the best measure of realism and also provide stimulus for
further model improvements.

Last but not least, scientists and experts have to keep in mind that computer animations
have become an important tool for a fast and intuitive knowledge transfer of traffic phe-
nomena to students, decision-makers and the public. In particular, visualization in real time

∗A time-continuous traffic model is mathematically consistent if a unique local solution exists and if a
numerical update scheme exists whose solution locally converges to this solution when the update time
interval goes to zero. It has the consistency order q if || ε ||= O(Δtq ) for Δt → 0 s where ε denotes the
deviation of the numerical solution for xα or vα with respect to the exact solution, and || · || is some
functional norm such as the L2-Norm.
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Interactive scroll bars: Main flow, ramp flow, etc.

Stop-and-go
Wave

FIGURE 11.10 Example of 2D visualization of a two-lane freeway with an on-ramp from the web-
site [Treiber, 2007]. The screenshot shows the breakdown of traffic flow at the on-ramp serving as a bottle-
neck. A stop-and-go wave (cluster of vehicles) is propagating against the driving direction. The source code
of the simulator is publicly available as an open source.

allows for direct user interaction influencing the simulation run, e.g., by changing the simu-
lation conditions (in terms of inflows and driver population) and parameter settings of the
underlying models. In this way, the complexity of simulation techniques (which are based
on assumptions, mathematical models, many parameters and implementational details) can
become more accessible.

FIGURE 11.11 Example of a 3D animation from the driver perspective. Notice that the “Coffeemeter”
visualizes the acceleration and the jerk (the changes of all acceleration with time) which are difficult to
visualize by other means. It therefore serves as a measure of the driving comfort.

Finally, we remark that animation is a playground for the programmers. For instance,
the full cup of coffee in Figure 11.11 represents not just a comforting habit of the agent but
is also a vivid way to illustrate the simulated longitudinal acceleration as well as transverse
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accelerations due to lane-changing. Moreover, the coffee level is a measure of the riding
comfort because it is also sensitive to the derivative of the acceleration which is perceived
as a jerk by the driver. The hydrodynamic equations of the coffee surface in the cup with a
diameter 2r are astonishingly realistically approximated by a harmonious pendulum with
two degrees of freedom φx and φy denoting the angles of the surface normal:

φ̈x +
2π

τ
φ̇x + ω2

0φx +
ẍ
r

= 0,

φ̈y +
2π

τ
φ̇y + ω2

0φy +
ÿ
r

= 0.

(11.20)

The second time derivates ẍ and ÿ denote the vehicle accelerations in longitudinal and
transversal direction. The angular frequency is ω0 =

√
g/r where g is the gravitational con-

stant. During a coffee break, the damping time τ of Java coffee was empirically determined
as τ = 12 s by the authors.

11.6 From Individual to Collective Properties

After having constructed the driver-vehicle agents, let us now adopt them in a multi-agent
simulation in which they interact with each other. The process of simulating agents in
parallel is one of emergence from the microscopic level of pairwise interactions to the higher,
macroscopic level in order to reproduce and predict real phenomena.

In this Section, we will present three simulation applications. In Section 11.6.1, we will
demonstrate the emergence of a collective pattern from individual interactions between
driver-vehicle agents by simulating the breakdown of traffic flow and the development of a
stop-and-go wave. The simulation will show the expressive power of the Intelligent Driver
Model in reproducing the characteristic backwards propagation speed which is a well-known
constant of traffic world wide. In Section 11.6.2, we will apply the traffic simulation frame-
work to analyze the impact of a speed limit as an example of a traffic control task. By
way of this example, we will demonstrate the predictive power of microscopic traffic flow
simulations.

Last but not least, we apply the simulation framework to study a coupled system consist-
ing of communicating driver-vehicle agents using short-range wireless networking technology
in Section 11.6.3. Since the multi-agent approach is a flexible general-purpose tool, one can
additionally equip an agent with short-range communication devices that can self-organize
with other devices in range into ad-hoc networks. Such inter-vehicle communication has
recently gained much attention in the academic and engineering world. It is expected to
provide great enhancement to the safety and efficiency of modern individual transportation
systems. By means of simulation, we will demonstrate the dissemination of information
about the local traffic situation over long distances even for small equipment rates in the
vehicle fleet.

11.6.1 Emergence of Stop-and-Go Waves

Let us first study the emergence of a collective traffic phenomenon in a simple ring road
scenario as depicted in Figure 11.12(a). Note that this scenario can be used interactively
on the website [Treiber, 2007]. Such a closed system is defined by an initial value problem.
The control parameter is the homogeneous traffic density which essentially determines the
long-term behavior of the system. In the simulation, the initial traffic density is too high to
be able to retain free flow conditions.
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In the course of time, a vehicle eventually changes lanes resulting in a smaller gap for
the following vehicle, which, in turn, has to brake in order to re-establish a safe distance
to the new leader. After the initial braking, the next follower again needs some time to
respond to this new situation by decelerating. The perturbation therefore increases while
propagating in upstream direction, that is against the driving direction of the vehicle flow
(see Figure 11.12(a)). This response mechanism acts like a “vicious circle”: Each following
driver has to reduce his or her speed a bit more to regain the necessary safety distance.
Eventually, vehicles further upstream in the platoon brake to a standstill. Moreover, the
time to re-accelerate to the restored speed of the leading vehicle takes even more time due to
limited acceleration capabilities. Finally, we observe the emergence of a stop-and-go wave.
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FIGURE 11.12 (a) Emergence of a stop-and-go wave in a simulation and (b) stop-and-go traffic on the
German freeway A9 South in the north Munich region. Notice that the spatiotemporal traffic dynamics in
diagram (b) have been reconstructed from loop detector data using an interpolation method [Treiber and
Helbing, 2002]. The characteristic propagation speed of stop-and-go waves of about 15 km/h against the
driving direction is a self-organized “constant” of traffic flow which is reproduced by the Intelligent Driver
Model used in the simulation (a).

Stop-and-go waves are also observed in real traffic as shown in Figure 11.12(b) for the
German freeway A9 South in the north Munich region. Single stop-and-go waves propagate
over more than 10 km leading to their description as “phantom traffic jams”. Their prop-
agation speed is arguably constant. From the time-space diagram in Figure 11.12(b), the
propagation speed of the downstream front of the stop-and-go wave can be determined as
approximately 15.5 km/h. In each country, typical values for this “traffic constant” are in
the range 15± 5 km/h, depending on the accepted safe time clearance and average vehicle
length [Kerner and Rehborn, 1996b]. Consequently, realistic traffic models should reproduce
this self-organized property of traffic flow.

11.6.2 Impact of a Speed Limit

Microscopic traffic models are especially suited to the study of heterogeneous traffic streams
consisting of different and individual types of driver-vehicle agents.

In the following scenario, we will study the effect of a speed limit for a section of the
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German freeway A8 East containing an uphill section around x = 40 km [Treiber and
Helbing, 2001]. We considered the situation during the evening rush hour on November 2,
1998. In the evening rush hour at about 17 h, traffic broke down at the uphill section. In the
simulation shown in Figure 11.13(a), we used lane-averaged one-minute data of velocity and
flow measured by loop detectors as upstream boundary conditions reproducing the empirical
traffic breakdown. In contrast to the ring road scenario in Section 11.6.1, the inflow at the
upstream boundary is the natural control parameter for the open system.

 34

 36

 38

 40

 42  17
 18

 19
 20

 0

 40

 80
Density (1/km)

(a)

x (km)
t (h)

Density (1/km)

 34

 36

 38

 40

 42  17
 18

 19
 20

 0

 40

 80
Density (1/km)

(b)

x (km)
t (h)

Density (1/km)

 0

 10

 20

 30

 16.5  17  17.5  18  18.5  19  19.5  20

T
ra

ve
l T

im
e 

(m
in

)

Simulation time (h)

(c) Speed Limit 80 km/h
Without Speed Limit

FIGURE 11.13 Realistic simulation of an empirical traffic breakdown caused by an uphill gradient
located around x = 40 km by using velocity and flow data from loop detectors as upstream boundary
conditions (a) without speed limit and (b) with a speed limit of 80 km/h. Diagram (c) shows the travel
times corresponding to the scenarios (a) and (b). Notice that the microscopic modeling approach allows for
an estimation of the current travel time by simply summing up the travel times derived from the speeds
of each driver-vehicle agent simultaneously. In accordance with Treiber and Helbing [Treiber and Helbing,
2001].

We have assumed two vehicle classes: 50% of the drivers had a desired speed of v0 =
120 km/h, while the other half had v0 = 160 km/h outside of the uphill region. A speed
limit reduces the desired velocities to 80 km/h. Within the uphill region, both driver-vehicle
classes are forced to drive at a maximum of 60 km/h (for example, due to overtaking trucks
that are not considered explicitly here).

Figure 11.13 shows spatiotemporal plots of the locally averaged traffic density for scenarios
with and without the speed limit. The simulations show the following:

• During the rush hour (17 h ≤ t ≤ 19 h), the overall effect of the speed limit is
positive. The increased travel times in regions without congestion are overcom-
pensated by the saved time due to the avoided breakdown.
• For lighter traffic (t < 17 h or t > 19 : 30 h), however, the effect of the speed

© 2009 by Taylor and Francis Group, LLC



Agents for Traffic Simulation 349

limit is clearly negative. Note that this problem can be circumvented by traffic-
dependent, variable speed limits.

Although the speed limit reduces the velocity, it can improve the quality of traffic flow
while in uphill regions it obviously results in a deterioration. To understand this counter-
intuitive result, we point out that the desired speed v0 corresponds to the lowest value
of (i) the maximum velocity allowed by the motorization, (ii) the imposed speed limits
(possibly with a “disobedience factor”), and (iii) the velocity actually “desired” by the
driver. Therefore, speed limits act selectively on the faster vehicles, while uphill gradients
reduce the speed especially of the slower vehicles. As a consequence, speed limits reduce
velocity differences, thereby stabilizing traffic, while uphill gradients increase them. For
traffic consisting of identical driver-vehicle combinations (one driver-vehicle class), these
differences are neglected and both speed limits and uphill gradients have in fact the same
(negative) effect. Since global speed limits always raise the travel time in off-peak hours when
free traffic is unconditionally stable (cf. Figure 11.13(c)), traffic-dependent speed limits are
an optimal solution. Note that the impact of a speed limit on the homogenization of traffic
flow can be studied interactively on the website [Treiber, 2007] for a lane-closing scenario
instead of an uphill bottleneck.

11.6.3 Store-and-Forward Strategy for Inter-Vehicle Communication

Recently, there has been growing interest in wireless communication between vehicles and
potential applications. In particular, inter-vehicle communication (IVC) is widely regarded
as a promising concept for the dissemination of information on the local traffic situation and
short-term travel time estimates for advanced traveler information systems [Jin and Recker,
2006; Yang and Recker, 2005; Schönhof et al., 2006; Schönhof et al., 2007; Wischhof et al.,
2005]. In contrast to conventional communication channels which operate with a centralized
broadcasting concept via radio or mobile phone services, IVC is designed as a local service
based on the Dedicated Short Range Communication standard enabling data transmission
at a frequency of 5.8 GHz. These devices broadcast messages which are received by all
other equipped vehicles within a limited broadcasting range. As IVC message dissemination
is not controlled by a central station, no further communication infrastructure is needed.
For example, wireless local-area networks (IEEE 802.11 a/b/g) have already shown their
suitability for IVC with typical broadcasting ranges of 200-500 m [Singh et al., 2002; Ott
and Kutscher, 2004].

In the context of freeway traffic, information on the local traffic situation has to be
propagated in an upstream direction. In general, there are two transport strategies: Either
a message “hops” from an equipped car to a subsequent equipped car within the same
driving direction (“longitudinal hopping”) or the message is transmitted to an IVC-equipped
vehicle in the other driving direction which transports the message upstream and delivers
it back by broadcasting it to cars in the original driving direction (“transversal hopping”,
“cross-transference” or store-and-forward). The latter strategy is illustrated in Figure 11.14.
Although the longitudinal hopping process allows for a quasi-instantaneous information
propagation, the connectivity due to the limited broadcasting range is too weak in the
presence of low equipment rates [Schönhof et al., 2006]. A concept using IVC for traffic-
state detection must therefore tackle the problem that both the required transport distances
into upstream direction and the distances between two equipped vehicles are typically larger
than the broadcasting range. The transversal hopping mechanism overcomes this problem
by using vehicles in the opposite driving direction as relay stations. Despite the time delay
in receiving messages, the messages propagate faster than typical shock waves (which are

© 2009 by Taylor and Francis Group, LLC



350 Multi-Agent Systems: Simulation and Applications

limited to a speed of -15 km/h, cf. Section 11.6.1).

1. hop store&forward 2. hop

limited broadcast range

Information about 
traffic congestion

FIGURE 11.14 Illustration of the store-and-forward strategy using the opposite driving direction for
propagating messages via short-range inter-vehicle communication in upstream direction. First, a message
is generated on the occasion of a local change in speed. The broadcasted message will be picked up by an
equipped vehicle in the opposite driving direction (first hop). After a certain traveling distance, the vehicle
starts broadcasting the message which can be received by vehicles in the original driving direction (second
hop).

The microscopic simulation approach is well suited to coupling traffic and information
flows: The movement of vehicles represents a dynamic network of nodes which determines
the spread of information on the network. For the purpose of demonstration, let us now
simulate the chain of message propagation by means of IVC in an integrated simulation:

1. The generation of traffic-related messages by individual vehicles,
2. the transmission of up-to-date information in upstream direction using store-and-

forward strategy via the opposite driving direction and
3. the receipt of the messages for predicting the future traffic situation further down-

stream.

The object-oriented design of the traffic simulation software (cf. Section 11.5) can be ex-
tended in a straightforward way: First, the simulation of the store-and-forward strategy
requires two independent freeways in opposite directions. Second, each equipped driver-
vehicle agent autonomously detects jam fronts (by means of velocity gradients) and gen-
erates traffic-related messages based on locally available time series data. To this end, the
design of a vehicle has been extended by a detection unit which generates traffic-relevant
messages and a communication unit for broadcasting and receiving messages. Finally, the
exchange of messages has been realized by a message pool which organizes the book-
keeping of message broadcast and reception between equipped cars within a limited broad-
casting range (corresponding to the outdated ether concept). As the routing in this system
is obviously given by the two traffic streams in opposite directions, no further rules are
necessary for modeling the message exchange process.

We consider a scenario with an assumed fraction of only 3% communicating vehicles.
The resulting trajectories of equipped vehicles in both driving directions together with
the generation of messages and their reception by a considered vehicle are illustrated in
Figure 11.15. In this scenario, a temporary road blockage has triggered a stop-and-go wave
reflected by horizontal trajectory curves in one driving direction while the traffic flow in
the opposite driving direction was free. When cars encountered the propagating stop-and-
go wave, they started to broadcast messages about the detected position and time of the
upstream jam front and the following downstream jam front. The event-driven messages
were received and carried forward by vehicles in the other driving direction via the store-
and-forward mechanism.
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FIGURE 11.15 Space-time diagram of the simulated traffic scenario. The trajectories of the IVC-
equipped vehicles (3%) are displayed by solid or dotted lines depending on the driving direction. The
vehicles in the opposite driving direction serve as transmitter cars for the store-and-forward strategy. For
the purpose of illustration, we have set the maximum broadcasting range to 10 m. When cars pass the
upstream or downstream jam front of the moving jam, they broadcast messages (marked by numbers) con-
taining the detected position and time. They are later received by the considered vehicle further upstream
(thick solid line). Note that the crossing trajectories of equipped vehicles (e.g., in the upper-left corner of
the diagram) reflect passing maneuvers due to different desired velocities.

As shown in Figure 11.15, the considered vehicle already received the first message about
the upcoming traffic congestion 2 km before reaching the traffic jam. Further received mes-
sages from other equipped vehicles could be used to confirm and update the upcoming
traffic situation further downstream. Thus, based on a suitable prediction algorithm, each
equipped vehicle could autonomously forecast the moving jam fronts by extrapolating the
spatiotemporal information of the messages. In the considered simulation scenario, the up-
stream jam fronts were already accurately predicted with errors of ±50 m 1 km ahead of the
jam, while the errors for the predicted downstream jam amounted to ±100 m. Obviously,
the quality of the jam-front anticipation improves with the number and the timeliness of
the incoming messages. More details about the used prediction algorithm can be found in
Ref. [Schönhof et al., 2007].
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11.7 Conclusions and Future Work

Agent-based traffic simulations provide a flexible and customizable framework for tackling
a variety of current research topics. Simulation of control systems as a part of traffic oper-
ations is an important topic in transport telematics. Due to the interrelation of the control
systems with traffic, both the control systems and the driver reactions must be described
in a combined simulation framework. Examples are variable message signs and speed lim-
its, on-ramp metering, lane-changing legislation and dynamic route guidance systems. An
interesting research challenge is adaptive self-organized traffic control in urban road net-
works [Lämmer et al., 2008].

Furthermore, traffic simulations are used to assess the impacts of upcoming driver assis-
tance systems such as adaptive cruise control systems on traffic dynamics. The microscopic
modeling approach is most appropriate because it allows for a natural representation of het-
erogeneous driver-vehicle agents and for a detailed specification of the considered models,
parameters and vehicle proportions [VanderWerf et al., 2001, 2002; Kesting et al., 2007b;
Hoogendoorn and Minderhoud, 2002; Minderhoud, 1999; Davis, 2004; Tampère and van
Arem, 2001]. The challenging question is whether it is possible to design vehicle-based con-
trol strategies aimed at improving the capacity and stability of traffic flow [Kesting et al.,
2008].

With rapid advances in wireless communication technologies, the transmission of infor-
mation within the transportation network is a challenging issue for the next generation of
Intelligent Transportation Systems (ITS). Agent-based systems form the basis for a simula-
tion of hybrid systems coupling vehicle and information flow. The decentralized propagation
of information about the upcoming traffic situation has been discussed as an application
for inter-vehicle communication. Many other applications are conceivable based on the in-
tegration of vehicles and infrastructures implying vehicle-to-infrastructure communication
technologies. However, realistic and predictive simulations are essential for developing and
testing applications of upcoming communication technologies and applications.
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12.1 Introduction

Symbiosis has its origins in biology where it refers to organisms of different species which
exist in a long-lasting and close association with each other. The partners in a symbiosis, also
referred to as symbionts, are highly dependent upon each other in regard to their outcome.
Depending on the definition of symbiosis, this relationship is either mutually beneficial to
both (i.e, mutualism) or at least beneficial to one of the symbionts involved [Wilkinson, 2001;
Douglas, 1994]. Similarly, symbiotic simulation describes a paradigm in which a simulation
system and a physical system are closely associated with each other. In such a relationship,
the simulation system benefits from sensor data while the physical system may benefit from
conclusions drawn, based on the simulation results. Symbiotic simulation has been an active
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field of research since the term was coined at the Dagstuhl Seminar on Grand Challenges for
Modeling and Simulation in 2002 [Fujimoto et al., 2002]. Although the original definition of
symbiotic simulation is more precisely referring to mutualism we will use the wider definition
of symbiotic simulation [Aydt et al., 2008a] which is based on the original meaning of
symbiosis [Douglas, 1994]. The extended definition emphasizes the close association between
a simulation system and a physical system which is to the benefit of at least one of them.
In addition, control feedback to the physical system is optional. This distinguishes the
extended definition from the original one, in which a control feedback to the physical system
is considered mandatory.

Symbiotic simulation is used in several application domains. This includes the applica-
tion of symbiotic simulation in semiconductor manufacturing [Low et al., 2005; Aydt et al.,
2008b], path planning for unmanned aerial vehicles (UAVs) [Lozano et al., 2006; Kamrani
and Ayani, 2007], and social sciences [Kennedy et al., 2007b; Kennedy and Theodoropou-
los, 2006]. Related work includes research on dynamic data driven applications systems
(DDDAS) [National Science Foundation], which is a paradigm closely related to symbiotic
simulation. DDDAS has become popular in recent years because of its abilities to dynam-
ically adapt to new sensor data and to steer the measurement process. While DDDAS is
more generally concerned with dynamic data driven applications, symbiotic simulation is
more specifically concerned with the simulation of a physical system. This simulation is also
dynamic data driven and uses sensor data to improve the quality of the simulation. The
similarities and differences between symbiotic simulation and DDDAS have been explained
in [Aydt et al., 2008a] and are only summarized here. DDDAS emphasizes the ability of
the application to actively steer the measurement process. While this is an essential feature
of DDDAS, it is not necessarily required in symbiotic simulation systems. In addition, the
control feedback in symbiotic simulation systems aims to affect the physical system. This
is not necessarily the case in a DDDAS where control feedback is mainly used to steer the
measurement process. Although the focus of both paradigms is different, they do overlap in
some respects. The most notable common feature is the dynamic data driven component.

Another paradigm which is closely related to symbiotic simulation is on-line simulation.
Some of the concepts used in symbiotic simulation have also been used in on-line simulation
applications. For example, on-line simulation has been used in the context of an on-line
planning system [Davis, 1998]. In this system, various control policies are generated and
evaluated by means of simulation. Multiple scenarios are also used in an on-line simulation
system for military networks [Perumalla et al., 2002]. Similar concepts are used in symbiotic
simulation (e.g., analysis of what-if scenarios). On-line simulation is described in the context
of UAV path planning as a simulation that runs in real-time and in parallel with the physical
system and does not necessarily create feedback to the physical system [Kamrani, 2007].
Although this definition is similar to real-time simulation [Fujimoto, 2000] it should not
be confused with it. In real-time simulation, advances in simulation time are paced by
wallclock time. This is not the case in on-line simulation. Usually on-line simulation refers
to a simulation which is initialized and driven by real-time sensor data. Furthermore, we
consider an on-line simulation not capable of generating any control feedback to the physical
system on its own. Despite the various works on on-line simulation, there is no proper
definition. The term “online simulation” can also be found in the context of gaming and
education where it is used in an entirely different context. In addition, on-line simulation
does not emphasize the close relationship between the simulation system and the physical
system as does symbiotic simulation.

An overview of symbiotic simulation and its related paradigms is illustrated in Table 12.1,
reflecting the above definitions.

Several applications, which can be found in the literature on DDDAS, use symbiotic sim-
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TABLE 12.1 Comparison between symbiotic simulation, on-line simulation, and DDDAS.

Paradigm Steering of the
Measurement Proc.

Control
Feedback

Data-Driven
App./Sim.

What-if
Analysis

Symbiotic Simulation Optional Optional Simulation only Yes

On-line Simulation Optional No Simulation only Optional

DDDAS Mandatory Optional Both Optional

ulation. The increasing popularity, and the lack of a symbiotic simulation standard, has led
to a variety of application specific solutions related to symbiotic simulation. A standard
would be an advantage as it would make it easier to develop symbiotic simulation appli-
cations by providing standard solutions to common problems in this kind of system. With
this chapter we intend to make a first step toward a standard by proposing an architecture
for an agent-based generic framework for symbiotic simulation systems. The need for such
a generic framework was first expressed and briefly explained in [Huang et al., 2006] but
not discussed in detail. Here, we introduce our agent-based generic framework for symbiotic
simulation systems and discuss its architecture and generic applicability.

This chapter is structured as follows. In Section 12.2 we explain essential concepts of sym-
biotic simulation. In Section 12.3 we give an overview of the different classes of symbiotic
simulation systems. These classes are further analysed in Section 12.4 which is concerned
with the various workflows and common activities in symbiotic simulation systems. In Sec-
tion 12.5 we state key requirements for a generic framework architecture and propose an
agent-based framework after discussing existing architectures. We apply the proposed frame-
work to several applications in Section 12.6 and present our conclusions in Section 12.7. We
discuss future work in Section 12.8.

12.2 Concepts of Symbiotic Simulation

A symbiotic simulation system is based on simulations of the physical system. An appro-
priate model of the physical system, further denoted by m, has to be used to perform
simulations. Model instances are created by a model function, further denoted by M . This
function can have an arbitrary number of parameters p0, p1, . . . , pn of which each is associ-
ated with a set of possible values. The set of model parameters is further denoted by PM .
Depending on the specific model function and the values used for each of its parameters,
different model instances can be created.

For example, let m = Mms(p1, p2, . . . , p8) be a model function which creates model
instances for a manufacturing system, consisting of eight machines to process product
units. Each machine can be configured independently. This is reflected by corresponding
parameters of the model function. Depending on the values used for each parameter, a
specific model instance of the manufacturing system is created. The two model instances
mi = Mms(0, 0, 0, 0, 0, 0, 0, 0) and mj = Mms(1, 0, 0, 0, 0, 0, 0, 0), for instance, represent the
manufacturing system with two different machine settings.

By using different parameter values, different model instances can be created, of which
each represents the same physical system with slightly different settings. However, only one
of them can be considered as the reference model, further denoted by mR. The reference
model represents the physical system with the highest accuracy among all known model
instances. The physical system may change over time and eventually requires the reference
model to change as well. A reference model is valid until a better model is found which
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represents the physical system with higher accuracy.
Alone a model is not sufficient to perform a simulation of the physical system. It is also

necessary to initialize the simulation with a specific state of the physical system, further
denoted by s. The current state of the physical system has to be determined by using real-
time sensor data. Similarly, previous states can be determined by using historical sensor
data. For example, the state of a manufacturing system may include information about the
number of product units which are currently being processed in the system.

A simulation of the physical system can be initialized by using an appropriate model and
an initial state. However, this is not enough to drive the simulation. The behavior of the
physical system is influenced by its environment. This external influence, further denoted
by e, has to be considered when simulating the physical system. For example, the behavior
of a manufacturing system depends on incoming product orders from customers. Depending
on the demand for a certain product, the behavior of the manufacturing system is different.
Therefore, it is necessary to provide data about external influence when simulating the
manufacturing system. If the current state of the physical system is used to initialize the
simulation, predicted data about external influence has to be used because the simulation
aims to simulate the future behavior of the physical system. In the case where a previous
state is used, it is also possible to use historical data for external influence.

An important concept of symbiotic simulations is that of what-if scenarios. They are
used to simulate the behavior of the physical system depending on specific assumptions.
For example, different what-if scenarios can be used to simulate the performance of a man-
ufacturing system by assuming different combinations of machine settings and expected
customer demand for certain products. A simulation of the physical system depends on
the model, the initial state, and external influence. Different scenarios are created by using
different values for these three elements. Therefore, each scenario is a triple, consisting of a
specific model mi , an initial state si , and external influence ei .

S = (mi , si , ei) (12.1)

The information provided by a scenario is used to initialize and drive a simulation. In
order to compare different scenarios with each other or with the physical system, more
information is needed. For this purpose, key indicators are introduced. They reflect specific
characteristics of the physical system which are considered important in the context of the
application. By using key indicators, it is possible to compare simulation runs with each
other or with the physical system. For example, the throughput of a manufacturing system
can be considered as a key indicator in order to evaluate the performance. Data about key
indicators are obtained from the physical system by using corresponding sensors. Similarly,
data about key indicators have to be provided by the simulation.

Based on simulation results, the physical system can be influenced. Decision making in
symbiotic simulation systems relies on the simulation of different what-if scenarios. Each
what-if scenario represents an alternative decision, i.e., an alternative way of influencing the
system. For simulation purposes it is necessary that the simulation model is able to reflect
possible ways of influencing the physical system. For example, if a symbiotic simulation
system is used to decide upon machine settings of a manufacturing system, the simulation
model needs to be able to reflect different machine settings. Different model instances, of
which each reflects alternative machine settings, can then be used to create what-if scenarios.
Parameters which can be changed in the physical system are therefore important for the
simulation system which aims to exercise influence. These parameters are further referred
to as decision parameters. The set of decision parameters, further denoted by PD , contains
all parameters of the physical system which can be influenced. Decision parameters are also
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considered by the model function with corresponding model parameters:

PD ⊆ PM (12.2)

Decision making cannot be based on decision parameters only. It is also important to
consider constraints and dependencies between them. For example, when using a particular
setting for a machine, possible settings for another machine are restricted. For this purpose,
a decision model is used which considers decision parameters and constraints and dependen-
cies between them. In addition, the decision model also reflects the ability of the simulation
system to implement a specific decision. For example, this may depend on currently available
actuators.

12.3 Different Classes of Symbiotic Simulation Systems

Analogous to organic symbionts in biology, there are two symbionts in the context of sym-
biotic simulation: the simulation system and the physical system. The simulation system is
driven by measured data and is capable of influencing the physical system. The whole sys-
tem, consisting of the simulation system, sensors, actuators, and other components which
are necessary to facilitate a symbiotic relationship, represents a symbiotic simulation system.

Three forms of symbiosis are distinguished in biology [Douglas, 1994]. Mutualism refers to
a symbiotic relationship in which both symbionts benefit (+/+). In other forms of symbiosis,
only one symbiont benefits while the other one is either suffering (+/−) or not affected at
all (+/0). In biology, these relationships are referred to as parasitism and commensalism,
respectively. Depending on the application, the term predation may be more appropriate
than parasitism. For example, in a military application, the simulation system benefits from
real-time sensor data while the hostile physical system is suffering from decisions made by
the simulation system. In this case, the symbiotic relationship between the simulation system
and the physical system is predation rather than parasitism. Commensalism in symbiotic
simulation systems is realized by taking away the control feedback from the simulation
system to the physical system. In this case, the physical system will not be affected while
the simulation system still benefits from real-time sensor data.

DDDAS is an active field of research and is used in the context of a variety of disciplines,
from environmental forecasting to decision support for threat management, traffic control,
and UAV path planning. Although many applications are based on symbiotic simulation,
most papers do not explicitly mention it and focus rather on the particular domain-specific
problem. Analysis of related work has shown that, despite the variety of applications, sym-
biotic simulation is used for only few purposes: decision support/control, forecasting, model
validation, and anomaly detection. We define five different classes of symbiotic simulation
systems [Aydt et al., 2008a]: symbiotic simulation decision support systems (SSDSS ), sym-
biotic simulation control systems (SSCS ), symbiotic simulation forecasting systems (SSFS ),
symbiotic simulation model validation systems (SSMVS ), and symbiotic simulation anomaly
detection systems (SSADS ). Furthermore, we distinguish between closed-loop and open-loop
symbiotic simulation systems. While a control feedback is created in closed-loop symbiotic
simulation systems in order to affect the physical system, this is not the case in an open-loop
system. An SSDSS/SSCS is therefore considered to be a closed-loop symbiotic simulation
system while all other classes are considered to be open-loop symbiotic simulation systems.
The remainder of this section is dedicated to explaining the different classes of symbiotic
simulation systems.
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12.3.1 Symbiotic Simulation Decision Support Systems (SSDSS)

The first class of symbiotic simulation systems is concerned with decision support. Simu-
lation in decision support systems is used to predict and evaluate the impact of possible
decisions on the physical system. For this purpose, a number of different what-if scenarios
are simulated, each representing an alternative decision. The results of these simulations
are analyzed and used to support an external decision making process. The influence of
the simulation system in an SSDSS is only indirect because actual decision making and
implementation is performed by an external decision maker.

An SSDSS predicts possible future states of a physical system for a number of what-
if scenarios. Simulation results are analyzed and interpreted in order to draw conclusions
which are used to support an external decision making process. The simulation system in an
SSDSS benefits from real-time sensor data which can be injected into running simulations
in order to improve the accuracy. It does indirectly influence the physical system which can
be either to the advantage or disadvantage for the physical system. The symbiosis between
the simulation system and a physical system in an SSDSS is therefore either mutualism or
parasitism/predation.

Examples for symbiotic simulation used for decision making include answering what-if
questions asked by fire fighters for situation assessment [Michopoulos et al., 2004], simulation
of alternative threat management scenarios upon an incident in a water distribution network
[Mahinthakumar et al., 2006], and dynamic path planning of a UAV using what-if scenarios
in [Kamrani and Ayani, 2007; Lozano et al., 2006]. In these examples, various scenarios are
simulated and analyzed to make appropriate decisions. There are also examples of decision
support applications, using symbiotic simulation without mentioning analysis of various
what-if scenarios. These examples include traffic control and management [Fujimoto et al.,
2006] and electric power transmission systems [McCalley et al., 2007, 2006].

12.3.2 Symbiotic Simulation Control Systems (SSCS)

The second class of symbiotic simulation systems is concerned with control. As an extension
to a decision support system, the results of symbiotic simulation can be used to control
the physical system by means of actuators. Unlike a decision support system, the control
system does not depend on an external decision making process to influence the physical
system. Therefore, the influence of the SSCS is direct.

Like an SSDSS, an SSCS evaluates a number of what-if scenarios by means of simulation.
Also, analysis results are interpreted in order to draw conclusions which can be used to
influence the system. In contrast to an SSDSS where influence is indirect only, the simulation
system in an SSCS can directly influence the physical system. This is the major difference
between an SSCS and an SSDSS. The symbiosis between the simulation system and the
physical system in an SSCS is either mutualism or parasitism/predation.

Examples for symbiotic simulation control include the use of controlling agents to make
necessary modifications to a semiconductor manufacturing system [Low et al., 2005], on-line
planning and control in manufacturing [Davis, 1998], implementation of simulated escalation
scenarios by activating actuation mechanisms [Michopoulos et al., 2003], control of hydraulic
gates in the context of floodwater diversion [Xue et al., 2007], and optimization of a business
process workflow in the context of high-tech manufacturing and service networks [Low et al.,
2007].
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12.3.3 Symbiotic Simulation Forecasting Systems (SSFS)

The third class of symbiotic simulation systems is concerned with forecasting. Many appli-
cations use symbiotic simulation to predict future states of a system. Almost all applications
that use symbiotic simulation for forecasting purposes are involved in some form of decision
making. However, there are also some applications which use symbiotic simulation solely for
forecasting purposes. Examples for forecasting include short-term wildland fire prediction
[Mandel et al., 2007; Douglas et al., 2006; Mandel et al., 2005, 2004] and image guided neu-
rosurgery [Majumdar et al., 2005]. In both cases, data from the physical system is injected
into the simulation to improve accuracy.

An SSFS predicts possible future states of a physical system for a number of what-if
scenarios. The output of the what-if simulations can be used for visualization purposes,
for instance. It is also possible to use the output of the forecast for further analysis in an
external process. An SSFS is similar to an SSDSS/SSCS as it predicts possible future states
of the physical system. However, it does not analyze the simulation results and does not
draw any conclusions in order to create a control feedback to the physical system. The future
behavior of the physical system depends on the influence from its environment. External
influence is therefore an important factor in forecasting. Various what-if scenarios can be
created by making different assumptions for external influence. An SSFS benefits from real-
time sensor data which can be injected into running simulations in order to improve the
accuracy. It does not influence the physical system, i.e., the physical system is not affected
by the symbiotic simulation system. The symbiosis between the simulation system and the
physical system in an SSFS is therefore commensalism.

12.3.4 Symbiotic Simulation Model Validation Systems (SSMVS)

The fourth class of symbiotic simulation systems is concerned with model validation. Model
validation is an important aspect of symbiotic simulation because many applications rely
on an accurate reference model of the physical system. Simulations can be used to validate
the underlying model against the physical system. Different models are simulated in order
to identify the one that describes the current state of the physical system best. Therefore,
an SSMVS can be used to find the reference model. Once identified, the reference model
can be used for subsequent forecasting or other purposes. Model validation is performed by
comparing the simulated behavior and the actual behavior of the physical system. Unlike
other symbiotic simulation systems, an SSMVS can make use of historical data to initialize
and drive the simulation. In addition, it is possible to perform model validation on the fly,
by initializing a paced simulation with the current state of the physical system and using
real-time sensor data to drive the simulation. The simulated behavior of the physical system
is compared with recorded or measured data of the actual behavior. A model which can
explain the actual behavior of the physical system accurately enough can further serve as
the reference model.

An SSMVS compares the results of various simulations, each using a different possible
model, with the physical system in order to determine a model that describes the physical
system with sufficient accuracy. An SSMVS benefits from historical and real-time sensor
data to initialize and drive simulations. It does not influence the physical system and the
symbiosis between the simulation system and the physical system in an SSMVS is therefore
commensalism.

It is possible to distinguish between model validation used for calibration and classifi-
cation purposes. In the first case, a model is calibrated in order to reflect the behavior of
the physical system with higher accuracy. In the second case, different hypotheses can be
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evaluated in order to find one that explains the behavior of the physical system. Exam-
ples for calibration include determination of unknown boundary conditions in fluid-thermal
systems [Knight et al., 2007] and prediction of material properties of geological structures
[Akcelik et al., 2004]. An example for classification can be found in [Madey et al., 2007]. In
this example, various hypotheses about an emergency event are tested.

12.3.5 Symbiotic Simulation Anomaly Detection Systems (SSADS)

The fifth class of symbiotic simulation systems is concerned with anomaly detection. Symbi-
otic simulation can be used to detect anomalies either in the physical system or in the model
of the physical system. This is done by comparing the simulated behavior with the actual
behavior. A paced simulation is initialized with the current model and the current state
of the physical system. Simulation updates are essential for a paced simulation to evolve
closely to the physical system. Real-time sensor data is therefore used to drive the simula-
tion. Measured and simulated values of key indicators are compared with each other and
discrepancies are interpreted as anomalies. A detected anomaly can either be due to an inac-
curate model, or be due to an unexpected or abnormal behavior of the physical system. For
example, a sudden failure in the physical system leads to a discrepancy between simulated
and actual behavior of the physical system. In this case, the anomaly is due to the physical
system. An SSADS does not influence the physical system and the symbiosis between the
simulation system and the physical system in an SSADS is therefore commensalism.

An example of symbiotic simulation used to detect anomalies in a physical system is
described in [Cortial et al., 2007]. In this example, the model of a healthy structure is used
to simulate the wing of a fighter jet. Simulated values and measured values are compared
and a detected anomaly is interpreted as structural damage of the wing. An example of
symbiotic simulation used to detect anomalies in the context of social sciences is described
in [Kennedy et al., 2007b]. In this example, a housing scenario is modeled and used to
simulate the moving behavior of households. If simulations turn out to be inconsistent with
observations, the anomaly is interpreted as inaccuracy of the model.

12.3.6 Hybrid Symbiotic Simulation Systems

A symbiotic simulation system can consist of a number of subsystems, each representing
a symbiotic simulation system by itself. Such a system is referred to as a hybrid symbiotic
simulation system. Because it is a composition of various subsystems, a hybrid symbiotic
simulation system is not considered as an independent class. For example, a system may
consist of a forecasting subsystem and a model validation subsystem. The model validation
subsystem is responsible for calibrating the model which is used by the forecasting subsys-
tem. It is also possible to have a hybrid symbiotic simulation system with mixed symbiotic
simulation and application specific subsystems.

An example of a hybrid forecasting and model validation system can be found in [Madey
et al., 2006], where various hypotheses about an emergency are tested and validated. This is
done by simulating various anomalies and comparing their behavior to the actual behavior
of the physical system (SSMVS). Once validated, a simulation can be used to predict the
future development of the emergency (SSFS). An example for a hybrid anomaly detection
and forecasting system is described in [Cortial et al., 2007], where symbiotic simulation is
used to detect structural damage (SSADS) and to forecast its possible evolution (SSFS).
Another example of a hybrid symbiotic simulation system, in the context of semiconductor
manufacturing, can be found in [Aydt et al., 2008a].
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TABLE 12.2 Overview of the various symbiotic simulation systems.

Class Purpose Control
Feedback

Meaning of
What-if Scenarios

Type of Symbiosis

SSDSS Support of an
external decision maker

Indirect Decision alternatives Mutualism/Parasitism

SSCS Control of a
physical system

Direct Control alternatives Mutualism/Parasitism

SSFS Forecasting of a
physical system

No Different assumptions
for external influence

Commensalism

SSMVS Validation of a
simulation model

No Alternative models or
different parameters

Commensalism

SSADS Detection of anomalies either
in the physical system or
in the simulation model

No Reference model only Commensalism

12.3.7 Symbiotic Simulation Systems at a Glance

An overview of the various classes of symbiotic simulation systems described in Sections
12.3.1–12.3.5 is illustrated in Table 12.2. This table lists the five classes of symbiotic sim-
ulation systems, their purpose, the type of control feedback (if any), the meaning of the
various what-if scenarios, and the type of symbiotic relationship between the simulation
system and the physical system.

12.4 Workflows and Activities in Symbiotic Simulation Sys-
tems

Each symbiotic simulation system has its own specific workflow. Here, by workflow we mean
the sequence in which various activities are performed in a symbiotic simulation system.
Initially it may seem as if the various workflows differ significantly from each other. However,
there are a relatively small number of common activities which are used by all workflows.
In this section, we describe the workflows of the different classes of symbiotic simulation
systems, as well as the activities involved.

12.4.1 Workflows

Regardless of its type, a symbiotic simulation system is always observing the physical system
by means of corresponding sensors. Therefore the observation activity is performed through-
out the time a symbiotic simulation application is executed. In addition, application specific
trigger conditions are continuously evaluated. Such a trigger condition can be a sudden drop
in performance of a manufacturing system, for instance. In addition, depending on the ap-
plication, either one or more triggering conditions can be used. If all necessary conditions
are fulfilled, the analysis process is triggered. This process depends on the symbiotic simu-
lation system class used, of which each has its own class-specific workflow. For example, in a
decision support or control system for a manufacturing system, various alternative machine
configurations have to be evaluated in order to solve the performance problem which has
triggered the analysis process. Figure 12.1 illustrates the general workflow of a symbiotic
simulation system.

All class-specific workflows (except the one for an SSADS) explained in the following
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FIGURE 12.1 Activities involved in the general workflow of a symbiotic simulation system.

sections make use of a common workflow for executing a symbiotic simulation. This common
workflow is illustrated in Figure 12.2.

FIGURE 12.2 Activities involved in the common workflow of executing a symbiotic simulation.

SSDSS Workflow

An SSDSS is used to analyze different possible ways of influencing the physical system in
order to see whether one leads to the desired behavior. This is done by predicting and eval-
uating the potential outcome of different what-if scenarios. Several forecasts are performed
concurrently, each using a hypothetical what-if scenario which reflects a different way of
influencing the physical system. The performance of each what-if scenario can be analyzed
during runtime by evaluating the simulated key indicators. It is possible to decide upon
premature termination of what-if simulations which perform poorly. For example, the per-
formance of a manufacturing system depends on its configuration. Various configurations
are reflected by different what-if scenarios. During the simulation of a what-if scenario,
the simulated performance can be analyzed. A simulation which performs poorly can be
terminated and replaced by another one, using a different what-if scenario. Once enough
scenarios are simulated, the results are analyzed and compared with each other. If one of the
simulated scenarios has produced the desired result, it is suggested as a possible solution to
the external decision maker. The class-specific workflow of an SSDSS is illustrated in Figure
12.3.

SSCS Workflow

An SSCS is used for the same purpose as an SSDSS. Various possible what-if scenarios are
simulated and evaluated in order to determine one which leads to a desired result. The only
difference is that solutions are directly implemented by using corresponding actuators, i.e.,
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FIGURE 12.3 Activities involved in the class-specific workflow of an SSDSS.

a control system is the extension of a decision support system. Consider the semiconductor
manufacturing example from the previous section. Various what-if scenarios, representing
alternative configurations are simulated and analyzed. A winning scenario is determined and
the winning configuration is implemented by using actuators. In the context of semicon-
ductor manufacturing, an actuator can be a tool controller, for instance. The class-specific
workflow of an SSCS is illustrated in Figure 12.4.

FIGURE 12.4 Activities involved in the class-specific workflow of an SSCS.

SSFS Workflow

An SSFS is used to predict the future state of a system based on given scenarios. Unlike other
symbiotic simulation systems, the simulated scenarios are not analyzed in order to draw any
conclusions. For example, decision support and control systems use the simulation of what-if
scenarios to make decisions regarding the physical system. Model validation systems and
anomaly detection systems compare the simulation results with the physical system to
find a model which reflects the physical system accurately enough, or to detect anomalies,
respectively. This is not the case in an SSFS.

Simulation runs are started using the given scenarios and executed concurrently. Depend-
ing on the application, simulation updates might not be possible or necessary. The update
activity is therefore optional. Even if no simulation update is used, the simulation system is
still using sensor data to determine the state of the physical system, which is then used to
initialize a simulation run. Therefore, the simulation system still benefits from the symbiotic
relationship with the physical system. During its execution, a simulation can be analyzed.
Similar to SSDSS/SSCS, it is possible to terminate the simulation run based on an on-line
analysis. For example, it might be possible to confirm early predictions of the simulation run
by comparing them with observations from the physical system. If this confirmation fails,
i.e., if the prediction is not accurate enough, there is no reason to continue the simulation.
In this case the simulation can be terminated prematurely. The class-specific workflow of
an SSFS is illustrated in Figure 12.5.
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FIGURE 12.5 Activities involved in the class-specific workflow of an SSFS.

SSMVS Workflow

An SSMVS is used to find a model that explains the behavior of the physical system with
sufficient fidelity, i.e., it is used to determine the reference model. Various scenarios are sim-
ulated and evaluated, each reflecting a different model. In the case of calibration, models
are slightly modified variants of the current reference model. In the case of classification,
models represent various hypotheses about the physical system and can significantly vary
from each other. Similar to decision support and control systems, these scenarios are sim-
ulated and analyzed concurrently. If a model is found that describes the behavior of the
physical system accurately enough, the current reference model is replaced. How accurate
a model has to be in order to serve as reference model depends on the application context.
The class-specific workflow of an SSMVS is illustrated in Figure 12.6.

FIGURE 12.6 Activities involved in the class-specific workflow of an SSMVS.

SSADS Workflow

An SSADS is used to identify discrepancies between the simulated behavior and the actual
behavior of the physical system. Unlike other symbiotic simulation systems, a paced simu-
lation is used which is driven by measured data about external influence. This sensor data
is injected into the simulation as soon it is available. Frequent and highly accurate data
injections with low latency allow the simulation to evolve closely with the physical system.
The simulation update is essential for the paced simulation to evolve and is therefore not
optional, as it is the case in other symbiotic simulation systems. During runtime the sim-
ulation is continuously analyzed and compared with the actual behavior of the physical
system. Significant discrepancies are interpreted as anomalies. The class-specific workflow
of an SSADS, illustrated in Figure 12.7, is almost identical to the common workflow for
executing a symbiotic simulation (see Figure 12.2) used by the other classes of symbiotic
simulation systems. The only difference is the obligatory update activity. In addition, a
paced simulation is started rather than a normal simulation which is executed as fast as
possible.
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FIGURE 12.7 Activities involved in the class-specific workflow of an SSADS.

12.4.2 Activities

Although the objectives of the various types of symbiotic simulation systems are different,
their workflows are composed of the same activities. This results in a relatively small set
of essential activities needed by symbiotic simulation systems. In this section, we describe
these activities.

Observe Physical System

Observing the physical system is essential for a symbiotic simulation system. All systems
collect data about the state of the physical system and external influence. This information
is required to initialize and drive a simulation. Except for forecasting systems, all other
classes of symbiotic simulation systems also collect information about key indicators. Based
on them, different simulation runs are compared with each other or with the physical system.
Since an SSFS does not interpret simulation runs, there is no need for key indicators. The
observation process in a symbiotic simulation system is illustrated in Figure 12.8.

FIGURE 12.8 Observation of a physical system by a symbiotic simulation system.

Evaluate Trigger Conditions

Typically symbiotic simulation systems are triggered by specific conditions depending on
the application. For example, the purpose of an SSDSS/SSCS in a manufacturing system
is to maintain predefined performance targets. In this context, the symbiotic simulation
system is triggered when the performance becomes critical. Similarly, corresponding trigger
conditions are used for the other types of symbiotic simulation systems depending on the
application.

In a hybrid symbiotic simulation system, consisting of several symbiotic simulation sub-
systems, the output of one subsystem can be used as trigger for another subsystem. For
example, an SSADS is used to detect anomalies between the actual behavior of the phys-
ical system and the simulated behavior. Once an anomaly is detected, which is due to an
inaccurate model of the physical system, an SSMVS is triggered which is responsible for
calibrating the simulation model. Similarly, it is possible to use an SSADS to trigger an
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SSDSS/SSCS in order to make decisions regarding the physical system.
It is possible to further distinguish between external and internal triggers. An external

trigger resides outside the symbiotic simulation system. For example, a symbiotic simu-
lation system can be triggered manually by a human operator. A symbiotic simulation
subsystem which triggers other symbiotic simulation subsystems can also be considered as
an external trigger. Internal triggers are used within a symbiotic simulation system. They
evaluate data about key indicators and trigger symbiotic simulation accordingly. For exam-
ple, an SSDSS/SSCS evaluates the performance indicators of a manufacturing system. If
the performance drops below a specified threshold, the what-if analysis process is triggered.
External and internal triggering of a symbiotic simulation system is illustrated in Figure
12.9.

FIGURE 12.9 External and internal triggering in symbiotic simulation systems.

Create Scenario

An SSFS is used to simulate possible future behavior of the physical system. Each scenario
in a forecasting system uses the current reference model and the current state of the physical
system to initialize the simulation. Different scenarios are created by using different values
for external influence. For example, in the context of a manufacturing system, different
values for external influence can be used to create scenarios which reflect cases of high or
low demand for a particular product.

An SSDSS/SSCS is used to make decisions regarding how to influence a physical system
in order to achieve a desired behavior of the physical system. Various what-if scenarios are
simulated to see how the behavior of the physical system develops under certain assump-
tions. Different what-if scenarios are created by using the reference model with different
parameters and different values for external influence. Scenario creation in the context of
SSDSS/SSCS is only concerned with the decision parameters of the model. For example,
the future performance of a manufacturing system depends on the various machines and
their settings as well as on the estimated order volume. Machine settings that perform well
under normal workload conditions might perform poorly under high workload conditions.
The effect of different machine settings under different load assumptions can be analyzed
by using corresponding what-if scenarios.

An SSMVS is used to determine a model which reflects the physical system more accu-
rately than the current reference model. Each scenario in a model validation system reflects
a different model. In contrast to SSDSS/SSCS which modifies only decision parameters,
scenario creation in an SSMVS is not limited to decision parameters. For example, the
throughput of a manufacturing system depends on several factors of which one is the effi-
ciency of workers. Initially, workers are not experienced and thus less efficient. After a while
they gain experience and perform their tasks more efficiently. This positively affects the
performance of the manufacturing system. To reflect this gain of experience in the simula-
tion, the model has to provide a corresponding parameter. This parameter is then subject
to recalibration by an SSMVS.

An SSADS is used to detect anomalies in the behavior of the physical system and the
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simulation model. In contrast to other classes of symbiotic simulation systems, only one
scenario is used in the context of SSADS. This scenario uses the current reference model and
the current state of the system. In the case of an SSADS, a paced simulation is performed
which is driven by real-time measurements of the physical system and its environment.
Therefore, the scenario which is used for anomaly detection does not provide any external
influence.

Update Simulation

Simulation updates can be performed in order to increase the accuracy of the simulation.
For this purpose, real-time sensor data is injected into the running simulation. Whether
a simulation update is possible depends on the capabilities of the particular simulation.
A simulation is typically performed as fast as possible and might have advanced a good
deal in terms of simulation time when new sensor data becomes available. This kind of
simulation is used in forecasting, decision support, and control systems. In this case it
has to be decided whether new data samples should be considered or not. Strategies to
decide whether simulation update should be performed, should consider the time which is
necessary for the simulation to adapt to new sensor data. Depending on the underlying
problem and the simulator, an update might require a complete rollback to the time of the
update. In other cases, the simulation might be more flexible and is only rolled back in the
case where the measured values differs significantly from the anticipated values which are
currently used in the simulation. Whether or not to perform simulation updates depends
on the ratio of the anticipated gain in simulation accuracy and the time it takes for the
simulation to adapt. For example, if strict time constraints have to be considered, a less
accurate simulation result obtained in time might be more preferable than a highly accurate
but delayed simulation result.

Simulations used in anomaly detection systems are paced simulations. They evolve at the
same speed as the real system. External data is used to drive the simulations. Therefore,
without continuously updating the simulation by injecting corresponding data, the simula-
tion would not evolve in accordance with the physical system. Hence, a simulation update
is essential for paced simulations.

Unlike decision support and control systems, which aim to predict the future state of the
physical system, a model validation system is used to predict the current state of the system
based on a previous state and driven by historical data about external influence. An update
of the simulation run with real-time data is therefore not necessary.

Analyze Simulation

Simulations are analyzed while being executed, i.e., in vivo. This analysis process provides
information about the simulation to the symbiotic simulation system and its environment.
For example the information can be used for notification or visualization purposes. Infor-
mation about the simulation run can also be used to decide whether a simulation should
be terminated prematurely. This could be the case for simulations which perform poorly
and are unlikely to produce any useful results. Premature termination of such a simulation
would save valuable computation time.

Analyze Results

Results are analyzed once all simulations have finished execution, i.e., post mortem. This
analysis process aims to draw conclusions based on the simulation results. In decision sup-
port and control systems, the analysis is concerned with identifying a scenario which leads
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to the desired behavior of the physical system. In model validation systems, the analysis is
concerned with identifying a scenario which describes the current behavior of the physical
system with sufficient accuracy. The model used in this scenario can then be used to replace
the current reference model.

Other Activities

Other common activities include starting and terminating simulations. In addition, other
class-specific activities are performed by SSDSS, SSCS, and SSMVS. Decision support sys-
tems suggest solutions to external decision makers, control systems implement solutions by
means of actuators, and model validation systems replace the reference model.

12.5 Agent-Based Framework

A number of common activities were identified in the previous section. These activities have
to be performed by functional components of the framework. In this section we propose an
agent-based framework which provides all the necessary components to realize the various
classes of symbiotic simulation systems. Before proposing our own architecture, we state
requirements regarding the architecture, discuss existing architectures, and compare an
agent-based approach with a Web service approach.

12.5.1 Architecture Requirements

Requirements regarding an architecture usually depend highly on the application context.
For example, an embedded application can be expected to have requirements regarding its
real-time behavior and its memory consumption. On the contrary, a large enterprise trans-
action application typically has enough memory resources for an architecture which may
include several large components. An architecture which is suitable for such an enterprise
application is most likely not suitable for an embedded system.

When designing a generic framework architecture the application context is unknown. It
is therefore not possible to state requirements that are too specific. However, we believe
that there are three requirements which are essential for a generic framework architecture
for symbiotic simulation systems.

1. A generic framework must be applicable in different disciplines. This includes
the use of the framework to realize any of the five different classes of symbiotic
simulation systems described in Section 12.3. Therefore, the first requirement for
a generic framework architecture is applicability.

2. Although the described classes of symbiotic simulation systems cover most appli-
cations of symbiotic simulation at the time of writing, this does not rule out the
possibility of additional classes and functionality being identified and defined in
future. Therefore, the second requirement for a generic framework architecture
is extensibility.

3. Symbiotic simulation systems can be applied in various disciplines. They rely on
potentially computationally intensive simulations. In addition, it might be nec-
essary to simulate a large number of scenarios concurrently. All this might imply
that the application of symbiotic simulation is limited to the domain of grid
and cluster computing. However, as embedded systems are becoming more and
more powerful, we would not be surprised to see the first embedded symbiotic
simulation systems soon. We expect that in future, symbiotic simulation appli-
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cations will range from large and inherently distributed systems to embedded
systems. Therefore, the third requirement for a generic framework architecture
is scalability.

12.5.2 Discussion of Existing Architectures

Various symbiotic simulation applications are already described in the literature. In the
discussion here, we include only those which are relevant for our purposes.

Low et al. [Low et al., 2005] describe a symbiotic simulation system for semiconductor
backend assembly and test operation. Their system is implemented using the JADE agent
toolkit [Bellifemine et al., 1999]. In addition, the physical system is emulated using a simu-
lation model. The agent-based system consists of a number of agents which are responsible
for system management, monitoring, control, simulation, and optimization. Anomalies are
detected by the system management agent and, as consequence, what-if analysis is carried
out by the optimization agent. Depending on the outcome of this analysis, the physical
system is modified by a corresponding control agent. The symbiotic simulation system is
primarily used for controlling the physical system. A reference simulation is also mentioned
which runs alongside the physical system and is constantly compared with observations
from the physical system. Model maintenance is triggered upon detection of discrepancies
between simulated and observed data.

Kennedy and Theodoropoulos [Kennedy and Theodoropoulos, 2006] describe an archi-
tecture for autonomous DDDAS agents. This kind of agent uses symbiotic simulation to
predict states of its environment. Based on this prediction, the sensors of the agent can be
redirected if necessary. An assistant DDDAS agent is used to compare simulation predictions
and real world data to determine whether they are consistent [Kennedy et al., 2007b]. If
not, the simulation model can be revised accordingly. Essentially, a DDDAS agent consists
of sensors, a control component, and a model component. DDDAS agents support sensor
steering and can be used to realize symbiotic simulation anomaly detection systems. Al-
though it is possible to have multiple agents, each using a different model, the simulation
of several scenarios is not directly supported.

Madey et al. [Madey et al., 2007, 2006] describe WIPER, an emergency response system.
Their system uses wireless call data to detect any abnormal call patterns or population
movements. Upon detection of an anomaly, a simulation and prediction system is triggered.
Agent-based simulations are used to test various hypotheses about an anomaly. A decision
support system can use validated simulations to predict the evolution of the anomaly. The
architecture of the system consists of five components: data source, historical data storage,
anomaly detection and alert system (DAS), simulation and prediction system (SPS), and
decision support (DSS) with a web interface [Madey et al., 2007]. Once triggered by the
DAS, the SPS creates an ensemble of agent-based simulations. These simulation runs are
updated by real-time data injections. Although the simulation itself is agent-based, the
various components of the WIPER system are realized by Web services. Although WIPER
consists of several components, including a component for anomaly detection, symbiotic
simulation is only used for prediction and model validation.

Lozano et al. [Lozano et al., 2006] describe a symbiotic simulation based decision support
system for UAV path planning. In this system, the path of a UAV is continuously opti-
mized by considering threats, sensor constraints, and changes of the environment. In this
application, the best path is determined among a set of alternative UAV paths. Symbiotic
simulation is used as part of the path planning algorithm described in [Kamrani and Ayani,
2007]. In this system, each alternative UAV path is evaluated using simulation. Although
a detailed description of the architecture is not given, several functional components can
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be identified from the brief description which can be found in [Lozano et al., 2006]. The
symbiotic simulation system consists of several components for sensing and data fusion,
scenario creation, what-if simulation, evaluation and analysis, and decision making. Some
of these components are very similar to the ones which will be discussed in Section 12.5.5.

All existing architectures are used for a specific application which is concerned with either
a single class, or only few classes, of symbiotic simulation systems. To use these application
specific architectures for other applications, including other classes of symbiotic simulation
systems, it would therefore be necessary to significantly extend their functionality. This is
not surprising as none of these architectures was meant to be generic. The applicability of
existing architectures is therefore very limited.

Each architecture requires a different degree of effort to extend the current functionality.
For example, the architecture described by Low et al. [Low et al., 2005] can possibly be ex-
tended by adding new agents to the system. The WIPER architecture can be extended in a
similar way. In this case, new functionality has to be realized as a Web service rather than by
an agent. However, extending the functionality of the other architectures seems to be more
difficult. For example, the DDDAS agent by Kennedy and Theodoropoulos [Kennedy and
Theodoropoulos, 2006] contains all required functionality for symbiotic simulation anomaly
detection. Extending this agent to support other classes as well is probably not a good solu-
tion because it would lead to an agent which is overloaded with functionality. An alternative
would be to introduce various types of DDDAS agents, of which each is responsible for a
different class of symbiotic simulation system.

All systems were developed with a particular application in mind. Scalability was therefore
not necessarily a design criterion. The agent-based approach of Low et al. [Low et al., 2005]
and the Web service based approach by Madey et al. [Madey et al., 2007, 2006] should scale
better than the other architectures because the various agents and Web services can be
distributed on several machines, depending on the application. However, the Web service
approach is not suitable for small-scale systems as we will further explain in the next
section.

12.5.3 Web Services Approach vs. Agent-Based Approach

Agent-based systems and Web service based systems have already been used successfully
in various symbiotic simulation applications. For example, an agent-based symbiotic simu-
lation system was used in [Low et al., 2005] to realize a control system for semiconductor
manufacturing. DDDAS agents, described in [Kennedy et al., 2007b], represent another
agent-based symbiotic simulation system. The WIPER Emergency Management System
[Madey et al., 2007] represents an example of a Web service–based approach.

Web services are a popular implementation of the Service-Oriented Architecture (SOA).
SOA is an interesting concept that might be suitable for symbiotic simulation systems. The
concept of SOA involves service providers, service brokers, and service requestors. Services
can range from relatively small functions to entire business processes. They have clearly
defined interfaces, are loosely coupled, and communicate by means of XML messages. This
guarantees interoperability of services regardless of their underlying implementation.

When using a Web service approach to realize a framework for symbiotic simulation
systems, each of the various activities required for symbiotic simulation can be realized as
a Web service. A particular symbiotic simulation system can then be composed of various
Web services, for example using the Business Process Execution Language (BPEL). If new
functionality is required, the framework can easily be extended by adding new Web services.

Web services are built on existing standards such as HTTP and XML. These standards
already dominate the Internet and Web services are becoming increasingly important in the
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Internet [Gottschalk et al., 2002]. However, they have certain disadvantages which make
them unsuitable for a generic framework for symbiotic simulation systems. We give the
following two examples to support our argument.

Web services are aimed at large, enterprise systems which have access to the Internet. A
particular service, offered by a service provider, can be accessed by a client over a network.
Web services require an infrastructure consisting of a service broker and a service provider.
This typically includes several servers which makes them unsuitable for mobile and small-
scale symbiotic simulation solutions. In contrast, agent-based systems do not need a large
server infrastructure and they are also suitable for small-scale systems.

Symbiotic simulation is also used in mobile applications. For example, a symbiotic simu-
lation system is used for UAV path planning in [Lozano et al., 2006; Kamrani and Ayani,
2007]. Typically mobile applications have no, or only limited, access to the Internet. Web
services provided by a service provider that is only reachable over the Internet cannot be
used. In order to facilitate self-contained symbiotic simulation systems, all required func-
tional components have to be available locally. Even if an Internet connection is available,
using a Web service approach might be undesirable from a performance point of view. This
depends on the location of the Web services involved and the degree of communication
between them and other components of the symbiotic simulation system. Unlike Web ser-
vices, agents provide local functionality. Therefore, agents can be used to realize mobile and
autonomous symbiotic simulation systems.

The need for an agent-based solution is based on the distributed nature of many applica-
tions that use symbiotic simulation, the need for mobile solutions, and the broad field of ap-
plications ranging from possibly embedded systems to large enterprise systems. Agent-based
systems can be distributed and mobile if this is required by the application. In addition,
agent-based systems can be used in embedded systems as well as in large enterprise sys-
tems. Nevertheless, using an agent-based approach does not rule out the use of a symbiotic
simulation system as part of an enterprise application which is realized with Web service
technology. If necessary, an agent-based symbiotic simulation system can be packaged and
provided as a Web service which can then be used by other services within the enterprise
application.

12.5.4 Capability-Centric Solution for Framework Architecture

Each application has its own requirements regarding the symbiotic simulation system. De-
pending on this and the class of symbiotic simulation system used, some functionality might
not be required. Developers need to be able to tailor the symbiotic simulation system ac-
cording to their needs by using only functionality that is required by the application.

This can be achieved by modularization of functionality. Each of the different activities in
the framework has to be realized as a functional component. In this way, the framework can
be extended by adding new functional components. When using an agent-based approach
to realize the framework for symbiotic simulation systems, all the required functionality
has to be provided by agents. In the context of BDI agent systems, capabilities are used to
achieve modularization of functionality. Busetta et al. introduced the concept of capabilities
and described a capability as “[...] a cluster of plans, beliefs, events, and scoping rules over
them” [Busetta et al., 1999]. A similar concept of capabilities was described in Sabater et
al. [Sabater et al., 1999] using the term ‘module’. The original concept of capabilities was
later extended by Braubach et. al, who explained that “[...] the capability concept addresses
most of the five fundamental criteria of modularization from [Meyer, 1997]: decomposabil-
ity, composability, understandability, continuity and protection”. The extended capability
concept is realized in Jadex[Pokahr et al., 2005], a BDI agent system. We use the concept of
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capabilities to realize an extensible architecture for an agent-based framework for symbiotic
simulation systems.

Depending on the application, the symbiotic simulation system has to provide a certain
functionality. During runtime, this functionality is provided by the various agents of the
system. However, the functionality of the agents depends on their capabilities. For example,
the functionality needed to simulate a what-if scenario can be realized by a capability. Any
agent that is equipped with this capability will be able to perform what-if simulations. It
is also possible to have several capabilities of the same type. For example, an application
consists of several sensors, each represented by a corresponding sensor capability. Agents can
be equipped with an arbitrary number of capabilities. It is therefore possible to have a single
agent that is equipped with all capabilities required to realize an entire symbiotic simulation
system. In this case the symbiotic simulation system is represented by a single agent. On
the other hand, the same symbiotic simulation system can be realized by using more than
one agent. In this case every agent is equipped with some of the capabilities required by the
system. In the extreme case, every agent is equipped with only one capability, i.e., there are
as many agents as there are capabilities in the system.

Applications which are inherently distributed need to distribute the functionality of the
symbiotic simulation system on several agents. For example, in a manufacturing application,
there might be several machines that have to be monitored. It might be necessary to have
several agents to monitor all machines. In another application, the what-if simulations have
to be carried out on a computing cluster which is located at a different department. This
would require an agent to be located on the cluster in order to carry out the simulations.
In contrast to inherently distributed applications, in embedded applications it might not
be necessary to have several agents. Therefore, the number of agents that are used depends
highly on the application. By using capabilities, it is possible to consider application specific
requirements regarding the number of agents.

12.5.5 Layers and Associated Capabilities

The high-level architecture of the framework consists of three layers: a perception layer,
a process layer, and an actuation layer. Each layer comes with a number of associated
capabilities. The layers and their associated capabilities are illustrated in Figure 12.10.
Examples on how these capabilities can be composed to a particular symbiotic simulation
system can be found in Section 12.6.

FIGURE 12.10 Overview of different layers with their associated capabilities.

A symbiotic simulation system is often only a single component within a larger applica-
tion. It is therefore necessary to allow other application components to interact with the
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symbiotic simulation system. This can be done by using application specific adapter ca-
pabilities. They represent the link between the symbiotic simulation system and the rest
of the application. Adapter capabilities are not associated with any particular layer of the
symbiotic simulation system.

Perception Layer

A symbiotic simulation system needs to be able to observe the system. For this purpose,
sensors are used which provide data to the symbiotic simulation system. Sensor capabilities
(S-C) represent the link between the symbiotic simulation system and the actual sensors.
There can be an arbitrary number of sensor capabilities, each providing data about a dif-
ferent aspect of the physical system.

Applications might consist of a large number of sensors, each providing incomplete in-
formation about a certain aspect of the physical system. In this case, it makes sense to
aggregate all available information about the same aspect and provide complete (or more
complete) information about this aspect to other capabilities. The Sensor Fusion capability
(SF-C) is used for this purpose.

In many applications, sensors are not static but can be steered dynamically. Depending
on the application, this includes relocation of sensors and deploying/removing sensors. The
Sensor Control capability (SC-C) allows other capabilities to control the sensor network of
the physical system.

Process Layer

The workflow performed by a symbiotic simulation system is triggered by certain conditions.
The WORkflow Controller capability (WORC-C) is responsible for evaluating different trig-
ger conditions and invoking corresponding activities. It represents the heart of a symbiotic
simulation system, as it coordinates the interplay between other capabilities. Each subsys-
tem in a hybrid symbiotic simulation system has its own WORC-C.

Simulation of various scenarios is an essential concept in symbiotic simulation. The SCE-
nario Management capability (SCEM-C) is responsible for creating meaningful scenarios
depending on the application and type of symbiotic simulation system.

Depending on the application, a specific simulator is used. The SIMulation Management
capability (SIMM-C) represents the link between the framework and the application-specific
simulator and allows other capabilities to invoke and terminate simulations. In addition, it
is also responsible for updating a simulation run with sensor data, if required.

Simulation runs are analyzed for several purposes. The SIMulation Analysis (SIMA-C)
capability is responsible for analysing simulation runs a) while they are executed (in-vivo),
and b) after they have finished execution (post-mortem). The first analysis activity is used
to decide upon termination or replacement of a simulation run. Further, statistic data is
collected which can be used later on in the decision making process. The second analysis
activity is used to compare various simulation runs and draw conclusions from them.

Several models of the physical system have to be managed in the context of SSMVS and
SSADS. The MODel Management capability (MODM-C) maintains models of the physical
system and provides access to them. By using this capability, other capabilities can request
new models or modify existing models. The MODM-C is only required in the context of
an SSADS and SSMVS where several models have to be managed. An SSDSS/SSCS only
considers the decision model that is provided by the DECM-C.
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Actuation Layer

In an SSDSS/SSCS, the scenario creation depends on the decision model. The DECision
Management capability is responsible for updating the decision model and providing it
to other capabilities of the symbiotic simulation system. In an SSCS, possible ways of
influencing the physical system depend on available actuators. Therefore, the decision model
has to be updated whenever an actuator becomes available or unavailable. In addition, the
DECM-C is responsible for propagating decisions to the corresponding actuator capabilities.
An SSDSS is not equipped with actuators. Therefore, decisions have to be propagated to
an external decision maker rather than to actuators.

Actuators are used to enable a symbiotic simulation system to actively influence the
physical system. The Actuator capability (A-C) represents the link between the framework
and the actual actuator used in the application. An actuator capability is responsible for
implementing a decision by exercising corresponding influence on the physical system. In
addition it provides information regarding the availability of the actuator to other capabil-
ities. This is important because the DECM-C needs to update the decision model based on
available actuators.

12.6 Applications

We apply the proposed framework to an application in the context of semiconductor manu-
facturing. This example will serve as a proof on concept showcase. In addition, we describe
four conceptual showcases, based on the applications described in Section 12.5.2. Each
showcase will be concerned with a particular class of symbiotic simulation system.

12.6.1 Proof of Concept Showcase

We have developed a proof of concept application in the context of semiconductor man-
ufacturing where quick decision making is required in order to improve the operational
performance of a semiconductor wafer fabrication plant (fab) [Aydt et al., 2008b]. In this
showcase, a set of wet bench tools is operated by an SSCS. A wet bench tool is used to clean
wafer lots after certain fabrication steps. Each wet bench consists of a number of baths with
different chemical liquids. A wafer lot is processed in these liquids strictly according to a
certain recipe. A recipe specifies the exact sequence and the exact timing for a wafer lot
to be processed in the various baths. Violation of these constraints leads to significantly
reduced wafer quality.

Some recipes introduce more particles into the liquids than others. We therefore distin-
guish between ‘clean’ and ‘dirty’ recipes [Gan et al., 2006]. In order not to affect the wafer
quality by mixing wafers associated with different types of recipes, wet benches are dedi-
cated to either ‘clean’ or ‘dirty’ recipes. A wet bench needs to be reconfigured in order to
process wafers that are associated with a different type of recipe. No particular activity is
required when changing the configuration from ‘clean’ to ‘dirty’. However, when changing
from ‘dirty’ to ‘clean’ it is necessary to change the chemical liquids first.

There are typically several wet benches in a fab, equipped with different chemicals in
order to be able to process a variety of recipes. The performance of such a wet bench tool
set (WBTS) depends on the configuration of the different wet benches and the product mix,
i.e., the distribution of recipes in the arriving wafer lots. If the product mix is changing, then
it might be necessary to reconfigure several wet benches, i.e., to change their dedication.
An SSCS is used to make decisions and change the configuration of the WBTS if necessary.
The architecture of the WBTS-SSCS is illustrated in Figure 12.11.
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FIGURE 12.11 Architecture for equipment control in semiconductor manufacturing using the proposed
framework.

Two sensor capabilities (S-C1 and S-C2) provide information about the performance of
the physical system, the product mix, and the current state of the physical system. The
performance is observed by the workflow control capability (WORC-C). If a critical con-
dition is observed, the what-if analysis process is triggered. A number of what-if scenarios
with alternative wet bench configurations is created by the scenario management capability
(SCEM-C). A decision model, provided by the decision management capability (DECM-
C), is used for this purpose. The scenarios are simulated and their results analyzed by the
simulation management capability (SIMM-C) and simulation analysis capability (SIMA-
C), respectively. Based on the simulation results, the best configuration among the various
alternatives is determined. The configuration of the WBTS can be changed by instruct-
ing the DECM-C to change the operation mode of particular wet benches by using the
corresponding actuator, represented by the actuator capability (A-C).

12.6.2 Conceptual Showcases

We intend to provide a generic framework for symbiotic simulation systems. In addition
to the proof of concept showcase, discussed in the previous section, we discuss how our
framework could be applied in the context of various other applications.

SSDSS Example

The symbiotic simulation system described in [Kamrani and Ayani, 2007] is used for adap-
tive path planning of UAVs. Information about the location of the UAV and the target is
provided by corresponding sensors. Alternative what-if scenarios are created based on a set
of alternative paths and simulated concurrently. Each scenario is initialized with the current
location of the UAV and a priori estimations about the target. The simulation results are
compared in order to determine the best path. Detailed algorithms for path planning and
what-if simulations are given in [Kamrani and Ayani, 2007]. As part of the path planning al-
gorithm, the best path is determined using the results from the various what-if simulations.
Although the authors mention that it is possible to apply the results directly to the physical
system which would indicate a control system, this is not explained. Instead, the results of
the what-if simulations are used as input for a decision maker. Therefore, we consider the
symbiotic simulation system for UAV path planning to be a decision support system rather
than a control system. An illustration of the architecture for this application can be found
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in the technical report on symbiotic simulation based decision support in [Lozano et al.,
2006].

Applying the proposed framework results in a symbiotic simulation system, consisting of
two subsystems. The first subsystem represents an SSDSS which is responsible for proposing
decisions to the external decision maker which is represented by the second subsystem. The
architecture is illustrated in Figure 12.12.

FIGURE 12.12 Architecture for symbiotic simulation decision support in UAV path planning using the
proposed framework.

Sensor capabilities (S-C) and sensor fusion capabilities (SF-C) provide data which is im-
portant in the context of the application (e.g., geography of the road network, estimated
location of the target). The workflow control capability (WORC-C) recurrently triggers a
what-if analysis process. A set of alternative UAV paths is created by the scenario manage-
ment capability SCEM-C, based on the decision model which is provided by the decision
model management capability DECM-C. In this particular application, decision making is
concerned with the future directions of the UAV, i.e., with the path of the UAV. The deci-
sion model describes how possible alternative paths of the UAV can be created. The what-if
scenarios also incorporate the current location of the UAV and the estimated location of
the target. Each scenario is simulated and analyzed by a simulation management capability
(SIMM-C) and a simulation analysis capability capability (SIMA-C), respectively. The best
alternative path, which can be determined once all simulation results are available, is pro-
posed to the external decision maker. An adapter capability (APP-CUAV ) is used to link
the application specific decision maker into the symbiotic simulation system. It is up to this
decision maker to consider the alternative path, suggested by the SSDSS.

SSCS Example

The symbiotic simulation system described in [Low et al., 2005] is used to optimize out-
sourcing decisions by considering the operating cost for a semiconductor back-end factory.
To avoid late deliveries and consequent penalties, wafer lots are marked for out-sourcing
under certain conditions. Marking is switched on/off if the number of lots in a queue exceeds
or falls below a specified upper or lower limit, respectively. An optimal combination of
upper and lower queue sizes yield minimum operating cost. In this application, symbiotic
simulation is used to find an optimal value for these queue sizes. Sensors are used to retrieve
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the current state of the factory. This information is used to initialize the what-if simulations.
In addition, each what-if scenario uses a different set of upper and lower limits. The results of
the what-if analysis can be directly used in the physical system to make decision regarding
out-sourcing. In the original architecture, a control agent is responsible for making the
necessary modifications. Therefore, applying the proposed framework results in using an
SSCS which is responsible for directly implementing decisions regarding the upper and
lower queue sizes. The architecture is illustrated in Figure 12.13

FIGURE 12.13 Architecture for symbiotic simulation of semiconductor backend operation using the
proposed framework.

A sensor capability (S-Cutil) provides data on machine utilization. If the utilization ex-
ceeds 80%, the workflow control capability WORC-C triggers a what-if analysis. During the
analysis process, a number of what-if scenarios is created by the scenario management capa-
bility SCEM-C based on the decision model provided by the decision management capability
DECM-C. The simulation management capability SIMM-C is responsible for simulating the
various what-if scenarios. These simulations are analyzed by the simulation analysis capa-
bility SIMA-C and results are used by the WORC-C to decide upon modifying the settings
of the physical system. The new configuration, proposed by the WORC-C, is checked by
the DECM-C before being implemented. The actuator capabilities (A-Clow and A-Chigh)
are responsible for changing the lower queue size of a machine and the upper queue size,
respectively.

SSADS Example

The symbiotic simulation system described in [Kennedy et al., 2007b; Kennedy and
Theodoropoulos, 2006] is part of the AIMSS architecture and is used to detect anoma-
lies between simulated and actual behavior in social science applications. The purpose of
the simulation is to make predictions in a housing scenario. The model used allows the
space to be divided into different regions (e.g., expensive/inexpensive, high/low crime rate).
Households, which are represented by agents, will move to different regions depending on af-
fordability, crime level, and other factors. A DDDAS agent is used to interpret and compare
simulations with the real world. The agent may suggest model revision if the simulation does
not resemble the real world accurately enough. A case study which uses this kind of agent is
described in [Kennedy et al., 2007a]. The agent architecture consists of sensors which can be
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redirected, a description of the world, and a control component which compares measured
and simulated data. In addition, the agent may maintain its own model of the world.

Applying the proposed framework results in using an SSADS which is responsible for
detecting anomalies between the simulated and actual behavior of the real world. The
architecture is illustrated in Figure 12.14.

FIGURE 12.14 Architecture for symbiotic simulation in AIMSS assistant agents using the proposed
framework.

Sensor capabilities (S-C) are used in the same way as the sensor components in the
original architecture. The control component is realized by the workflow control capability
WORC-C, the scenario creation management capability SCEM-C, the simulation manage-
ment capability SIMM-C, and the simulation analysis capability SIMA-C. At the start, the
reference scenario, consisting of the reference model and the current state of the physical
system, is determined by the SCEM-C and used by the SIMM-C to perform a paced sim-
ulation. Measured values and simulated values are continuously compared by the SIMA-C.
Detected anomalies may cause a revision of the model, initiated by the WORC-C. In the
description of the original architecture, it is indicated that sensors are redirected depending
on the predicted state of the simulation. Therefore, sensor redirection is initiated by the
SIMA-C and carried out by the sensor control capability SC-C.

SSMVS and SSFS Example

The symbiotic simulation system described in [Madey et al., 2007] is used to classify anoma-
lies by testing various hypotheses. Communication patterns of millions of cell phone users
are monitored to recognise anomalies. Sensor data used by WIPER includes activity data
(e.g., call initiator and recipient) and spatial location data provided by mobile phone com-
panies, as well as the 30 second CDR (Call Detail Record) tags which identify the closest
cell tower to the phone [Madey et al., 2006]. Anomalies are classified by testing various
hypotheses about the nature of the anomaly. The one that describes the anomaly best is
used to predict its further evolution.

Applying the proposed framework results in using a hybrid symbiotic simulation system,
consisting of four subsystems. These subsystems are used for anomaly detection, model val-
idation, forecasting, and decision support. However, symbiotic simulation is only used for
model validation and forecasting in this application. Therefore, an SSMVS and SSFS are
used in addition to two application specific subsystems which are responsible for anomaly
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detection and decision support. The architecture is illustrated in Figure 12.15. In this archi-
tecture, each symbiotic simulation subsystem has its own SCEM-C and SIMM-C. Depend-
ing on the particular implementation of the application it might be possible to share the
same capabilities among the two symbiotic simulation subsystems. However, only the model
management capability and the sensor capabilities are shared by both symbiotic simulation
subsystems here.

FIGURE 12.15 WIPER architecture using the proposed framework.

Sensor capabilities (S-Cdata) provide data about cell phone activity. Historical data is
also provided by these capabilities. The application-specific anomaly detection and decision
support subsystem are represented by the adapter capabilities APP-CDAS and APP-CDSS ,
respectively. These adapter capabilities are used to link application specific components
with the symbiotic simulation system.

Once an anomaly is detected, the workflow control capability WORC-CMV of the model
validation subsystem is triggered. A number of scenarios are created by the scenario manage-
ment capability SCEM-CMV . Each scenario represents a hypothesis about the anomaly and
is simulated by the corresponding simulation management capability SIMM-CMV . Real-time
data, provided by the sensor network, are used to dynamically update the various simulation
runs. The simulation analysis capability SIMA-CMV dynamically validates simulation runs
against sensor data and decides upon termination of a particular simulation. The reference
model, which is managed by the model management capability MODM-CMV , is updated
once an explanation is found that describes the current behavior of the system.

This reference model can be used by the forecasting subsystem to predict how the anomaly
is likely to evolve in future. The subsystem itself consists of a workflow controller capability
(WORC-CF ), a scenario creation management capability (SCEM-CF ), and corresponding
simulation management capability (SIMM-CF ). The scenarios used for forecasting purposes
are all based on the reference model. The actual decision making, based on these forecasts, is
performed by the application specific decision support subsystem. For this purpose, forecasts
of the anomaly are provided to the decision support subsystem on request.

12.7 Conclusions

In this chapter we have analyzed different classes of symbiotic simulation systems. Although
the various classes have a distinct functionality, they are composed of only a few common
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activities. These activities are performed by a number of distinct components, which are
part of our framework for symbiotic simulation systems. In addition, this framework pro-
vides generic solutions for each of these components. We have proposed an architecture
for an agent-based framework which uses the concept of capabilities to realize the various
functional components of the framework. The framework architecture was designed with
requirements regarding applicability, extensibility, and scalability in mind. We show the ap-
plicability of the framework in the context of various application domains by using practical
examples. Extensibility and scalability of the framework is achieved by using capabilities,
which makes it possible to add new functional components and facilitates tailoring of sym-
biotic simulation systems for a specific application.

A reference implementation of the framework has been developed using Jadex as the
agent toolkit. The reference framework has been used to realize an SSCS application in
the context of semiconductor manufacturing to control a WBTS. Most of the different
capabilities discussed in Section 12.5.5 have been implemented and used for this application.
The only exceptions are the sensor fusion and control capabilities (SF-C and SC-C) and the
model management capability (MODM-C) which is not required in the context of an SSCS.

Symbiotic simulation can be used in a large variety of applications. We envision a standard
for symbiotic simulation that provides recommended implementations and methods which
can easily be used by other researchers and developers for developing their own symbiotic
simulation systems. By providing a framework for these different classes of systems, we
believe we have made a first step toward a standard on symbiotic simulation.

12.8 Future Work

An architecture for a generic framework has been introduced in this chapter. The framework
provides a number of functional components which are frequently used in a symbiotic sim-
ulation system. In future work, we will investigate generic solutions and algorithms for the
various functional components of the framework. In this context, efficient scenario creation
is an important research issue as it is not feasible to explore all possible scenarios unless the
application is trivial. Therefore, solutions are needed which are efficient and generic enough
to be used in the framework. In addition, we will investigate how our framework can be
used with commercial off-the-shelf simulation packages. Many applications use already ex-
isting simulation packages which cannot easily be replaced. An important issue is therefore
the definition of an interface which is required in order to use a simulation package in a
symbiotic simulation system. This should make it easier for developers to plan strategies on
how to integrate existing simulation packages into a symbiotic simulation system.
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P. Busetta, N. Howden, R. Rönnquist, and A. Hodgson. Structuring BDI agents in
functional clusters. In Proceedings of the 6th International Workshop on Agent
Theories Architectures and Languages, pages 277–289, 1999.

J. Cortial, C. Farhat, L. Guibas, and M. Rajashekhar. Compressed sensing and time-
parallel reduced-order modeling for structural health monitoring using a DDDAS.
In Proceedings of the International Conference on Computational Science, pages
1171–1179, 2007.

W. Davis. On-line simulation: Need and evolving research requirements. In J. Banks,
editor, Handbook of Simulation, pages 465–516. Wiley-Interscience, New York,
1998.

A. Douglas. Symbiotic Interactions. Oxford University Press, Oxford, 1994.
C. Douglas, J. Beezley, J. Coen, D. Li, W. Li, A. Mandel, J. Mandel, G. Qin, and

A. Vodacek. Demonstrating the validity of a wildfire DDDAS. In Proceedings of
the International Conference on Computational Science, pages 522–529, 2006.

R. Fujimoto. Parallel and Distributed Simulation Systems. Wiley Series on Parallel
and Distributed Computing. John Wiley & Sons, Inc., New York, NY, USA, 2000.

R. Fujimoto, D. Lunceford, E. Page, and A. U. (editors). Grand challenges for modeling
and simulation: Dagstuhl report. Technical Report 350, Schloss Dagstuhl. Seminar
No 02351, August 2002.

R. Fujimoto, R. Guensler, M. Hunter, H. Kim, J. Lee, J. Leonard, M. Palekar, K. Schwan,
and B. Seshasayee. Dynamic data driven application simulation of surface trans-
portation systems. In Proceedings of the International Conference on Compu-
tational Science, pages 425–432, 2006.

B. Gan, P. Lendermann, K. Quek, B. van der Heijden, C. Chin, and C. Koh. Simulation
analysis on the impact of furnace batch size increase in a deposition loop. In
Proceedings of the Winter Simulation Conference, pages 1821–1828, 2006.

K. Gottschalk, S. Graham, H. Kreger, and J. Snell. Introduction to web services archi-
tecture. In IBM Systems Journal, volume 41, pages 170–177, 2002.

S. Huang, W. Cai, S. Turner, W. Hsu, S. Zhou, M. Low, R. Fujimoto, and R. Ayani.
A generic symbiotic simulation framework. In Proceedings of the 20th Workshop
on Principles of Advanced and Distributed Simulation, pages 131–131, 2006.

F. Kamrani. Using on-line simulation in UAV path planning. Licentiate Thesis in
Electronics and Computer Systems, KTH, Stockholm, Sweden, 2007.

F. Kamrani and R. Ayani. Using on-line simulation for adaptive path planning of
UAVs. In Proceedings of the 11th IEEE International Symposium on Distributed
Simulation and Real-time Applications, pages 167–174, Chania, Greece, October
2007.

C. Kennedy and G. Theodoropoulos. Intelligent management of data driven simulations
to support model building in the social sciences. In Proceedings of the Interna-
tional Conference on Computational Science, pages 562–569, 2006.

C. Kennedy, G. Theodoropoulos, E. Ferrari, P. Lee, and C. Skelcher. Towards an auto-
mated approach to dynamic interpretation of simulations. In Proceedings of the
First Asia International Conference on Modelling & Simulation, 2007a.

C. Kennedy, G. Theodoropoulos, V. Sorge, E. Ferrari, P. Lee, and C. Skelcher. AIMSS:
An architecture for data driven simulations in the social sciences. In Proceedings
of the International Conference on Computational Science, pages 1098–1105,
2007b.

D. Knight, Q. Ma, T. Rossman, and Y. Jaluria. Evaluation of fluid-thermal systems by

© 2009 by Taylor and Francis Group, LLC



386 Multi-Agent Systems: Simulation and Applications

dynamic data driven application systems - part ii. In Proceedings of the Interna-
tional Conference on Computational Science, pages 1189–1196, 2007.

M. Low, K. Lye, P. Lendermann, S. Turner, R. Chim, and S. Leo. An agent-based ap-
proach for managing symbiotic simulation of semiconductor assembly and test oper-
ation. In Proceedings of the 4th International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 85–92, New York, NY, USA, 2005. ACM
Press. ISBN 1-59593-093-0. doi: http://doi.acm.org/10.1145/1082473.1082809.

M. Low, S. Turner, D. Ling, H. Peng, L. Chai, P. Lendermann, and S. Buckley. Symbi-
otic simulation for business process re-engineering in high-tech manufacturing and
service networks. In Proceedings of the Winter Simulation Conference, 2007.

M. Lozano, F. Kamrani, and F. Moradi. Symbiotic simulation (S2) based decision
support. Methodology report FOI-R-1935-SE, FOI - Swedish Defence Research
Agency, February 2006.
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13.1 Introduction

The multi-agent systems approach has become recognized as a useful approach for modeling
and simulating biological complex systems. In this chapter we provide an example of such
an approach, which concerns the modeling and simulation of the Hematopoietic Stem Cell
(HSC) system in adults. We are specifically interested in how local cell interactions give rise
to well understood properties of systems of stem cells, such as the ability to maintain their
own population and to maintain a population of fully differentiated functional cells. There
is a need to establish key cell mechanisms that can produce self-regulating behavior of HSC
systems using different theoretical techniques. It is our belief that modeling the behavior of
HSCs in the adult human body as an agent-based system is the most appropriate way of
understanding these mechanisms and the consequent process of self-organization.
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In recent years there has been a growing debate about how stem cells behave in the
human body; whether the fate of stem cells is pre-determined or stochastic, and whether
the fate of cells relies on their internal state, or on extra-cellular micro-environmental fac-
tors. However, current experimental limitations mean that stem cells cannot be tracked in
the adult human body. There is no way of “observing” micro-level behavior. Models and
simulations have a crucial role therefore in explaining the relationship of micro-behavior
to macro-behavior and it now seems that the importance of computational modeling and
simulation for understanding stem cells is beginning to be realized in many wet-labs. There
have been several attempts to build formal models of these theories, so that predictions can
be made about how and why stem cells behave, both individually or collectively. In this
chapter we propose an agent based model which describes at the same time the intracellular
behavior of the cell (i.e., intra-cellular networks) and the cellular level where all the systemic
interactions are developed. This enables us to build a multi-level model.

13.1.1 Overview

In Section 13.2 we provide an overview of the background biology for this investigation. We
then discuss the current experimental limitations and how these motivate the significance for
using formal, computational models. We then describe the main approaches of formalizing
conceptual models of stem cells, which can be classified as single cell vs population models,
stochastic vs deterministic models. By discussing these limitations we are able to clearly
promote the advantages of the agent approach. Not only in understanding how cell-cell
interactions give rise to overall system behavior but also because they provide an appropriate
level of abstraction for collaborating with biologists.

Then we describe out agent modeling framework and how we have used it to take exist-
ing formal modeling approaches and “agentify” them to address certain weaknesses in the
model. Finally, we will provide details of the simulation and discuss our results to date and
plans for future work.

This chapter is intended for an interdisciplinary audience and so we include introductory
material about the background biology as well as about why the agent approach is most
suitable in this domain.

13.2 The Biological Domain – HSC Biology

Due to the natural life-cycle of cells, a tissue has to be self-renewing: in order to guarantee a
continuous replacement of cells that die, naturally or after injury, a cellular population must
contain cells that are able to proliferate, generating a mixture of progeny. The population of
daughter cells then includes cells that remain undifferentiated, i.e., self-renew the identity
of their parent, and cells that differentiate, i.e., change their properties. Cells with the
potential for both self-renewal and differentiation are called stem cells.

Even though no commonly agreed phenotypic or molecular definition of a stem cell exists,
there is a general consent on their functional capabilities. A stem cell is an undifferentiated
cell that is able to (i) proliferate, (ii) self-renew, i.e., able to go through numerous cycles
of cell division while maintaining the undifferentiated state, (iii) differentiate, i.e., able to
produce a progeny of distinct cell types, (iv) recover the tissue after injury or disease.
Those capabilities and their importance for a functional definition of tissue stem cells has
extensively been discussed by [Potten and Loeffler, 1990] and [Loeffler and Roeder, 2002].

It is still not clear whether stem cell types for different tissues are strictly committed
to these tissues or whether the can flexibly adopt features of other tissues under certain
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circumstances. However, there is increasing experimental evidence for the flexibility and
the reversibility of stem cell function and phenotype [Blau and Blakely, 1999; Quesenberry
et al., 2001].

Furthermore, it is evident (see citation given above) that the emergent behavior of the
stem cell system depends on multiple factors, such as their own actual cellular state, their
interaction with other cells or environmental cues.

13.2.1 The Hematopoietic System

Hematopoietis is the entire process of production and maintenance of all types of blood cells
which exhibit very different functions, such as transport of oxygen, production of antibodies
to fight infection and blood clotting. The life-span of blood cells, however, is limited so that
they must be continuously produced throughout the life of the animal. The hematopoietic
stem cells (HSCs), which can be found mostly in the bone marrow, are responsible for the
constant replacement of blood cells lost to normal turnover processes as well as to illness or
trauma.

HSCs are able to generate every lineage found in the hematopoietic system through a
successive series of intermediate progenitors. An exhaustive representation of the HSCs
lineage tree is published in the Kyoto Encyclopedia of Genes and Genomes, see [Kanehisa
and Goto, 2000]. Although the process of lineage specification is continuous, it is possible
to identify some main phases, the first of which includes common lymphoid progenitors
(CLPs), which can generate only B, T, NK cells, and common myeloid progenitors (CMPs)
which can generate only red cells, platelets, granulocytes, and monocytes. In the following
phases there are more mature progenitors that are further restricted in the number and type
of lineages that they can generate. The last phase is the terminally differentiated cell that
cannot divide and that undergoes apoptosis, i.e., programmed cell death, after a period of
time ranging from hours to years.

In this way, during homoeostasis, a proportion of stem cells is expected to balance the
fundamental processes of self-renewal, differentiation, apoptosis and quiescence to maintain
(i) a constant flow of short-lived progenitors that can generate enough cells to replace those
that are constantly lost during normal turnover and (ii) a constant number of primitive cells
to sustain hematopoiesis. Under homoeostatic conditions this results in a number of tissue
stem cells, as well as blood cells, that fluctate around a relatively constant average value.
During times of physiologic stress, the entire hematopoietic system is then able to provide
the mature cells required to fight infections or to replenish cells lost during a hemorrhage.
When the stress is resolved the number of cells returns again to normal levels.

A variety of homoeostatic mechanisms allow blood cell production to maintain homeosta-
sis or to respond quickly to stress such as bleeding or infection; the next section provides a
brief account of some of these mechanisms.

13.2.2 The Hematopoiesis Control Mechanisms

The process of hematopoiesis involves a complex interplay between the intrinsic genetic
processes of HSCs, progenitors and mature blood cells, that can be either deterministic or
stochastic, and their microenvironment dynamics, responsible for cell to cell interactions.
As a consequence of these internal and external processes, these cells remain quiescent,
differentiate, self-renew, or undergo apoptosis.

Cell intrinsic regulatory processes are cell autonomous and are determined by the cell’s
developmental state, which translates into specific levels of genes and protein expression.
With these processes we refer to intracellular pathways and gene regulatory networks. De-
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pending on the number of molecules involved they appear to be deterministic or stochastic.
The intracellular events are in fact determined by the interactions between molecules: as the
number of reacting molecules increases the probability of their interaction increases until a
threshold over which the process can be considered deterministic.

The role of the microenvironmental dynamics is also crucial. The specific microenviron-
ment of stem cells has been historically called “stem-cell niche” [Schofield, 1978]. A niche
is composed of a dynamically changing chemical environment, containing a range of dif-
ferent molecules. Cells maintain this environment by secreting and absorbing molecules, in
order to send and receive signals. The information passed in these signals influences the au-
tonomous behavior of the cells, e.g., growth factors stimulate cells to divide and differentiate
to produce more terminally differentiated cells.

All of the genetic and environmental mechanisms that govern blood cells production op-
erate by affecting the intracellular level dynamics, resulting in different cell actions and
behaviors. Under normal conditions, the majority of HSCs and many progenitors are qui-
escent. In the event of a physiologic stress quiescent progenitors and HSCs are stimulated
by a variety of growth factors to proliferate and differentiate into mature white cells, red
cells, and platelets. When the bleeding or infection ceases and the demand for blood cells
returns to normal, the antiapoptotic and proliferative stimuli decreases and the kinetics of
hematopoiesis return to baseline levels [Wichmann and Loeffler, 1985; Smith, 2003; Attar
and Scadden, 2004; Wilson and Trumpp, 2006].

13.3 Stem Cell Modeling

To understand the behavior of hematopoietic systems, it is not enough to study the single
cell behavior, but we need a complete view of the system, with the overall mechanisms that
govern the internal dynamics of the cells and their communications through the microenvi-
ronment.

13.3.1 Experimental Limitations

We believe that recent experimental evidence makes it clear that it is increasingly necessary
to use formal, computational models to investigate the nature of stem cell systems rather
than stem cells in isolation. This is for several key reasons. First, adult stem cells cannot be
easily isolated, indeed it may be that it is only by looking at their behavior in a system, not
isolated, can we tell what kind of cell we were originally looking at. Second, any attempt
to determine the properties of stem cells requires a functional test, which itself feeds back
on the cells and changes their properties [Potten and Loeffler, 1990; Loeffler and Roeder,
2002]. Third, even if we were able to track the behavior of a cell in the body, it would only
tell us about one of the possible behaviors of the original cell; it tells us nothing about
the potentially considerably larger array of behaviors that may have been possible if the
environment and the chance elements had been different. Fourth, by removing a cell from its
original and natural habitat the new environmental conditions will influence future behavior
and lead to misleading results [Theise, 2005]. Fifth, it is the totality of the stem cells as a
system in the human body that is important. A key quality of the system is its ability to
maintain exactly the right production of cells in all manner of different situations.

In response, therefore, we have developed a formal model that reflects many of the key
experimental and recent theoretical developments in stem cell research. Using techniques
from multi-agent systems, we are currently building a complex adaptive system to simulate
stem cell systems in order to provide a testbed from which to be able to investigate key
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properties of them in general and to formulate new experiments to identify the underlying
physiological mechanisms of tissue maintenance and repair.

We next outline some of the techniques that have been employed up till now.

13.3.2 What a Model Can Be Useful For

The mathematical modeling, conceptualization and simulation of stem cell behavior is be-
ginning to receive a substantial amount of interest from an increasing number of researchers.
As has been pointed out by others, predictive models of stem cell systems could provide
important new understandings of the self-regulating mechanisms that result in the global
properties of stem cells.

There has been a growing debate about how stem cells behave in the human body;
whether the fate of stem cells is pre-determined [Nicola and Johnson, 1982] or stochastic
[Ogawa, 1999; Thornley et al., 2003], and whether the fate of cells relies on their internal
state [Novak and Stewart, 1991], or on extra-cellular micro-environmental factors [Trentin,
1970]. There have been several attempts to build formal models of these theories, so that
predictions can be made about how and why stem cells behave as they do, either individually
or collectively. Reviews of these formal approaches can be found in recent publications
[Sowmya and Zandstra, 2003; Loeffler and Roeder, 2004; Roeder, 2006] and we do not
propose to review these models in this chapter.

It is worth noting, however, that the first model we know of was published in 1964 ([Till
et al., 1964]) and that there has been surprisingly little work in this field until the last couple
of years. There has been a noticeable climate change in this respect, and there is now a
growing awareness of the need to use mathematical modeling and computer simulation to
understand the processes and behaviors of stem cells in the body.

We summarize what we see are the key reasons for the systematic development of models
and simulations to consider hypotheses about the nature and behavior of stem cells.

1. The size and complexity of stem cell systems mean that without simulation, it
is practically impossible to consider the whole system. Simulations provide an
important tool for understanding the global behavior of complex systems.

2. Clearly any model, and resulting simulation, of stem cells will necessarily incur
massive simplifications and abstractions about the machinations of the human
body. It is our belief, however, that theoretical simplifications are often key to
understanding fundamental properties of natural systems.

3. It is the potential of cells to behave in lots of different ways which makes them
more or less stem like. It may be that stem cell is a notion rather than a concrete
entity and refers to the wide-ranging set of potential behaviors that a cell might
have that are influenced by internal, environmental, and stochastic processes.
Simulations provide a way of determining which behaviors are essential to stem
cells and which are incidental in systems that have been studied in the laboratory.

4. When you consider experimental evidence you have seen only one behavior. This
behavior may have been one of many, and it is the potential for cells to behave
in certain ways that might be key to defining them. Modeling and simulation
is a much more effective device for understanding “behavioral potential” than
looking at completed chains of events in the lab.

5. Simulation is cheap.
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13.4 Drawbacks of Existing Models and Why Agents

As we have pointed out in the previous sections, we believe that studying the behavior of
hematopoietic system needs the comprehension of both intracellular processes and interact-
ing events among cells that are mediated by the cells dynamic microenvironment. In order
to understand the evolution of the cellular population, we should look at the system at least,
at two levels: the intracellular level and the extracellular one. We therefore require a multi-
level model, which is the one that best fits with the biological problem we are proposing
[Uhrmacher et al., 2005].

Most of the existing approaches to modeling and simulating biological systems can capture
details at only one level. The most common approach concerns differential equations, in
different forms: ordinary, partially or stochastic differential equations (ODE, PDE, SDE).
A huge amount of literature, especially in the systems biology discipline, describes ODE
models of metabolic pathways, signalling pathways and gene regulatory networks [Conrad
and Tyson, 2006]. The results obtained at this level with this approach gave good insights on
biological systems behavior. When the system shows non-deterministic dynamics, then the
introduction of stochastic approaches such as chemical master equations (CME), stochastic
simulation algorithms (SSA), tau leaping, chemical Langevin equations and so on [Gillespie,
2008] allow the study of stochastic events. Alternatively a lot of other different approaches
have been applied: random boolean networks [Kauffman, 1993], Bayesian networks and more
recently, computational models such as different process algebras (an interesting example
is the work that has been done with stochastic pi -calculus [Regev et al., 2001] and its
extensions [Dematte et al., 2008]), or petri-nets [Talcott, 2008; Heiner et al., 2008]. An
excellent review is given by [De Jong, 2002].

All of these approaches have their peculiarities, advantages and drawbacks, which make
them useful under certain circumstances, and for specific biological systems. But they share
a property: they hardly can be used for a multi-level model.

In this context we can motivate the agent approach by noting the following,

1. An agent-based approach provides more flexibility than other more limited ap-
proaches and so delivers greater potential for modeling more sophisticated, glob-
ally emergent, behavior both on the individual cell and on the cell population
level.

2. We can explicitly represent an environment.
3. An agent-based approach provides more biological plausibility than existing ap-

proaches such as cellular automata and other mathematical approaches. One of
the main reasons that biological plausibility is important is to attract biologists
to use and work with any models and simulations that are created.

4. We can build multi-layer models that capture micro- and macro-level features of
the biological system.

5. Stem cells are a prime example of a self-organizing system where individual cells
react to their local physical, chemical and biological environment. The system
should therefore be most suitably modeled as a system of interacting reactive
agents, where the reaction at the micro level gives rise to the emergent behavior
at the system level.

6. Even though we are simulating cells and environment, the Brooksian idea of an
agent being something which is both situated and embodied [Brooks, 1991] is
a fundamental driving force of our use of agents as the appropriate modeling
paradigm. Cells modeled as agents have a physical, chemical and biological pres-
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ence and are situated in a physical, chemical and biological environment in which
they react. The way in which they react will then influence the way other cells
react in the future and so on.

7. Agent-based models and simulation provide us with an easy facility to perform
“what if” experiments. By changing the behavior of individual cells or environ-
mental conditions we can perform experiments to see how system behaviors might
be affected.

8. Agent systems lend themselves to elegant visualizations which have meaning to
and impact on, the stem cell biologist.

In addition, by situating our simulation work in a wider formal framework, the SMART
agent modeling framework, based on years of previous investigation [d’Inverno and Luck,
2004; d’Inverno et al., 2004] we can compare and evaluate different models. We believe
that this is necessary for this new field to develop in a systematic manner. Moreover, the
formal framework allows us to “agentify” existing models, making it very clear what the
relationship between the existing version and the agent version is. We shall see this later in
the chapter. Finally, by building a formal model of stem cell behavior in an agent framework
and using a specification language from software engineering, there are techniques to ensure
that the simulation correctly implements the model.

The application of multi-agent based simulation for the analysis of biological systems is
quite recent, but already some work has been done in this area, for example, [Merelli et al.,
2007; Montagna et al., 2007, 2008].

13.5 Overview of Our Agent Modeling Framework

We begin the overview of our stem cell agent modeling framework by first describing and
explaining the purpose of the the main components of the framework: cell agents, the
environment and the simulation engine. Next we describe the interfaces between the various
components and finally we describe the behavior of the components.

A diagrammatic overview of the framework is given in Figure 13.1. The role of each of
these framework components is as follows:

Cell Agents: these are used to model the individual cells of the system being modeled.
Environment: represents the biological, chemical and physical environment that the

cells exist in.
Simulation Engine: the purpose of this is to “drive” a simulation of a stem cell

system. It does this by updating the environment in response to requests and
signals from the individual cell agents.

An important point to note is that the introduction of an environment that includes
chemical and topological information allows us to reduce the need to rely on stochastic
processes, i.e., probability functions. Moreover, it allows us to actually model the physical
movement of cells which clearly provides us with a more sophisticated and detailed model
of self-organization in stem cell systems. We will see examples of the advantage of modeling
physical aspects in agent-based models later in this chapter as we agentify existing formal
models.
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FIGURE 13.1 The Agent Framework for Stem Cell modeling. Where the ri are regions and ci are cell
agents.

13.5.1 Framework Components

In this section we describe the state information that is contained in each of the three
framework components: cell agents, the environment and the simulation engine.

These components can be viewed as forming subsystems: the Agent World State that
comprises the cell agents and the environment; and the Stochastic World State which adds
the stochastic processes to Agent World State.

The Agent World State is defined as a combination of the cell agents, the environment
and the locations of the cell agents in the environment:

• The agent world state is composed of two components the cell agents and the
environment.
• A cell is modeled as an agent and consequently a cell agent’s state consists of

biological and operational information.
• In addition, a cell agent has a number of physical properties, for example, loca-

tion, orientation and possibly velocity and momentum as a result of being in the
environment.
• The environment is composed of the following sub-components chemical and

physical laws and a topology of regions.
• The individual regions of a topology have attributes that can be perceived by the

cell agents.
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The request mechanism, described later in this chapter, allows the modeling of cells to
focus on the logic of their operation and leaves questions of physical simulation, e.g., collision
detection, to the simulation engine.

Cell Agent
A cell agent is used to model a biological cell, but it is also necessary that it include

sufficient attributes to be able to function as an autonomous agent. So in our framework a
cell agent’s state is composed of four main components:

• The internal state of the cell that represents its biological state.
• The cell agent’s percepts, that is the information that a cell can perceive from

its environment.
• The cell agent’s plan, these are the actions that the cell has decided to attempt.
• A cell may also have a globally defined stochastic component that needs to be

added purely for modeling purposes.

The second and third components are concerned with the operational aspects of a cell
agent, that is the perceive, plan and act agent behavioral cycle. At this level of model
description the precise nature of the plans developed by the agents is left open. Planning
may be implemented using approaches like those typically used in Belief-Desire-Intention
(BDI) agents or, as in the case of the work described later, using a reactive planner. The
last component is not consistent with a true agent approach because it introduces a global
level of control but is a necessary component when agentifying existing systems, e.g., the
Roeder/Loeffler model [Roeder and Loeffler, 2002].

Environment
We define the notion of an environment using the general notion of a topology, which

is defined as a set of adjacent regions. Cells are located within a region, and each region may
contain from zero up to a predetermined maximum number of cells. Further each region
has associated with it chemical concentrations, physical forces and so on. So for example,
in a particular model a region may contain at most one cell, thus it may be either empty
or contain a stem, progenitor, determined or stromal cell.

So the environment is composed of the following components:

• A topology, defined in terms of a set of regions and an adjacency relationship
between them. These properties are fixed for a particular model.
• An individual region’s static attributes, e.g., how many cells it can contain. These

properties are fixed for a region in a particular model.
• An individual region’s dynamic attributes, e.g., chemical concentrations and the

cells it contains. These properties can vary for a region in a particular model.
• A mapping which represents the location of the cells within the environment, i.e.,

the region it is currently in.
• Chemical and physical laws, e.g., chemical diffusion rates. These properties are

fixed across all models.

Simulation Engine
The simulation engine is able to see the state of all components in the system being

modeled, in particular the cell agents and the environment, thus it is able to extract any
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system state information it requires from these components. In addition, the simulation
engine also has the following internal state information:

• The signals and requests it has received from the cell agents.
• The state of any stochastic processes that it is using to provide stochastic inputs

to the cell agents.

The simulation engine used in the following implementations works in a discrete step-wise
manner, but the high level of description used at the modeling phase permits for other types
of simulation engines, including discrete event simulations with asynchronous execution. For
more information on different types of simulation engines see the chapter by Theodoropoulos
et al. in this book [Theodoropoulos et al., 2008].

13.5.2 Interfaces between the Framework Components

We now describe the interfaces between the cell agents, environment and simulation engine.

Cell Agent and Environment
Each cell agent perceives information from its environment, that is it inputs the “state”

of its current environment. Its current environment is defined as its current location which
will consist of at least its current region and possibly the adjacent regions. This information
is input in the form of percepts. In general these will be chemical, physical and biological
information. For example, a cell agent can perceive its current location (region) as well as
the chemical concentration in that location.

Cell Agent and Simulation Engine
The cell agents issue requests to the simulation engine to perform a “global” event

and send signals to notify the “environment” that it has performed a unilateral action, for
example secrete chemicals.

Examples of cell agent requests would be:

• to move to another location; or
• a parent cell to divide and be replaced by two daughter cells; or
• a cell to die and be removed from the environment.

In practice this is achieved by a cell agent sending its request to the simulation engine,
which then appends the request to its list of pending requests. Some of a cell agent’s planned
(internal) actions do not require the simulation engine to do anything, and hence no request
is generated.

Depending on the model under consideration a cell agent would be required to input
stochastically generated information from the simulation engine.

Simulation Engine and Environment
The simulation engine simply retrieves state information from the environment and

updates the state of the environment as a result of processing the cell agents’ requests and
signals. The simulation of physical processes, such as chemical diffusion, are handled by
the simulation engine, rather than being embedded in the environment, allowing freedom
of implementation.
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13.5.3 Behavior of the Framework Components

In this section we discuss the behavior of the cell agents and the simulation engine. The en-
vironment is a passive repository of information and hence does not have an active behavior
as such.

Cell Agent Behavior

In agent-based computing the operation of an agent is given by the perceive, plan
and act cycle. In particular, what an agent perceives depends on its internal state and
that of the local environment; what it plans to do depends on its perceptions and internal
state; and what action it actually does depends on what it plans to do and the state of the
environment.

The above general agent behavior cycle is refined for a cell agent as follows:

• The perceive action is a passive engagement with the environment, that simply
involves inputting percepts. In general we aim to model chemical, physical and
biological perceptual abilities. For example, a cell agent can perceive the chemical
concentration in its current location (region).
• A plan to perform one of its possible actions is formulated after the cell agent

has perceived its environment, and then which action it decides to add to its
plan is determined by these percepts and its internal state. The types of actions
that a cell agent can choose to do are remain in its current location, move to a
new location, divide, secrete chemicals or ultimately die. In the framework a cell
agent’s plan consists of several types (see below) of actions: internal actions and
their corresponding requests and signals to the simulation engine. The requests
and signals are determined by the planned internal action.
• The agent acts by performing the first action in its plan, the remaining plan is

then just what is left after this action has been removed. The generalized cell
agent’s action behavior can further be divided into the following sub-actions of
send requests, send signals and do action. Where these represent the cell agent
sending a request and signal respectively to the simulation engine, and the per-
formance of the cell’s planned internal action respectively.

Note that in some types of system the cell agent’s behavior cycle would include the
inputting of stochastically generated information calculated globally by the simulation en-
gine, in a true agent model this would not be necessary. This is not part of the cell agent’s
perceptions but part of the stochastic modeling technique for certain models. When the
cell agent’s behavior cycle is implemented we assume that it would be atomic, in the sense
that after an agent has perceived its environment the information that it has perceived, i.e.,
percepts, remain true throughout the remainder of its behavior cycle.

In our framework we have identified three types of “actions” that can form a cell agent’s
plan:

Internal actions: these are actions that a cell agent can perform independently of
its environment, these actions only effect its internal state and do not require
the participation of its environment.

Signals: these represent a cell agent signaling to its environment. These signals do
not require the environment’s participation in the sense of a joint action, but
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only that the environment records the effect of the signal having occurred∗.
For example, when a cell decides to secrete a chemical, this would be modeled
by a signal.

External requests: these are requests that a cell agent makes to its environment.
They are associated with the cell’s (internal) actions and are used when a cell’s
chosen action requires the participation of the environment for the complete
effect of the action to occur. If the environment is unwilling or unable to col-
laborate with the action, i.e., grant the request, then it can not be performed,
in these circumstances the agent would continue to wait for the request to be
granted. This allows us to model an action that effects the state of the cell and
environment, for example, cell division or death.

Simulation Engine Behavior
In the current model the main purpose of the simulation engine is to “run” the simula-

tion, it does this by processing the action requests and signals generated by the cell agents.
For example, each request is processed as appropriate by either:

• moving a cell to a new location (region); or
• deleting a dead cell from the system; or
• deleting the parent cell from the system and creating and adding two new daugh-

ter cells; or
• if the request can not be granted taking no action.

In general the simulation engine may have to deal with any conflicts that might arise due
to incompatible requests.

The simulation engine is also responsible for:

• Updating the state of the environment, for example, a regions chemical concen-
trations when a cell agent has secreted a chemical.
• It is also responsible for generating stochastic information using stochastic pro-

cesses, e.g., probability functions, when this is required by the system under
consideration.

13.5.4 Extending Our Agent Modeling Framework

We are not fixed on this model. It is important that as we incorporate different models,
perspectives and experimental findings into our approach that the model can develop. One
of the ways we validate and grow this model is to apply this agent-based modeling approach
to “agentify” other formal models. We discuss two case studies in the next section.

13.6 Agentifying Existing Approaches

To demonstrate the validity and applicability of our agent approach we consider two recent
models in more detail.

∗This is similar to Roscoe’s [Roscoe, 1997] view of the process termination event tick, in the process
algebra CSP.
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13.6.1 A Cellular Automata Approach to Modeling Stem Cells

In recent work, Agur et al. [Agur et al., 2002] built a cellular automata (CA) model to show
how the number of stem cells in the bone marrow could be maintained and how they could
produce a continuous output of determined cells. The bone marrow is considered to be a
stem cell niche where most biologists believe that the human body’s supply of hematopoietic
stem cells are situated and maintained.

This work is important because it is one of the few examples where a mathematical model
has been used to investigate properties of stem cells that might be required to enable the
maintenance of the system’s homeostasis. The model demonstrates a possible mechanism
that allows a niche to maintain a reasonably fixed number of stem cells, produce supply
of mature (determined) cells, and to be capable of returning to this state even after very
large perturbations that might occur through injury or disease. The behavior of a cell is
determined (equally differentiated) by both internal (intrinsic) factors, e.g., a local counter,
and external (extrinsic) factors, e.g., the prevalence of stem cells nearby, as stated by the
authors as follows.

1. Cell behavior is determined by the number of its stem cell neighbors. This as-
sumption is aimed at simply describing the fact that cytokines, secreted by cells
into the micro-environment are capable of activating quiescent stem cells into
proliferation and determination.

2. Each cell has internal counters that determine stem cell proliferation and stem
cell transition into determination as well as the transit time of a differentiated
cell before migrating to the peripheral blood.

In order to demonstrate this model we will provide a small part of an existing specification
of this system. The specification is written in the Z specification language [Spivey, 1992].
The full specification can be found elsewhere [d’Inverno and Saunders, 2006] but we provide
a taste since the formal background to our agent-based approach is a key part of this work.
In the cellular automata model, the stem cell niche is modeled as a connected, locally finite,
undirected graph.

graph : Node ↔ Node
neighbors : Node → (P Node)

Any Node is either empty, or it is occupied by either a stem cell or a determined cell.

TypeAg ::= EmptyAg | StemAg | DeterminedAg

The state of any node is given by the node location, the state, and an internal clock.

NodeStateAg
node : Node
type : TypeAg
counter : N

The set of all such nodes is then given below, and defines the system state. We also define
a function that returns the neighboring node states for any given node state.

SystemStateAg
nodes : P NodeStateAg
neighborsAg : NodeStateAg → (P NodeStateAg)
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There are three constant values, we will call them LeaveNicheAg , CyclingPhaseAg , and
NeighborEmptyAg in our specification, that are used to reflect experimental observation.
LeaveNicheAg represents the time taken for a determined cell to leave the niche. Cycling-
PhaseAg represents the cycling phase of a stem cell; a certain number of ticks of the counter
are needed before the cell is ready to consider dividing. Finally, NeighborEmptyAg represents
the amount of time it takes for an empty space that is continuously neighbored by a stem
cell, to be populated by a descendent from the neighboring stem cell.

LeaveNicheAg ,CyclingPhaseAg ,NeighborEmptyAg : N

We now specify how the system changes over time. Whenever there is a change of state in
the system, we identify the node that we are considering as node. All locations are updated
simultaneously.

The rules of this model, which determine what happens at a node based on internal and
external factors are described and specified below.

1. Determined cell nodes

(a) If the internal counter of a node representing a determined cell has reached
LeaveNicheAg then the cell leaves the niche; the internal counter of the node
is reset to 0, and the new state at the node becomes empty.
In the schema below, the variable node represents the node determining
its next state, and the variable newnode is that new state. We show one
operation only, the rest are very similar.

DeterminedLeaveNicheAg
ΔSystemStateAg

node.type = DeterminedAg
node.counter = LeaveNicheAg
newnode.type = EmptyAg
newnode.counter = 0

(b) If the internal counter has not yet reached LeaveNicheAg then the internal
counter is incremented.

2. Stem cells nodes

(a) If the internal counter of a node representing a stem cell has reached the
constant CyclingPhaseAg , and all of the nodes neighbors are stem cells, then
the state of the node becomes a determined cell and the internal counter is
reset to 0.

(b) If the internal counter of a node representing a stem cell is equal to Cycling-
PhaseAg but not all the node’s neighbors are stem cells then do nothing;
leave the internal counter unchanged.

3. Empty nodes

(a) If the internal counter at an empty node has reached NeighborEmptyAg and
there is a stem cell neighbor then introduce, i.e., give birth to, a stem cell
in that location. The internal counter of the node is reset to 0.

(b) If the counter at an empty grid has not reached NeighborEmptyAg and there
is exists a stem cell neighbor then increment the counter by 1.
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(c) If there are no stem cell neighbors at all then reset the internal counter to
0.

A simulation of this model, together with its source code, can be found at:

http://doc.gold.ac.uk/~mas02md/cell/simulations/agur/index.html

13.6.2 Discussion about the Cellular Automata Approach

The specification of the cellular automata model reveals the following issues:

1. Empty niche spaces must do computational work, i.e., to maintain counters
2. Stem cell division is not explicitly represented, stem cells are brought into being

by empty space
3. Individual stem cells are not explicitly tracked before they give rise to new stem

cells
4. The state of the stem cell after division is not defined

The specification clearly reveals that niche spaces, i.e., empty nodes, must have counters
for this model to work. In a sense, empty space is having to do some computational work.
Clearly this lacks biological feasibility and is against what the authors state about modeling
cells, rather than empty locations, having counters.

Stem cell division is not explicitly represented, instead stem cells are brought into being by
empty space. More subtly, these stem cells appear when empty nodes have been surrounded
by at least one stem cell for a period of time. The location of the neighboring stem cell,
however, can vary at each step.

The model details the fact that if a stem cell is next to an empty space long enough then
it will divide so that it’s descendent occupies this space, however, the rule does not state
that the neighboring stem cell must be the same stem cell for every tick of the counter.
It states something much weaker; that there must be a neighboring cell, possibly different
each time, for each tick of the counter, from 1 to NeighborEmptyAg . Biologically, it would
seem more intuitive that the same stem cell should be next to an empty niche space for
this length of time in order for “division” to occur into the space but the model lacks a
“directional component”.

The state of a stem cell after division is not defined. Let us for a moment assume that
the neighboring stem cell (S) is fixed for all counts from 1 to NeighborEmptyAg from some
specific location (N). Nothing is said about what happens to S after a new stem cell appears
in N. For example, should the counter of S be reset after division? Neither does it give any
preconditions on S. For example, does S’s local counter need to have reached an appropriate
point in its cycling phase for this to happen?

So the basic problem is that this model relies on allowing both unfilled niche locations
as well as stem and determined cells to have counters. Moreover, it does not investigate or
model the nature of a stem cell before and after division. We now attempt to re-interpret
these rules using an agent-based approach that still retains the overall qualities of the model.

13.6.3 Re-formulation Using an Agent-Based Approach

One of the biggest differences between the original cellular automata model and our re-
formulation is the change in the role of graph nodes. In the cellular automata model each
node represents either a cell or an empty space. In our re-formulation, each node represents
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FIGURE 13.2 A comparison of the original Agur cellular automata model and our reformulation as
a grid-based agent model. In the original model the nodes maintain the state of the cells, whereas in our
re-formulation the nodes contain agents and it is the agents that maintain the state of the cells.

a space that may or may not contain an agent that represents a cell. This difference in the
two models is illustrated in Figure 13.2.

With the agent approach we also provide each cell with a unique identifier. We model
all cells as having one internal counter as before. In addition, each cell maintains a counter
associated with each of its neighboring nodes. The counters associated with neighboring
nodes record how long the neighboring location has been empty. Moreover, cells can sense
the type of cell at each of its neighbors, although this perception ability is only used by
stem cells. If an agent represents a stem cell then it can potentially divide into any location
where the counter has reached NeighborEmptyAg .

A cell agent is specified formally as:

[AgentId ]

AgentCellAg
id : AgentId
type : TypeAg
counter : N
nscounter : Node �→ N
nstype : Node �→ TypeAg

type = StemAg ∨ type = DeterminedAg
dom nscounter = dom nstype
∀n : Node | nstype n �= EmptyAg • nscounter n = 0

A stem cell agent is defined as follows. Other types are defined similarly.

AgentStemCellAg
AgentCellAg

type = StemAg

The system state consists of the niche where some nodes are filled with cells. The first
predicate simply states that the empty nodes are those nodes which do not contain a cell.
The second predicate states that the neighbors are defined by the graph to which the cells
are attached.
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AgentSystemStateAg
cells : Node → AgentCellAg
emptynodes : P Node

emptynodes = Node \ (dom cells)
∀n : Node; c : AgentCellAg | (n, c) ∈ cells ∧ c.type = StemAg•

dom c.nscounter = ran({n}� graph)

13.6.4 Operation

Space does not permit us giving a full treatment, but we outline the basic operations here.

1. Cells set/update counters.
2. Mature stem cells that are surrounded by empty neighbors and have neighbor

counters that have reached NeighborEmptyAg will make a request to the envi-
ronment to divide into two daughter stem cells.

3. The environment resolves any conflicts where several cells wish to divide into
the same node (region) and informs those mature stem cells that can divide and
those that are not able to.

4. Mature stem cells that are able to divide do so. Mature stem cells that are
surrounded by stem cells become new determined cells. Mature determined cells
which are ready to leave the niche do so.

Our agent-based approach to modeling forces us to consider what happens when two
stem cells attempt to divide into the same location. In our model, we specify that when
the internal counter reaches CyclingPhaseAg , it signals to the environment the niche spaces
that it is prepared to divide into.

Notice, that this approach is also agent-based in nature. Namely, the agent attempts to
do something but the environment is a dynamic and uncertain one. From the perspective
of a single cell with its limited sensory abilities the world is no longer deterministic like it
was in the cellular automata model, and not all attempts at action will be successful.

The agent-based model not only considers the nature of acting in a dynamic environment
but also addresses issues such as the basic physical limitations of the stem cell niche in
general. Once again, it’s difficult to see how such issues can be considered, at least explicitly,
with the cellular automata approach.

A stem cell agent that is ready to divide, signals to the environment those neighbors that
have been empty for long enough, and so are able to receive the new cell. Of course the
output may be empty.

The environment receives requests from cells to divide, and non-deterministically assigns
those cells that can divide and those that have insufficient space around them. There are
several safety properties that we can specify here:

1. all agents get a reply (first predicate)
2. no agent can be told to divide and not divide (second predicate)
3. no node ever has more than one agent dividing into it (third predicate)
4. cells only get to divide into a node they have requested (fourth predicate)
5. there is no remaining empty node that has been requested by any of the agents

not-granted division (fifth predicate).
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Cells that divide get told where they should divide into. We have two alternatives with
the assignment of identifiers to the daughter cells: we can either give both daughters new
identifiers or allow one of the daughter cells to keep the Id of its parent. For the purposes
of tracking the inheritance between parent and daughter cells, we prefer the first of these
alternatives and give each daughter cell a unique Id.

We have run many simulations of both the original CA model and of our agent reca-
pitulation to check that the behaviors of our agent model has the same properties of the
CA model. As we explained above, the agent model has allowed us to address the issues of
biological implausibility.

It is interesting to note that allowing cells to split into all available spaces, i.e., up to four
daughters, gives us the closest possible agent-based simulation match to the original CA
models, however, any biologically plausibility we may have introduced would be negated by
this. Going back to the original CA model we see that this four-way division is supported,
further reducing the plausibility of the model. By limiting cell division to result in a max-
imum of at most two daughter cells we still maintain the integrity of the original cellular
automata version.

All these simulations are available on the web site.

13.6.5 Roeder-Loeffler Model of Self-Organization

A recent example of an approach that uses a more sophisticated model that more successfully
addresses issues of biological implausibility, is that of Markus Loeffer and Ingo Roeder at
the University of Leipzig, who model hematopoietic stem cells using various, but limited,
parameters including representing both the growth environment within the marrow, one
particular stem cell niche, and the cycling status of the cell [Roeder and Loeffler, 2002;
Roeder et al., 2005; Roeder and Loeffler, 2004; Roeder et al., 2006]. In this model, the
ability of cells to both escape and re-enter the niche and to move between high and low
niche affinities, referred to as within-tissue plasticity, is stochastically determined.

The validity of this model is demonstrated by the fact that it produces results in global
behavior of the system that match experimental laboratory observations. The point is that
the larger patterns of system organization emerge from these few simple rules governing
variations in niche-affinity and coordinated changes in cell cycle.

In recent work it has been shown to model cases of chronic myloid leukemia [Roeder
et al., 2006]. Although the Roeder-Loeffler model is is rather sophisticated (it is formal,
there is a simulation, it addresses key issues of self-organization and much of the modeling
has an agent-like quality to it), there are a number of issues regarding this model that we
have addressed by extending it using our agent framework. Most significantly, the use of
a global probability function to control the movement of cells between environments, and
in the agent-view this is problematic; this probability is calculated from global information
relating to the numbers of various cells in the system. Although it useful to assume access
to this global information when developing the model of stem cell behavior, no mechanism
is known for how stem cells could have access to this information in real biological systems.

We will say more about this model when we discuss the implementation, but to summarize
we have extended the Roeder-Loeffler model to produce an agent-based model that increases
the biological intuition and plausibility of the model, and allows us to investigate emergence
due to the subtle changes in micro-environmental effects for each cell. Modeling cells as
agents responding autonomously to their local environment is much more fine grained than
the previous model using equations to model cell transitions and allows for a much greater
degree of sophistication in the possibilities of understanding how self-organization actually
takes place in the adult human body. The main point is that an agent does not rely on
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getting information about the system state, in keeping with the reactive multi-agent systems
approach, and we believe that this gives a more biologically plausible handle on how things
might be working at the micro-environmental level.

In general the agent models we produce suffer from none of the drawbacks of other
formal systems approaches. However, models of agents by themselves have no real practical
value as we do not have any method of determining how the individual behavior of agents
affects the overall system behavior. Formality is useful for building consistent clearly defined
models but they give us very little clue as to how the overall system of interacting agents
will actually evolve. Therefore we need to move from modeling to simulation, and this is
considered next.

13.7 From Agent Model to Simulation

To investigate the behavior of our models we have developed computational models to sim-
ulation populations of stem cells as a Multi-Agent Based Simulation (MABS). MABS is
an approach to simulation that builds on Agent-Based modeling (ABM) and Multi-Agent
Systems (MAS) to develop simulations of real-world phenomena as systems of multiple
interacting agents. Implementing MAS and MABS models is challenging∗ and several sim-
ulation frameworks have been developed to facilitate this process. In this section we will
describe our implementation of the agent-based model as a MABS using MASON [Luke
et al., 2004], a MAS/MABS development environment.

Examples of agent modeling tools that span different approaches to modeling multi-agent
systems include:

FIPA-compliant tools: The Foundation for Intelligent Physical Agents (FIPA) is
the standards organization for agents and multi-agent systems. It has estab-
lished a standard for inter-agent communication that is the core of the FIPA
agent system model. The FIPA approach to modeling agents has been widely
adopted by multi-agent system tool developers. FIPA-compliant tools include
JADE [Bellifemine et al., 1999], Aglets [Lange and Mitsuru, 1998].

StarLogo: StarLogo was developed as an educational tool by Mitchell Resnick to in-
troduce children to issues of emergence through computational modeling of turtles
and patches. Where patches model the environment and turtles represent agents
that inhabit patches. Since its introduction, StarLogo has inspired other environ-
ments for multi-agent simulations, most notably NetLogo [Wilensky, 1999].

Sugarscape: In 1996, Epstein and Axtell introduced Sugarscape, an initial attempt
to develop a “bottom up” social science [Epstein and Axtell, 1996]. Sugarscape
simulates the behavior of artificial people (agents) located on a landscape of a
generalized resource (sugar). Fundamental collective behaviors including group
formation, cultural transmission, combat, and trade are seen to “emerge” from
the interaction of individual agents following simple local rules.

Swarm: In the Swarm multi-agent simulation platform the basic unit of simulation is
the swarm, a collection of agents executing a schedule of actions. Swarm supports

∗In the early stages of this project we considered using Erlang [Armstrong et al., 1996], a language
based on Haskell, developed by Ericsson, that is well suited to modeling our agent framework but lacks a
MABS environment. Sadly, developing such a framework was outside the scope of this project, although
we are still very interested in using this powerful language in the future.
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hierarchical modeling, such that agents can be composed of swarms of other
agents. As a computational modeling approach, Swarm has inspired several other
popular simulation platforms, including Repast and MASON.

Several existing multi-agent simulation tools were considered for this part of the project,
including Swarm [Minar et al., 1996], NetLogo [Wilensky, 1999], Ascape [Inchiosa and
Parker, 2002] and Repast [Tatara et al., 2006]. We chose a relative newcomer to the simula-
tion frameworks, MASON, as we found that its carefully thought out architecture provided
the best framework for our research.

13.7.1 MASON

MASON (Multi-Agent Simulator Of Neighborhoods/Networks) is a multi-agent simulation
development environment and simulation tool [Luke et al., 2004]. MASON has been devel-
oped around a discrete-event multi-agent simulation library written in Java. This flexible
foundation allows for a range of simulation approaches, including discrete step and discrete
event simulations; so far, we have used it to develop discrete step simulations.

MASON was designed to be the foundation for large custom-purpose Java simulations.
MASON contains both the simulation library and an optional suite of visualization tools in
2D and 3D. Features of MASON that were particularly desirable for our development, that
affected our decision to use it, include:

Portability: The developers of MASON have taken great care to ensure that cross-
platform portability, going as far as implementing their own version of the
Merseinne-Twister algorithm for generating random numbers so that stochas-
tic elements of simulations will run identically across machines and platforms.

Speed and size: The MASON library has been developed to be fast and relatively
small, allowing many cells to be simulated at once using standard desktop and
notebook computers. This has allowed us to simulate relatively large stem cells
systems without the need for complex distributed computing solutions.

Separation of model and visualization: Models are completely independent from
visualization, which can be added, removed, or changed at any time. This has
allowed us to easily develop simulations that can be run either with a visualization
for demonstration purposes, or without a visualization for experimentation.

Checkpointing: Models may be checkpointed and recovered, or dynamically migrated
across platforms. This allows stem cell models to be tested by first running them
on a development machine, and then migrating them to a dedicated server for
long-term processing.

Embedding: Models are self-contained and can run inside other Java frameworks and
applications. This allows us to embed simulations in other Java applications and
applets. In addition, the MASON library sets no limits on the use of other li-
braries and frameworks, e.g., allowing the graphing libraries to be used to provide
numerical feedback as a visualization option.

Visualization: The MASON library includes support for several standard types of
2D and 3D visualizations, using the core Java libraries for 2D and 3D graphics.
These have provided a foundation for developing specific visualizations of stem
cells and their environments in our models.

Export of rich media: The MASON development environment and the MASON li-
brary support the export of images (PNG) and movies (Quicktime) for docu-
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menting particular simulation runs. In addition, MASON provides support for
the generation of other output data streams, e.g., XML.

Advantages of Using MASON

Combining the powerful features offered by MASON has provided us with an excellent
environment for development, presentation and experimentation. During development the
MASON development environment allows for rapid testing and evaluation of the simu-
lations. During presentations, the speed and size of the MASON library allow users to
demonstrate “live simulations” on standard notebook hardware. During experimentation
we run large-scale experiments using simulations without visualizations to automate “batch
processing” of stem cell models across clusters of machines.

13.7.2 Implementation of CELL in MASON

The MASON library provides a comprehensive foundation for developing our agent foun-
dation, the basis of which is a thin layer around the Steppable interface class. This is
described by the Unified Modeling Language (UML) [Rumbaugh et al., 1999] class diagram
in Figure 13.3.

step()p
Steppable

sense()
plan()
act()

state: int
patch: Patch

Agent
neighbours: Patch(0, *)
agent: Agent(0, 1)

Patch

FIGURE 13.3 Our framework is rooted with implementations of Agent and Patch that implement
the MASON interface Steppable.

The Agent class implements the Steppable interface to implement the base class for all
cell classes in models. The Agent class decomposes the step() method into a sequence of
three methods, sense(), plan() and act(), controlled by the state of the agent. Every
instance of Agent can be assigned to a single instance of Patch. The Patch class implements
the Steppable interface to provide the base class for decomposing space in simulations for
the simulation of processes over the space, e.g., chemical diffusion. Each instance of Patch
contains a set of neighbors that define the topology of the space.

The Patch class corresponds to a region in our framework, although the exact details
of a region for a model are left to the individual implementations. In accordance with
our formal framework, Patch is used as a base for building the environment, but apart
from easing certain implementation issues its inheritance from Steppable, e.g., allowing
the use of existing portrayals for visualization purposes, it acts as a passive element in the
implemented systems, simply recording the topology of the environment, as well as dynamic
features updated by the simulation engine.

The CELL framework provides a utility class for simulating the diffusion of chemicals,
the DoubleGrid2DDiffuser class acts on two-dimensional arrays of floating point numbers,
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i.e., doubles, to diffuse the values across the array. This class implements the Steppable
interface as illustrated in Figure 13.4 so that it can be inserted into schedules, just like
agents. In the simulations developed so far, the DoubleGrid2DDiffuser class is used to
simulate the diffusion of chemicals released by stem cells and stromal cells.

step()

evaporationRate: double
diffusionRate: double
grid1: DoubleGrid2D
grid2: DoubleGrid2D

DoubleGrid2DDiffuser

step()p
Steppable

FIGURE 13.4 UML diagram of the Double2DDiffuser class.

In MASON, agents and environments cannot directly render themselves to a visualization,
instead simulations are visualized using portrayals. The CELL framework defines two con-
venience portrayal classes for use by simulations, see Figure 13.5. CellPortrayal2D renders
cells within a visualization as a simple oval. ChemicalGridPortrayal2D renders chemical
concentrations, held in a DoubleGrid2D, using a gradient to indicate the concentration of
patches. Similarly to the implementation of Agent, these classes represent thin wrappers
around existing MASON classes; OvalPortrayal2D and FastObjectGridPortrayal2D.

draw()
ChemicalGridPortrayal2D

draw()
FastObjectGridPortrayal2Dj y

draw()
CellProtrayal2D

draw()
OvalPortrayal2Dy

FIGURE 13.5 UML diagram of the Portrayal2D subclasses.

13.7.3 Implementation of Roeder-Loeffler Model in MASON

The small set of classes described above forms the framework, built on MASON, that we
implement specific models upon. This section details the classes developed to implement the
Roeder-Loeffler model of stem cell organization. This implementation adds specific details
of the model of cells and their environment as described.

Figure 13.6 illustrates the implementation of the basic Cell class. The Cell class is
a subclass of the Agent class and overrides the sense(), plan(), and act() methods
to implement the standard agent cycle within the specific environment described for the
Roeder-Loeffler model. Each Cell class maintains an internal state within an instance of
the CellStateInternal class.

Cells communicate with the environment, simulation engine, visualization, etc. through
the use of CellEvents that CellListeners can subscribe to be notified about. Cells will
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age: int
stage: CellStage
instance: CellInstance

CellStateInternal

state: CellStateInternal
listeners: CellListeners

Cell

sense()
plan()
act()

state: int
patch: Patch

Agent

cellMoved()
cellUpdated()
cellStateChanged()

CellListenersource: Cell
type: int
MOVED: int
UPDATED: int
STAGE_CHANGED: int

CellEvent

sends

receives

*1

FIGURE 13.6 UML diagram of the Cell class.

generate events when they move (CellEvent.MOVED), have their internal state updated
(CellEvent.UPDATED), or when the stage that they are in changes (CellEvent.STAGE -
CHANGED).

Figure 13.7 illustrates the classes that implement the cell typing system in the Roeder-
Loeffler model. The CellType class is the core of this system and allows different types of
cells, e.g., stem cells and stromal cells, to be defined with different cell cycles, using the
CellCycle class, for each stage in the cell’s life, represented using CellStage objects.

STEM: CellStage
PRECURSOR: CellStage
DIFFERENTIATED: CellStage
ORDER: CellStage[]

CellStage

getCellPhaseStart()
getCellPhaseEnd()

length: int
map: HashMap

CellCycle

id: int
CellId

id: CellId
type: CellType

CellInstance

G1: CellPhase
S: CellPhase
G2: CellPhase
M: CellPhase
ORDER: CellPhase[]

CellPhase

getCellCycle()
putCellCycle()

map: HashMap
CellType

contains contains

* 1*1

references

FIGURE 13.7 UML diagram of the CellType and related classes.

Possible CellStages in this implementation Roeder-Loeffler model are STEM, PRECURSOR
and DIFFERENTIATED. Hematopoetic cells in the simulation can potentially pass through all
of these stages. Stromal cells begin in the DIFFERENTIATED stage and remain in it throughout
simulation runs as defined in the model.

Cell cycles are defined as a sequence of phases that cells pass through, the different phases
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are represented by the CellPhase class. The phases that our cells pass through are: G1, S,
G2 and M. These are defined in this order in the CellPhase class. Different types of cells are
defined using the CellType class as spending different lengths of time in these phases.

Figure 13.8 illustrates the classes that form the top-level in the agent-based Roeder-
Leoffler simulation, i.e., WorldState that maintains all of the information about the en-
vironment and AgentRoeder that implements the top-level simulation engine and stand-
alone application. The AgentRoederWithUI class wraps the AgentRoeder class with a user-
interface for displaying visualizations produced using the portrayal classes defined in the
CELL framework. Using this pattern of developing a stand-alone application for running
on the command-line without a visualization, and a wrapper to add the necessary GUI
elements when desired, provides a powerful method for developing the simulations.

width: int
height: int
cells: SparseGrid2D
stemChemicals: DoubleGrid2D
stromalChemicals: DoubleGrid2D

WorldState

main()
start()

worldState: WorldState
worldWidth: int
worldHeight: int
nicheType: int
chemicalDiffusionRate: double
chemicalEvaporationRate: double
STEM: CellType
STROMAL: CellType

AgentRoeder

main()
start()
load()
init()
quit()

stemPortrayal: ChemicalGridPortrayal2D
stromalPortrayal: ChemicalGridPortrayal2D
cellPortrayal: CellPortrayal2D
display: Display2D
dispayFrame: JFrame

AgentRoederWithUI

controls

1

FIGURE 13.8 UML diagram of the WorldState container class, the AgentRoeder simulation class
and the AgentRoederWithUI visualization class.

Using the sophisticated library of components provided by MASON has allowed us to
build an agent framework comprised of some utility classes, and implement specific models
with relatively little code.

13.8 Discussion

We have spoken much in this chapter about why agents are “good” for modeling natural
systems but perhaps the best way to see the advantages is in the visualizations of the
simulations themselves. Again we encourage the reader to look at the visualizations for
themselves on the project web site∗, but we present some of the images here.

∗The CELL Project web site is located at http://doc.gold.ac.uk/~mas02md/cell/
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FIGURE 13.9 The visualization of the original model. We see cells switching between two compartments
according to the calculation of a probability function.

We have extended the Roeder model to incorporate a model of space so that we can
consider cell movement in more detail. The difference between the two approaches can best
be seen by looking at the visualizations online.

In Figure 13.9 we see a visualization of the Roeder-Loeffler model, based on an existing
visualization, where cells are in one of two compartments. The compartments represent
broad environments inside (α) and outside (Ω) the stem cell niche. Movement within the
compartments represents changes in niche affinity, as indicated by the scale, not physical
movement within the environments. Consequently, the visualization should be read more
like a 3D graph than a representation of 3D space. When the visualization moves in time, we
see cells switching between the two compartments. The particular simulation being shown
is a competition between two populations of stem cells, red and blue, competing for control
of the niche. The biological intuition behind what is actually happening is very difficult to
unpick.

In our agent view, shown in Figure 13.10, we get an understanding of the actual mechanics
of what is happening to individual systems and how the system as a whole is interacting.
Movements of agents in the simulated environment are represented as movements in the
visualization. The secretion of chemicals from stem cells and stromal (niche) cells is what
keeps this system continually generating new blood cells and maintaining the population
of stem cells. Chemical concentrations are represented in the visualization by the coloring
of regions according to the chemicals they contain. From this visualization, it is clear that
we can experiment with properties such as the physical shape of the stem cell niche by
changing the placement of stromal cells, something that isn’t directly possible with the
original model. The real value of visualizations like this is that biologists are attracted to
them.

One of the predictions that our agent-based visualization makes is that stem cell activity
pulses around the niche. Although not verified to date it is a testable prediction made about
the nature of stem cell activity. We are currently seeking interested biologists to investigate
whether this prediction can be verified.
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FIGURE 13.10 The visualization of our agent model. In our view a much more biologically intuitive
visualization.

Our next goal is to build an agent-based model of chronic myeloid leukemia which will
aim at providing an opportunity to evaluate the mechanisms which are taking place when
this cancer takes hold in the development of blood cells.

13.8.1 Concluding Remarks

Recent medical evidence suggests that the way to understand how stem cells organize them-
selves in the body is as a self-organizing system, whose global behavior is an emergent quality
of the massive number of interactions of cells with each other and of the environment of
which they are a part. We claim, therefore, that the multi-agent system approach to model-
ing is the most suitable one for exploring means to simulate the behavior of stem cells and
from resulting simulations [Theise and d’Inverno, 2004; d’Inverno et al., 2006], suggest how
tiny changes in individual stem cell behavior might lead to disease at the global, and hence
observable from an experimental perspective, system level. We have outlined the benefits
of this approach by comparing it to a cellular automata approach in detail.

Modeling and simulating stem cells promises much. Our intention is to build a common
conceptual framework from which integrated research can ensue. We believe that the agent
approach to modeling, coupled with the natural feel of the visualizations makes it a valuable
currency in this effort.

Indeed, the fact that the work came from an interdisciplinary project (rather than, say, a
team of mathematicians working in isolation) means that this work is ideally placed to be
the foundation from which we can produce this common conceptual framework so important
to harnessing the energies of research from different fields.

One last comment. Perhaps the greatest evidence for the impact of our work has been in
the language used by one of our collaborators on a recent paper in Nature [Theise, 2005].

Cells fulfill all the criteria necessary to be considered agents within a complex
system: they exist in great numbers; their interactions involve homeostatic, neg-
ative feedback loops; and they respond to local environmental cues with limited
stochasticity (‘quenched disorder’). Like any group of interacting individuals ful-
filling these criteria, they self-organize without external planning. What emerges
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is the structure and function of our tissues, organs and bodies.

Until working on this project the stem cell researcher Theise new nothing of agents. Now
they have become the currency in which he conceptualizes them.
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Agents are used as a metaphor for describing a system of interest. Software agents are
evaluated in virtual dynamic environments. This can be done by testing in small environ-
ments via so-called test-beds for agents or by testing in large ones, which implies a modeling
of the environment the software agents shall dwell in. All require simulation systems. Often
these environments are built from scratch. However, the re-use of simulation environments
promises less effort, improved repeatability and comparability of experiments. Not surpris-
ingly, quite a few simulation systems for multi-agent systems have been built. However, due
to the diversity of agents and objectives of simulation studies, a widely accepted modeling
and simulation approach has remained elusive. The current landscape of agent modeling
and simulation tools reflects the different needs and background of the systems’ developers
equally.

Concrete test-beds, that provide dynamic, standardized scenarios in which different agent
strategies e.g., of deliberation and commitment, mark the beginning of simulation tools for
multi-agent systems in the 80s. With the RoboCupSoccer in 1997 a problem was found that
allowed to examine a wide range of technologies in robotics and artificial intelligence. To
demonstrate that the strategies and evaluations are also viable in other socially relevant
scenarios (a concern that has accompanied work on test-beds from the very beginning) the
RoboCupRescue project was initiated in 2000. The areas of promoted research in disaster-
rescue comprise multi-agent teamwork coordination, robotics, information infra-structure,
evaluation benchmarks for rescue strategies and simulator development. Thus, the objective
of simulation research in this project is twofold, i.e. to provide a suitable evaluation platform
for those other areas, and to identify requirements and to develop solutions for simulators
to be applied in rescue settings. Tomoichi Takahashi provides insight into this research with
his chapter “Robocup: Challenges and Lessons Learned”.

The aim to support arbitrary scenarios led to the development of general modeling and
simulation systems for multi-agent systems. Whereas reactive agents can easily be described
in simulation systems that support an object-oriented, modular model design, the effective
and efficient handling of multiple deliberative agents provide some challenges for modeling
and simulation environments. Rafael Bordini and Jomi Hübner address those in their chapter
“Agent-Based Simulation Using BDI Programming in Jason” by focusing on the description
of deliberative agents in the agent language AgentSpeak. Thereby, they distinguish between
agents with their declarative representations of mental attitudes and display of rational,
goal-directed behavior and the reactive environment the agents are situated in. The latter
is responsible for advancing the simulation.

Developing agent and environmental models requires programming in Jason. In contrast,
other agent-based simulation systems offer easy to use interfaces to facilitate agent-based
simulation for domain experts not familiar with programming - a motivation that also
drove the development of expert systems shells in the 1980s. In the chapter “SeSAm (Shell
for Simulated Multi-Agent Systems): Visual Programming and Participatory Simulation for
Agent-Based Models” Franziska Klügl describes experiences with this type of simulation tool
and the efforts required toward achieving this goal. In this context, the role of adequate
visual means is examined in several interdisciplinary applications. Whereas many agent
simulation systems focus on the encoding of the agents and its environment only, SeSAm
and its user interface address the entire modeling and simulation life cycle: from model
development, experiment design, to the analysis of simulation results.

The entire modeling and simulation life cycle is supported in the tool JAMES II, which
first developed as a tool for multi-agent modeling and simulation turned due to the required
flexibility into a “Java multi-purpose environment for simulation”. To support different mod-
eling formalisms, simulation engines, experimental settings, random number generators etc.
a plug-in architecture has been realized which allows an easy extension and adaptation of
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the system to new applications. In contrast to other multi-agent simulation systems, JAMES
II supports the description of agents in modeling formalisms with a clear operational se-
mantics being realized by different sequential and parallel simulation engines. The modeling
formalisms are traditional discrete event modeling formalisms which have been extended
to support dynamic patterns of composition and interaction. In the chapter “JAMES II
- Experiences and Interpretations” Jan Himmelspach and Mathias Röhl give an overview
about the architecture of the system, and exemplarily describe the extension of a modeling
formalism, its use for describing agents, and its simulation in JAMES II.
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14.1 Introduction

Disaster management is one of the most serious social issues, involving very large numbers of
heterogeneous agents in a hostile environment. The RoboCup Rescue project was motivated
by the Great Hanshin-Awaji earthquake, which hit Kobe City on January 17, 1995. The
lessons learned from this earthquake indicated that information systems should be built to
support the collection of necessary information and prompt planning for disaster mitigation.
We proposed the RoboCup Rescue project in 2000. This rescue project is intended to
promote research and development in the disaster rescue domain at various levels: multi-
agent teamwork coordination, physical robotic agents for search and rescue, information
infrastructure, personal digital assistants, standard simulator and decision support systems,
evaluation benchmarks for rescue strategies and robotic systems. The RoboCup Rescue
Simulation (RCRS) was designed to simulate the rescue measures taken during the Hanshin-
Awaji earthquake disaster. Section 14.2 describes the setting of the RCRS and the need for
disaster management in the local government system.
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When earthquakes occur in urban areas, various types of causalities and accidents oc-
cur. These are related to one another. Collapsed buildings injure civilians and block roads
with debris. The rescuers must rush the victims to hospitals, help civilians evacuate to safe
areas, and prevent fires, if any, from spreading. The accumulated debris hinders the res-
cue operations. Fires destroy houses, and the resulting smoke impedes the activities of the
fire fighters. In order to simulate such situations, it is necessary to comprehensively inte-
grate the results of disaster simulations and human behaviors in urban areas. The RCRS
uses an architecture that simulates disaster events by repeated individual simulation of the
component disasters and integration of the results obtained in each simulation step. Thus,
this computation process can be distributed among multiple computers linked by a network
when the simulation size exceeds the limit that can be supported on a single computer. This
architecture allows users to customize the simulations for any city or town by inputting the
appropriate GIS data, plugging in disaster simulators with their regional peculiarities, and
implementing the prevention plans as agent codes. Section 14.3 describes the system ar-
chitecture of the RCRS, methodology for implementation, and multi-agent system (MAS)
technologies.

The RCRS has been used as a platform for the RoboCup competition since 2001, in which
many teams from various countries have participated. The teams have improved their rescu-
ing ability by use of realtime/anytime planning, collaboration among heterogeneous agents,
mixed-initiative planning, learning, and so on, and have competed on their performances.
They have not only developed their own rescue agent teams but have also improved the
RCRS. For example, some teams repeated disaster simulations for the learning of rescue
agents, they have developed components such as fire simulators and traffic simulators in a
more practical and stable manner than before. Other teams interested in collaboration with
the rescue teams have proposed a communication model that allows the agents to select
channels for communications among themselves. This function has been implemented in the
RCRS. Section 14.4 presents the results and the observations from the RoboCup Rescue
agent competitions.

Several attempts have been made to put the RCRS to practical use. A system that employs
the RCRS to train rescue teams, a demonstration system to support disaster prevention
planning in their countries, and a system that combines data from real world and disaster
simulations that involve numerous agents have been presented. Section 14.5 introduces these
examples and discusses the experiments using real maps. The problems discussed here are
not limited to the disaster rescue domains, but are also related to other simulations of social
domains that are realized through the emergence of macro level system properties from the
interaction among the agents at the micro level.

It is necessary to demonstrate the validity of the simulation results to users when an agent-
based social simulation (ABSS) is applied to domains where it is difficult to obtain data
from real cases or conduct experiments. In scientific and engineering fields, the following
process has been repeatedly used to increase the fidelity of simulations [Feynman, 1967].
Guess → Compute consequence → Compare experiment results with simulation results In
contrast to the physical phenomena that can be explained using the laws of natural science,
social phenomena are not generally objectively measured, but are subjectively interpreted
by humans [Moss and Edmonds, 2005]. This makes it difficult to systematically analyze
the social phenomena and to evaluate the performances of the agents. In most cases, it
is difficult to obtain data based on real cases or conduct experiments to verify the ABSS
results and analysis results.

Earthquake disaster simulators are composed of disaster simulators and human-behavior
simulations. While the components of disaster simulators, such as fire and building col-
lapses, have been programmed on the basis of models developed in civil engineering fields,
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agent technology is used to simulate human behaviors with these disaster simulations. This
makes it difficult to compare the results with the real data and repeat the process of guess,
computation, and comparison to increasing the fidelity because we cannot conduct physical
experiments on disasters on a real scale or involve humans in the experiments; furthermore
the results of agent-based approach simulation have emergent properties. This also raises
the question of whether it is realistic to expect agent-based systems to be useful in disaster
management. Section 14.6 discusses the assessment of the fidelity of ABSS for use in real
life situations as one of the new challenges. The discussion on future research topics and a
summary are presented in Section 14.7.

14.2 Needs in Disaster and Rescue Management

We constantly face disasters in various forms, and even though they cannot be accurately
predicted, appropriate evacuation instructions could save human lives. Typhoons (hurri-
canes or cyclones) are anticipated disasters; they are forecasted by meteorological bureaus,
which issue warnings to sensitive areas. The exact location and time of earthquake occur-
rences are, however, difficult to anticipate, although sensor network systems to detect earth-
quakes are being planned or applied practically. The Hanshin-Awaji earthquake hit Kobe
City on January 17, 1995. More than 6,000 people were killed, and at least 300,000 were
injured; further, basic infrastructure worth more than 100 billion US dollars was damaged.
The experiences gained during the Hanshin-Awaji earthquake revealed that the following
functions are necessary for disaster information systems [Disaster Reduction and Human
Renovation Institution, 2008].

1. Collection, accumulation, relay, selection, summarization, and distribution of nec-
essary information.

2. Prompt support for action planning for disaster mitigation and search and rescue
operations.

3. Reliability and robustness of the system.
4. Continuity from normal times to emergencies.

Recently, some projects and systems have been proposed to ensure prompt planning
for disaster mitigation, risk management, and support of IT infrastructures [de Walle and
Turoff, 2007][Mehrotra et al., 2008]. Sahana is an example of a system that was originally
built by a volunteer group after the Sumatra-Andaman earthquake in 2004 [Currion et al.,
2007]. Takeuchi et al. proposed an integrated earthquake disaster simulation system based
on the concept Risk-adaptive Regional Management Information System [Takeuchi et al.,
2003]. The risk-adaptive system is a system that is designed to be used on a regular basis
by local government officers and to be linked to information servers during emergencies
[Turoff, 2002]. The Combined Systems project commenced after September 11, 2000, has
worked toward decision making in situations involving considerable number of people and
organizations working together [Lab, 2006]. The project has developed actor-agent networks
that interconnect actors (human beings) and software agents. The network enables people
to act and respond more rapidly during disasters.

Before disasters occur, local governments employ a simulator to plan disaster response
strategies that suggest how civilians can be evacuated to safe places, where refuges can be
built, and how communal facilities such as roads, life lines, and hospitals can be operated.
During disasters, information systems that provide relevant and reliable information to the
local government and the public are critical to ensure smooth rescue operations. A decision
support system (DSS) supports the operational or strategic decision of the rescue centers,
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TABLE 14.1 Disaster, components of simulation, and their uses
components of simulation uses of simulation

disasters simulators data metrics of damages time of application

natural earthquake fire GIS human lives before disaster
tsunami *smoke *analysis
typhoon collapses facilities damages after disaster
flood *building, mudslide * public property *planning

man-made terror human activity life lines * private property
*traffic
*evacuation

rescue headquarters

real world

Simulated Disaster Environment 
created by

 agent based simulation

local government DB/GIS

planning
at ordinary times

Agent based Social Simulation

logistis &

disaster simualtion

resuce planning

data from sensors 

calls from civilians

reports from rescurers

during disaster

After verifying rescue strategies,

 dispatch rescue teams.

day-to-day operations

FIGURE 14.1 An image of a disaster management system used by local governments. The system and
data used for day-to-day operation will be utilized at rescue headquarters.

and the simulations of disasters play an important role in the DSS. Whether disasters
are natural or man-made, they involve various factors. In the case of a fire disaster, the
factors are the simulation of fire, firefighting, the influence of smoke, and the interaction
among them such as smoke emanating from the fire hampers firefighting efforts. Disaster
simulation systems are integration systems. Table 14.1 shows the types of components to
be simulated, the data required for these simulations, and the metrics that are calculated
from the simulation results.

Disasters are classified based on how they damage human life, namely, how many lives
are lost, how many houses were burned down, etc. These are used as metrics of classifi-
cations. In order to practically apply the simulations in the DSS at the rescue center, the
metrics of disasters calculated from the agent-based social simulations are used for planning
response strategies before, during, and after a disaster. Figure 14.1 shows a representation
of the disaster-rescue simulation that will be used at the emergency centers run by local
governments in the future. The left part shows the day-to-day operations of the local gov-
ernments. Agent-based social simulations are used for their planning at ordinary times such
as traffic flow estimations. When disasters occur, the local government will play a role of
rescue headquarters and the system and data will be used for disaster management systems.
Disaster situations will be simulated using agent-based simulations and data such as sensor
data, phone calls, and TV/media obtained from the real world. The rescue headquarters will
simulate various disaster scenarios, analyze their effects, and plan their rescue operations,
including the deployment of rescue agents and evacuation of civilians to safe places.

© 2009 by Taylor and Francis Group, LLC



RoboCup Rescue: Challenges and Lessons Learned 427

14.3 Architecture of RoboCup Rescue Simulation System
and Usage as MAS Platform

We proposed a RoboCup Rescue Simulation (RCRS) based on the experiments of the
Hanshin-Awaji earthquake. The RCRS is a comprehensive simulation system that integrates
various disaster simulation results and agent actions [Kitano et al., 1999]. The architecture
of RCRS is introduced in this section.

14.3.1 RoboCup Rescue Project

The RCRS was designed to simulate the Hanshin-Awaji earthquake and also other disasters
by plugging or replacing components. The necessary conditions for the rescue project were
set by investigating the disasters in the Nagata Ward, one of the areas severely affected
by the earthquake. The specifications during the development of the simulation tool are as
follows.

Rescue scenarios: During earthquakes, related disasters occur, for example, fires
break out, and rescue agents must rush to help victims or prevent the spread
of the disaster. They obtain the necessary information by inspecting the sites
or by responding to distress calls from other agents. Civilians are evacuated to
safe places or can act as volunteers to help other agents. Local rescue agents are
the first to respond to disasters, and help in extinguishing fires and moving the
injured to hospitals with the help of other volunteers.

Target sizes: Nagata Ward has an area of 11.47 km2 and a population of 130,466
people (53,284 families). A total of 7 rescue teams are present at the Nagata fire
office. While representing disaster situations or rescue activities, it is required that
the target size be displayed at a resolution that can be recognized on the display.
The resolution of the display is set to about the sizes of cars. The Geographic
Information System (GIS) data are provided at a resolution of 5 m.

Simulation period: The functions of rescue activities change with time. These ac-
tivities are classified into five stages: chaos stage, initial operation stage, recovery
stage, reconstruction stage, and normal stage. In the chaos stage, there is no
external aid available, and the survival rate of the injured rapidly decreases after
a few days. The main purpose at this stage is to save the victims using locally
available facilities; considering these aspects, the simulation period was set to the
chaos stage.

The RCRS comprehensively simulates agents who move autonomously in the simulated
disaster world, and interactions among disasters and the behaviors of the agents. The sim-
ulations are modeled by the following equations.

e(t) = f (x (t), u(t), t) (14.1)
x (t + Δt) = g(x (t), e(t)). (14.2)

Here, t is the time; Δt is the step size to progress the simulation discretely; and x (t), is
a status variable that represents the disaster situation at time t . The variables represent
the properties of the entities in the real world, such as the state of a house (whether it is
burning or not), the conditions of roads (whether they are buried or not), and the state of a
civilian (where he/she is and whether he/she is trapped in the debris or has been carried to
a hospital) are included. u(t) represents the external effects. Some of these effects include
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the wind direction, aftershock, and the amount of water sprayed from fire engines. The
function f calculates the effects due to the disasters, and g represents the change of x (t)
from t to t + Δt . The details are explained as follows:

Disaster simulations: Disaster simulations comprise several events. For instance,
building collapses affect the spread of fire. The spreads change the actions of the
fire fighters to extinguish the fire, and the traffic conditions. The traffic jams, in
turn, hamper the timely arrival of the fire fighters.

e1(t) = f 1(x (t), u(t), t)
e2(t) = f 2(x (t), u(t), t) (14.3)

...
en(t) = f n(x (t), u(t), t).

Here, f 1, f 2, · · · , f n represent disaster simulations such as fire simulations or traf-
fic simulations. e1, e2, · · · , en are the associated respective effects of these simu-
lations. The mutual relationship among the disasters should be reflected in each
simulation. The disaster situations are synchronously updated, and the integrated
results are used as the initial conditions of the subsequent calculation.

x (t + Δt) = g(x (t), e1(t), e2(t), · · · , en(t)). (14.4)

Agents’ behavior including rescue activities simulations: Agents autonomo-
usly decide their actions according to the situation; their actions could involve
visiting refugees, obtaining assistance, extinguishing fires, rescuing victims, etc.
The decision-making process is described in the form of a program as follows:

ea(t) = f a(xa(t), s(x (t)), ua(t), t). (14.5)

Here, xa is a subset of x and also represents properties peculiar to humans, such
as their stamina and a record of their activities. The function s filters the input
sensory data of circumstances around the agent, for example, the ranges of vision
and hearing alter according to the disaster situations. ua(t) is the input to the
agent from the outside world, which includes information through communication
with other agents. ea(t) represents the intended actions of the agents during the
simulation step∗. These actions change the states of the world, x (t + Δt).

x (t + Δt) = g(x (t), e1(t), · · · , en(t), ea1(t), · · · , eaN (t)). (14.6)

14.3.2 Architecture of the Simulation System

The RoboCup Rescue simulation is built with a number of modules [Takahashi et al., 2000].
Figure 14.2 shows the architecture of the RCRS, which is composed of the kernel, simulators,
viewer, GIS, and agents. f 1, . . . f n are the simulators, and f a corresponds to the agents. g
represents kernel. The kernel is the main component of the RCRS, and it combines all
the information and updates the status of the world to be simulated. The components are
plugged into the kernel via a protocol based upon TCP/UDP.

∗In the present implementation, the agents can submit commands to the kernel at any time in a given
simulation step. The kernel integrates commands from all the agents at a specified time in the simulation
step, and the last command from the agents becomes effective.
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FIGURE 14.2 Architecture overview of RCRS. Components are plugged into kernel via specified pro-
tocol.

Agent: Civilians and fire fighters are examples of agents. These individuals are vir-
tual entities in the simulated world. Their decision processes or action-selection
rules are programmed in the corresponding agents, which are the RCRS client
programs, and their intentions are expressed as commands to the kernel.
Here, an agent is a unit such as a family or a fire brigade in order to avoid making
the simulation system too large, although it is desirable that a single person (or
a single robot) is represented by an individual agent.

Component simulators: These correspond to disasters such as building collapses
and fires. The disaster simulators compute how disasters affect the world. Besides
these disaster simulations, there are two default simulations related to humans.
One simulator monitors the states of civilian agents: their stamina and health.
The stamina of an agent decreases when he/she performs actions. When the
agents are trapped in collapsed houses or injured by fire, their physical and mental
situation deteriorates. Furthermore, when they take refuge, they slowly recover;
thus, their health improves. The other simulator is a traffic simulator, which
changes the positions of the agents according to their intentions, and resolves
conflicts that arise when numerous agents attempt to do similar actions, for
example, to visit the same position.

GIS: This module provides the initial configuration of the world defining where roads
and buildings are, and their properties such as width of street, floor area, number
of stories, fire-resistant building or not, and so on that are needed for disaster
simulations. The roads are represented in the form of network and the data
buildings are presented as polygons. The numbers of agents and fires, and their
positions are given as parameters of the simulation.

Viewers: Viewers visualize the disaster situations and agent activities on a 2D or 3D
viewer and display the images according to predefined matrices obtained from
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FIGURE 14.3 Initial protocol communication.

the simulation results.
Kernel: The kernel works as a server program to the clients and controls the sim-

ulation process and facilitates information sharing among the modules. No two
agents can communicate directly with each other. In other words, agents can com-
municate with one another only via the kernel module, which accepts commands
that are admissible in the communication protocol. The kernel module checks the
actions. For example, though a fire-fighting agent decides to extinguish a fire, the
kernel prohibits the agent from using more water than that present in the tank.

The elements of x (t) cover all the entities; therefore, its size increases with the simulated
area. By involving numerous agents, it becomes possible to simulate disaster scenarios on a
real scale and to test rescue operations. This requires powerful computation and wide-range
communication resources to simulate disaster situations and rescue actions on a real scale.
The architecture of the RCRS makes possible to distribute these components among the
computers linked by the network. Although the inter-module communication protocol was
designed to facilitate multiple agent modules sharing a socket, there is a possibility of a
bottle neck or congestion when the number of agents is large or the target area is wide.

Koto and Takeuchi have proposed another distributed computation model by dividing
the simulation space [Koto and Takeuchi, 2003].

14.3.3 Progress of the Simulation

At the beginning of the simulation, the GIS transmits the initial configuration of the sim-
ulated world to the kernel (Figure 14.3). The kernel then forwards this information to the
component simulators and to each agent module. The simulation proceeds by repeating the
following steps (Figure 14.4):

1. At the beginning of every cycle, the kernel transmits sensory information to each
agent module. This sensory information consists of data that the agent can sense
in the simulated world at that time and may contain a certain degree of error.
During the simulations, the sensory information transmitted by the kernel to
each agent contains only the information in the vicinity of the individual, which
can be visually sensed by them∗.

∗The radius parameter is set in a configuration file.
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FIGURE 14.4 Protocol communication during simulations.

2. Each agent module decides actions to be performed by the individual, and ac-
cordingly, sends commands to the kernel.

3. The kernel gathers all the commands from the agent modules and broadcasts
them to the component simulators. The packets are not guaranteed to arrive in
timestamp order; therefore, it is possible that the commands are transmitted by
an agent module whose corresponding individual is already dead. These packets
that arrive behind time are discarded. The kernel, within a fixed period, only
accepts commands and forwards them to the component simulators.

4. Based on their internal status and the commands received from the kernel, the
component simulators individually compute the changes in the world. These re-
sults are then transmitted back to the kernel.

5. The kernel integrates the results received from the component simulators and
broadcasts them to the GIS and component simulators. Although some simulators
may take a long time to be simulated, the kernel will only integrate those results
received within a certain time step. The kernel then increases the simulation clock
and notifies the viewers about the update.

6. The viewers receive the updated information about the world, and display the
information visually according to various evaluation criteria.

14.3.4 World Model and Representation

Disaster simulators have been developed in fields such as civil engineering and combustion
engineering. The models and data structure of the simulations are different, and there is no
unified format to represent target areas. For example, some fire simulators may split the
world into planar grids, while others may possess a 3D model of a town and its houses.

A simple planar graph structure model with Euclidean metrics is used for inter-module
communication. Each module must communicate with others based upon this simplified
world model, whether or not it uses a more sophisticated or finer-grained model. Figure
14.5 shows the hierarchy of classes that form the simulation world. The motionless objects
are the elements of the graphical model. A road is represented as an edge object that has
properties such as width, roadways or sidewalks, and the IDs of adjacent node objects. A
node object contains its coordinates and the IDs of the edges that are connected to it. These
node objects represent crossroads, the outstanding points of curves, or the points that link
roads and building objects.

An ambulance team enters into a house and rescues persons injured in a building col-
lapse. The entrance property of the building indicates a node in the graph where the road
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FIGURE 14.5 Class hierarchy of objects in the RCRS disaster area.

is connected to the entrance of the building. There are four special buildings: ambulance
center, fire station, police offices, and refuges. The ambulance center, fire station, and police
offices can communicate with the fire brigades, ambulance agents, and police agents, respec-
tively. They collect information from the corresponding rescue agents and direct them for
collaboration.

During the simulation, the modules send only the necessary or a limited part of the
properties of the objects in order to reduce the amount of communication. For example, the
simulation results transmitted to the kernel from the component simulators contain only
those properties that will be changed during the subsequent step.

14.3.5 Protocol

The modules of the RCRS communicate with one another using a protocol based on
TCP/UDP. The protocol is generic, is independent of a particular simulation algorithm,
and specifies communications between the kernel and the modules, agents, simulators, GIS,
and viewers. Table 14.2 shows the protocols between the agents and the kernel. The protocols
between the component simulators are SK CONNECT, SK UPDATE, KS CONNECT OK
etc.∗ The following pseudo code exemplifies a fire brigade agent. It shows how the agent
communicates to the kernel. In control method, the agent gets sensing information at ev-
ery step and plans their action and sends corresponding commands to the kernel by calling
act method.

class FireBrigadeAgent {
FireBrigadeAgent(int agentType, InetAddress kernelAddress,

int kernelPort) {
// establish communication link to kernel.
socket = new ProtocolSocket(kernelAddress, kernelPort);
socket.akConnect(TEMPORARY_ID, VERSION, agentType);
Object data = socket.receive();
if (data instanceof KaConnectError)

∗The first two letters, AK and SK, are acronyms of Agent/Simulation to Kernel, while KA and KS are
acronyms of Kernel to Agent/Simulation.
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TABLE 14.2 Header and the use of commands between kernel and agents
Header A K Use
connection:
AK CONNECT → request for connection to the kernel
AK ACKNOWLEDGE → acknowledge KA CONNECT OK
KA CONNECT OK ← inform of the success of the connection
KA CONNECT ERROR ← inform of the failure of the connection
sensing and communication:
KA SENSE ← send vision information
KA HEAR ← send auditory information
AK TELL → submit the intention to convey a message via assigned channel
AK CHANNEL → allocate communication channels for TELL command
rescue operation:
AK MOVE → submit the intention to move to another position
AK RESCUE → submit the intention to rescue a humanoid
AK LOAD → submit the intention to load a humanoid
AK UNLOAD → submit the intention to unload a humanoid
AK EXTINGUISH → submit the intention to extinguish a fire
AK CLEAR → submit the intention to clear a blockade
AK REST → submit the intention to do nothing
AK SAY → submit the intention to convey a message (obsolete)
AK TELL → submit the intention to convey a message via assigned channel
AK CHANNEL → allocate communication channels for TELL command
A: agent, K: kernel. AK implies that agents issue commands to the kernel.

quit();
KaConnectOk ok = (KaConnectOk)data;

// get the initial world model from the kernel.
initialize(worldModel, ok);
socket.akAcknowledge(ok.selfId);

// initialization finish.
control();

}
void control() {

while (true) {
// get sensory information per simulation step.
Object data = socket.receive();
// visual data or voice data?
if (data instanceof KaSense) {

update(worldModel, (KaSense)data);
} else
hear((KaHear)data);

act();
}

}
void act() {
// decide their intention, and act, in this code;
// search the nearest fire and extinguish it.

int[] routePlan;
// this function returns the array that contains a path to the fire.
searchNearFire(routePlan);
// this function creates AK_MOVE commands according to routePlan,
// and extinguishes the fire when it arrives at the destination.
MoveExtinguish(self.id, routePlan);

}
}

© 2009 by Taylor and Francis Group, LLC



434 Multi-Agent Systems: Simulation and Applications

14.4 Lessons Learned from RoboCup Rescue Competitions

RoboCup Rescue Competition consists of two competitions, agent competition and infra-
structure competition. The agent competition is the developing intelligent agents that are
provided with the capabilities of the main actors in a disaster response scenario. The infra-
structure competition is to develop simulators that form the infrastructure of the simulation
system and emulate realistic phenomena predominant in disasters. The teams that partici-
pated in the RCRS have improved their rescuing ability. The performances of rescue agents
have been measured by metrics that reflect the policies of rescue centers. This section dis-
cusses the metrics used in the RCRS competitions.

14.4.1 Lessons from Agent Competitions

The purpose of the RCRS project is to provide emergency decision support by integrat-
ing disaster information, prediction, planning, and human interface. Rescuers have several
responsibilities during disasters, and varied metrics are used in the reports on disasters
published by governments or insurance companies. Metrics such as loss of human life, the
number of damaged buildings, and the funds required for restoration activities indicate the
extent of the disasters. The metrics are intricately linked to one another, and it is difficult
to identify the dominant metric.

During the agent competitions, metrics are required to rank the performances of the
rescue teams; these metrics have been set based on the principle that human life is the
most valuable. The following definitions of V 1 and V 2 were used in 2001 and after 2002,
respectively.∗

V 1 = Pint − P + 1− (H /Hint × B/Bint) (14.7)

V 2 = (P + H /Hint)×
√

B/Bint (14.8)

P is the number of living civilian agents; H , the HP values∗∗ of all the agents; and B , the
area of houses not affected by the fire. Pint , Hint , and Bint are the initial values. All are
alive and all houses are not burned. As the disaster spreads, their scores decrease. The lesser
the V 1 value (greater the V 2 value), the better the rescue operation.

The rescue teams comprise firefighters, ambulances, and police agents. They perform
rescue operations in order to obtain better results in terms of the V 2 values. The lessons
learned from the 2004 and 2005 competitions are discussed below.

a. Search and rescue operations in unknown areas. Figure 14.6 shows the rel-
ative scores of semifinal games of RoboCup 2004. Eight teams (labeled A to H)
performed rescue operations under four different disaster situations: Kobe, Vir-
tual City, Folligno, and Random map†. The vertical scales are the normalized
V 2 values with the high score for each situation. Table 14.3 shows the number

∗Because, the efficiency in behavior of H and the firefighting effort of B are underestimated in V1. The
rules and competition settings are revised every year.
∗∗ Health point (HP) is stamina of an agent. A fixed amount is given as an initial value and the value
is decreased by actions or injuries of the agents. The value is recovered by resting at refuges. H/Hint
represents how effectively it moves.
†Kobe was the most damaged area during the Great Hanshin-Awaji earthquake. Virtual City is a man-
made squared area. Foligno is Italian city, where the historical tower, which was erected in the 15th
century, was destroyed in an earthquake in 1997. Random map is a computer-generated map.
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of agents and parameters in the situations. In the case of the Kobe Map, 33 res-
cue agents (7 ambulance teams, 12 fire brigades, 11 police forces, 1 ambulance
center, 1 fire station, and 1 police office) and 72 civilian agents performed rescue
operations in the Kobe Map, where two refuges were located.

The rescue performances in the disaster situations were different among differ-
ent teams. For example, team A performed better in the Virtual City situation
than in the Kobe situation, while the performance of team F showed a reverse
trend. We expect that it is common for a rescue team to handle one disaster
situation in a better manner than the other; however, the result indicates that
a performance in one disaster situation does not guarantee similar performances
in other situations.

 0.2

 0.4

 0.6

 0.8

 1
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Kobe
Virtual City
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Random

FIGURE 14.6 Normalized scores of 8 teams at RoboCup 2004 games.

TABLE 14.3 Number of agents and parameters of disaster situations in 2004
Competition

Number of agents Disaster situation
Map Ambulance Fire Police Civilian No. of Refuge No. of fire breakout
Kobe 7 12 11 72 2 6
Virutal City 8 12 11 77 1 6
Foligno 7 11 14 81 3 6
Random 7 11 10 87 1 4

b. Robustness to changing environments. In 2004, the Rescue Simulation League
organized a challenge session to test the robustness of the rescue operations
[RoboCup 2004]. The teams perform rescue operations under different sensing
conditions in the same disaster situation. On a map that has 1065 roads, 1015
nodes, and 953 buildings, there were 13 fire brigade agents, 12 police agents, 6
ambulance agents, and 89 civilian agents (Figure 14.7).

The first run (labeled Base in Table 14.4) was a simulation result using the
normal sensing conditions of the rescue agents. In the second run, the visual
ability of the agents was set at half the normal value, and in the third run, the
hearing ability of agents was set to half its original value. In the fourth run,
both the visual and hearing abilities were set to half their original values (labeled
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FIGURE 14.7 Snapshot of simulation during 2004 Challenge Game (Map: randomly generated one. The
dark squares are houses that are burning or burnt down. The light ones are houses that are not burning or
those where the fire has been extinguished. Gray, light gray, white, and black circles indicate fire brigades,
civilians, ambulances and dead agents, respectively.).

TABLE 14.4 Changes in rescue performance,
V 2, for sensing abilities

sensing condition Team X Team Y Team Z
Base 78.92 97.69 88.24

Half vision 78.92 35.41 83.30
Half hearing 79.92 83.49 51.45

Both 78.91 90.87 45.76

Both). Table 14.4 shows the scores of the top three teams.
The teams that showed less variation in their scores under different sensing

conditions were defined to be robust in the competition. The performance of
team X remains consistent, while those of teams Y and Z varied with the sensing
conditions. The variations in these two teams were different. According to the
definition, team X was the most robust. The results show that a more suitable
definition for robust rescue operations is required, and indicates that the agent
performance is dependent on the information conveyed for their decisions.

c. Agent ability and map dependency. In the 2005 competition, a new map,
KobeBig, was adapted. Figure 14.8 shows the burning rate, B/Bmax s, of one
session ∗ in the RoboCup 2005 competition. The vertical scale, B/Bmax , as-
sumes a value from 0 to 1, and the higher score indicates that less houses are
burnt, ie., the fire agents performed better. In this session, three maps were used,
the Virtual City map with 530 nodes, 621 roads, and 1,266 buildings, and two

∗Teams could modify their codes between sessions during the competitions. However, the same code was
used during one session.
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FIGURE 14.8 The changes of burning rate (B/Bmax ) of teams in 2005 (day 3).

FIGURE 14.9 Snapshots of simulations at Kobe(left: the bottom left part of KobeBig) and KobeBig
maps.

Kobe maps of different sizes: Kobe (nodes = 765, roads = 820, buildings = 730)
and KobeBig (nodes = 2,143, roads = 2,277, building = 2,156). As shown in
Figure 14.9, the bottom left part of KobeBig includes Kobe and its size is about
four times that of Kobe. The size of Kobe is of the same order as that of Virtual
City, and the former has a network structure similar to that of KobeBig.

The correlation of the burning rate between the performances of 17 teams
(labeled a to q) for Kobe and KobeBig was 0.52, while the correlation between
the performances of Kobe and Virtual city was 0.34. This result indicates that
the ability of agents is maintained with regard to the road network rather than
to the network size and the rescue strategy can be applied to areas with the same
network rather than the same size.

14.4.2 Researches Related to Real Applications

When fires break out at various places simultaneously, a fire department deploys fire engines
to minimize the possible damages. This mission is handled as a task allocation problem. Ohta
showed that a fire-extinguishing task that features a collaboration among n homogeneous
agents shows more than n times results [Ohta et al., 2001]. His simulation also showed
that it was better to deploy fire brigades intensively to one ignition point than to deploy
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them widely over many ignition points. This corresponds to one of the fire department’s
methodologies for firefighting. It indicates that disaster and rescue simulations will possibly
be used to improve the disaster prevention plans of the local governments.

Schurr et al. applied the RCRS to train human rescue officers who, in RCRS, direct rescue
agents as they would direct a real rescuer [Schurr et al., 2005]. The performance of the rescue
operations is used to estimate how well the officers direct them to save various towns. In
this case, the officers are assumed to be familiar with their towns; in other words, they know
the exact location of hospitals and gasoline stations, and have planned the evacuations of
the civilians to safe places well in advance.

14.5 Examples and Discussions on Experiments Using
Real Maps

It is important to show some validity in the agent-based social simulation results and to have
a strong basis for the logical explanation of the results when they are applied to practical
usages. This section presents the results of simulations using real maps and compares with
simulation results with another method.

14.5.1 Validity of Agent-Based Simulations

In scientific and engineering fields, the following process has been repeatedly applied to
increase the fidelity of simulations [Feynman, 1967].
Guess → Compute consequence → Compare experiment results with simulation results
Once the results of the simulations match the experimental data, they are used as experi-
ment tools that substitute physical experiments.

The components of disaster simulators, such as fire and building collapses, have been
programmed on the basis of models developed in civil engineering fields. Agent technology,
which is used to simulate human behaviors with these disaster simulations, makes it difficult
to compare the results with the real data and follow the above principle. This is because
we cannot conduct physical experiments on disasters of a real scale and involve humans
as factors. We compared the simulation results of the RCRS∗ with the data in these local
government reports that were estimated by conventional methods.

The Japanese Government has been preparing to face strong earthquakes that are antici-
pated in the near future and support the local governments to study their respective regions
[Non-Life Insurance Rating Organization of Japan, 1998]. The Fire Department of Nagoya,
where our university is located, published a report on the possible damage from anticipated
earthquakes with 7 to 8 of Japan Meteorological Agency seismic intensity [Nagoya Fire
Bureau, 1999][Japan Meteorological Agency, 2008].
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TABLE 14.5 GIS properties, damage estimations of Nagoya and simulation results
GIS network Nagoya City’s estimation RCRS simulation results

ward node edge build. ig.p burn burn F build. ig.p burn burn F
Chikusa 5,581 3,711 32,156 0 0.0% 0.0% 9,924 7 2.05% 1.74%
Higashi 2,420 1,690 14,761 1 0.1% 0.1% 4,283 3 2.09% 1.38%

Kita 6,069 3,870 39,302 22 3.9% 3.4% 9,541 7 1.51% 0.99%
Nishi 6,430 4,122 44,773 58 5.8% 4.9% 10,468 7 1.97% 1.74%

Nakamura 6,044 3,766 41,769 45 5.1% 4.5% 8,994 6 2.16% 1.15%
Naka 2,026 2,093 18,726 5 0.9% 0.5% 5,396 4 2.03% 1.12%

Showa 3,795 2,456 28,464 0 0.0% 0.0% 6,325 4 0.78% 0.58%
Mizuho 4,053 2,563 30,092 2 0.5% 0.1% 6,656 4 0.65% 0.47%
Atsuta 2,609 1,760 17,580 3 1.3% 1.0% 4,309 3 4.32% 1.42%

Nakagawa 9,449 6,154 58,612 31 2.6% 1.7% 17,327 13 0.93% 0.87%
Minato 7,127 4,892 38,694 0 0.0% 0.0% 15,269 18 1.32% 1.24%
Minami 5,718 3,710 43,318 1 0.0% 0.0% 10,157 7 2.11% 1.71%

Moriyama 6,651 4,413 39,821 0 0.0% 0.0% 13,077 13 1.80% 1.22%
Midori 8,945 5,996 53,445 0 0.0% 0.0% 18,301 15 1.11% 1.06%
Meito 5,612 3,724 27,554 0 0.0% 0.0% 10,740 8 2.27% 1.66%

Tenpaku 5,986 3,951 29,584 0 0.0% 0.0% 11,259 9 2.03% 1.79%
correlation between Nagoya data and simulations 0.85 -0.03 0.58
correlation between burn and burn F 1 0.65

Experiment 1: Consistency with other methods

Table 14.5 shows the data from the report and simulation results∗∗. The left-hand column
shows the properties of maps that are larger than those used in the RoboCup Rescue
competitions. The second column shows the data obtained from the Nagoya report. They
provide estimates of the damages incurred by a macro model developed based on past fire
incidents.

build.: the number of houses in each ward,
ig.p: the number of expected ignition points, assuming that no fire breaks out in half

of the number of wards,
burn: rate of houses burned without firefighting,
burn F: rate of houses burned after firefighting.

The burn and burn F values are the ratios of the estimated number of burnt houses to
the total number of houses. The same macro fire model was used to calculate burn and
burn F, and they simulated the effect of fire fighting by decreasing the number of ignition
points. The correlation between them in the Nagoya City report is equal to 1, which confirms
this fact.

The right-hand column shows the results of RCRS simulations. Only the fire fighters were
taken into consideration in the Nagoya report; therefore, fire brigade agents were involved
in this experiment. The number of fire fighters was 40 across all the wards. A program
produces data of each house so that the number of generated houses was proportional to
the real numbers of the report.∗∗∗ The number of ignition points was made proportional to
the areas, and the ignition positions were uniformly distributed over the areas.

∗The RCRS (Ver.46) was used for the simulation [RoboCup Rescue Simulation Project, 2008].
∗∗ Maps have been converted from the digital maps of Japan that are available as free data on a 1:25.000
scale [Geographical Survey Institute, 2008]. The RCRS uses some random seeds for the simulations. Even
the random seeds and the initial conditions are set to be the same, the simulation results fluctuate due
to data exchanges over the network. The values in Tables 14.5 and 14.6 are average values over ten
simulations.
∗∗∗Data related to building are essential for fire-spread simulation, building collapse simulation, and so
on. Buildings are privately owned properties, and are not included in the public data.
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The data of Nagoya City report are also the results of other simulation methods, so their
relative values are checked. The burn F values were lower than the burn values for every
ward; this shows that introducing fire agents leads to lesser damage. The burn F values in
the Nagoya report and the simulation show a positive correlation. While the burn values do
not show such a correlation, this difference may be caused by the difference of fire simulator
models. The correlation between the burn and the burn F is positive (0.65). From the
above, the simulation results of RCRS indicate a similar trend with the data of the report.

Experiment 2: Effect of shape of disaster-struck areas

Disasters occur beyond the confines of the administrative districts of local governments. It
is natural to simulate disasters in a continuous area. Figure 14.10 shows an outline of such
cases. The figure to the left shows two wards, Nishi and Nakamura (shown in Table 14.5).
The central map is a combination of the two adjoining maps. The figure to the right shows
the bottom central part, where the houses are clustered. This area is the densest, and is
identified to be the most disaster-prone area by the government. Hence, prevention and
rescue actions should be also performed in these areas during earthquakes.

(i) Nishi &
Nakamura wards

(ii) Composite map

(iii) Clipped map

FIGURE 14.10 Administrative boundaries of the two wards: The composite map of Nishi and Nakamura
wards, and the disaster-prone area (the clipped map) are used for disaster simulation.

Table 14.6 shows the simulation results of the disaster-prone area. The numbers of ignition
points were set for two cases, during the daytime (numbers in experiment 1) and at night,
as shown in the report. The results show good correlations with the Nagoya report, and the
simulation results for the composite map show a similar trend.
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TABLE 14.6 Ignition points set equal to the estimated earthquake
ward no. ignitions no fire brigade fire brigade

Nichi 30 (night) 8.53% 8.08%
58 (day) 13.40% 12.96%

Nakamura 22 (night) 8.90% 8.45%
45 (day) 15.64% 15.23%

correlation with Nagoya estimation data 0.89 0.92
Clipped area (the disaster-prone area) 7.20% 7.14%

14.5.2 Discussion on Experiments

The results of the experiments qualitatively match the data of the report. The officials were
questioned about the possibility of using the RCRS as their tool when we explained the
results to them. Their comments were as follows:

• There are no precedents or no theoretical backgrounds.
• The simulation size is significantly different from the real one; for example, the

number of agents in the experiments is smaller than the real-world situation.

These comments indicate that the validity of the RCRS is required to persuade potential
users to use it as their tool. This requirement is not limited to only the RCRS but is also
applicable to the agent-based social simulation (ABSS), which is difficult to be supported
by actual examples or theories.

Local governments intend to know why one rescue plan is better than another and what
type of agent actions produce good simulation results. In the real world, interviewing the
survivors and the rescue members provide the necessary information on rescue strategies
to save their town from disasters. By using only metrics such as P ,B ,H , and V 2, it is
difficult to determine the reason for one team performing better than the other and the
desired agent actions for obtaining good results. To link agent behaviors with the metrics,
it is necessary to interpret the behaviors of the specific agents from the simulation results
and to express them between microscopic and macroscopic levels.

14.6 Analysis of ABSS Based on Probability Model

In this section, we propose a method to analyze the simulation outputs without any metrics
related with the application domain and show the interpretation of rescue agents behaviors
with the analyzed results.

14.6.1 Agent Behavior Formulation and Presentation

The ABSS outputs complex collective results of the agent behaviors and agent interaction
with other components. The MAS is formalized simply as follows [Weiss, 2000].

action : S∗ → A, env : S ×A→ P(S ),

where A = {a1, a2, . . . , al} is a set of actions that agents perform; S = {s1, s2, . . . , sm}, a set
of environment states; and P(S ), the power set of S . An agent at si will plan his/her possible
actions and execute one ai according to the prior knowledge and information received. The
action changes the situations to the next state. The interaction between an agent i and the
environment leads to the next state. This is represented as a history hi :

hi : s0
a0−→ s1

a1−→ s2
a2−→ s3 · · · .
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FIGURE 14.11 Illustration of rescue agent behavior model at n1.

Here, H = {h1, . . . , hn}, where n is the number of agents involved, and the environments
are the observable outputs.

Our idea is to extract the features of the agent behavior from H and the properties of the
environments based on the probability models. The behaviors of agents with the same aim
will lead to the selection of similar actions. However, all the agents do not necessarily act in
the same manner because their internal states such as the history of their actions and prior
information are different. P(S ), indicates that stochastic processes exist. The behaviors of
the agents at state i are presented as a set {pij}, where pij is the probability of the agents
performing an action that causes the state to be at state j subsequently.

Figure 14.11 shows a situation in which a rescue agent arrives from n0 to extinguish fires.
The agent knows that there are two fires near n2 and n3. At crossing n1, the agent decides on
the fire to be extinguished first and decides to move forward, turn right, or do something else.
The behaviors of the rescue agent are observed as P1 = {p10, p11, p12, p13, p14, p15}, where p1j

is the probability of the agents being at nj in the subsequent step. From these probabilities,
the agent behaviors are analyzed, and the results are used to help users recognize the
differences precisely.

A stochastic matrix P = {pij}, where pij is the probability of the agents at state i , moving
to state j after one time step, describes the behavior of the rescue agent by assuming the
following:

Assumption 1 Agents select their actions to attain their goal efficiently and promptly.

Assumption 2 States that agents visit more often are more important to them than other
states.

Assumption 3 Differences between actions with good and bad performances are repre-
sented as the differences in their probabilities.

The stochastic matrix P has the conditions. pij ≥ 0 and
∑

i pij = 1 for all j . The transition
probability can be approximated by calculating the ensemble average of the times the agents
change states from i to j from the ABSS output. The following conditions pose problems
when applying a stochastic matrix directly to interpret the agent behaviors:

• Let m be the size of states, the size of P is m × m. Knowing m itself indicates
that the states of the agents are known before analyzing their behaviors.
• ∑i pij = 1 for all j implies that transitions to any state can occur. All the states

are equally treated, while the values of the states may differ depending on the
applied tasks.
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search for fires

fill water tank

extinguish fires

FIGURE 14.12 Action pattern of fire brigade agent and its state transition.

We use a frequency matrix, F, where pij are normalized as
∑

ij fij = 1 instead of P ∗. The
following properties are indicated by considering F as a directed graph with fij s associated
with the correspondent edges.

Property 1 F indicates agent behavior. The rank of F is proportional to the range of agent
motions.

Property 2 Large elements of dominant eigenvectors correspond to places that are impor-
tant in a social simulation (in the rescue domain, to protect a town from disasters).

Property 3 When agents move in separate areas, the components of the eigenvectors are
also divided.

Figure 14.12 shows a pattern of the actions of the rescue agent, in which two fires break
out at two places, B1 and B2, and the two agents are at A1 and A2 initially. According
to assumption 1, the rescue agents promptly locate victims at the disaster sites and rescue
them efficiently. The fire brigade agents move toward the fires and attempt to extinguish
them until their water supplies are all gone. When observing the simulation results, the
places visited by the agents are assumed to represent their states, namely, when an agent
is at Bs, the agent is assumed to be in the state of extinguish fire.

Let the tank of the fire engine become empty after ten consecutive extinguishing actions,
and let the fire engine move to a water station, C, with a cost of one time step. This
corresponds to ten extinguish fire states and one fill water tank state. In the F notation, the
behaviors of the fire brigade agent are represented as follows.

A1 B1 A2 B2 C
A1 1/m
B1 10n/m n/m
A2 1/m
B2 10n/m n/m
C n/m n/m

n→∞−−−−→

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 10/24 0 0 1/24
0 0 0 0 0
0 0 0 10/24 1/24
0 1/24 0 1/24 0

⎞
⎟⎟⎟⎟⎠

The representation on the left shows {fij} after repeating n times of fire-extinguishing
and tank filling operations. The total number steps is m = 24n + 2. By repeating the
action patterns, the factors corresponding to the key states become dominant, while the

∗Let Ni be a number representing how many agents are at state si , while N is
P

i Ni . Then fij = Ni
N

pij .
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others become less significant. The matrix on the right goes from n goes to infinity, and its
rank is 3, which corresponds to the number of dominant places: B1, B2, and C. The three
eigenvalues of F are 0.425, 0.417, and −0.008, and the eigenvectors (0, 0.7, 0, 0.7, 0.14)t and
(0, 0.7, 0,−0.7, 0)t correspond to the first and second dominant eigenvalues, respectively. The
major components of the eigenvectors correspond to the locations of the fires frequented
by the agents, i.e., B1 and B2. This also indicates that the most significant state is that of
extinguish fire.

14.6.2 Analysis Results of RoboCup Rescue Competition Logs

The above method was applied to the log files of the RCRS containing the records of the
agent positions. When assuming that the places visited by the agents represent their states,
F is a matrix with NP × NP where NP is the sum of the number of roads, nodes, and
buildings. For M simulation steps, there are at the most M − 1 non-zero elements in F
for one agent. In the case of M � NP , F becomes a sparse matrix. A matrix, X, whose
elements are the nonzero values of F is used in the following discussion. In addition, the
analysis results of the behavior of the fire brigade agents are presented below. The first result
shows that the analysis method provides more information than the metric V2 introduced
in Section 14.4.1. The second result illustrates that the method can be used to show time
sequence changes.

2004 Challenge Session

The 2004 challenge session cited in Section 14.4.1 was conducted on a map with 1065 roads,
1015 nodes, 953 buildings, and F with a size of 3033. Table 14.7 shows the results obtained
by analyzing the behaviors of the fire brigades; interesting possibilities that could not be
envisioned by V2 are observed in Table 14.4.

• The size/ranks column shows the size of X and its rank, which indicates the
range of activities. It is apparent that there are changes in their behaviors with
regard to their sensing abilities, even in the case of team X, whose V2 scores are
similar across the four cases. When the visual sensing ability is reduced to half
its original value, the size and rank of X are greater than those when the ability
is normal; therefore, there is a tendency for area broadening. In addition, team X
moves to a lesser extent when the hearing ability is reduced to half. On the other
hand, team Y moves over a broader area in the three conditions with degradation
in sensing than under the normal conditions; team Z shows a behavior opposite
to that of Y.
• The sizes of the eigenvalues correspond to the importance of the places that the

agents visited. When there are two major places, the values of the corresponding
eigenvalues are of the same order as that in the case of Figure 14.12. The ratio
of the 1st and 2nd eigenvalues is close to 1.0. In case the agents visit one place,
the 1st eigenvalue becomes dominant and the ratio decreases to 0.0. Columns
2/1 and 3/1 show the ratios of the dominant eigenvalue to the 2nd and the 3rd
values, respectively.

For example, the agents of team Y are assumed to move mostly according to the
dominant eigenvalue under the normal sensing conditions. Under the conditions
when the hearing and visual sensing abilities are reduced to half of the original,
the agent behaviors are assumed to be divided into three patterns since the
magnitudes of the dominant, 2nd, and 3rd eigenvalues are equal. It is interpreted
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TABLE 14.7 Size of X and ratio 2nd & 3rd eigenvalues to 1st eigenvalue
Sensing Team X Team Y Team Z

Condition Size/Rank 2/1 : 3/1 Size/Rank 2/1 : 3/1 Size/Rank 2/1 : 3/1
Base 899/820 0.38 0.25 342/254 0.27 0.27 433/391 0.49 0.21

Half vision 920/867 0.31 0.19 650/563 0.85 0.73 372/297 0.58 0.43
Half hearing 787/649 0.80 0.69 626/552 0.85 0.39 372/316 0.69 0.12

Both 685/592 0.85 0.78 575/484 0.96 0.93 332/284 0.79 0.78
2/1, 3/1 stands for 2nd eigenvalue / 1st eigenvalue, 3rd eigenvalue / 1st eigenvalue.

that the agents move inconsistently when the sensing conditions are degraded.

Time Sequence Analysis of Disaster Simulations

Figure 14.13 shows the snapshots of the simulations on the Kobe map. In this simulation,
13 fire fighter agents, 7 ambulance agents, 11 police agents and 85 civilian agents were
involved. By visual inspection, the following observations were obtained.

(a) Initially, three fires break out at locations, B1, B2, and B3.
(b) After 50 steps, the fires at B1 and B2 are extinguished, while the fire at B3 spreads.

(In Figure 14.13 , the black portions indicate the areas that are burned.)
(c) Agents converge to extinguish the fire at B3.
(d,e) After 150 steps, the spread of the fire is prevented by the actions of firefighters.

Table 14.8 shows the time sequence changes in the burning rate and X of the fire brigade
agents; the size, rank, and coefficients of the dominant eigenvectors. From the table, we can
make the following observations:

• The rank of X increases with the simulation steps. This change indicates that the
range of the fire brigade agents widens.
• The ratio of the 1st eigenvalue to the 2nd and 3rd values becomes more dominant

over time. The ratio of the 1st to 2nd eigenvalue is 0.38 at 50 steps, and it
decreases to 0.03 at 300 steps. This indicates that the agents initially moved
separately, and they showed a uniform behavior as the simulation proceeded.
• The following changes in the components of the dominant vectors correspond to

the changes in the snapshots.

– refuge 0 is the key building in all the steps,

– between 100 to 250 steps, a place (road 1) near the fire (B1) is the second
dominant,

– beyond 250 steps, a place (b 3) near another fire (B3) appears as the key
place and becomes the 2nd one.

These interpretations correspond to that obtained from visual inspection; this shows that
X can indicate better the process of disaster simulations than the burning rate.
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(a) start time (Bs: ignition points) (b) 50 steps

(c) 100 steps (d) 150 steps

(e) 300 steps (f) key locations

FIGURE 14.13 Time sequences of disaster simulations. The burned areas, the black portions, spread
as the simulation proceeds.
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TABLE 14.8 Time sequence of burning rate, size of matrix and eigenvectors
properties of X key locations corresponding to

step burning ratio of E.V.s component of dominant e.vectors
rate size/rank e.v(2/1) e.v(3/1) 1st 2nd 3rd

50 2.6% 155/135 0.38 0.38 b 1 b 2 road 1
100 4.0% 246/217 0.11 0.10 b 1 road 1 b 2
150 4.9% 300/271 0.06 0.06 b 1 road 1 b 2
200 5.0% 355/325 0.05 0.04 b 1 road 1 b 2
250 5.0% 422/388 0.04 0.04 b 1 road 1 b 3
300 5.1% 484/442 0.03 0.03 b 1 b 3 road 1

b 1, b 2, b 3, and road 1 are marks of (f) in Figure 14.13

TABLE 14.9 Features of two MAS: Rescue simulation and Soccer simulation
Applied field Rescue actions Soccer games
number of agents 100 or more 11 per team
agents in the team heterogeneous (fire brigade, ambulance) homogeneous (FW,GK)

hierarchical (center office, platoon)
communication voice, telephone (wire/wireless), voice
simulators disasters, traffic motion (player, ball)
logistics major issue -
information access very bad reasonably good
representation symbolic & nonsymbolic nonsymbolic
control distributed/semi-central distributed
filed structure dynamic (GIS) static (goal, line)
agent motions only move along roads can move to any point in xy plane

14.7 Discussion and Summary

The MAS provides schemes to solve complex problems that are difficult to model [Jennings
and Bussmann, 2003]. In this chapter, we discussed the following features that are required
to utilize the ABSS practically.

• An architecture to simulate social activities including human behavior.
• A method to assess the simulation results and explain them in a lucid style.

Architecture of the ABSS

Table 14.9 shows the features of two simulation systems: Rescue and Soccer simulation
systems. Both have been used in RoboCup Competitions, and have been the subject of
interest for many researchers. Since the RCRS system was developed based on the success
of the RoboCup Soccer simulation system, their architectures are similar. The architecture
of the RCRS has been extended to simulate disasters and human behaviors in the GIS
data, as explained in Section 14.3. The kernel controls the simulation process and facilitates
information sharing among the modules, and it is expected to manage tens thousands of
modules and their communications in real time in the future. This will be one of the most
challenging problems in the agent based social simulation system. The RCRS does not
support the following features, which are the future requisites:

1. Real-time simulation: When the system is used practically, the data from disaster
sites will be input to the system. Simulations using the data will help local gov-
ernments instruct civilians to evacuate to safe places; therefore, it is required that
the data be obtained from the real world and disasters be simulated promptly.

2. Distribution of data and computation for a large city: There are situations where
most of the data are derived from one area, while the other areas have few data
to be calculated. More computation resources are used for simulations of wider
areas with more agents. The distribution over the area and integration would
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then become key technologies.
3. Interface for real world: Data from the real world cannot be obtained regularly,

and the time of availability of the data triggers the event simulation. Asyn-
chronous timing is required to support such simulations. High Level Architecture,
an IEEE standard, supports the asynchronous timing and Fiedrich developed an
HLA based disaster simulations [Fiedrich, 2006]. As Koto et al. pointed that HLA
has not specified the interface of distributed Runtime Infrastructure at present
[Koto and Takeuchi, 2003].

4. Communication among agents: To simulate the ABSS with more than 10,000
agents, not only the communication traffic among them but also the ontology
used in the communication becomes important. It is easy to express the intention
of the agents by a task-level language rather than by command-level operations.

Assessment of Simulation Results

To practically use a rescue simulation that has no model or experimental data, the assess-
ment of the output becomes a new challenge. There are two types of assessments, one type
is a domain-specific assessment and the other is a method to task-independently evaluate
agent behavior.

1. We first discussed the need for agent-based disasters and rescue simulation sys-
tems based on their usage by local governments.

2. Next, we showed that the simulation results are comparable to those of other
traditional methods. The experiments conduct using real GIS data are in good
correlation with other methods. This indicates the possibility of the use of ABSS
for practical application.

3. Finally, we proposed a method to represent agent behaviors by a probability
model and interpret them by using the eigenvalues of the matrix. The task-
independent method when applied to the RCRS results shows good behavior
interpretations. This supports the ABSS approach for practical applications in
the future. We hope that the discussions and our proposed method will help
future researchers to study the development of disaster simulations in greater
detail.

The task-independent evaluation method provides useful methods to show the validity of
the results when the MAS is applied to social tasks. A stochastic matrix has been used in
various domains. Recently, it has been applied to fields where the data are not theoretically
well formalized but are heuristically presented. For example, the Page Ranking method
used in Google in its simple form is identical to the eigenvector centrality of the matrix
constructed from the hyperlink data on the WWW [Page et al., 1998]. Our proposed method,
which presents the histories of the agent behaviors by a variant of a stochastic matrix, has
certain aspects that are common with the Page Ranking method.

Ever since we proposed the RCRS in 2000, many disasters have occurred∗. We hope
that our simulation technologies will mitigate the damage caused by disasters, and that the
development of human behavior models will help analyze the simulation results [Silverman

∗Hurricane Katrina, the Indian Ocean tsunami, and 2008 Sichuan earthquake; The mechanism of these
disasters were different from the Hanshin-Awaji earthquake, however, simulation systems to decrease
the damages are desired.
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et al., 2008]. We also hope that this work will help researchers investigate future topics on
related disaster simulations.
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15.1 Introduction

Programming languages for multi-agent system have received enormous research attention
in the last few years. Such languages are now very expressive yet with practical interpreters
and reasonably user-friendly platforms for developing multi-agent systems based on such
languages. One advantage of these languages for developing multi-agent systems is that
the language provides constructs for several concepts and abstractions used in designing or
specifying sophisticated multi-agent systems. So not only are these languages suitable for
implementing designs created with agent-oriented software engineering methodologies, but
they are also ideal for developing simulations with cognitive agents. In particular, the use
of such languages gives a direct declarative representation for an agent’s mental states, for
example the beliefs it currently holds about its environment or other agents sharing the
environment (e.g., in a particular simulation) or the goals it is currently trying to achieve,
as well as how the agent has decided to act upon the environment so as to bring about
those goals. As a consequence, human observers of a simulation developed with an agent
programming language can check not only how social phenomena emerge but also what
are the agents’ mental attitudes that emerged at the same time or led to the observed
social phenomena. This is of fundamental importance for future trends in social simulation
aiming at investigating the micro-macro link problem; that is, how social interaction and
organizations affect mental states and vice-versa.

Most available platforms for agent-based simulation offer easy to use interfaces so that
scientists can develop agent-based simulation even without much knowledge of program-
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ming. However, the consequence is that agents developed with those tools are either re-
active or have very simple behavior. The main contribution of our approach (described in
this chapter) is that it supports the development of agent-based simulations where agents
are potentially much more sophisticated then typically used in current simulations. At the
same time, the use of efficient interpreters for agent programming languages means they
can run in reasonable time, unlike some AI-based approaches where there is, for example,
reasoning from first principles. Although this approach has not been tried extensively yet
for social simulation, it offers a completely new approach for developing agent-based simula-
tions where agents have declarative representations of mental attitudes and display rational,
goal-directed behavior.

In this chapter, we will concentrate in introducing particularly the use of the Jason agent
platform for (social) simulation. Jason includes an interpreter for an extended version of
the AgentSpeak programming language, which is based on the BDI agent architecture. We
will first summarize the main characteristics of BDI agents and how they are implemented
in Jason and then discuss in detail some of the aspects which are particularly important for
simulation, for example the execution mode where agents can run synchronously (whereas
agents typically run asynchronously, reacting to perceived events by executing plans that
include the achievement of long-term goals), the support for developing environments where
agents are situated, Jason ’s “mind inspector”, and the integration with code written in
traditional programming languages. We will also describe various ongoing projects which
aim to add various functionalities to the Jason platform; these in turn will have a significant
impact in the types of simulations that can be developed with Jason . The chapter also
has a running example showing how the various aspects of the platforms could be used in
(social) simulations.

15.2 Programming Languages for Multi-Agent Systems

In recent years, there has been an extremely rapid increase in the amount of research being
done on agent-oriented programming languages, and multi-agent systems techniques that
can be used in the context of an agent programming language. The number and range of
different programming language, tools, and platforms for multi-agent systems that have
appeared in the literature [Bordini et al., 2006] is quite impressive, in particular logic-
based languages [Fisher et al., 2007]. In [Bordini et al., 2005b], some of the languages that
have working interpreters of practical use were presented in reasonable detail. Other lan-
guages have been discussed in other available surveys, e.g. [Mascardi et al., 2004; Dastani
and Gomez-Sanz, 2006]. Even though we here do not discuss existing agent languages and
platforms, it is worth giving references to some examples of well known agent-oriented
programming and platforms: 3APL [Dastani et al., 2005] (and its recent 2APL variation),
MetateM [Fisher, 2004], ConGolog [de Giacomo et al., 2000], CLAIM [El Fallah Seghrouchni
and Suna, 2005], IMPACT [Dix and Zhang, 2005], Jadex [Pokahr et al., 2005], JADE [Bel-
lifemine et al., 2005], SPARK [Morley and Myers, 2004], MINERVA [Leite et al., 2002],
SOCS [Alberti et al., 2005; Toni, 2006], Go! [Clark and McCabe, 2004], STEAM [Tambe,
1997], STAPLE [Kumar et al., 2002], JACK [Winikoff, 2005].

Quite a few of these languages are based on the BDI agent architecture or at least on the
essential notion of goal. Explicit representations of long-term goals that the agent is trying
to achieve are a fundamental requirement for the implementation of a software entity that
displays the kind of behavior that we expect of an “autonomous agent” [Wooldridge, 2002].
It allows agents to take further action when a plan executed to achieve a particular goal
fails to do so (e.g., because the environment where the agent is situated is unpredictable);
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it also allows agents to reconsider the goals they committed themselves to achieve if new
opportunities are perceived in the changing environment. For this reason, it seems that,
at least conceptually, agent programming languages subsume the kind of reactive agent
behavior: we can write plans telling an agent how to behave in reaction to something
directly perceived in the environment, but we can also keep track of long-term goals the
agent is trying to achieve, and we can then add mechanisms to help the agent make decisions
on how to balance both types of behavior. On the other hand, reactive agent approaches
rely significantly on aspects of the environments as well as agent behavior; we mention in
Section 15.4.1 that existing approaches for environment modeling can be combined with
Jason , and indeed with other agent languages too (see, e.g., [Ricci et al., 2008]).

However, it is important to bear in mind that these are just programming languages, they
do not provide any “intelligence” for free. What they do provide are abstractions which help
humans cope with the development of sophisticated (distributed) systems. Most multi-agent
programming platforms will work on top of agent-based middleware (e.g., JADE [Bellifemine
et al., 2005]) that make certain issues of distributed computing fairly transparent for de-
velopers. Another essential characteristic is that they provide direct mechanisms for agents
to act within an environment, and inter-agent communication uses much higher-level ab-
stractions than in classical distributed systems: agents will typically use knowledge-level
communication languages, based on speech-act theory [Austin, 1975] (possibly changing
their mental states as a consequence). The other essential features of agent platforms and
languages are typically related to agents’ mental attitudes. An important aspect in this ap-
proach to distributed systems is that agents’ mental attitudes are private: no other software
component can directly access the current mental state of an agent.

15.3 Programming Multi-Agent Systems Using Jason

As one would expect from the discussion above, the most important constructs in agent
programming languages were created precisely for representing mental attitudes. We will
now concentrate on presenting one particular language, the variant of AgentSpeak [Rao,
1996] as interpreted by Jason [Bordini et al., 2007b], to give a flavor of such language
constructs. We will then also discuss important aspects of the interpreter for this language.

15.3.1 Language

The first thing to note about AgentSpeak is that it builds upon logic programming, so
the basic representation units are “predicates”, very much as in languages such as Prolog
(including the convention that identifiers starting with an uppercase character denote logical
variables). In Jason , the main (agent) language constructs are:

beliefs, which represent information the agent has about the environment, other
agents, or about itself — the term “belief” is used to emphasize the fact that
agents might have incorrect and/or incomplete information about the environ-
ment and other agents;

goals, which represent state of affairs the agent wishes to bring about (essentially
things the agent could potentially come to believe if the goal is achieved); and

plans, which are courses of action that the agent can use to achieve goals or to react
to perceived changes in the environment.

An example of a belief is food(2,3), which could mean that the agent believes there is
food at coordinates 〈2,3〉. Another example is ~own(food,2,3) to mean that the agent
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explicitly believes it is not the case that it owns the food at those coordinates. An-
other interesting aspects of beliefs, in Jason , is that they can have annotations which
can be used for example to maintain meta-level information about individual beliefs.
In particular, Jason automatically annotates the source of all information received by
an agent: percept is used to denote information received from sensors (i.e., through
perceiving the environment), self is used to denote beliefs created by the agent it-
self as “mental notes” (e.g., of things it has done in the past), or an agent name is
used in the representation of information received from other agents. So, for example,
food(2,3)[source(percept),source(ag2),time(10)] would mean that the belief, ac-
quired at time 10, that there is food at those coordinates was both perceived by the agent
itself as well as communicated to this agent by agent ag2. The representation of a goal (in
particular an achievement goal ) is the same of a belief expect that it is prefixed by the
symbol ‘!’. For example, !eaten(2,3) could be used to mean that the agent has the goal
of achieving a state of affairs where the food at those coordinates is believed to have been
eaten.

The agent behavior is determined by the set of plans that the agent has in its plan
library. The agent program specifies the initial state of the belief base, possibly initial goals
of the agent, and also the plans that will be available in the agent’s plan library when the
agent starts running. Interestingly, the agent behavior can change over time if new plans are
acquired (e.g., by communication with other agents). An AgentSpeak plan has the following
general structure:

triggering_event : context <- body.

where the triggering event is used to specify the types of events the plan is meant to handle
(these are typically changes in mental attitudes, specifically beliefs and goals); the context
is used the specify the circumstances under which the plan is thought to be suitable for
handling that event — the context needs to be a logical consequence of the current state of
the agent’s belief base for a plan to be considered when the agent is choosing a plan for it
to commit to execute in order to handle the event (such plans are called applicable plans);
and the body is a sequence of actions to be executed or new goals for the agent to achieve
(in its basic form, other things are allowed in the Jason variant of AgentSpeak). Consider
the following example:

01 // initial beliefs
02 trust([john,mary]).
03
04 permitted(eat,loc(X,Y))
05 :- .my_name(Me) & own(Me,loc(X,Y))
06 | permission(eat,loc(X,Y))[source(Ag)] & own(Ag,loc(X,Y)) &
07 trust(TA) & .member(Ag,TA).
08
09
10 // initial plans
11
12 +food(X,Y) : hungry & permitted(eat,loc(X,Y))
13 <- !at(X,Y);
14 eat;
15 +eaten(X,Y);
15 !ack(X,Y).
16
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17 +!at(X,Y) : at(X,Y).
18
19 +!at(X,Y)
20 <- move_toward(X,Y);
21 ?at(X,Y).
22
23 -!at(X,Y) : not at(X,Y)
24 <- !at(X,Y).
25
26 +!ack(X,Y) : .my_name(Me) & own(Me,loc(X,Y)).
27
28 +!ack(X,Y) : own(Ag,loc(X,Y))
29 <- .send(Ag,tell,eaten(X,Y)).

The initial belief in line 2 is used because when the agent starts running it is meant to
know in advance that it should trust agents john and mary. Note that trust is a predicate
symbol like any other, the programmer chose this representation, presumably because the
agent will need to consider whether a particular agent is trustworthy or not. The belief in
line 4 is a Prolog-like rule (just note that the syntax is the same as used in the context
part of AgentSpeak plans, which is slightly different from Prolog); it says that the agent
can conclude it is permitted to do action “eat” at a particular location of the environment
if either itself owns that location or the agent who owns that location has given permission
for that, and the agent who gave that permission is trustworthy. This rule allows us to have
a more compact context condition for the plan in line 12. The rule uses two “pre-defined
internal actions”: .my name and .member. Internal actions are a mechanism to allow legacy
code (e.g., written in Java) to be referenced from the high-level agent reasoning as defined
by the AgentSpeak code. Unlike actions, internal actions do not change the state of the
environment; they are run to completion within the agent reasoning cycle. Users can provide
libraries of internal actions (Section 15.4.3 explains how); Jason provides a number of pre-
defined internal actions to help with various programming tasks — pre-defined internal
actions available with Jason are those that start with the ‘.’ character.

The plan in line 12 says that whenever the agent gets to believe (i.e., acquires a new
belief) that there is food at some coordinates, provided the agent happens to believe it is
hungry and also believes it is permitted to eat the food that is available at those coordinates
(according to the rule in its belief base which says when the action eat is permitted), the
course of action in the plan body is one potential means the agent could commit to in
order to handle that event (the event of perceiving new food in the environment). If this
particular plan is chosen (it is then called an intended means) the agent will, eventually
(unless the intention is later reconsidered), have a new goal of being at those coordinates
(where food was perceived), then when that goal has been achieved, do the (environment
changing∗) action of eating the food, then adding a note to self to remember that food was
eaten at that position, then having the goal of acknowledging to the owner of the location
(when that’s the case) that food was eaten there.

The plans in lines 17, 19, and 23 together allow the agent to persist in the goal of being
at some particular coordinates until it is achieved. The plan in line 17 says that the agent

∗Environment actions represent the repertoire of agent capabilities, i.e., things the agent is assumed to
be capable of doing to change the environment, as the actions a robot is built to perform, for example.
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has nothing else to do when the goal has already been achieved (i.e., the agent already
believes to be at those coordinates). The plan in line 19 executes the action to move the
agent location within the environment (move toward), then uses a test goal (as opposed to
achievement goal, a test goal is used to retrieve information from the belief base as part of
a course of action) to make sure the goal has been achieved; test goals are prefixed with the
‘?’ symbol. If the agent does not believe to be where it wishes to be, that formula of the
plan body fails, so the whole plan also fails. In Jason , when a plan for a goal +!g fails, an
event of type -!g is generated. So the plan in line 23 is a “contingency plan”, i.e., a plan
that programmers can write for when a plan to achieve that goal failed. In this case, the
same goal is simply generated again, which in BDI parlance would be the same as saying
that this agent is “blindly committed” to achieving this goal. Note also how the agent has
various plans with the same triggering event; this is very typical in agent programming:
programmers will give various alternative courses of action for the same purpose, as each
of those might only work under certain circumstances (and typically an agent can have a
number of plans all of which are, as far as the agent know-how is concerned, possible courses
of action to take to handle a particular event at a particular moment in time, so only one
such plan needs to be chosen for execution).

It is also interesting to note that this plan pattern, where a test goal at the end of the body
is used for the same achievement goal in the triggering event, is used to program declarative
goals in Jason [Hübner et al., 2006]. The notion of a declarative goal in agent-oriented
programming is a goal which is only considered achieved when the predicate in the goal
construct is believed by the agent (this helps programmers in developing rational behavior,
in making agents persist in achieving a goal even if, for example, a plan to achieve the goal
finishes executing but fails to achieve the goal, according to the agent’s beliefs). A different
use of the goal construct is that in the plans in lines 26 and 28. There, a goal is just being
used to execute an appropriate plan, much like a procedure name, to help in modularising
the code. The plan in line 26 simply says that there is no need to acknowledge eating if the
location was owned by the agent itself. The plan in line 28 uses the .send internal action
to send a message to the agent who gave permission for the food to be eaten. The message
uses the tell performative to inform (i.e., aiming at changing the beliefs of the receiver)
the owner that food at that location has been eaten (the message content is eaten(X,Y),
and note that variables X and Y are bound at that point and that the source annotation
placed by Jason can be used by the receiver to know who has eaten that food).

15.3.2 Interpreter

The examples above have shown the main language constructs. We now need to introduce
also a number of important data structures maintained by the language interpreter (Fig-
ure 15.1 briefly illustrates the relations among them). These data structures are essential
to allow programmers to implement BDI agents∗:

∗There is often much confusion between idealized BDI agents — where, e.g., means-ends reasoning is done
by reasoning from first principles — and practical BDI implementations following on ideas introduced
by PRS [Georgeff and Lansky, 1987] — where agents are “reactive planning systems”. Reactive planning
systems are “reactive systems” in the sense of distributed computing (i.e., systems that are built to run
continuously rather than compute a function and terminate) which repeatedly perceive their environment
and react to perceived changes by executing plans available in a plan library, determining the courses
of actions they take in order to achieve their goals. In fact, this determines an agent reasoning cycle,
typically starting with perception of the environment, further committing to plans as intended means to
achieve goals or react to environment changes, choosing one intention (i.e., a commitment to a course of

© 2009 by Taylor and Francis Group, LLC



Agent-Based Simulation Using BDI Programming in Jason 457
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FIGURE 15.1 Main components of the Jason interpreter.

belief base: the belief base stores all beliefs currently held by the agent; both closed
and open world can be used (the ‘~’ operator is used for strong negation). At every
reasoning cycle (unless configured otherwise) Jason obtains all percepts available
to the agent from the environment model and executes a “belief update function”
(both belief update and belief revision can be customized by the programmer, and
in fact the belief base itself can be customized, e.g. to use a database for some of
the beliefs, which may be useful in large-scale applications).

set of events: all changes in beliefs (due to belief update or communication) as well
as changes in goals (e.g., because a plan being executed created a new goal for
the agent to achieve, or because other agents tried to delegate new goals through
communication) create new events which might trigger the execution of plans
whose triggering event matches (unifies with) those events, provided they are
applicable at the time the event is chosen for handling at a particular reasoning
cycle. The choice of which event to handle in a particular reasoning cycle is made
by a method that can be overridden by the programmer (otherwise a FIFO policy
is used), so as to allow the use of application-specific information (e.g., on what
events are known to have priority for a particular agent).

plan library: this is where the agent know-how is stored. The plan library is initial-
ized with the plans that programmers write in the AgentSpeak code for that
agent. While simple agents will have the plan library unchanged throughout

action, e.g., to achieve a certain goal) to be executed further and then acting based on such choice. The
agent repeatedly executes such reasoning cycles, possibly doing nothing but wait for new changes to be
perceived in the environment which could then trigger the agent to act further.
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their execution, it is possible to change the agent behavior for example by plan
exchange using speech-act based inter-agent communication (this could also be
used to communicate with an “agent” wrapper for a planner, thus creating new
plans for agents to act in circumstances that the programmer did not anticipate
– if this happens to be useful, and feasible, in particular applications). Plans
in the plan library have labels to uniquely identify them, and such labels, like
beliefs, can have annotations; meta-level information in plan labels can be used,
for example, in advanced (user-defined) selection functions which could use, say,
some decision-theoretic approach for choosing the best plan for an agent to use,
or in scheduling intentions, etc.

set of intentions: each perceived change in the environment (as reflected in changes
in beliefs) potentially create a separate intention for the agent, provided there
is an applicable plan for that event. Therefore, each separate intention in the
agent’s set of intentions represent a particular “focus of attention” for the various
tasks currently being done by the agent: they all compete in the agent’s choice
of intention to be further executed in a given reasoning cycle. Each intention
potentially becomes a stack of partially instantiated plans. When the plan body
includes a new goal to be pursued, an event is generated which when handled
will lead to a new plan to be executed in order to achieve that goal, and that
plan is pushed on top of the intention that required the goal to be achieved; only
when that plan finishes executing (successfully) can the plan that required the
goal to be achieved resume execution (hence the appropriateness of the stack
structure to represent one intention). Note that the choice of plan to use in order
to achieve the goals that appear in one intention is made as late as possible
(and based on the plan contexts) which is an important feature for multi-agent
systems, as they are typically meant to work in very dynamic environments. As
we mentioned, Jason also has mechanisms to allow goals and intentions to be
dropped or revised, but this is beyond the scope of this chapter.

There are, of course, various other structures that are required by an agent programming
language interpreter (e.g., the queue of messages received from other agents that have not
yet been processed by the agent). Those above are the essential ones for individual BDI
agents. One unusual characteristic of AgentSpeak (and some other agent languages) as a
programming language is that certain components of the interpreter are defined by the
user, in particular the selection functions. They determine which event is to be handled
next, which (applicable) plan to choose, and which intention (i.e., a focus of attention for
the agent) to execute further in a given reasoning cycle. These decisions are all agent-
or application-specific, hence the need to make them customizable by users. Appropriate
(intelligent) scheduling of intentions in any generic way is bound to be intractable, hence
the practical choice in agent languages of letting users define specific and efficient selection
functions, when necessary.

The example given above was just to illustrate the basic language constructs in a way that
is easy to understand; it does not cover many aspects of more advanced agent programming,
which makes it difficult to illustrate some of the characteristics of BDI agents, for example
the fact that agents typically have various foci of attention, and that they should reconsider
intentions and drop them if they believe they are no longer achievable, or the motivation
that led to the adoption of the goal no longer exists. In a later section we give a complete
social simulation example; we decided to use an existing simulation in the literature to make
the example more easily understandable. We chose one of the few simulations we know of
where agents are not purely reactive (they are said to be “semi-cognitive”), and even then it
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will be clear this type of agents are extremely simple to program in Jason . In fact the code
is much simpler than in the example above which, recall, was already too simple to demon-
strate the kind of sophisticated agent behavior the language is meant to help develop. The
conjecture is that by making judicious use of Jason features, simulations where cognitive
agents display very elaborate behavior could become more popular; the simulation toolkits
currently popular certainly do not lend themselves to this type of development.

Due to space restrictions, we cannot go into enough detail here to expect the reader to
learn how to program in Jason ; the interested reader should refer to [Bordini et al., 2007b]
for a complete account of the current Jason implementation.

15.4 Jason Features for Simulation

The previous section described how the agents of a simulation can be specified using a BDI
approach and that is surely the most important contribution of Jason for social simulation.
However, to run the overall simulation we need to define other components besides the
agents, one of those components is the environment where the agents are situated and that
simulates the execution of their actions and provides them with the relevant perception.
We also need components to control, inspect, and analyze the execution of the simulation.
Some of the features provided by Jason to develop such components are described in the
following subsections.

While the agents are programmed in AgentSpeak, the components described in this sec-
tion are better programmed in Java, since the object-orientation abstractions are typically
enough for these programming tasks. Some excerpts of Java code are thus shown to illus-
trate how those features are easily integrated into a project. To preserve readability, we will
not explain all the details of the how to code those components; those details can be found
in [Bordini et al., 2007b] and in the Jason manual.

15.4.1 Environments

Every Jason agent has an architecture that “binds” them to the real environment, and
this architecture is responsible for the concrete execution of actions and the mapping from
sensor data to symbolic (belief) representation. It is relatively easy to create a simulated
environment for the agents. In that case, instead of executing the actions, the agent’s archi-
tecture asks the environment component to simulate the action and to give back updated
perception (when the agent reasoning cycle requires it). Simulated environments are indeed
the default configuration of Jason projects.

The environment model should be programmed in a Java class that extends the Jason
Environment class, where some useful functionality is provided. An environment class has
three main functions:

1. Maintain a representation of the state of the environment.
2. Simulate the execution of actions required by the agents. This execution nor-

mally simply changes the state of the environment. The code that implements
the simulation of the action must be written in the executeAction method. This
method is called whenever an agent chooses to perform an action.

3. Provide a symbolic representation of the environment when the agents attempt
to perceive the current state of the environment. A set of methods are provided
to add perception to all agents or to some particular agent. The environment is
a passive entity, thus it does not “send” perception to the agents when the envi-
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ronment changes. Only when some agent actively senses the environment at the
appropriate step of its own reasoning cycle, a representation of the environment
state is made available to it.

The following code illustrates how an environment can be programmed for a simple scenario
with a lamp and a switch. In this environment, the agent can do the actions turn(on) and
turn(off), and get as percepts either light(on) or light(off).

Example 15.1

public class Room extends Environment {

// state of the environment

boolean isOn = true;

public void init(String[] args) {

updatePercepts();

}

// update the perception of all agents with a symbolic

// representation of the curent state of the environment

public void updatePercepts() {

clearPercepts();

if (isOn)

addPercept(Literal.parseLiteral("light(on)"));

else

addPercept(Literal.parseLiteral("light(off)"));

}

// simulates the execution of the actions

public boolean executeAction(String agName, Structure action) {

if (action.toString().equals("turn(on)"))

isOn = true;

else if (action.toString().equals("turn(off)"))

isOn = false;

updatePercepts();

return true; // the action was successfully executed

} }

In the default implementation of the environment, the execution of actions is asyn-
chronous and concurrent. By asynchronous we mean that it is not the agent thread that
executes the action, the agent requests the execution of an action and continues its reason-
ing cycle without waiting until the end of the execution. Only the particular intention that
is performing the action is suspended until the action is finished by the environment. By
concurrent we mean that several requested actions can be executed at the same time.

Many simulations require some sort of synchronization in the environment. For instance,
agent-based simulations often need the concept of simulation “step”, and in one such step,
each agent is is required to execute exactly one action — see the time-stepped approach

of this book. This kind of environment is also provided with Jason through the use of
the SteppedEnvironment class; programmers only need to change the super-class of their
environment class to start using this kind of environment (the example in Section 15.5 uses
this kind of environment).
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lation paradigm. Although a class for this type of environment is not currently available
in Jason , it could be easily provided in the future. However, future direction for Jason
environments is in fact to use independent approaches and tools that specialize in this, such
as ELMS [Okuyama et al., 2006] and “Agents & Artifacts” [Ricci et al., 2007] (more on
environments in Section 15.6). This would allow for the development of very sophisticated
environments but also environments that are elegantly/declaratively specified (very much
as the use of AgentSpeak for specifying autonomous agents). For example, some approaches
would allow for the development of an environment simulation that runs distributedly. This
could be very useful for very large scale simulations; while Jason allows agents and the
environment to run in various different hosts, the environment itself can only run in one
host which in some circumstances could become a distribution “bottleneck”.

In the general classification of uses of multi-agent systems toolkits given in Chapter 3, the
main use of Jason would fall into category “Development of Software MAS”. Although we
have provided changes in execution modes and extensions of environment classes to adjust
Jason for traditional uses in social simulation (both other categories in that chapter), we
believe that Jason ’s normal execution mode — where agents are completely asynchronous
and the notion of “event” is individualized to each agent based on what they perceive in the
environment — would provide an interesting approach for sophisticated social simulation,
even though the observation and logging of simulation results might need more elaborate
work than usual time-stepped simulations.

15.4.2 Execution Modes

As presented in the previous section, the environment can be used to perform some kind
of synchronization regarding the actions of the agents. However, it could also be necessary
to synchronize the agent’s reasoning cycle regardless of the actions they are performing. To
help with this, two execution modes are available with Jason :

Asynchronous: all agents run asynchronously. An agent goes to its next reasoning
cycle as soon as it has finished its current cycle. This is the default execution
mode.

Synchronous: all agents perform one reasoning cycle at every “global execution step”.
When an agent finishes its reasoning cycle, it informs an execution controller and
waits for a “carry on” signal. The controller waits until all agents have finished
their reasoning cycles and then sends the “carry on” signal to them.

The controller class of the synchronous mode can be customized by the user. This feature
can be used, for instance, to inspect the mind of the agents after each reasoning cycle. This
is exactly what the debugging tool called “mind inspector” does. At each cycle, it asks a
copy of the internal state of all agents and displays them as shown in Figure 15.2.

Users can use this feature for their own requirements. The code below illustrates how to
program a controller that gets the number of intentions of the agents at each cycle. When
an agent finishes its cycle, the method receiveFinishedCycle is called and an XML copy of
the agent’s state can be obtained.

Example 15.2

public class CountIntentions extends ExecutionControl {

public void receiveFinishedCycle(String agName, boolean bp, int cycle) {
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FIGURE 15.2 Screenshot of the Mind Inspector, where the beliefs, events, intentions, and actions of
the agents at each step can be observed.

super.receiveFinishedCycle(agName, bp, cycle);

// get an XML description of the state of the agent

Document doc = getExecutionControlInfraTier().getAgState(agName);

// use XPath to count the number of intentions

XPath xpath = XPathFactory.newInstance().newXPath();

double ni = (Double)xpath.evaluate(

"count(//intention)",

doc, XPathConstants.NUMBER);

} }

15.4.3 Internal Actions

An important construct for allowing Jason agents to remain at the right level of abstrac-
tion is that of internal actions. While actions are executed in the environment, internal
actions, as the name suggests, are not related to the environment but executed “within”
the agent and thus can directly manipulate the state of the agent (but only that of the agent
executing it). Since internal actions are (typically) programmed in Java, they can also be
used to implement any functionality not available in the AgentSpeak standard language,
e.g. graphical user interface, database access, and more generally access to any legacy code.

Internal actions that start with ‘.’ are part of Jason library of pre-defined internal
actions. Internal actions defined by users should be organized in specific libraries. In the
AgentSpeak code, the action is accessed by the name of the library, followed by the ‘.’
symbol, followed by the name of the action.
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For example, suppose an agent has to ask the user if they want to switch the light on
when it is perceived as off by the agent, as in the AgentSpeak code below:

+light(off)
<- gui.yes_no("Should I turn the light on?");

turn(on).

The gui.yes no is an internal action that should be programmed in Java. This internal
action will receive a string as parameter and should succeed if the user’s answer is “yes”,
otherwise it should fail. In case the internal action succeeds, the (external) action turn(on)
will be performed. The following code implements this internal action.

Example 15.3

package gui;

import jason.asSemantics.*;

public class yes_no extends DefaultInternalAction {

public Object execute(TransitionSystem ts, Unifier un,

Term[] args) throws Exception {

// args[0] is the string with the message

int answer = JOptionPane.showConfirmDialog(null, args[0].toString());

// returns true if the user answer was YES

return answer == JOptionPane.YES_OPTION;

} }

15.4.4 Customized Architectures

As mentioned in the beginning of Section 15.4.1, every agent has an architecture that is
responsible for the execution of actions and the agent’s perception (see Figure 15.3). This
architecture can be individually customized to simulate different perceptual (dis)abilities,
failures, etc. In software development, this is also useful to move from a simulated en-
vironment (e.g., used to test the system) into deployment in the real-world environment
(where the architecture will interface with existing hardware/software systems to act in
and perceive the environment).

The class that customizes the agent architecture can override several methods, the two
most relevant for simulation are act and perceive. For example, we can simulate an agent
that is able to perceive only some types of perception; another that does not see colors;
and an agent with some degree of blindness (as shown in the code below). Note that the
environment model determines what is actually perceptible to an agent; in this case we
are interested in simulating one particular agent that will not perceive all that it could
potentially perceive.

Example 15.4

public class BlindAgent extends AgArch {

Random r = new Random();
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FIGURE 15.3 General view of the relation between the agent and the environment. The user sets up
the simulation by defining the reasoning of the agent in the AgentSpeak code, special requirements in the
architecture, and the environment simulation.

public List<Literal> perceive() {

List<Literal> percepts = super.perceive();

if (percepts != null) {

// randomly remove 80% of the perception

long n = Math.round(0.8 * percepts.size());

for (int i=0; i<n; i++)

percepts.remove(r.nextInt(percepts.size()));

}

return percepts;

} }

15.5 Example

This section describes how a complete example can be programmed and simulated in Jason .
In fact, the example shows how trivial the agent behavior is in the type of social simulation
that some researchers have had to content themselves with, due to the limitation of agent-
based simulation toolkits (and more generally, multi-agent systems technology until very
recently). We have chosen the scenario used in [Castelfranchi et al., 1998]:

“... agents as objects moving in a two-dimensional common world (a 10 x 10
grid) with randomly scattered food. An experiment consists of a set of matches,
each including a fixed number of turns. At the beginning of a match, agents
and food items are assigned locations at random. A location is a cell in the
grid. The same cell cannot contain more than one object at a time (except
when an agent is eating). The agents move through the grid in search of food,
stopping to eat when they find it. The agents can be attacked only when eating:
no other type of aggression is allowed. At the beginning of each turn, every
agent selects an action from the six available routines: eat, move-to-food-seen,
move-to-food-smelled, attack, move-random, and pause. Actions are supposed
to be simultaneous and time consuming. The most convenient choice for an
agent is eat. Eating begins at a given turn and may end two turns later if it isn’t
interrupted by aggression. To simplify matters, the eater’s strength changes only
when eating has been completed. Therefore, while the action of eating is gradual
(to give players the chance of attacking each other), both the food’s nutritional
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value and the eater’s strength change instantaneously. When a food item has
been consumed, it is immediately restored at a randomly chosen location. This
is in order to allow for all agents to survive and obtain comparable results from
all simulations. The agent will then look for unoccupied food items within its
“territory” (consisting of the four cells to which an agent can move in one step
from its current location), choosing move-to-food-seen if any is found. If not,
it will smell within its neighbourhood (extending two steps in each direction
from the agents’ current location), in order to choose move-to-food-smelled;
the agent does not know whether this food location will be occupied or not,
because agents can detect one another only within their “territory”. At this
point, the agent will take into consideration attacking against any other eating
neighbour, weighting this option with its own norm affiliation. The outcomes of
an attack are determined by the agents’ respective strengths (the stronger agent
is always the winner). When the competitors are equally strong, the defender is
the winner. The cost of aggression is equal to the cost of receiving aggression.
However, winners obtain the contested food item. Agents might be attacked by
more than one agent at a time, in which case the victim’s cost is multiplied by
the number of aggressors. In the case of multiple aggression, only the strongest
attacker carries out the attack, while the others must pass. If none of the above
actions are possible, the agent is left with the sad options of move-random or
pause if no close cell is free. Matches consisted of 2000 time steps, and included
50 agents with a default strength of 40, plus 25 food items with a nutritive
value of 20. The costs are 0 for pausing, 1 for moving to an adjacent cell, 4 for
attacking or receiving attacks”.

This scenario is well known because it covers (in a simple environment) important aspects
of both normative behavior as well as reputation, which are increasingly important aspects
of current research and in multi-agent systems as well as, of course, fundamental issues in
the social sciences.

The implementation of this simulation in Jason is divided into two main parts: the
environment simulation and the agent behavior.

15.5.1 Environment

The environment should require one action per agent in each step, therefore its implementa-
tion extends the class SteppedEnvironment, as described in Section 15.4.1. The environment
implements the simulation of the following actions (they are not exactly the same actions
as used in the paper by Castelfranchi et al., as we chose to define more general ones):

eat : eat the food in the current location of the agent.
move(X,Y) : move the agent one step toward the location X,Y.
random move : move the agent to an unoccupied random direction.
attack(X,Y) : attack the agent at location X,Y.
pause : does nothing; this action is necessary since at every step all agents have to

perform one action.

The perception given to agents is as follows:

step(N) : the current simulation step is N.
pos(AgId,X,Y) : the current location of the agent doing perception, where AgId is

the agent identification in the system, X is its column in the environment, and
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+ executeAction()
~ updatePercepts()

<< controller >>

FoodEnvironment

from jason

Environment
from jason

GridWorldView
from jason

GridWorldModel

~ eat()
~ move()
~ randomMove()
~ attack()

~ strength: int[]
~ owner: int[][]

<< model >>

FoodModel

~ drawAgent()
~ drawFood()

<< view >>

FoodView

1 0..1

model

1

FIGURE 15.4 Class diagram with the classes used to implement the environment. The classes at the
top of the figure are provided by Jason.

Y the row.
strength(S) : the strength of the agent doing perception is S.
food(X,Y,P,O) : some food is perceived at location X,Y. P indicates how far the food

is from the agent, if P is my pos the food is in the same location as the agent; if
P is see, the food is one step away; and if P is smell the food is two steps away.
As we explain later, each food item has an owner allocated to it; the variable O
represents the owner of some food. If O is -1, the food has no owner.

agent(Id, X, Y, S, A) : the agent identified by Id is around the agent doing per-
ception. X,Y is its location, S its strength, and A what it is doing (moving or
eating).

attacked(Id) : the agent doing perception was attacked by the agent identified by
Id.

While simple environments can be implemented in a single class as exemplified in Sec-
tion 15.4.1, more complex environments demand more careful design. Most simulations
require a graphical interface, and a suitable design pattern for such environments is the
Model-View-Control pattern much used in object orientation. In this pattern the Jason
environment plays the role of controller, to which a model (that maintains the state of the
environment) and a view (that displays the current state of the model) should be aggregated.
Jason provides general purpose classes for grid-based models and views, thus simplifying
the development of the overall environment implementation. Figure 15.4 shows the class
diagram with the relations between the classes used to implement the environment for this
example. The model class contains attributes to represent the current state of the places and
agents (the agents’ strength and the foods’ owners for example). The agents’ location are
maintained by the super class GridWorldModel. The model also implements useful methods
for each possible action, so that the environment class in its executeAction method can
call them when required by the agents. In a similar way, the environment uses the state
of the model to provide perception to the agents in its updatePercepts method. Due to
inheritance of several functionalities of the classes provided by Jason , the implementation
of the environment for grid-based scenarios is quite straightforward (for users with some
experience in Java programming).
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15.5.2 Agents

The first type of agent described in [Castelfranchi et al., 1998] is called “blind agent”. This
agent attacks others whenever there are no better alternatives. The preference order of the
action is defined by the following rules:

Rule-b1 If there is food in my cell, eat.
Rule-b2 If I see food in a free cell, move to there; a free cell is a cell with no agent.
Rule-b3 If I see food in an occupied cell, attack the agent at that cell.
Rule-b4 If I smell food, move to there.
Rule-b5 Otherwise, do a random movement.

Note that this first agent is very simple and its rules based only on perceptual information.
The agents presented latter will be slightly more complex using communication and beliefs.

Since the agents must select one action at each simulation step, the easiest way to imple-
ment them in Jason is to write plans to react to the perception of a new step, following the
template below for all plans (note that this is not how agents are normally implemented in
Jason , this is the case here simply because these agents are purely reactive agents running
in a time-stepped simulation):

+step(N) : <context> <- <action>.

The program below implements the five rules for action decision (b1–b5) using one AgentS-
peak plan for each rule:

Example 15.5

/* -- blind agent -- */

// Rule-b1
+step(_) : food(X,Y,my_pos,_) <- eat.

// Rule-b2
+step(_) : food(X,Y,see,_) & not agent(_,X,Y,_,_) <- move(X,Y).

// Rule-b3
+step(_) : food(X,Y,see,_) & agent(_,X,Y,_,eating) <- attack(X,Y).

// Rule-b4
+step(_) : food(X,Y,smell,_) <- move(X,Y).

// Rule-b5
+step(_) <- random_move.

The second type of agent is called “strategic agent”. This agent only attacks other eaters
whose strength is not higher than their own. Its code is thus quite similar to the blind agent
code, only Rule-b3 is changed to:

Example 15.6

/* -- strategic agent -- */
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// Rule-s3
+step(_)

: food(X,Y,see,_) &
agent(_,X,Y,S,eating) &
strength(MS) & MS > S

<- attack(X,Y).

The third type of agent is called “normative agent”. These agents are added in the
simulation to investigate the role of norms in the control of aggression. Some food units are
allocated to an agent situated in its vicinity and the norm states that the agents can not
attack others eating their own food.

Example 15.7

/* -- normative agent -- */

// Rule-n1: only eat food that is free or allocated to me
+step(_) : food(X,Y,my_pos,A) & (pos(A,_,_) | A == -1) <- eat.

// Rule-n2: if I see food allocated to me, move to there
+step(_) : food(X,Y,see,Me) & pos(Me,_,_) & not agent(_,X,Y,_,_)

<- move(X,Y).

// Rule-n3: if I see unallocated food, move to there
+step(_) : food(X,Y,see,-1) & not agent(_,X,Y,_,_) <- move(X,Y).

// Rule-n4: if I see another agent eating food owned by others, attack it
+step(_) : food(X,Y,see,OAg) & agent(AgId,X,Y,_,eating) &

AgId \== OAg & OAg \== -1
<- attack(X,Y).

// Rule-n5: if I smell my food, move to there
+step(_) : food(X,Y,smell,Me) & pos(Me,_,_) <- move(X,Y).

// Rule-n6: if I smell unallocated food, move to there
+step(_) : food(X,Y,smell,-1) <- move(X,Y).

// Rule-n7: otherwise, move randomly
+step(_) <- random_move.

The first experiment reported in [Castelfranchi et al., 1998] was to collect the average
strength (Str), the variance of individual strengths (Var), and the number of attacks (Agg)
after 2000 steps of a system formed by 50 homogeneous agents. All this information is
available in the environment, so the Java class that implements the environment also collects
these data. To run this simulation in Jason , a project file should be configured with the
type and quantity of agents:

MAS normative_simulation {
// the class that implements the environment is FoodEnvironment
// parameters are: grid size, number of agents, number of food units
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TABLE 15.1 Results of the first experiment.
Agent type Strength Variance Aggressions

Blind 2793 1748 6210
Strategic 2839 1815 3170
Normative 3076 310 82

environment: FoodEnvironment(10,50,25)

agents:
//blind #50;
//strategic #50;
normative #50;

}

Note that it is very easy to change the type of agents and the quantity. A screenshot of
the simulation is shown in Figure 15.5. In general, the results are similar to those presented
in [Castelfranchi et al., 1998] and are shown in Table 15.1: normative agents performs better
(in the sense that their average strength is greater). Although the conclusion is the same,
the values in Table 15.1 do not reproduce those presented in [Castelfranchi et al., 1998].
The reason for this is due to the interpretation of some parts of the scenario description
that are ambiguous in the paper, so we had to make our own implementation decisions.

In the second experiment, the type of agents are mixed (e.g., 25 strategic agents with 25
normative). The result is quoted from the paper by Castelfranchi et al. below.

“This experiment’s findings can be summarized as follows: (a) in a mixed popu-
lation, the normative strategy, which was the best in the standalone condition,
becomes the worst. (b) The non-normative agents benefit from the existence of
normative ones. (c) This requires that some penalty for transgression be intro-
duced in the system; one such penalty can be implemented as a specific type of
social knowledge, namely normative reputation”.

This result has motivated the authors to define a new type of agent, called “reputation
agent”. Reputation agents try to adapt their behavior so that they play as normative with
normative agents and as strategic against strategic agents. Therefore, they need to main-
tain a model of the other agents they interact with. In [Castelfranchi et al., 1998], a very
simple reputation model is proposed: whenever the agent is attacked when eating its own
food, the attacker is considered a cheater. In that paper, the authors also noted that the
information about the reputation of others works much better if shared by several agents.
Thus, reputation agents tell other agents the list of agents they think are cheaters.

The implementation of the reputation agent in Jason is very simple. When it perceives
it has been attacked by another agent, it adds a new belief representing that that agent is
a cheater (reputation based on direct experience) and broadcast that belief to the others
(reputation based on collective information):

+attacked(A) // perception event
<- +cheater(A); // belief addition

.broadcast(tell, cheater(A)). // broadcast message

Jason has a pre-defined implementation of the semantics of “tell” messages, so the agents
do not need to be programmed to “receive” a message. The content of a tell message is
automatically added to the belief base of the agents (with an annotation about the source
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of the belief), provided message comes from an “authorized” source∗.
The belief about who are the cheaters is then used in the plans to adapt the behavior

accordingly, i.e., depending on the reputation of the others. The code below contains all
the rules of the reputation agent. Note that only the first and the fourth rules are slightly
different from the strategic agent, showing that it is quite easy to experiment with different
behaviors given the high abstraction level of the AgentSpeak language.

Example 15.8

/* -- reputation agent -- */

// Rule-r1: eat food that is either allocate to me, free, or
// belongs to a cheater
+step(_) : food(X,Y,my_pos,A) &

(pos(A,_,_) | A == -1 | cheater(A))
<- eat.

// Rule-r2: if I see food allocated to me, move to there
+step(_) : food(X,Y,see,Me) & pos(Me,_,_) & not agent(_,X,Y,_,_)

<- move(X,Y).

// Rule-r3: if I see unallocated food, move to there
+step(_) : food(X,Y,see,-1) & not agent(_,X,Y,_,_)

<- move(X,Y).

// Rule-r4: attack cheaters that are weaker than me
+step(_) : food(X,Y,see,OAg) & agent(AgId,X,Y,S,eating) &

cheater(AgId) &
strength(MS) & MS > S

<- attack(X,Y).

// Rule-r5: if I smell my food, move to there
+step(_) : food(X,Y,smell,Me) & pos(Me,_,_) <- move(X,Y).

// Rule-r6: if I smell unallocated food, move to there
+step(_) : food(X,Y,smell,-1) <- move(X,Y).

// Rule-r7: otherwise, move randomly
+step(_) <- random_move.

The result of the execution of a system with 25 strategic agents and 25 reputation agents
is again similar to (but not exactly the same as) those presented in [Castelfranchi et al.,
1998]: reputation agents do better than normative agents against strategic agents.

∗Note that because the source of the information is kept in the belief base, the agent can later make
judicious use of this information, e.g., if it comes not to trust a particular agent anymore. Also, by
default, all agents in an agent society are allowed to communicate with each other; if, for example,
security is an issue, a method can be overridden to limit the agents that are allowed to communicate
with a particular agent.
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FIGURE 15.5 Screenshot of the Simulation GUI. The window to the left contains a graphical represen-
tation of the scenario: gray places are occupied by one agent and light-gray (yellow) squares represent food.
The top-right window is the Jason console where statistical data (the average strength of the agents) is
being displayed. We also created an extra window (bottom-right) to show a graph where we plot (using
jFreechart) the sum of agents’ strength (for both strategic and reputation agents) at each simulation step.

15.5.3 Results

The example has shown how this type of social simulation can be easily implemented in
Jason . One advantage of the approach is the readability of AgentSpeak code. Another
advantage of the approach is the clear distinction between environment and agents, in par-
ticular in having a language that is specifically designed to program autonomous agents (we
will give references to environment-specific languages in the next section). In this example,
because the agent behavior is trivial, most of the implementation effort was in simulating
the environment. As we mentioned above, these agents are simply reactive (as opposed to
cognitive), they have no long-term goals and do not require any complex goal-based be-
havior. This is precisely the strength of Jason as a simulation platform. However, we felt
we needed to use a well-known social simulation as example here. We hope that the recent
availability of agent platforms such as Jason will contribute to the future development
(and popularization) of much more complex forms of social simulation.

15.6 Ongoing Projects

There are a number of ongoing research projects aiming at extending or using Jason in a
number of ways that will have an important impact in the sophistication of simulations that
can be developed with Jason . We summarize two such projects (that are more relevant for
social simulation) below, for more details see [Bordini et al., 2007b, Chapter 11]. Another
possible research direction would be to use the AgentSpeak interpreter of Jason in com-
bination with existing agent-based simulation platforms (see Chapter 3 of this book). We
also expect further improvement of Jason itself as a consequence of research in the area
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of agent-oriented programming languages (e.g., on plan selection based on reasoning about
goal interactions [Thangarajah et al., 2003; Shaw and Bordini, 2007]).

Environments: As we saw in the example, Jason provides a very high-level language
for programming agents, but still requires Java programming for simulated envi-
ronments (even though a lot of support is given for that task). It would be much
more convenient to also use a high-level (declarative) language created specifically
for modeling environments for social simulation using cognitive agents [Bordini
et al., 2005a]. This was the motivation that led to the development of the ELMS
language, described in [Okuyama et al., 2005]. That work has recently been ex-
tended [Okuyama et al., 2006] to allow environment descriptions to have objects
containing social norms that are to be observed only within the confines of an
environment location, possibly where an institution or organization is situated
(similarly to ‘please refrain from smoking’ or ‘keep silence’ signs). Another recent
development [Ricci et al., 2008] is the integration of Jason with a well-known
approach for developing multi-agent environments based on the “artifact” ab-
straction [Ricci et al., 2007], which could help in the development of very elab-
orate (distributed) environments; more on artifacts in the item below. Although
this would require further investigation, it seems that other approaches to mod-
eling environments, such as those proposed in [Bandini et al., 2002], [Weyns and
Holvoet, 2004], and [Helleboogh et al., 2007], could also be potentially integrated
with Jason for use in particular projects.

Organizations: An important part of agent-oriented software engineering is related
to agent organizations, which have received much research attention in the last
few years (see for example, the COIN – Coordination, Organization, Institution
and Norms for agent systems – workshop series [Noriega et al., 2007]). We are
currently working on allowing specifications of agent organizations (with the re-
lated notions of roles, groups, relationships between groups, social norms, etc.) to
be used in combination with Jason for programming the individual agents. The
particular organizational model we use is Moise

+ [Hübner et al., 2004] and an
initial integration with Jason is discussed in [Hübner et al., 2007] (and available
from http://moise.sf.net). While this latter proposal is roughly implemented
by means of a library of internal actions and special agents, another approach is
to place special artifacts in a virtual environment which provide organizational
actions such as “create group” and “adopt a role” to the agents [Kitio et al.,
2008]. The advantage of this second approach is that the agents can use and
change the organization by performing actions in the environment in the same
way they perform any other ordinary action (as proposed by the Agent & Arti-
facts meta-model [Ricci et al., 2007]).

A long-term goal of our work is to develop complex social simulations where emergent
cognitive phenomena can be studied, associated with the well-known micro-macro link prob-
lem. In order to do that, we need to model social phenomena such as organizations as well as
mental attitudes, and the combination of Jason with Moise

+ provides a suitable frame-
work for this.

Also, we can expect further progress on each of those systems individually. There is
much ongoing work on organizations, as well as on programming languages for multi-agent
systems. For Jason in particular, various language extensions are planned, as discussed
in [Bordini et al., 2007b, Section 11.2]. Some current issues in programming languages and
methodologies for multi-agent systems are discussed, for example, in [Bordini et al., 2007a].
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15.7 Conclusion

This chapter has shown a new approach to programming that provides powerful abstractions
for the development of multi-agent systems, and we highlighted a number of features that
can favor the use of multi-agent systems for (social) simulation. The approach is suitable
for the implementation of much more sophisticated simulations then typically possible with
existing agent-based simulation toolkits. Besides being an important abstraction for agent
programming, Jason provides many features that can help with large-scale projects, such
as user customizations, and the use of distribution infrastructures (such as JADE).

However, of course this does not come for free. This approach requires a lot more pro-
gramming than typical agent-based simulation toolkits, and indeed it takes some effort to
learn the new programming style even for those familiar with programming languages. On
the other hand, future developments in agent-oriented programming, and with Jason in
particular, such as libraries of architectures, actions, environments, as well as the ongoing
projects discussed in the previous section, will significantly facilitate future practice of agent
programming, possibly making this approach easier to use but with the potential for much
more sophisticated social simulations being developed.
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16.1 Introduction

Agent-based simulation offers a lot of advantages compared to traditional (also microscopic)
approaches, such as elegant representation of heterogeneous populations situated in hetero-
geneous environments, explicit treatment of local effects, or the possibility of formulating
flexible interaction between entities based on intelligent behavior. Agent-based simulation
is becoming more and more popular not only because of these properties. Additionally, it
provides an intuitive and direct form of modeling. Coarsely said, entities observable in the
real world can be described by entities in the virtual world. There is no abstraction step
that necessarily bridges aggregation levels as in macro-simulation.

477
© 2009 by Taylor and Francis Group, LLC



478 Multi-Agent Systems: Simulation and Applications

As a result, agent-based simulation seems to demand less experience in handling com-
plex mathematics for modeling. Thus, the paradigm of agent-based modeling enables more
researchers to use simulation techniques on their own. Agent-based simulation seems to
be particularly attractive to people that did not use simulation techniques before, nor
received any training in formalizing or programming using traditional programming lan-
guages. Whether agent-based simulation can be widely applied, depends on the availability
of appropriate tools for every level of technical expertise.

Tools supporting the implementation of agent-based simulations have been developed
since the early 1990’s. In this connection two classes of tools can be identified: class li-
braries on top of a traditional programming language (such as Swarm, www.swarm.org,
accessed June, 2008) or visual programming environments for absolute beginners (such
as AgentSheets, www.agentsheets.com, accessed June, 2008). These early tools merely sup-
ported the implementation of a multi-agent simulation. However, there are more tasks in a
simulation study than only implementing a simulation model. These other tasks, like exper-
imentation, model analysis, etc. were hardly supported. This is still true for many existing
tools, platforms and languages.

In 1995, we introduced the first version of SeSAm (Shell for Simulated Agent Systems).
By this time, SeSAm also focused on supporting implementation providing a high-level
model representation framework. As the linkage to a standard programming language was
different compared to class library-based tools, we had to note that the initial (Lisp-based)
SeSAm was not successful. The reason was mainly that model handling was too complex.
Additionally, for providing model specific add-ons for user participation, experimentation
support, etc. a SeSAm user could not fall back to the basic programming language and add
these tools to the given framework. In 2000/2001 we undertook a complete redesign and
re-implementation of SeSAm using Java, providing more appropriate user support beyond
mere implementation tasks.

In this chapter, we introduce SeSAm based on our experiences applying it as well as our
experience supporting others trying to do the same. The rest of the chapter will contain
three parts: at first, a short introduction to the context of human involvement into agent-
based modeling and simulation based on the identification of tasks in a simulation study.
The second part will contain an overview of the SeSAm system and how these different tasks
are supported by it. The third part will contain a short sketch of a number of (partially
interdisciplinary) projects and will discuss our future plans.

16.2 Simulation Study and User Roles

According to literature, only two or three types of people are typically involved in a sim-
ulation study: the simulation expert, the system expert, and sometimes a project manager
is mentioned as a third person. We also followed this division of responsibilities in several
projects and also in teaching simulation in interdisciplinary practicals∗. In a greater context,
reuse and maintenance of models have to be considered. This leads to finer considerations
about persons and roles involved in the development and use of simulation models, in gen-
eral and in agent-based simulation models in particular. In the following, we sketch tasks
that may be assigned to specific persons or roles and may be supported appropriately by a

∗Between 1997 and 2005, we executed 9 interdisciplinary practicals where computer science and biology
students as teams developed agent-based simulation models of social insect behavior.
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modeling and simulation platform.

16.2.1 Tasks and User Roles

In traditional industrial application domains of simulation – as mostly addressed in introduc-
tory books like [Law, 2007] – modeling and simulation experts are contracted to construct
and analyze a simulation model for a particular problem or system. There are two to three
different roles involved in such a study: The modeler, the SME “Subject Matter Expert”
and, if necessary, a project manager. A high specialization developed for those application
cases.

In scientific applications such as in social sciences, physics or biology, the system experts
applied simulation for their particular research questions mostly on their own urging for a
different kind of specialized tool or highly specialized (mathematical) expertise.

In contrast to the two latter cases a sustainable and efficient use, maintenance and reuse
of complex simulation models becomes more and more important to involve new persons
and also systematically support additional tasks. The advent of agent-based simulation
has additionally changed the situation as tasks such as experimentation may become so
demanding that additional persons are required for their execution. Also, the involvement
of human experts without formalization training may be possible in a previously unknown
way. These considerations result in the following set of tasks, in addition to the project
management. We will disregard the latter in the rest of the chapter.

Design of an agent-based simulation model is the task of developing a concept
model of the original system that should be analyzed or tested. This step is
impossible without expertise of the system to be modeled.

Implementation of a computer simulation model means that the concept model
is taken and transferred to a programming language in a way that a run-able sim-
ulation is created.

Observing and controlling is an activity that is directly connected to implementa-
tion for testing, analyzing and confirming that the implemented model sufficiently
corresponds to the conceptual model and to the original system. This is denoted
here as a specific task, as it should be ideally done or at least supported by people
not directly involved in model design and implementation.

Observing and immersive testing denotes another form of testing and validation
of the implemented model. The persons responsible for these activities should be
domain experts that can directly evaluate whether the dynamics observed on the
macro and on the micro level are plausible.

Calibration and experimentation is a task that involves systematic and thought-
ful variation of parameter and input values for finally producing a valid model
and making the simulation runs for actual deployment of the model.

Output interpretation should not be underestimated. This task is directly related
to the one above. Generated output is interpreted and conclusions are drawn
as the final result of the simulation study. Also, this task requires deep domain
knowledge.

It is quite common in many application domains for the model developer, experimenter,
observer and manager to be one and the same person. In some applications with rather
industrial backgrounds characterized by long-living models, contracted model development,
etc. these roles are distributed to a number of people. A consequence can be that a person,
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who is not familiar with the model implementation interface, is responsible for experiment-
ing. Another person just wants to interactively observe the animation.

Before continuing with the introduction of a modeling and simulation platform, a short
discussion of user involvement and existing tools is given.

16.2.2 User Involvement in Agent-Based Simulation Tools

Agent-based simulation is particularly apt for involving human users at least for two reasons.
Firstly, it forms an intuitive, direct modeling paradigm where the original system is

naturally conceptualized as a collection of actors. A modeler may take the role of such an
actor for specifying its behavior characterizing its rules from the Ego perspective. Therefore,
for conceptualizing and formulating a model no change of the modeling perspective from
micro to macro or from inside to outside the system is necessary. Thus, the direct formulation
of a model is the first reason for intensive involvement of humans that are not experts in
complex particular mathematics. This leads to new implementation frameworks derived
from concepts of visual and end-user programming. Also domain experts can be involved
in the modeling tasks more closely, as the basic model structures are more understandable
than in models based on complex mathematical constructs.

The second reason is also derivable from the possible inside view. Humans may interact
with agents, they may share the perspective, but also may control the model from outside.
Therefore the variety of possible interactions between human user and agent-based simu-
lation is higher than in macro or abstract simulations where only one level, namely the
aggregated level of observation and parameter manipulation is possible. Additionally the
richness and complexity of the agent behavior makes it interesting for a human to actually
interact with the individual agents.

Therefore, user involvement is a theme that has been dealt with since the early 1990’s.
A. Repenning and co-workers coined the term “participatory” theater approach which
combined interactive user interfaces with agent-based simulation [Ambach and Repenning,
1996]. Their ideas were implemented in the end-user programming tool AgentSheets where
visually specified rules for describing agent behavior could be compiled to Java programs
[Repenning et al., 2000]. The main application area of AgentSheets was in children’s games
or educatory simulations, therefore the practical usability for larger models was reduced.
The unstructured set of rules seems to be hardly scalable. Scalability of model representa-
tion was one of the driving ideas behind SeSAm with a structured behavior representation
and regarding features of the visual programming language that enhance scalability.

Kidsim [Smith et al., 1994] and its sucessors were developed for a similar audience like
AgentSheets. They used programming by demonstration for implementing the behavior of
agents. These simulation environments were connected to particular domains and were only
used for interactive simulations for small children. SeSAm was planned as a powerful tool
that allows one to model a broad variety of agent-based models. Nevertheless, learning by
demonstration forms an attractive idea (see Section 16.6).

During recent years user involvement in agent-based simulation experienced a revival
when role playing games and agent-based simulation were combined, see [Barreteau et al.,
2001] as one of the pioneering works in this area. So-called stakeholder approaches [Moss
and Edmonds, 2005] use the opportunities offered by agent-based simulation as a white-box
approach for intensifying involvement of domain experts, sponsors, etc. Recently, partici-
patory involvement of humans’ playing individual agents in a multi-agent simulation were
focussed on by [Guyot and Honiden, 2006]. All these works focus on particular applications,
not on generic tools like SeSAm.
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16.2.3 Tools for Agent-Based Simulation in General

Tools for supporting the development of agent-based simulations have become widely avail-
able since the mid of 1990’s. Meanwhile a variety of tools can be found, starting from Swarm
as one of the earlier class libraries for developing agent-based simulation. Newer examples
are Repast (repast.sourceforge.net, accessed June, 2008) or MASON (cs.gmu.edu/ eclab/
projects/mason/, accessed June, 2008) which are basically both class libraries for efficient
event-based simulation. A variety of additional tools are available like GIS-data import,
class libraries for supporting the development of simulation experimentation interfaces, etc.
SeSAm, in contrast to these tools, provides a proprietary language and allows one to im-
plement simulation models without the knowledge of a traditional programming language.

Netlogo (ccl.northwestern.edu/netlogo/, accessed June, 2008) is a special, simple program-
ming language initially grounded in turtle graphics that allows fast simulations. Meanwhile,
the Hubnet system (ccl.northwestern.edu/netlogo/hubnet.html, accessed June, 2008) en-
hances NetLogo for participatory simulations. There are two important differences - SeSAm
provides more elaborate structures for defining the agent behavior and it uses a visual pro-
gramming language.

At the end of the 1990’s, there were attempts to simplify modeling by providing a higher-
level language built upon general simulation languages, for example MAML for Swarm
[Gulyas et al., 1999], or more recently a new and promising development, Repast Simphony
(repast.sourceforge.net, accessed June, 2008). It aims at facilitating modeling and simulation
by providing appropriate user interfaces allowing the generation of Java code to GUI-based
control of simulations. In contrast to this, SeSAm models are accessible using visual in-
terfaces at any stage of use. An additional – also specification-level programmed – user
simulation interface builder allows also to produce model-specific dialogs.

In addition to a survey on simulation engines for agent-based simulation [Theodoropoulos
et al., 2008], this book also contains a chapter about JAMES II [Himmelspach and Röhl,
2008]. This particular simulation framework separates an explicit model specification from
the executable model automatically converted to Java code.

For several years, commercial tools for agent-based simulation have also been available.
An example for a general tool is AnyLogic (www.xjtek.com, accessed June, 2008). It provides
modeling support for different modeling paradigms: agent-based modeling and event-based
models as well as system dynamics models that can also be combined in one model. Although
the basic agent behavior definition is based on statecharts, most items of the modeling
interface connect directly to Java code. In SeSAm, Java code is completely hidden.

In particular domains specialized commercial tools for Agent-based simulations can be
bought. An example is SimWalk for agent-based pedestrian simulations (www.simwalk.ch,
accessed June, 2008). SeSAm also has been used for pedestrian simulation; the pedestrian
behavior can be manipulated allowing for flexible reactions to perceptions of local conges-
tions, etc. In SimWalk, the agent behavior is fixed, only origin and destination areas and
other input value configuration can be defined. This makes it useful for standard applica-
tions, yet inhibits research.

Platforms and programming languages for developing agent systems may also be used
for implementing agent-based simulation models. This can be done by adding a simulation
time service to an agent platform [Braubach et al., 2006], or directly using specific agent
programming languages like Jason [Bordini and Hübner, 2008] which is also shown in this
book. The latter offers a powerful, well-structured formal language for programming agents.
In addition to its focus on simulation, SeSAm is based on a more practical approach.

At the Department of Artificial Intelligence and Applied Computer Science at the Univer-
sity of Würzburg, we developed a modeling and simulation environment named SeSAm that
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FIGURE 16.1 Overview of the SeSAm system: Based on the high-level model representation, several
modules are built that allow to implement the model and its instrumentation (“Analysis Routines”) conve-
niently using visual programming (“Visual Modeling”). The model given in the representation language is
interpreted (“Interpreter”) and put into a dynamic context for simulation (“Simulator”); The output data
can be automatically animated (“Animation”) or stored into files for later analysis (“Protocol data”). Vi-
sual programming can also be used to generate specific user interfaces for the simulation runs (“Interactive
Frontend”). All these modules are based on the given model representation.

combines concepts of declarative high-level model representation and visual programming.
The initial aim behind our efforts was similar to the idea of AgentSheets of providing a tool
for beginners in modeling and programming. However, our intention was more ambitious as
we wanted to develop a scalable platform that can be used for real-world applications. Thus,
we also wanted to develop a modeling and simulation system apt for rapid-prototyping by
experts. In the remainder of this chapter, we will describe the modeling and simulation
system of SeSAm with a focus on the new developments concerning user tasks and their
support. Finally we will discuss some anecdotic, yet symptomatic experiences we made when
applying SeSAm.

16.3 Core SeSAm

In this chapter we want to describe SeSAm, a modeling and simulation environment that
was constructed to support as many of the above sketched tasks as possible. SeSAm basi-
cally provides a platform for implementing and experimenting with agent-based simulation
models using a higher level modeling language. Starting with some core facilities, it was step-
wise enhanced to its current status. Currently SeSAm contains several components whose
relations are depicted in Figure 16.1.

SeSAm is based on a specific, proprietary language for describing the elements of a multi-
agent model: from the basic elements of the model, namely the structure and dynamics of
agents and their environment to possible configurations, instrumentation and experiment
description. Due to its declarative character there is a clear separation between model and
simulator. All elements of the model description can be entered into the SeSAm system
using visual programming. There are also facilities for importing data from databases, ta-
bles/spreadsheets, GIS- and CAD files, etc.

The model description is compiled into some corresponding, yet partially more efficient
representation that is interpreted for actually producing model dynamics in a simulation.
Due to the explicitness of the language, there are in-built facilities for animation, data gath-
ering and visualization based on model-specific selected protocol data. Recently, the system
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has been enhanced by a tool that allows building specific user interfaces for interactive
simulation, as well as a possibility to control agents from outside the simulation. All the
modules depicted in Figure 16.1 will be discussed later in this chapter after the introduction
of the model representation language on which they are based.

16.3.1 Basic Model Representation

The high-level modeling language of SeSAm consists of elements on different levels as de-
picted in Figure 16.2.

• Primitives and data structures form the basic language elements like in any other
programming language. Primitives and data structures may be built-in or user-
defined. The latter are saved together with the complete description as XML
file.
• Static structures are the description of the structural composition of the system:

entity and environment classes, state variables and their domains describing the
entities’ bodies, etc.
• Configuration of the initial situations including descriptions of a number of in-

stances and start values for each instance, its positions, etc.
• Description of dynamic reasoning as the specification of agent and environmental

behavior.
• Meta-level characterization means basically descriptions of what to do with the

model: experiment scripts, model instrumentation, visualization, etc.

In the remainder of this section, we will sketch the essentials of each of these language
elements.

Model Level

Primitives, User Functions and Data Types

So-called primitives form the basic building blocks of the model and connect the model
to the basic programming language: internally, every primitive consists of two parts: a dec-
laration part and a Java method named execute. The declaration part contains a structured
description of input and output argument types together with some text that describes
its functionality. This information is parsed by the SeSAm system for generating the basic
parts of the visual interface.

There are different categories of primitives:

• Action Primitives are the actions that an agent may exert for manipulating its
status or its environment. These primitives are connected to Java methods that
modify the agent or its environment specified by the arguments given to the
action. Examples are move or setVariable.
• Sensor Primitives collect information from the agent’s environment and also

from its internal state. An example is a primitive that returns a list of ob-
jects that the agent is able to perceive in some direction within some range,
like observeAllObjectsInDirection.

• Computational Primitives form a quite heterogeneous set of functions that pro-
vide means for the agents to execute more or less complex computations based
on the sensor information and parameters of their behavioral programm. An ex-
ample is the calculation of the heading of the agent using some simple position
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FIGURE 16.2 Building blocks of the SeSAm language: the atomic elements of the model representation
are the primitives that form the basic elements of all descriptions of actions, perceptions where actual
modifications happen. The concretely specified primitive calls are used for characterizing the dynamics of
the agents, resources and also the world. Additionally, these entities are characterized by a structure that is
able to capture their status. Based on this core model, additional information is integrated for specifying a
fully functional model: Specifications of configuration (possible start situations) and of routines for collecting
data to export in protocols. All this information is integrated into a full simulation run specification. The
latter can be augmented by an interface declaration or several of them can be aggregated to experiments.

mathematics. Other examples are comparison predicates, list manipulation, etc.

We provided a set of primitives that can be shown to be Turing-complete [Oechslein, 2003].
A modeler may define complex nested calls of primitives as macros called user primitives.
These macros provide abstractions in the sense of model-specific functions. The following
excerpt from a SeSAm model xml file shows the definition of such a user function in a
simple predator-prey model. It contains the definition of a flee action of a prey agent to-
ward a shelter simObject that is computed in another user function addressed by calling
UserFunction0. The user function possesses only one argument, namely the active agent
itself. The return value is void denoting that it is an action.

...
<userFunction name=”Flee from predator” id=”UserFunction1”

external=”true” expert=”false” inline=”true”>
<functionCall>

<call functionName=”MoveTowardsPos”>
<call functionName=”GetSpatialInfo”>

<parameterID id=”FunctionArgument1”/>
</call>
<call functionName=”GetPosition”>

<call functionName=”GetSpatialInfo”>
<call userFunctionID=”UserFunction0”>

<parameterID id=”FunctionArgument1”/>
</call>

</call>
</call>
<call functionName=”GetSpeed”>
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FIGURE 16.3 Basic structure for describing the structural building blocks of a SeSAm model: There are
three different types of entities all derived from the simObject class: Resources that represent static
objects that can be manipulated, agents that possess also a behavior descriptions and the world that
additionally may contain other global representations such as a map. The simObject structure that is
responsible for storing the current status of an entity. This status is stored in a collection of state variables
that together form the entities “body”.

<call functionName=”GetSpatialInfo”>
<parameterID id=”FunctionArgument2”/>

</call>
</call>

</call>
</functionCall>
<parameter name=”ich” id=”FunctionArgument1”>

<simObjectType/>
</parameter>
<voidType/>

</userFunction>
...

The SeSAm modeling language provides a priori a set of atomic and abstract data types
ranging from boolean, numbers, etc. to lists or hashtables. Composed data types and enu-
merations may be added by a modeler to provide model-specific types and abstractions in
a similar way to user primitives

Structural Description

There are different structural elements and levels built upon these basic primitives. An
overview can be found in Figure 16.3.

A multi-agent model consists here of a set of models of entities – in the terminology
of SeSAm simObjects. Their structure and behavior is described on the class description
level. Individual entities are characterized at the configuration or instance description level.
For the simulation, actual object instances are generated from these instance descriptions.
This three-level system of description allows one to separate explicitly between model and
simulation run, enabling the visual programming facilities of SeSAm (see Section 16.4.3)
and allowing one to add an additional compilation step for generating simulation entities
from instance descriptions.

For reasons of model clarity, there are three specific different kinds of object class de-
scriptions, derived from the generic simObject class description:
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• Agent class descriptions form the basis for all model-specific agent classes: for
example a Pedestrian Class or an Ant Class is basically an instance of an agent
class description. A basic agent class description consists of a characterization of
its body and its behavior.
• Resource class descriptions are used for integrating static entities populating the

environment of the agents. They just contain some status that may be manipu-
lated and accessed by the agents.
• World class descriptions are basically special agent class descriptions that contain

global status variables or parameter. They enable formulation of some global level
behavior. Therefore on the configuration instance level only one unique instance
of a model-specific world class is allowed per situation (see below).

All simObject class descriptions contain declarations as to how the status of their in-
stances is represented. In the current SeSAm version the container for all status information
or individual parameter etc. is characterized as “body”. The body consists of a set of vari-
ables and constants. A body description is associated with a class description. Thus, this
body structure also mirrors the three levels of class description, instance and actual en-
tity by body description, body instance description and actual body, the latter only exists
during a simulation run.

Variables – also on corresponding description layers – are characterized by the following
information:

• Name of the variable
• Data Type (boolean, number, string, list, hashtable, pointer to simObject, but

also position, shape, image,...)
• Characterization: configuration parameter, state variable, output variable or sup-

porting variable.
• Default initial value
• Interface characterization denoting whether its value is perceivable or even ma-

nipulatable for other agents

Variables may be grouped in so called “features” which can be assigned to more than
one simObject class. Combined with user primitives that specifically work on those feature
variables these language elements provide common abilities to agent, resource and the world
classes. This might be useful for model elements that deal with identifiers or different types
of memory, etc. Features also form the basis of an important plugin-mechanism which will
be described in more detail in Section 16.3.3.

There are several predefined features that additionally provide specific data types. The
most prominent feature-level plugins are spatial representations. The standard one is a con-
tinuous 2d space consisting of a feature for the environment that provides a map description
at the world instance description level and a concrete map for the actual world instance, as
well as variables containing the spatial information of an entity for the agent and resource
classes on the different levels of declaration. Spatial information for the 2d continuous case
contains not only position, but also shape in form of a polygon, speed, direction and in-
formation about visualization like color, image,... This feature also encapsulates specific
primitives for spatial perception as well as several movement primitives. The treatment
of spatial information as feature has the advantage of flexibility: only entities – resources
or agents that possess the spatial information feature are positioned on the map. These
entities may be combined with non-spatial agents like abstract, non-spatial agents, for ex-
ample organizational agents. By exchanging this feature assignment, other forms of spatial
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representation can be used without any changes on the platform level or even concurrently.

Behavior Description

Using the above introduced primitives, dynamics can be expressed similarly to traditional
programming languages. However, SeSAm provides language constructs for organizing the
description of behavior of agents and of the world:

The behavior description is inspired by UML activity diagrams: consisting of activity
nodes and arrows that depict transition rules between activities. Special activities are the
start and the end activity. When the behavior of the agent ends up in the end node, the
agent is deleted from the simulation. When an agent is generated, the interpretation of the
activity diagram starts at the start node.

An agent (as well as the world entity) may have arbitrary many activity graphs or “rea-
soning engines” as they are called in the SeSAm terminology. This allows the modeler
formulating concurrent behaviors performed by one agent – for example defining negotia-
tion behavior in one reasoning engine and concurrent manipulation of the environment in
another.

An activity encapsulates three sequences of actions that are basically sequences nested
primitive calls: start actions that are performed when the activity is selected anew, standard
actions that are performed once every time step as long as the agent is executing that activity
and termination actions that are executed for cleaning up when the agent has decided to
change its activity.

Rules are responsible for terminating one activity and selecting the next. They are linked
to their predecessor activity and tested every time this activity is executed by an agent. Rules
may contain arbitrarily nested function calls of primitives finally returning a boolean value
as pre-conditions and an activity as post-condition. A special kind of rule has “otherwise”
as condition which means that this rule fires if the condition of no other rule associated
with the same activity returns true. With this special rule a sequence of activities can be
enforced without detailed implementation of further conditions. Conflict resolution in the
case of more than one applicable standard rule is random selection. There are two types of
activity concerning their temporal aspects: “instant” or “time consuming” activities. The
basic update cycle is round-based (see Section 16.3.2). This label denotes at which activity
the rule-based selection and execution cycle stops waiting for the next update signal.

Activity graphs can become quite large and thus, without further structuring means,
hard to conceive by a human modeler. Therefore additional language-level support is given
by introducing hierarchical composition of activities. A partial graph can be replaced by a
composed activity, without any change in the interpretation of the overall activity graph.
Rules selecting an activity within this new graph are simply routed via the start node of
the partial graph. Similarly, rules selecting activities outside of the composed activity graph
are routed via the end node. Both start and end node are interpreted as instant activities
without time consumption.

Declaration of Situations

As mentioned before, there is an additional description level between the agent, resource
or world class and a simulation run: descriptions of possible model configuration or “sit-
uation” declarations as they are called in the SeSAm terminology. The description of a
situation contains a set of instance descriptions. There may be arbitrary many agent or
resource instance declarations, but only one unique instance of a world class. The reason is
obvious when keeping in mind that the world instance represents the global aspects of the
environment.
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An instance description mainly contains – in addition to a pointer to the behavior de-
scription – a body instance description with a set of variable instance descriptions. There
the important aspect is the individualization of initial values for the variables. In models
with explicit spatial representations, on this level the map declaration – as an instance of
the spatial feature class assigned to the world class – is available that allows for localization
of entities that possess the spatial information feature.

For facilitation of situation designs with many elements, we integrated groups of instances
that can be named as a group and used as a template for partial situation configurations.

Experiment Description Level

With the declaration of a situation the model itself is completely specified. However, for
being able to perform useful simulation experiments additional information has to be pro-
vided.

Declaration of Model Instrumentation

The most important point is the definition of measurements that can be taken from
the agent-based simulation. These can be variables defined in the world class, where data
may be aggregated for protocol, but also specific output variables of prominent agents.
Model instrumentation is provided from outside the model and should not be a part of
the core model. Therefore, specific measurements may be explicitly defined and added to a
situation description. The declaration of model instrumentation may contain primitive calls
for collecting the necessary information from the multi-agent system and information on
what should be done with this gathered information. Basically two options are available:
writing the data to protocol files or visualization in different forms of diagrams that animate
the changes throughout the simulation run.

Simulation Run Definition and Experiment Declaration

A simulation run contains not only the initial description of the situation and the instru-
mentation of the run. It additionally contains the description of a condition for terminating
the simulation run. This condition may access the simulation time or may be a characteristic
of the complete situation, for example when all agents have been deleted.

Several simulation runs can be aggregated to experiments. Instead of providing some
predefined framework for describing variations of parameter values and corresponding sim-
ulation runs, we decided to provide full programming power for experiments. It allows
scripting simulation runs with full flexibility. For this aim, primitives operating on situa-
tion declarations, setting the random seed, generating and executing simulation runs are
provided.

16.3.2 Simulation Routine and Model Interpretation

Up to now, we briefly sketched the full model and simulation description language used
by SeSAm. The semantics of the higher level elements are given by the interpreter, the
semantics of the primitives by the underlying Java code. There is a compilation step between
model description and simulation run for two reasons:

1. Clear separation between model and simulation
2. Possible code optimization based on techniques from compiler design, like con-

stant folding, code in-lining, etc. These optimization steps are transparent for
the user. They enable SeSAm to execute simulation runs rather fast.
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FIGURE 16.4 Interpretation cycle of SeSAm: After an update of the unique world entity, all agents are
updated in a random sequence. Then, the world may again update, etc.

Basic Information about the Simulator

SeSAm provides a round-based simulation where the agents are updated one after the other
in a random sequence. When all agents are treated, the world entity will be updated, thus
the update of the world is the only possible synchronization point within one update round.

Each agent is fully updated – which means it senses its environment, evaluates its percep-
tions by going further through each of its activity graphs and finally performs the scripts
associated with the current activities. The random sequence of updating the agents provides
a reduced form of virtual parallelism: although each agent is fully updated before the next
agent is tackled, the modeler cannot influence the actual sequence of updating the agents.

Agent Update

There are two sources of dynamics in a multi-agent model: first, the global environment
which is explicitly modeled in SeSAm; second, from the agents with their behavior. As is
noticeable in Figure 16.3, the world can also be seen as an agent, yet with another - more
powerful - behavior repertoire as it may also access information from a global point of view.

The update sequence of an agent a is the following:

For every re in ReasoningEnginges of agent a in given order do
repeat until re.currentActivity is of type time-consuming

rules ← select rules from re.currentActivity with condition == true
if | rules |≥ 1

theRule ← getRandom(rules)
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Start Situation

Situation after 1 Update Cycle (No denote update sequence)

1 2 3

1 23

123

FIGURE 16.5 Different update sequences cause different outcomes. The result of the parallel case
corresponds to the second line.

execute termination sequence of re.currentActivity
set re.currentActivity to next activity of theRule
execute start sequence of new re.currentActivity

execute action sequence of re.currentActivity

The update cycle of the world is identical to standard agents. The main difference is that
the world is allowed to use primitives affecting the complete system.

Properties of the Update Scheme

This overall update scheme has advantages and disadvantages. On the one hand its major
advantage lies in its simplicity: the procedure can be easily understood by researchers who
are not experts in distributed systems. No resolution in case of conflicting actions is neces-
sary as there is no actual parallelism. On the other side, artefacts — especially when agents
are learning — are prevented by the random update. It is not the case that the exact time
for updating a particular agent is set; the modeler cannot determine the sequence of agent
update.∗

Obviously there are critical issues in the update sequence that a modeler must be aware
of: with the randomization of the update sequence comes an additional, potentially hidden
stochastic process that may be responsible for variations in the model output — however,
if exact reproducibility of results is needed, the random seed can be explicitly set in the
initialization of a simulation experiment.

Additionally the fact that one agent is updated after the other may result in different
outcomes depending on the actual update sequence. This is important in applications such
as traffic simulation with collision avoiding behavior when an agent may take the position
that was freed by another agent immediately before. Figure 16.5 illustrates this problem by
showing how the update sequence influences the result.

These basic problems can be tackled on the model level by dividing one time step into
two virtual ones: one timestep in that every agent is perceiving its environment, reasoning
and the selection of an action. Then the selected actions are executed in a second loop. This

∗Unless the random seed number is fixed.
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results in the fact that all agents perceive the same situation of the environment, basically
as if they perceive at the same time. We used this emulation of parallelism for simulating
cellular automata using SeSAm. However in our CA case, one agent was only allowed to
manipulate its own status avoiding any conflicts in action performance. If concurrent modi-
fications of the same environmental entity are possible, then conflict resolution for deciding
which action actually should be taken has to be formulated on the model level ideally in
the behavior definition of the world that is conceptualized as a global entity. Such a model
however becomes very complex.

16.3.3 Plugin Mechanism for Extension

The language elements described above allow a clear and structured overall model repre-
sentation. However it can be quite cumbersome to formulate models just using the default
primitives and structures. Therefore a plugin mechanism was developed that allows en-
hancing the language and providing additional supporting tools. In particular a plugin may
contain a set of related functionality consisting of

• Specific data types, such as a data type path or schedule
• Feature-level add-ons, like variables added to the simObject class to which it is

assigned, like a variable that stores the personal schedule.
• Primitives using the plugin data types, interfaces to plugin variables or simply

macro-like primitives as support for modeling on a higher level of abstraction
• Tools providing helpful functionality, like importing spatial information for filling

situation definitions, etc.
• Plugins may also come with specific editors or panes.

As mentioned above, prominent plugins are responsible for spatial representations. There
is for example a plugin for 2d worlds adding a map to the world, a spatial information data
type composing position, heading and polygon-based shape representation to simObject
classes. Alternative space representations are 3d maps, graphs connecting node- and edge-
based simObjects, as well as raster and vector GIS-based representations. There are a
variety of additional plugins from primitives that establish connections to data bases to
plugins that allow generating movies from animations.

The plugin mechanism had been extensively used in SeSAmHospital which can be seen
as a platform for agent-based hospital simulation with a focus on examination scheduling
[Herrler, 2007]. This domain-specific simulator basically consists of SeSAm and a hierarchy
of interrelated plugins providing complex data structures like clinical path representations,
specific patient generation functionality, etc.

16.3.4 Problematic Details of the Language

Working with this language in a variety of simulation projects from simulation of bee be-
havior to large shopping behavior models or pedestrian simulations, we discovered that the
language as it is now needs further improvements.

The main critical point is the weak agent interface concept. The modeler may declare
appropriate variables of the agents’ body as “accessible” from outside. A second tag de-
notes whether the value of the variable may be manipulated or not. This rudimentary
representation of possible interactions may be apt for implicit interaction; however explicit,
message-based communication needs additional efforts. Thus encapsulation of behavior is
hardly supported by the SeSAm language, but relies on the self-restriction of the modeler.
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Another missing concept is local, temporary variables that facilitate modularization of
behavioral description by enabling the formulation of intermediate results in computations
within an activity or a user primitive. In the current version of the language, there are
some quite tricky combinations of primitives that allow us to circumvent this restriction –
however such opportunities are just available to SeSAm experts.

A third drawback is the lack of a clear inheritance concept between classes that are
accessible to the modeler. The modeler may just generate a list of instances of the agent de-
scription classes without specifying the relations between instances. Features – as mentioned
before – remedy this problem only marginally as they currently just integrate variables and
user functions. We are currently planning to enhance the features by integrating data types
and partial reasoning engines moving toward a feasible model building block concept.

16.3.5 General Aspects of Suitability

Although it can be shown that the declarative language possesses the power of a general
programming language, one can easily see that it is more apt for modeling a particular kind
of system whereas others might be cumbersome to formulate. In [Klügl, 2008] three levels
of complexity of architectures for simulated agents were identified: behavior generating that
denotes mainly architectures that use planning from first principles, behavior configuring
architectures, like interpretation and instantiation of skeletal plans and finally behavior
describing architectures, like rule-based behavior descriptions.

In general, SeSAm is particularly apt for simulations involving rather simple agents that
reside in some spatial environment and interact implicitly by manipulating the environment.
Such behavior can be easily formulated using rule-based behavior descriptions. This orig-
inates in the initial applications of SeSAm in the area of social insect simulation. Related
properties can also be found in traffic or pedestrian simulation where successful projects
have been performed. The negotiations formulated for the hospital simulations [Herrler,
2007] show that also message-based interactions can be integrated without any problem
into that frame. They involve the formulation of at least two concurrently active reasoning
engines per agent: one for the actual behavior, one for accepting and interpreting incoming
messages concurrently to the actual behavior. Therefore the overall agent model is slightly
more complex.

In [Rindsfüser and Klügl, 2005] we formulated agent behavior as executing and manipu-
lating daily plans stored in state variables of the agents, instead of explicitly and directly
formulating the plan contents in the activity graphs. The model was sufficiently successful
in reproducing travelers’ daily activities, yet the representation and manipulation of such
complex data structures required careful consideration. This is due to the fact that it is not
appropriately supported by the overall system, in terms of providing plan structures and
primitives to modify these plans.

SeSAm’s range of applications has widened and experiences with more complex agent
models confirm that formulating more and more complex agent behavior becomes quite
cumbersome. Although a shortest path algorithm can be formulated without any problem
– for example for generating a path as some kind of movement plan in a network – the
integration of real behavior generating approaches is hardly possible. For planning from
first principles, operator descriptions and complex situation descriptions that characterize
goal states must be tackled. As SeSAm does not offer any form of logic-based description of
situations nor any appropriate primitive characterization based on pre- and post-conditions,
such complex architectures are basically impossible.
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16.4 Users, Tasks, and SeSAm

For actually implementing a model using this SeSAm core language, several user interfaces
are supporting different tasks during a simulation study.

Developing such interfaces within the same visual framework is not an easy task. Much of
the advance of the SeSAm system during the last year is related to these developments. The
following sections will contain a short, sketchy treatment of the different elements of the
overall SeSAm model development and simulation platform offered for the different tasks
mentioned above: visual modeling environment, standard animation, online aggregation and
visualization of key values during simulation, interactive simulation and “agent playing”
environment.

16.4.1 Principles

As mentioned in the introduction we had several, partially conflicting goals for developing
SeSAm. We wanted to build a system that concurrently enables beginners to implement
their model and that can be used as a fast prototyping tool for experts. Therefore the
system had to fulfill the following general requirements:

• Hide potential model complexity from beginners
• Support beginners while learning to implement a model
• Make all aspects of a model accessible to experts
• Support experts while implementing a complex, large model

Thus for beginners the main issue is simplicity and consistency – for experts it is scalability
of modeling and simulation. In more detail, the following ideas and principles were pursued,
partially motivated by [Green and Petre, 1996] or [Kuljis, 1994].

• The main difficulty lies in selecting the appropriate primitives: therefore an ex-
pert may choose to use a different set of primitives than a beginner. The latter
may use more abstract primitives that encapsulate more functionality than the
former who may like to completely control every detail and search for the most
effective implementation of the particular problem at hand. Good examples are
movement primitives. Whereas the expert may use more basic primitives like
changeDirection, moveWithSpeed or observeObjectsInDirection, a beginner
would be happy with a primitive like moveWhileAvoidingCollisionsWith...

• Having learned how to deal with one editor, this experience can be used for all
editors for similar elements, as GUI interaction remains the same.
• Including automatic syntax checks or missing opportunities to input something

syntactically wrong.
• Functionality as provided by modern software development platforms makes it

easy to change model design decisions. Examples are refactoring actions or nav-
igation means, like searching for references or direct connection to definitions
of model elements. Also support for model versioning is important for model
implementation.
• Documentation facilities should be possible for any element of the model for

recording why things are formulated as they are. Colors etc. can be used to
mark model elements where the modeler wants to include more detail. Thus the
modeler does not have to memorize a lot, but can augment the model with free
text about his thoughts.
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• Structuring language elements like sub-programs or modules are available in the
form of user primitives, features or partial situations. Thus modeling becomes
more scalable for the expert user. Predefined modules support the novice.

16.4.2 Developing a Conceptual Model

This task is not directly supported by SeSAm. One may argue that the high-level model
representations – the classification in agents and resources, the way behavior is characterized
– may support structured thinking about elements of a model. A basic idea of SeSAm is to
bridge the gap between model specification and implementation.

16.4.3 Visual Programming for Model Implementation

In our description of the SeSAm system we will first concentrate on the task of model
implementation. Providing a visual programming environment for this task was basically
driven by the idea to make model logics accessible to all interested people, not only model
configuration, model-produced simulation runs or data. Introductory material concerning
visual programming can be found in [Chang, 1990] or more recently in [Lieberman et al.,
2006].

In general one must admit that programming using a well-known textual programming
language in a good environment for development may result in a more efficient modeling
and simulation for the experienced programmer. Even for a person experienced as modeler
using some programming language and class libraries, model implementation supported by
a visual programming environment has many advantages ranging from explainability to
accessibility.

Primitive Call Specification

The basic building block of the visual SeSAm programming environment is the specification
of primitives and primitive calls: There is only one way to specify how a primitive is used. It
is used whenever a nested primitive call has to be specified: in the basic behavior description
of activities, in formulating the predicates of rules or user macros, for giving a procedure
to compute initial values, ... to experiment and analysis declaration. This dialog element is
shown in a screenshot in Figure 16.6.

Using such a basic element, a modeler can completely specify behavior without pro-
gramming in a traditional language. The particular procedure for selecting and configuring
reduces syntax error proneness as the user cannot select a primitive that returns a wrong
type. Another element that deals with reducing potential errors is the way in which nested
calls are to be edited. In this case the parent call is no longer accessible for manipulation
which avoids inconsistencies.

In the right lower corner – mostly hidden in Figure 16.6 – three elements support fast
selection by providing a short cut search item, enlarging the primitive set with “expert-mode
primitives”, like loops or roulette wheel functionality. A small button – the “Edgar” button
in the corner right on the bottom – allows for textual search for appropriate primitive. All
documentation and hints given in the primitive declaration are available there. Edgar also
justifies why certain primitives are not currently available for insertion.

Forms and Tables

A typical means for specifying object instances – class declarations as well as agent instances
in the model configuration – are forms where every attribute can be input using appropriate
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Primitive Call Hierarchy

List of primitives with 
appropriate return value
for selected position in 

call hiearchy

List of directly insertable 
values, here absolute 
numbers of the type 

double or integer

FIGURE 16.6 Screenshot of a dialog for specifying primitive calls. This basic dialog element is used
everywhere in the system when this task has to be done. It consists of three parts: the current status of
specification in the left half of the dialog, directly insertable values in the upper right and available primitive
on the right lower half. When clicking on a primitive call, a similar dialog opens resulting in a cascade of
dialogs as indicated by the arrow from one dialog to the other.
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Current List 
of Variables

Form for editing 
selected  element

FIGURE 16.7 Screenshot of a dialog for specifying body variables. This basic dialog element is used
everywhere in the system when language elements that are in a set, have to be specified. This dialog element
has two parts: on the left the list is given, the pane on the right changes with selection of a list element for
enabling the modeler to manipulate the selected element.

dialog items [Bamberger et al., 1997]. Forms are used in SeSAm for all fixed meta information
for model elements – for example in specifying a body variable description as visible on the
right side of Figure 16.7.

Tables can serve as a more compact representation of object attributes, if the data struc-
tures to represent in one cell are not too complicated. We use tables, for example, to specify
the object instance declarations where the set of object variables that have to be set is not
given, but depends on the class-level declaration.

Edit List Elements

Another structure that is used at many places is depicted in screenshot 16.7. On the left
a list of elements is given; by selecting an item, all information about it is displayed on
the right and can be edited. This dialog form is used for body variables, specification of
simObject instances, analysis items, etc.

A direct combination of list elements and pure primitive specification can be found on
several occasions. Examples are the list of user functions, the analysis items when instru-
mentation is specified, action sequences in activities, object lists in situations, etc. Once a
modeler has learned how to deal with these modeling elements, this experience is useful all
over SeSAm.

Behavior Specification

The primitive specification forms sketched above are used as low-level building blocks for
defining the behavior – basically as atomic statements of the language. The structure of a
reasoning engine or an activity graph is especially apt for visual constructing using some
graph structure. Figure 16.8 shows an example screenshot.

There are different node shapes in addition to the previously mentioned start node, end
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FIGURE 16.8 Screenshot of the pane for specifying the behavior description of an agent.

FIGURE 16.9 Different shapes of activity nodes in reasoning engine modeling. Only composed activity
nodes – which hide a new activity graph – bear special semantics for interpretation. Documentation nodes
(the most right ones) are ignored for behavior generation. The others only serve for enable the modeler to
oversee a complex graph.
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node or nested activity graphs - for depicting specific properties. These additional shapes
– shown in Figure 16.9 do not result in different forms of treatment in the simulator, but
merely support clarification of functionality for transparency reasons. Exceptions are the
documentation nodes which are ignored. Only one look at the behavior describing graph
is necessary to identify decision, sensing activities, etc. For additional overview, different
colorings of activities are available. For a short look at the activity contents the beginning of
the action primitive calls are also depicted using a small text size – see activities in Figure
16.8.

Edges in the activity graph editor denote rules for terminating their predecessor and ini-
tiating their successor activity. The subtitles of these edges are generated from the primitive
combination that forms the condition of the rules. These generated texts can however be
replaced by the modeler. Thus the modeler has several options for implementing a well-
structured and clearly structured activity graph.

Configuration of Start Situations

Without additional plugins the start situation merely consists of the description of one
world instance and of a set of agent and resource class instances. This is done using already
known lists and tables.

Additionally editors coming with one of the spatial plugins play a particular role, as they
allow positioning on maps using drag and drop functionality.

Accessibility and Documentation

Two important issues in a visual programming system are navigation and documentation.
One prerequisite for useful development environments for programming is the way to find the
elements that the user wants to edit. The user should not be required to memorize names,
but to have directly at hand all necessary information for manipulating an element. For
example, when formulating an agent’s behavior, variables of the agent should be accessible
with one click when they are missing or are set to the wrong data type. Also the user
should not need to memorize the exact functionality of a user function, but should be able
to immediately access it.

In SeSAm tool tips can be edited directly by the modeler for augmenting the documen-
tation of the model. A right click always leads to a context menu where related elements of
the definition are accessible. Every element – from user primitive to status variable to ac-
tivities – can be given additional, explanatory text. These modeling GUI elements increase
scalability of the implementation which is particularly important for complex multi-agent
simulation models.

16.4.4 Experiment Scripting and DAVINCI for Experimenters

The second task that has to be executed during a simulation study is extensive experimen-
tation. It is basically done for model testing and – after the necessary model quality has
been guaranteed – for making the actual deployment runs generating the intended results.
Whereas programming and formalization expertise can be seen as a prerequisite for users
fulfilling the role of a modeler, pure experimentation contains a lot of rather simple opera-
tions with several repetitions – if the configuration to be run is known. The main intelligence
in the experimentation task however has to be used for an intelligent design of experiments
as well as for analyzing the output data in order to initiate additional simulation runs.

It is absolutely unacceptable to trigger all necessary simulation runs manually. Therefore
the configuration of experiment scripts is or at least should be part of every modeling and
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simulation framework. In SeSAm there are two ways of defining and controlling simulation
experimentation: the first consists of basically a script using additional primitives that
operate on situation configurations, simulation run definitions. These primitives may set
the random seed for ensuring exact reproducibility of results or may initiate runs based
on systematic parameter variations. As the user interface is similar to all primitive call
specification dialogs, the original modeler can easily input such experimentation scripts.

The second possibility was developed for supporting calibration in the PhD thesis of M.
Fehler [Fehler, 2008 or 2009]. Besides other methodological advances, he developed a tool
named DAVINCI that allows automatic parameter optimization for adjusting the model for
maximizing a model-specific function that expresses some degree of validity of the current
simulation configuration. Information about concepts and technologies behind the tool can
be found in [Fehler et al., 2006] or [Fehler et al., 2005]. DAVINCI can be used more generally
for systematic parameter screening as well as for all kinds of optimization based on methods
ranging from tabu search to genetic algorithms. Therefore it forms a highly valuable tool
for an experimenter. Due to the conceptual complexity for configuring all elements of the
optimization algorithms, such as input parameter, evaluation function, parameter of the
optimization, and parameter of the result presentation, this tool is implemented like a
wizard that guides the user through complex configurations.

16.4.5 Online Aggregated Data Presentation and Animation

Another functionality that is primarily used for testing and analyzing the model dynamics
is the animation facility and the online visualization of aggregated data during a simulation
run. These techniques for observing what is happening during a simulation can be seen as a
standard for simulation environments. Basically every user of the simulation models wants
to observe animations.

When the animation is enabled all changes are shown immediately when they happen. If
the standard 2d plugin is used, the behavior may be enriched using primitives for updating
the visualization of an agent, for example by changing the image for its graphical represen-
tation, its color or intentionally draw lines or circles into the map pane for visualizing paths
that the agent has followed, etc. Figure 16.10 shows a small part of the animation view of
a Pedestrian simulation of the SBB Bern Railway Station [Rindsfüser and Klügl, 2007].

As the speed of a simulation run may be too slow for reasonable observation, a recording
plugin has been developed that allows one to save animations as movie files for later analysis.

The results of the primitive calls for collecting output data from simulation run can be
written into a file for later analysis – which is actually done during model deployment. For
testing, the same data can be shown directly after generating, using either a series chart or
using a block chart, depending on the volume and dynamics of the data. In Figure 16.11
the relation between analysis definition and curve is shown.

There is a small enhancement that makes the animation even more valuable: a debugger.
If a simulation reaches a predefined point in its behavior definition, it stops and the agent
that caused the break can be analyzed more deeply. A stepper functionality allows action-
by-action advancement of the simulation execution. Also, debugger and stepper belong to
the equipment of standard programming environments and thus should be also available for
testing simulation models.
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FIGURE 16.10 A part of an animation window showing agents with different attributes (colors) and
their paths.

FIGURE 16.11 Based on the function specification for output function, aggregated data is shown.
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16.4.6 Model-Specific Interfaces

The previous tasks required direct and extensive understanding of the implementation of
the model. A user that is not involved into implementation and testing of a model, but
wants to observe its dynamics, needs a model-specific user interface for “playing around”
with the model. Interaction with the model may take two forms: either as an experimenter
or observer from outside or alternatively from inside the running simulation. The outside
view is basically standard: a human observes the dynamics of the model from outside and
manipulates global parameters or sets local switches in reaction to the observation. The
inside view is particular for agent-based simulation and is often referred to as participatory
simulations (see [Guyot and Honiden, 2006]). In this case a human is controlling one agent,
perceiving what the agent may perceive and manipulating the simulation through the agent’s
effectors. SeSAm supports both forms of interaction. We first tackle specific model interfaces
followed by participatory simulation in the next subsection.

In order to provide functionality of interfaces for observing and controling simulation runs
in a user-adapted way, we enhanced SeSAm with a graphical GUI builder. We assume that
this element of SeSAm is actually used by the modeler for providing specific interfaces for
more or less experienced people using or testing the model. Examples for addressees may
be stakeholders, but it is also apt for publishing demo versions of a model. Concerning its
functionality, such a model-specific simulation interface corresponds to the type of model
interface that a user may know from other simulation tools.

The construction of a simulation specific user interface is done in two phases. At first the
modeler determines the interfaces of the model elements - for example he specifies that the
variable “storage” is manipulatable by the user and then arranges the pre-defined items to
an overall user interface. Figure 16.12 shows a screenshot of the visual GUI builder together
with an instance of the specific user interface.

16.4.7 Agent Playing for Advanced Participation

Another development regarding SeSAm interfaces and user task is the so-called “agent
playing” framework (see [Raupach, 2007]). It basically forms the logical advancement of
the interactive simulation runs described in the last subsection. There a bird’s eye view is
used for monitoring the model dynamics from the outside. Agent-based simulation allows
an inside view when a human is playing one particular agent.

This interactive element was developed not for allowing simulation games, but especially
for supporting plausibility testing and validation on the agent level: we assume that for
qualitative validation purposes, the modeler needs to perceive the simulated environment
through the eyes of the agent, immersed into the simulation. While perceiving what the con-
trolled agent perceives and evaluating its reactions to perceptions, as well as while observing
the other agents, a human may evaluate whether the observed simulation run actually is
plausible.

The “agent playing” framework consists of two parts: enhancements on the SeSAm side
and a specialized piece of software that visualizes the perceptions of the agent and its actions
outside of SeSAm:

• SeSAm models have to be enhanced with primitive calls sending and requesting
all information marked as necessary.
• An additional program has to be developed that receives the information from

SeSAm and visualizes this information appropriately. This program may also
interpolate between two sets of information – for example, visualizing a smooth
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FIGURE 16.12 A model-specific interface to a simulation run is generated based on an interface con-
figuration.
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movement in a discrete world. It may be used for mere observation, but also for
controlling the agents by collecting the commands from the user and thus forcing
the agent to do what the human wants the agent to do.

Thus “agent playing” supports conceptual validation of an agent’s behavior, as the experts
of the original system can adopt the perspective of the agent. Hopefully they can see the
simulated surroundings of the agent from the same perspective as in real life - resulting in
more direct, immersive testing by a human expert.

16.5 Experiences

Besides use in teaching, SeSAm was and is applied in several simulation projects reaching
from simulation of social insects, reproduction of shopping behavior to agent-based traffic
simulation. Beyond such traditional application areas of agent-based simulation, SeSAm
forms the technical base for virtual high bay warehouses that are used for software tests,
requirements engineering or employee training. In several of these projects, domain experts
like biologists, geographers, etc. use SeSAm independently. In other projects we use the tool
ourselves. The latter allows evaluating usability directly by ourselves.

We can identify three classes of users of SeSAm who are all at least trying to execute
all tasks listed in Section 16.2.1. First of all there are absolute beginners, for example do-
main experts who discover simulation as a scientific tool but never or hardly have used
this methodology and these techniques before. Secondly one may identify a user group
that has experiences in formalization of software of programs without being familiar to the
multi-agent system paradigm. The third class of users are those familiar with the modeling
paradigm, with programming languages as well as with the features of the SeSAm language
and system. We will shortly discuss what we observed with the first two user classes, followed
by some general aspects. It is quite obvious that this cannot replace a systematic evalua-
tion, but may give indications about the feasibility of using SeSAm for doing multi-agent
simulations beyond mere stability and simulation speed.

16.5.1 Novices

In particular, modeling and implementation novices were one of the premier addressees
that SeSAm was developed for. In general one must admit that SeSAm is too complex for
beginners, although the basic language with variables capturing the status of the entities,
the activity graphs based description was accepted quite easily.

Modeling and simulation novices with a minimum of formalization training were quite
successful. As experts in biology, geography or economic processes, they were not familiar
with particular programming languages, but had a quite clear image of the agent-based
model that they wanted to develop before starting with SeSAm. Abstraction in general
was not a problem. Their minimum training consisted of programming courses in school
or early university studies. Although they could not practically use the learned program-
ming language any more, basic concepts of implementation were still present. Their major
difficulty in implementation consisted of finding and selecting the appropriate primitive
from the large set of atomic functions. As they knew rather exactly what they wanted to
model, they had no conceptual problem and needed only episodic hints how to formulate
exactly certain aspects. It was basically this user group that requested additional support
for experimentation, sensitivity analysis, calibration and validation.

Another novice user group without any remarkable training in abstraction and formal-
ization believed the promise of accessibility of agent-based simulation using SeSAm and
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addressed us for support. They also came with a model in mind that, however, was too
vague to be implementable independent from a particular tool. Support was not restricted
to how to formulate certain aspects in SeSAm, but started with a more general discus-
sion about implementation of models that involves both abstraction and concretization. At
least in three to four cases, the modeler was individually “mentored” by a computer sci-
ence student who usually also implemented the model to a large extent. The advantage of
SeSAm here was that the model always remained understandable for the domain modeler
although he or she was not able to produce the model itself actively. Although the mod-
eling novice was merely passive and needed a lot of support, the simulation project itself
could be successfully terminated as long as the student abstained from biasing the model
implementation, but thoroughly attended to the aspects that the domain modeler actually
wanted to express.

It has been argued that especially the latter user group could be supported by providing
a more powerful primitive set. By using abstract building blocks, a first model could be
constructed. When the un-experienced modeler wonders about how certain outcomes were
produced, the high-level primitives are questioned and replaced by primitive combinations
that the user itself controlled. The advantage would be that the initial gap when formulating
a working model is reduced. The idea of building blocks and component-based simulation
is nothing new, see for example [Barros et al., 2004] or [Valentin et al., 2003], but may also
be useful in the context of SeSAm.

16.5.2 Knowledgeable in Implementation, Not in Multi-Agent systems

Basically, this group of SeSAm users consisted of computer science students attending a
course on multi-agent systems. They had two problems. First, lack of documentation be-
yond simple tutorials. This information basically confused them as they had certain ex-
pectations about the platform, but could not identify used concepts. A good example is a
student that created one class for every agent to be used in the situation mixing classes
and instances. Several other students had problems in understanding that activity graphs
denote the complete behavior and are not passed completely once per update cycle.

Another problem was that in general too much functionality was performed by the global
world entity that should have assigned to the agents. The SeSAm language does not enforce
an agent-oriented implementation. Thus, it is possible to let the global entity loop through
all agents and manipulate their status from this central perspective. The students in the
Multi-Agent Systems course had problems abandoning the known process-oriented way of
thinking and replacing it with some interaction-oriented approach, especially when they use
a graph-based language that is similar to process declarations. A missing clear separation
of responsibilities of global environmental model and local agent model is a drawback of
SeSAm for this user group.

16.6 General Discussion and Future Work

We believe that with SeSAm an important step was taken toward the advance of simulation
environments for agent-based models, despite of all its drawbacks. Coupling visual program-
ming and simulation makes the agent-based simulation paradigm accessible for a variety of
modelers that would otherwise not be able or willing to deal with agent-based simulations,
as bridging the gap between a standard programming language and their model concept
would be too demanding for them.

Nevertheless, there are some starting points for future improvements. Clearly, the simula-
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tion performance of SeSAm should be better. The simulator of SeSAm interprets a behavior
representation that is compiled from the high-level model description given by the modeler.
During this compiling step, optimization steps from compiler design are applied. A simula-
tion run within the SeSAm framework, however, cannot be as fast as a corresponding direct
implementation without the SeSAm overhead for example using Java. Clearly, one can also
implement efficiently using the SeSAm high-level language based on some coarse knowledge
of lower level primitive implementation which results in reasonable, yet not optimal, sim-
ulation run times. For testing alternative ways, we already experimented with a tool that
generates plain Java code out of a SeSAm model [Niederle, 2005]. This tool worked for very
simple models; however for applying it to more complex models, many generic possibilities
of SeSAm would have to be re-implemented in that compiler tool causing a tremendous de-
velopment effort with doubtable success. Thus, the starting point for increasing simulation
speed should be the reduction of overhead by decoupling modeling and runtime environment
in a more consequent way than done in SeSAm up to now. Additionally, the implementation
of certain primitives, especially concerning spatial perception, must be improved.

There are some additional aspects that are seen as suboptimal. Modelers have to get
used to the prefix notation of primitive calls that is one of the remainders of the original
Lisp-based system. Another aspect that needed explanation in several cases is the separa-
tion between class and instance description. Modelers would intuitively like to start with
(example) configurations, especially when spatially explicit models are to be developed.
SeSAm however biasses the modeler to start with the basic structures instead of starting
by arranging entities on a map.

These aspects can be remedied or avoided with sufficient training (and sufficient documen-
tation). This alone however cannot enable a user to develop a successful simulation study
as SeSAm only covers the implementation, experimentation and analysis of an agent-based
simulation. The first step is model design. The step after implementation mainly consists
of testing for validity. These two phases are essential. If one of them fails, the simulation
study fails all together. It is completely justified that such general methodological aspects
gain more and more attention, like in [Matteo et al., 2006]. There are two more visionary
directions that we want to pursue in our future work. We want to investigate new ways of
modeling for circumventing the design problem and secondly, provide more methodological
support for all phases in an agent-based simulation study.

Up to now, when dealing with end user programming, we just considered approaches
based on visual programming. Research in this direction also proposes learning by demon-
stration as a means for implementing agents directly by users. We want to test these forms
of supervised learning and also other forms of learning and adaptive agents for supporting
the development of agent-based models beyond mere implementation and analysis. We are
performing first experiments with agents controlled by neural networks and by machine
learning algorithms. The main problem is defining the appropriate perceptions and feed-
back functions that the agents may get from the environment for actually determining the
direction of adaptation. In these learning agents’ applications, we are not aiming at repro-
ducing, for example, evolutionary processes, but trying to develop a tool that, for example,
automatically generates the behavior of a simulated pedestrian instead of leaving the user
with the cumbersome trial-and-error procedure for model design finding out which rules are
the most appropriate.
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University of Rostock

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
17.2 JAMES II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512

Using JAMES II for Multi-Agent Modeling and
Simulation

17.3 Multi-Agent Modeling and Simulation in JAMES
II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
A Modeling Formalism for the Description of
Multi-Agent Systems • Simulation Algorithms •

Representing Models
17.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

Composition Structure of the MANET Model •

Equipping Nodes with Alternative User Models
17.5 The Role of Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

Experiment Definition
17.6 Experiences and Interpretations. . . . . . . . . . . . . . . . . . . . . 530
17.7 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

17.1 Introduction

The need for flexible and reusable modeling and simulation environments for multi-agent
systems has already been identified several times (e.g., [Gilbert, 1995; Minar et al., 1996]).
Too often new modeling and simulation systems dedicated to execute a (single) concrete
simulation are developed from scratch, wasting time, which might be better applied to the
actual model [Minar et al., 1996].

Modeling and Simulation

Often related to the creation of new modeling and simulation (M&S) environments for single
applications, M&S is prone to a number of pitfalls, which hinder the proper interpretation
of the results achieved [Edmonds, 2000; Edmonds and Hales, 2003; Galan and Izquierdo,
2005]. Problems might arise anywhere in the modeling and simulation process - from theory
building to the interpretation of results [Edmonds, 2000]. However, in the following we will
focus on the aspects related to the usage of modeling and simulation environments.

Several issues may lead to wrong interpretations, first of all the question of which lan-
guage and which level of abstraction to choose for modeling. There are arguments for using
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general purpose languages as well as for specialized modeling languages. If models are writ-
ten in a general purpose language, modelers can easily add “not allowed” code or mix model
definition and simulator code. The latter hinders the exchange of simulation algorithms and
may introduce artifacts into the simulation. Advantages of general purpose languages are
their widespread use and that there are nearly no restrictions with regard to the expressive-
ness. Specialized modeling languages ease the creation of models and prevent a developer
from the integration of “not allowed” code [Gilbert, 1995]. An eXtensible Markup Language
(XML)-based model description, aligned to a modeling formalism, helps to ensure that a
model is well-formed and thereby that it can be executed using a variety of simulation
algorithms on different hardware infrastructures. Reusing model parts is a key feature for
efficient modeling. Such model components can ease the creation of single agents (e.g., by
providing components of the internals), as well as the creation of complex scenarios (e.g.,
by providing complete agents, communication infrastructure, etc).

Whether models are created based on components or whether they are created from
scratch, new models have to be validated quite carefully [Edmonds, 2000; Balci, 2003]. This
might be a time intensive task because for being able to validate a model many simulation
runs might be necessary and thus efficient algorithms are required. In addition, to deny any
effect of a concrete simulation algorithm on the results, models should be validated using
different simulation algorithms [Edmonds and Hales, 2003].

Another important issue for modeling and simulation environments is the management
of experiments. For the traceability of interpretations the repeatability of experiments is
a key feature of modeling and simulation software - therefore a systematic treatment of
experiment intentions, parameters, and the corresponding simulation results is required.

Another pitfall might be the influence of a particular simulation algorithm on the simula-
tion results [Edmonds and Hales, 2003]. The experimental analysis (validation + evaluation)
forms an important part during the development of algorithms. If algorithms are evaluated
carefully, and thus compared to alternative ones, we can judge their final performance. This
is true because not every (if not none) algorithm performs best under all circumstances.
I.e., the need arises to be able to select a proper algorithm out of a (huge) set of different
solutions. There may even be the need to exchange an algorithm during execution time if
results previously achieved indicate that the usage of the “wrong” algorithm would seriously
increase the overall execution time.

Prediction of the resources required to execute a model is not easy. The efficient execution
of large or computationally heavy multi agent applications may require the usage of parallel
computing paradigms. For providing a seamless scalability the usage on single computers
as well as on diverse sets of computing nodes should be possible: start with a model on a
single computer, e.g., for model development and first runs, and continue on a distributed
setup later on. This should be possible without any changes to the model.

Simulation Environments

There are several approaches and specialized modeling and simulation environments for
working with multi agent models. Additionally there are many non multi agent system
related developments, which have nearly no or only little impact on these, e.g., develop-
ments in massively parallelized simulations. Several new modeling and simulation systems
are moving toward more general solutions. The argumentation line is always the same:
software engineering can significantly reduce the effort of creating modeling and simulation
applications [Minar et al., 1996; Himmelspach and Uhrmacher, 2007a] if based on reusable
elements (e.g., based on a framework).

The following short overview lists several modeling and simulation environments stem-
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ming from different fields. The descriptions given here focuses on the “modeling” aspect of
the environments.

Jason (see chapter 15) is a system developed for social simulations. Modeling is based
on and restricted to an extended version of the AgentSpeak language. The system only
provides one simulation algorithm but the simulation is maintained and controlled from an
exchangeable environment, in which the agents reside and which defines the communication
and order of execution of the agents.

Repast Simphony is a development in the Repast family [North et al., 2005]. Repast
Simphony tries to ease modeling and experiment definition by providing graphical editors
for these tasks. The system is created based on the Eclipse framework. Several additional
already integrated modules provide support for different data storages, and optimization
methods.

SeSAm (see chapter 16) is a multi agent modeling and simulation framework with a
nice user interface. Models are created based on SeSAm UML and stored together with
experiment definitions in XML-based files. A plug-in schema allows the extension of a part
of the functionality originally provided. SeSAm is limited to a single execution mechanism.

Swarm has been created as a general “laboratory” for experiments with multi agent
systems [Minar et al., 1996], being under development for more than 10 years now. It
supports coded discrete event based models, which can be executed in a sequential or
parallel manner. There is no explicit “experiment” in Swarm, experiments can be defined
using a “batch mode”.

CD++ [Liu and Wainer, 2007] is one of the modeling and simulation frameworks from
the DEVS (Discrete Event System Specification) realm. CD++ supports experiments and
DEVS based models described in well-defined text files. These can be executed either in a
sequential or parallel manner. The frontend of CD++ is based on the Eclipse framework.

μsik is a micro kernel approach [Perumalla, 2005] to discrete event simulation. Models
have to be written in C code and there is no strict separation between model and simulator.
However, due to the micro kernel approach some mechanisms are exchangeable without the
need to modify the models (e.g., message passing). But μsik does not provide functionality
around the pure execution of simulation runs.

The ability to provide basic functionality, which is reusable across several application
domains (and modeling methodologies) is getting more and more attractive. Examples are
the SSJ framework [L’Ecuyer et al., 2002] or the COLT library. Both provide a set of different
functions (e.g., random number generators) reusable in many scientific applications and with
varying dedication to simulations.

Most existing environments are either bound to certain modeling paradigms (e.g., the
agent oriented one: Jason , SeSAm, Repast), to certain modeling formalisms (e.g., Jason ,
SeSAm, Repast, CD++, μsik), to single simulation algorithms (e.g., SeSAm), are not com-
plete environments (SSJ, COLT), or may be less or more platform dependent (Java (e.g.,
SeSAm) versus C based (e.g., CD++, μsik) implementations).

In the subsequent sections we present a modeling and simulation framework which sub-
sumes ideas from the overall modeling and simulation realm. Nevertheless the system is
especially suited for the simulation of multi agent systems. The integration of these ideas
is done by exploiting a concept named “Plug’n simulate”[Himmelspach and Uhrmacher,
2007a] which makes the system highly flexible and parts developed therefore reusable a
cross world views, application areas and infrastructures available to users. We will illustrate
some of the key features of JAMES II in combination with a model component framework
integrated into the framework as a plug-in by an example application: Service trading in
mobile ad-hoc networks is modeled and simulated.
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17.2 JAMES II

JAMES II (a JAva-based Multipurpose Environment for Simulation, aka a Java-based
Agent modeling Environment for Simulation) has been designed as an open modeling and
simulation framework with strong support for experimentation [Himmelspach and Uhrma-
cher, 2007a; Himmelspach, 2007]. Any number of modeling formalisms can be integrated and
each formalism can be supported by several sequential and parallel distributed (fine-grained)
simulation algorithms∗. Whereas the fine-grained approach allows the efficient execution of
large and computationally intensive models, the experiment layer supports a coarse-grained
execution which can be used for the parallel computation of many smaller simulations in
addition.

The flexibility of JAMES II is achieved by an approach named “Plug’n simulate”. The
complete system is based on plug-ins and the extension points plug-ins can be installed for.
The reasons for the creation of such a flexible framework are manifold:

• Modelers should not be restricted to a single modeling formalism nor a single
modeling interface - the discrepancy of purposes is too large for using a single
solution for everything.
• Simulations should always be executable in the best manner - thus the ability to

use a single workstation, a heterogeneous network, a grid or even a high perfor-
mance cluster should be there. Depending on the platform and the simulation,
sequential or distributed simulation maybe of interest.
• Experiments should always be created and executed from within a well defined

environment, which allows the creation of detailed experiment logs.
• Different users / user groups may require different user interfaces for modeling

and simulation.
• Data collection of simulation run time data is a time consuming task. Intelligent

and flexible solutions which are interchangeable may provide good solutions for
any model or simulation hardware.
• The comparison of algorithms is a highly difficult task - a flexible environment

containing algorithms which may be used as reference implementations is a sound
base for the experimental analysis of new algorithms.

Figure 17.1 shows the basic packages of JAMES II as well as their relationships.

User Interface: The user interface is the most important part of the framework for
using the framework. The user interface has to be adaptable to the needs and
the knowledge of a single user or a group of users (e.g., for biologists). The user
interface is split into several parts, responsible for modeling, experiment setup
and result analysis / visualization.

Data sink: During a simulation run many observations have to be stored so that the
run can be analyzed and visualized. The data sink interface makes no restriction
to the data sink to be used - everything starting from a plain ASCII file up to a
database system can be used.

Model: The base model class. JAMES II strictly separates between a model and a

∗A simulation algorithm in JAMES II is an algorithm dedicated to the computation of a model. Examples
of such algorithms are solvers for differential equations and discrete event based algorithms.

© 2009 by Taylor and Francis Group, LLC



JAMES II - Experiences and Interpretations 513

Simulation

ModelSimulator

Experiment Data sink

User interface

execute

use

use write/read

start

generate

FIGURE 17.1 Sketch of packages and relationships. The lines indicate package imports, the labels
indicate why this dependency is required.

simulator. All modeling formalisms supported by JAMES II must implement
the base interfaces defined in this package. JAMES II itself does not provide
inherent support for any modeling formalism nor any modeling paradigm.

Simulator: A simulator executes a model. In this package the base classes and in-
terfaces for all simulators are provided and they are coming along with a set of
helpers which make the creation of new simulation algorithms fairly straightfor-
ward.

Simulation: If a simulator executes a model this is called a simulation. In this package,
methods and classes for creating simulations are provided. These simulations
can either be distributed or not. To be executed in a distributed manner the
integrated (and extensible) partitioning and load balancing subpackages come
into play.

Experiment: An experiment is a set of simulation runs. Thereby the research focus
can either be on simulation experiments with models or on experiments with
simulation algorithms. This package provides support for creating flexible exper-
iments with support for parameter optimization and validation.

An additional module, accessible from all other modules, is the Registry which can be
considered to be the “brain” of the simulation system. During startup the plug-in types as
well as the plug-ins get registered and lists with installed plug-ins or individual plug-ins can
be retrieved from there.

From an use-case oriented point of view the “experiment” package is the central element
in this design - an experiment is linked to the model to be simulated, it defines the number
of simulation runs as well as the parameter combinations therefore and the data sink to be
used. The ability to conduct different kinds of experiments is essential for all applications of
modeling and simulation. A framework should not only support experiments with models
but also, e.g., experiments for algorithm and model validation.

Functionality not included in the core classes, especially modeling formalisms and sim-
ulation algorithms, can be provided by using plug-ins. The plug-in mechanism allows the
flexible extension of the simulation framework without the need to modify the code of the
core later on. Due to the strict separation between models and simulators, simulation al-
gorithms can be easily exchanged and thus evaluated. This makes the plug-in mechanism
a base for a reliable evaluation of new simulation algorithms. The adaptation of a mod-
eling and simulation framework for certain user groups (especially of the user interface)
is crucial for its usability. This adaptation can be easily done by the plug-in mechanism
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or by embedding the complete JAMES II core (with all installed plug-ins) into another
JAVA application [Martens and Himmelspach, 2005]. Modeling and simulation applications,
formalisms, and algorithms designed for contradicting purposes (e.g., the use for demon-
stration purposes in teaching simulation algorithms versus highly efficient implementations)
can coexist in the framework [Himmelspach and Uhrmacher, 2006].

17.2.1 Using JAMES II for Multi-Agent Modeling and Simulation

In the context of JAMES II the support for multi agent modeling and simulation is dele-
gated to plug-ins providing a suitable formalism. One of these is the PdynDEVS (Parallel
Dynamic DEVS) formalism [Himmelspach and Uhrmacher, 2004; Himmelspach, 2007] (see
Section 17.3.1), another one is the MLDEVS (multi level DEVS) formalism [Uhrmacher
et al., 2007]. There is freedom of choice in regards to the modeling formalism chosen for a
model (or to extend the framework by new plug-ins supporting additional ways to describe
multi agent systems). Both formalisms are supported by efficient simulators. The models
can be described by using Java code as well as by using COMO (COmponent MOdels)
a new approach using XML for describing model components and their relationships (see
Section 17.3.3).

Often multi agent simulations contain stochastic parts. This leads to the requirement
that simulation runs can be repeated in a controlled manner many times. This is supported
by the experiment definition within JAMES II. A set of simulation runs can be defined by
specifying modifications of the model’s parameters. These runs are then executed either in
a sequential or in a parallel manner. Using the parallel variant can drastically reduce the
overall time required for the experiment. These experiments are executed without the need
for any user interaction, the data can be collected in a modern database system.

JAMES II provides means for a simple analysis of the simulation run data. Due to the
ability to store the data in any format or system (as long as an according plug-in exists)
the analysis can be easily done with any available software.

17.3 Multi-Agent Modeling and Simulation in JAMES II

JAMES II does not provide any inherent support for any modeling formalism nor language
but it can be extended by any number of those. For being able to support models with
inherent dynamics we developed a new formalism, named PdynDEVS (Parallel dynamic
DEVS). PdynDEVS is based on PDEVS (Parallel DEVS) [Zeigler et al., 2000] and dynDEVS
(dynamic DEVS) [Uhrmacher, 2001], thus it allows the parallel processing of events in
different parts of a model as well as changing the overall model structure (see Section
17.3.1). Any other modeling formalism / language suitable for multi agent modeling can
be integrated as well. For each modeling formalism / language any number of simulation
algorithms can be provided (see Section 17.3.2). Principally, models for JAMES II can be
created by coding (in Java) or by using a model component approach (see Section 17.3.3).

17.3.1 A Modeling Formalism for the Description of Multi-Agent
Systems

PdynDEVS models are being composed out of two different kinds of models. The first
ones are atomic models, which encapsulate states and state transitions, the other ones are
coupled models containing the network topology of a part of the model. A PdynDEVS is
always a tree and thereby allows the definition of several levels of details (e.g., a concrete
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“agent” could be composed of several submodels).

DEFINITION 17.1 An atomic PdynDEVS model is defined by the tuple

(M ,Minit),

with

• M being the least set such that ∀m ∈ M ∀ sc ∈ SCM ∃n ∈ M : m.ρ(sc) = n and
• Minit ∈ M the start model.

Each Mt ∈ M is defined by a tuple

Mt = (X ,Y ,SCM ,SCS ,S , δint , δext , δcon , λ, ta, ρ),

where

• X = {(p, v) | p ∈ InPorts ∧ v ∈ Xp} a set of tuples, each containing an input
port and an input value
• Y = {(p, v) | p ∈ OutPorts ∧ v ∈ Yp} a set of tuples, each containing an output

port and an output value
• SCM set of structural changes to be processed
• SCS set of structural changes to be sent
• ρ : SCM → M model transition
• S set of states
• δint : S → S × SCS × SCM internal transition
• δext : Q ×X b → S × SCS × SCM external transition

Q = {(s, e) | s ∈ S ∧ 0 ≤ e < ta(s)} is a set of tuples (e = elapsedtime in state
s); X b a bag of inputs.

• δcon : S ×X b → S × SCS × SCM confluent transition
• λ : S → Y b output function
• ta : S → R+

0 ∪∞ the TimeAdvance-function

The set of structural changes to be processed by ρ is communicated in analogy to external
messages of classic DEVS (see Figure 17.4). Each state transition can result in structural
changes in the model. Thereby each atomic model is allowed to induce structural changes
anywhere in the model - if model parts are interpreted as autonomous agents a modeler has
to take care of the agent’s right of self-determination (if required). Structural changes are
always processed from the leafs up to the top most coupled model.

Example 17.1

A PdynDEVS model will now be defined that receives and sends messages depending on
its internal state. Figure 17.2 visualizes the dynamics of the model as a statechart. If ac-
tive, the service model publishes and requests services in given intervals. When receiving an
ActivityStatus message, the model updates the interval at which messages will be sent. Pub-
lishing and requesting services alternates until all available services have been announced.
Formally, the PdynDEVS model is defined as ServiceModel = (M ,Minit), with M = {M1},
Minit = M1, and M1 = (X ,Y ,SCM ,SCS ,S , δint , δext , δcon , λ, ta, ρ), where

• X = {(i , v) | i ∈ InPorts, v ∈ Xi}, with InPorts = {“act”, “response”}, Xact =
ActivityStatus, Xresponse = Response
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call ing

Activi tyStatus/s.t ime = msg.interval

[s.act  & (rand()>=0.5 | |  pub = 0) ]

 /send(ServiceSearchCall)

ServiceModel

s.act = msg.act ive

[s.act & rand()<.5 & s.pub > 0]

 /send(ServiceOfferCall), pub--

offeringsearching

after(expRand(s.t ime))after(expRand(s.t ime))

FIGURE 17.2 Dynamics of a simple service model.

• Y = {(i , v) | i ∈ OutPorts, v ∈ Yi}, with OutPorts = {“call”}, Ycall = Call =
ServiceOfferCall ∪ ServiceSearchCall
• S = Phase×B×N×R≥0, Phase = { “calling”, “searching”, “offering”}. In the

following (p, act, pub, time) is used to refer to an s ∈ S .
• δint((p, act, pub, time)) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(“offering”, act , pub, time) if p = “calling” ∧ act ∧ (rand() > .5 ∨ pub = 0)
(“searching”, act , pub, time) if p = “calling” ∧ act ∧ rand() < .5 ∧ pub > 0
(“calling”, act , pub− 1, time) if p = “offering”
(“calling”, act , pub, time) if p = “searching”
(p, act , pub, time) else

• δext(((p, act , pub), time), x ) =
{

(p, x .active, pub, x .interval) if x = ActivityStatus
(p, act , pub, time) else

• δcon((s, e), x ) = δext((δint(s), e), x )

• λ((p, act , pub, time)) =

⎧⎨
⎩
{(“call”, ServiceSearchCall)} if p = “searching”
{(“call”, ServiceOfferCall)} if p = “offering”
⊥ else

• ta((p, act , pub, time)) =

⎧⎨
⎩

0 if act ∧ p = “calling”
uniformRand(time) if p = “offering” ∨ p = “searching”
∞ else

• SCM = ∅

• SCS = ∅

• ρ(sc) = M1

This model does not use dynamic structures, i.e., M1 is active all the time. An example
for a dynamic structure model will be given for coupled models.

DEFINITION 17.2 A coupled PdynDEVS model is defined as a tuple

(CM ,CMinit),
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with

• CM the set of models
• CMinit ∈ CM the start model

For all CMt ∈ CM :

CMt = (X ,Y ,SCM ,SCS ,D , {Md | d ∈ D} ,EIC ,EOC , IC , ρ),

with:

• X = {(p, v) | p ∈ InPorts ∧ v ∈ Xp} a set of tuples of input port and value
• Y = {(p, v) | p ∈ OutPorts ∧ v ∈ Yp} a set of tuples of output port and value
• SCM set of structural changes to be processed or send to children
• SCS set of structural changes to be send (to the parent)
• ρ : SCM → CM model transition
• D set of component names
• ∀ d ∈ D : Md = (Xd ,Yd ,SCM ,SCS ,S , δint , δext , δcon , λ, ta, ρ) is a Pdyn-

DEVS model with Xd = {(p, v) | p ∈ InPortsd ∧ v ∈ Xp} and Yd =
{(p, v) | p ∈ OutPortsd ∧ v ∈ Yp}
• EIC ⊆ {((C , ipC ), (d , ipd)) | ipC ∈ InPorts ∧ d ∈ D ∧ ipd ∈ InPortsd} set of ex-

ternal input couplings (connections between the input ports of the coupled model
and the input ports of the children)
• EOC ⊆ {((d , opd), (C , opC )) | opC ∈ OutPorts ∧ d ∈ D ∧ opd ∈ OutPortsd} set

of external output couplings (connections between the output ports of the chil-
dren and the output ports of the coupled model)
• IC ⊆ {((a, opa), (b, ipb)) | a, b ∈ D ∧ opa ∈ OutPortsa ∧ ipb ∈ InPortsb} the set

of internal couplings (connections between the output ports of the children and
the input ports of the children)

A coupled model is used to define the network structure. Similar to atomic models,
coupled models differentiate between structural changes to be forwarded upwards and those
to be processed by the model or forwarded downwards.

Structural changes on each level are executed one after the other. For each change (element
in SCM ) ρ has to be executed resulting in subsequent transformations from the starting
model to the target model CMt → · · · → CMtarget ( with CMi .SCM = CMi−1.SCM \sc ∧
CMi−1.ρ(sc) = CMi , with sc ∈ CMi−1.SCM ∧CM0 = CMt ∧CM|CM0.SCM | = CMtarget). For
making the runs repeatable these changes have to be executed in a well-defined order (see
[Himmelspach and Uhrmacher, 2004]). Thus, for the next structural change to be executed
(sc ∈ CMi .SCM ), the condition must hold that ∀ o ∈ (CMi .SCM \sc) : priority(sc) >
priority(o).

Having defined the new modeling formalism classes have to be realized, which allow the
creation of models of this type. These classes have to be integrated into JAMES II as a
plug-in.

Example 17.2

A coupled model is now used to define a second model, which may be coupled to the service
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main:
Handler

call:Call response:Response

status:
StatusHandler

send:Message

statout:Status

receive:Message

statout:Status

statin:Status

logout:boolean

statin:Status

closed:boolean

toX:Message

logout:boolean

closed:boolean
statinStatus

receive:Message sesX:

session
response:Response

send:Message

statout:Status

send:Message

FIGURE 17.3 Permanent and temporary sub models of model Protocol.

model as introduced above. Within our application scenario∗ the model represents a service
trading protocol. Such a protocol is responsible for processing user calls like announcements
of services and requests for services. Calls are propagated transparently for the user to the
network and according responses sent back to the user.

The protocol needs to be able to handle a number of calls and messages in parallel sessions.
Dynamic structures are used to create and remove sessions on demand. Figure 17.3 shows
the structure of the Protocol model. Whereas the Handler and Status models are permanent
submodels of the protocol, incoming calls of the user and messages received from a network
model initiate the creation of sessions, each being processed by a separate sub model.
After having finished a session, the according sub model will be removed from the coupled
model.

CMinit = CM1 = (X ,Y ,D , {Md | d ∈ D}, EIC,EOC, IC), with

• X = {(i , v) | i ∈ InPorts, v ∈ Xi}, with InPorts = {“call”, “receive”},
Xreceive = Message, and Xcall = Call

• Y = {(i , v) | i ∈ OutPorts, v ∈ Yi}, with OutPorts = {“out”} and Yout =
Message

• D = {“main”, “status”}
• {Md} = {Mmain,Mstatus}
• EIC = {(“this”, “call”, “main”, “call”), (“this”, “receive, “main”, “receive”)}
• IC = {(“main, “statout”, “status”, “statin”), (“main”, “statout”, “main, “statin”)}
• EOC = {(“main, “response”, “this”, “response”), (“status”, “send”, “this”, “send”)}
• SCM = {AddModel, AddCoupling, RemModel, RemCoupling}
• SCS = ∅

∗cf. Section 17.4 for an introduction
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parent 
DEVS-coordinator

subordinate
DEVS-simulator

or
DEVS-coordinator

(y, t)

(*, t) (x, t)

(sc, t)

(sc, t)

(done, tn)

FIGURE 17.4 PdynDEVS protocol.

• ρ(sc) =
{

CM ′ if sc = AddModel(“sesX”,MsesX )
CM else

with all elements of CM ′ equal to the ones of CM except function ρ and the sets
D and {Md}, which become

– D ′ = D ∪ {“sesX”}

– {Md}′ = Md ∪MsesX

– ρ′(sc) =
{

CM ′′ if sc = AddCoupling(“main, “toX”, “sesX”, “receive”)
CM ′ else

with all elements of CM ′′ equal to the ones of CM ′ except ρ′′ and IC . . .

The model Protocol permanently contains the two sub models Handler and StatusHandler.
If an AddModel request is passed to it, ρ adds the according model to the set of sub
models and thereby CM becomes CM ′. The ρ function of CM ′ produces CM ′′ by adding
a coupling. This ρ is applied to all structure change requests iteratively.
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FIGURE 17.5 Abstract simulator. The classical DEVS simulator with a 1:1 mapping of models and
simulators.
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FIGURE 17.6 Flat simulator. A flat DEVS simulator – one simulator computes all models.
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FIGURE 17.7 Combined simulator. The classical DEVS simulator in combination with sequential sim-
ulators. The sub coordinators are responsible for the computation of n of m sub models contained in a
coupled model.

1 for each model in imminents do
2 execute model . lambda
3 i n f l u e n c e e s := union ( i n f l u en c e e s , copyOutputs ( model ) )
4 end for
5 for each model in union ( i n f l u en c e e s , imminents ) do
6 execute model . s t a t eT ran s i t i on
7 execute model . timeAdvance
8 execute s t r u c t u r a l changes
9 end for

10 bottom up execut ion o f s t r u c t u r a l changes on the network l e v e l s

FIGURE 17.8 Pseudo-code of the flat sequential PdynDEVS simulator.
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17.3.2 Simulation Algorithms

Simulation algorithms must be adaptable to the hardware and the model. For the formalism
introduced above we have implemented three different simulation algorithms based on those
presented in [Himmelspach and Uhrmacher, 2006]. The abstract threaded variant (see Figure
17.5) is very close to the abstract simulator for PDEVS as defined in [Zeigler et al., 2000].
This algorithm consists of three parts which communicate according to the protocol given
in Figure 17.4 [Himmelspach and Uhrmacher, 2004]. The three parts are a coordinator for
the computation of coupled models, a simulator for the computation of atomic models,
and a root coordinator which is the root of the simulator tree. Out of these “components”
the simulator tree is built in accordance to the model tree to be computed. This algorithm
performs well if there are few computationally heavy models and if these can be computed on
extra computers. The second algorithm can be used to compute a model completely on one
computer (by virtually flattening the hierarchical model - see Figure 17.6 and algorithm
17.8). The third algorithm is a combination of both (see Figure 17.7) and thus can be
used for the computation of heterogeneously built models. These simulation algorithms are
integrated as plug-ins into JAMES II by implementing a class containing the algorithm
and supporting the IProcessor interface of the framework [Himmelspach and Uhrmacher,
2007a; Himmelspach, 2007].

Reuse on the algorithm level comes into play here as all these algorithms require event
queues for proper working. There are many different event queue implementations described
in the literature - which of those to use when cannot be easily answered and mostly depends
on the model and the simulation algorithm used [Himmelspach and Uhrmacher, 2007b].
JAMES II provides a set of event queue implementations which can be used alternatively.

17.3.3 Representing Models

JAMES II allows coding models directly in Java. In [Röhl and Uhrmacher, 2006] an alterna-
tive way to describe models has been proposed, which is based on XML. Data descriptions
based on XML are considered to be robust, extensible, and suited to represent complex
data structures [Harold, 2002]. Furthermore, XML-based storage formats integrate well
with databases and facilitate the exchange of models via the world wide web.

XML documents have a tree structure consisting of nested nodes. Names of nodes give an
informal hint how to interpret contents of XML documents. At the syntactical level schema
languages can be used to specify occurrence and ordering constraints of nodes. Languages
like XML Schema Definition (XSD) allow one to additionally constrain the content and
value ranges of nodes [W3C, 2004].

XSD definitions form the basis for representing models in XML. Figure 17.9 lists the
definition of the complex type Call. A Call may be used by a model in the context of network
simulation (cf. application scenario in Section 17.4) to announce a service, to search for a
service or to publish a service. These three alternatives are again defined as complex types.
For example, a service search contains the network address of the requester and the name
of the service to be searched. An address consists of primitive types, for which value ranges
are predefined by XSD.

Figure 17.10 shows the structural part of a PdynDEVS model definition in XML, which
uses XML Schema Definitions. The model contains two input ports and one output port.
The state space is structured into three sub states.

In addition to an XML-based representation for model definitions, models can be equipped
with explicit interface descriptions. Interface definitions orient on the Unified modeling
Language 2.0 [OMG, 2005]. Most notably, published and required interfaces of each model
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<xs:schema xmlns :xs=” ht tp : //www.w3 . org /2001/XMLSchema”
xmlns=”unihro / diane /base / s e r v i c e ” . . .>
<xs:complexType name=” Cal l ”>

<x s : c h o i c e>
<xs : e l ement name=” c a l l ” type=” Se r v i c eO f f e rCa l l ”/>
<xs : e l ement name=” c a l l ” type=” Serv iceRevokeCal l ”/>
<xs : e l ement name=” c a l l ” type=” Se rv i c eSea r chCa l l ”/>

</ x s : c h o i c e>
</xs:complexType>
<xs:complexType name=” Se rv i c eSea r chCa l l ”>

<xs : s equence>
<xs : e l ement name=” i n qu i r e r ” type=”Address ”/>
<xs : e l ement name=” se rv ” type=” x s : s t r i n g ”/>

</ xs : s equence>
</xs:complexType>
<xs:complexType name=”Address ”>

<x s : a t t r i b u t e name=”p1” type=” x s : i n t e g e r ”/>
<x s : a t t r i b u t e name=”p2” type=” x s : i n t e g e r ”/>
<x s : a t t r i b u t e name=”p3” type=” x s : i n t e g e r ”/>
<x s : a t t r i b u t e name=”p4” type=” x s : i n t e g e r ”/>

</xs:complexType> . . .
</xs:schema>

FIGURE 17.9 Definition of event types with XML Schema.

<atomic
xmlns=” ht tp : //www. in fo rmat ik . uni−ro s tock . de/ cosa /model/dynpdevs”
xmlns :devs=” ht tp : //www. in fo rmat ik . uni−ro s tock . de/ cosa /model/ bas i cdevs ”>
<dev s : i npo r t

type=”unihro / diane /base / s e rv i c e :Re spon s e ”>re sponse</ dev s : i npo r t>
<dev s : i npo r t

type=”unihro / diane /base / a c t i v i t y :A c t i v i t y S t a t u s ”>act</ dev s : i npo r t>
<devs : ou tpor t type=”unihro / diane /base / s e r v i c e : C a l l ”>c a l l</ devs : ou tpor t>

<d ev s : s t a t e>
<dev s : s ub s t a t e type=” ht tp : //www.w3 . org /2001/XMLSchema:int”

i n i t=”0”>id</ dev s : s ub s t a t e>
<dev s : s ub s t a t e type=” ht tp : //www.w3 . org /2001/XMLSchema:int”

i n i t=”0”>numberOfServiceTypes</ dev s : s ub s t a t e>
<dev s : s ub s t a t e type=” ht tp : //www.w3 . org /2001/XMLSchema:int”

i n i t=”0”>numberOfPublications</ dev s : s ub s t a t e>

</ d e v s : s t a t e>
. . .

</atomic>

FIGURE 17.10 Model definitions in XML based on XML Schema Definitions.
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< i n t e r f a c e xmlns=” ht tp : //www. in fo rmat ik . uni−ro s tock . de/ cosa / pub l i c i ”>
<id>unihro . diane . com . s e r v i c e . I n t e r f a c e /1 .0</ id>
<p r o f i l e>

<name>Se rv i c e</name>
<app l i ca t ion domain> MANET s imu la t i on</ app l i ca t ion domain>
<d e s c r i p t i o n> Generates s e r v i c e o f f e r s and s e r v i c e r eque s t s

p e r i o d i c a l l y . </ d e s c r i p t i o n>
<ob j e c t i v e>Evaluate s e r v i c e t rad ing in ad−hoc networks</ ob j e c t i v e>
<key ab s t r a c t i on s>Time between c a l l s i s assumed to uniform

d i s t r i b u t e d</ k ey ab s t r a c t i on s>
<author>Mathias Roehl</ author>

</ p r o f i l e>
<param name=” id ” type=” in t ” value=”0”/>
<param name=”numberOfServiceTypes” type=” in t ” value=”15”

d e s c r i p t i o n=”how many d i f f e r e n t s e r v i c e types do we d i s t i n g u i s h ”/>
<param name=”numberOfPublications ” type=” in t ” value=”3”

d e s c r i p t i o n=”how many s e r v i c e s are going to be publ i shed ”/>
<port>

<name>a c t i v i t y</name>
<type>unihro / diane /com/ s e r v i c e /v1/ Act iv i tyProc</ type>

</ port>
<port minMul t ip l i c i t y=”1”>

<name>s e r v i c e</name>
<type>unihro / diane /com/ s e r v i c e /v1/ ServiceReq</ type>

</ port>
<impl>unihro . diane . com . s e r v i c e /1 .0</ impl>

</ i n t e r f a c e>

FIGURE 17.11 Interface Definition for a Model.

ActivityProc

service

Service
Model

act:ActivityStatus

call:Call

Service
act iv i ty

act:ActivityStatus ServiceReqresp:Response call:Call

response:Response

Atomic port declaration

Composite port declaration

Atomic port  implementat ion

Binding

FIGURE 17.12 Relation between declared and implemented ports.

component have to be explicitly specified. Thereby internal details of a component, i.e., the
implementation of model behavior, can be hidden and direct dependencies between models
eliminated.

An interface definition for the model listed above is depicted in Figure 17.11. The interface
contains a profile and exposes three parameters and two composite ports.

Components expose ports to indicate their provisions and requirements. Component ports
may comprise a set of declarations for atomic model ports. For realizing models, port dec-
larations need to be bound to concrete ports of model implementations. Figure 17.12 illus-
trates the binding of two component composite ports to three atomic model ports.

A set of components may become customized and arranged to form a Composition accord-
ing to the aim of a simulation study. Parameters set on component instances are evaluated
and dependencies between components are resolved. Composite model components sup-
port the hierarchical, modular construction of models and enable the development of larger
models from smaller ones. Couplings connect ports of one model component to compatible
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ports of another component. Communication between models is only allowed along these
couplings.

For simulation purposes composition structures are mapped automatically [Röhl, 2006] to
the Parallel DEVS formalism [Zeigler et al., 2000], which forms a subset of the PdynDEVS
formalism as described in Section 17.3.1.

The challenge for supporting reusable model components stems from the different charac-
teristics of declarative and imperative representations. Declarative specifications, e.g., based
on XML, ease the import and export of model definitions and are well suited to specify meta
data, while declarative representations of components work well for database activities like
storing, querying, and retrieving of components, they bear a significant execution overhead
as models need to be interpreted at the time of execution. In contrast, imperative imple-
mentations of models are generally more efficient to execute but less eligible for database
integration. Ideally one wants to combine the advantages of both “worlds”, i.e., to compose
efficient simulation models flexibly. To this end, the realization of the component framework
is based on the strict separation between composition and execution phase. All activities
that account for the composition of models work on XML data and are finished before the
simulation model is executed.

17.4 Application

Mobile ad-hoc networks (MANETs) are computer networks based on wireless communica-
tion. MANETs are characterized by dynamic network topologies. Nodes induce topology
changes by appearing, disappearing, and moving in a spatial environment. To provide fast
and reliable connections poses a severe challenge for MANETs, because MANETs lack a
central infrastructure and bandwidth as well as energy are strictly limited [Corson and
Macker, 1999].

Network devices operating independently of the mains typically have limited capabili-
ties, e.g., w.r.t. memory, battery, and performance. Complex operations require coopera-
tion among network nodes. To make cooperation possible, resources and capabilities, in the
following called services, of nodes have to be announced and need to be locatable. From
the perspective of human users, services should be accessible in a transparent manner.
On this account, service descriptions, service matching algorithms, incentive schemes and
distributed reputation systems are developed in the project DIANE [Diane, 2007]. These
mechanisms need to be thoroughly evaluated [Klein et al., 2004]. Of particular interest
is how protocols scale with higher (≥ 64) number of network nodes [Röhl et al., 2007].
Concrete experiments aim at

• the comparison of different protocols for service trading in cases of different net-
work sizes and
• the effect of different user models on the performance of a certain protocol.

Conducting experiments to evaluate service trading in MANETs requires user models to
represent network nodes as autonomous actors, which move in a spatial environment and
announce and request services. Developers of service trading protocols are mainly interested
in the cost-benefit ratio of protocols when confronted with different kinds of user models.
However, MANETs are typically simulated with special simulation systems, called network
simulators [Kurkowski et al., 2005], which concentrate on the lower layers of the OSI proto-
col stack, e.g., routing protocols on the third layer. Within these simulation systems, models
for representing movement and service behavior are simply calculated based on stochastic
distributions [Tan et al., 2002]. As network traffic in MANETs is sensitive to local accu-
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FIGURE 17.13 Conceptual model for evaluating service trading in mobile ad-hoc networks.

mulation of nodes and temporal accumulation of network usage, more complex user models
are required, e.g., to allow a consistent modeling of motion and service behavior and to in-
corporate social aspects. Thereby users do not necessarily move individually but may form
groups and move as clusters aiming at same destinations and partly synchronizing their
schedules. Please note that in this setting agents are not subject to evaluation but become
part of the experimental setup to evaluate service trading protocols.

Figure 17.13 shows a conceptual model for evaluating service trading in MANETs. The
network consists of mobile nodes. Network connections between nodes depend on user posi-
tions. Each node comprises a user model and a service trading model such that the trading
protocol mediates all network interactions and thereby provides a transparent access to
services available in the network. Models are supposed to exchange the following types of
events:

Call: A user initiates to offer, to revoke, or to search a certain service.
Response: The trading protocol reacts, after having performed all necessary actions,

to calls of the user with according responses.
Message: Trading protocols communicate over the network with messages of arbitrary

content.
Move: Movement information in a two-dimensional spatial environment.
SocialOrg: Social organization requests and responses.

User models initiate communication by sending calls to the trading protocol. Calls are
passed to the protocol model, which answers user calls with Response events.

The concrete type of the user model and the trading protocol should be a variation point
of the simulation model. Different kinds of user and protocol models should be exchangeable
independently of each other within a node. For simulating service trading in MANETs with
JAMES II, user and protocol models have been realized as model components.

17.4.1 Composition Structure of the MANET Model

Figure 17.14 shows the top level structure of the composite component Manet. The Manet
component takes parameters to initialize the number of nodes to be simulated, the type of
the user model to be used, and the type of the protocol model to be used inside each node.
If the user model to be used is a social one, a further component has to be added, which
represents the social environment and mediates social contacts of users.

The spatial environment represents a certain geographical area containing streets and
buildings. It receives and it keeps track of all user positions. Based on positions and a
constant radio range, a connectivity graph is calculated. All nodes are assumed to have an
omnidirectional antenna and equal transmission power. All connections are bidirectional.
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FIGURE 17.14 Top level composition structure of the MANET model.

Changes in connectivity are propagated, such that other models (e.g., the network model)
can adapt their states accordingly.

The network component models the transport layer of the network. In real MANETs the
whole OSI stack is part of each node. Since we are interested in the evaluation of higher level
protocols, the four lower OSI layers are pooled in a centralized network component. The
network component delivers messages to nodes. The connectivity of each node is calculated
according to its position with respect to other nodes.

Users do not communicate directly with each other. Instead, all social interaction is
mediated by the social environment. The social environment initiates group formation on
the basis of spatial proximity and scheduled activities of users.

17.4.2 Equipping Nodes with Alternative User Models

Each node contains a Protocol component and a User component. For the node compo-
nent, the user and protocol components are black boxes whose couplings are defined by
interfaces. Each can be easily replaced by an alternative implementation that provides the
same interface. We will now take a look at different implementations of user components
and protocol components.

Figure 17.15 shows the composition structure of the Node component. Three different
versions of the user component have been implemented up to now. They can be composed
into a node alternatively, as indicated by the three dotted lines. All of these are realized as
composite components.

User models represent students moving as pedestrians on a campus and performing ser-
vice operations. The simple user contains an activity subcomponent that manages login
and logout behavior. If logged in, the service component becomes notified to start pub-
lishing services and searching for services randomly according to a uniform distribution.
Furthermore, the activity subcomponent selects destination points randomly and calculates
routes to them. Routes are propagated to the Motion sub component, which partitions the
route into small steps and executes them with a certain walking speed. After reaching the
destination, a new route is requested from the activity component.

The second user model realizes an activity-based user behavior. Network usage and mov-
ing are not modeled independently of each other. Both depend on the activity a user is
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FIGURE 17.15 Structure of the node model with three different user models..

currently executing. The Activity model generates a schedule at the start time of the simu-
lation. The schedule contains fixed activities, e.g., attending a lecture on the campus as well
as flexible activities, such as learning, with different priorities and durations. The current
activity is passed to the Motion and Service subcomponent. The service component gen-
erates service offers and requests according to the received activity. Motion receives path
information and moves along the path until the destination is reached. If the destination
is reached, an event will be produced to indicate this. Afterward, the model waits until
new way points are received. Activities depend on the spatial context. Each location on
the campus is only suited for a certain set of activities. The current activity constrains the
choice of the next destination and thereby the motion model. Thus, motion and service
behavior are both based on activities.

The third user model extends the activity-based model with social awareness. The sub-
component Social of each user announces planned activity to the social environment model.
If users have planned similar activities and are spatially close, the social environment forms
a group and selects a group leader. The group leader chooses activities, which group mem-
bers may adopt. Because an activity does not uniquely define the location of performance,
the group leader chooses a location out of a set of suitable ones and communicates this
choice to all group members. Group members are free to choose a path to the location.
Thus, social users are synchronized with respect to the next joint activity and the location
where this activity will be performed.
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<experiment xmlns=” ht tp : //www. in fo rmat ik . uni−ro s tock . de/ cosa / experiment ”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”>
<id>DianeExperiment /1 .0</ id>
<model>DianeManet /1 .0</model>
<mparams>

<param name=”nodes”>
<value>50</ value>
<value>100</ value>
<value>150</ value>
<value>200</ value>
<value>250</ value>
<value>300</ value>

</param>
<param name=” pro to co l ”> <value>Lanes</ value> </param>
<param name=” user ”> <value>SimpleUser</ value> <value>Soc i a lUse r</ value>

</param>
</mparams>
<targetFormal ism>ht tp : //www . . . de/ cosa /model/ execdynpdevs</ targetFormal ism>
<ob s e rv e r c f g>unihro . diane . exper iments . v05 . ObsNoVis</ ob s e rv e r c f g>
<sparams>

<startTime>0 .0</ startTime>
<endTime>28800</endTime>

</sparams>
</ experiment>

FIGURE 17.16 Definition of a MANET experiment in XML.

17.5 The Role of Time

Modeling and simulation are both processes which require a lot of time. If a model has been
created, quite often many simulation runs have to be executed - either for model valida-
tion or for executing experiments to analyze the modeled system. The three different user
models and their effect on trading protocols have been evaluated in previous experiments
[Röhl et al., 2007]. In case of the MANET model it turned out that the time needed for
conducting the experiments increased dramatically for simulation models containing more
than 200 nodes. Therefore, we conducted further experiments to evaluate the influence of
node numbers on execution time in more detail.

17.5.1 Experiment Definition

Model components form the basis for experimentation. Experiments execute a certain
model, derived from a model component with varying parameter values.

Figure 17.16 shows a sample experiment definition that uses the MANET model compo-
nent as the root model. On the MANET component the following parameters are set:

Nodes: The number of network nodes to be simulated.
Protocol: The component Id of the trading protocol to be used inside each node.
User: The component Id of the user model to be used inside each node.

Users arrive uniformly distributed over a period of one hour, log into the network, and
stay online until the end of simulation. The simulation stops one hour after all nodes have
been logged in.

Figure 17.17 shows the execution times using a simple and a social user model with in-
creasing number of nodes. For each parameter combination ten replications were made. The
runs are executed by the flat sequential simulator - the currently fastest P*DEVS simulator
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FIGURE 17.17 Execution times.

TABLE 17.1 Mean execution time per run (in seconds, from Figure 17.17)
and estimated execution times (100 repetitions) in hours for alternative user
models and different numbers of users using the LANES protocol.

User model/Nodes 50 100 150 200 250 300
Simple user (1) (s) 19.97 160.17 640.46 1256.81 5006.3 8970.16
Simple user (100) (h) 0.55 4.45 17.79 34.91 139.06 249.17
Social user (1) (s) 22.37 144.46 453.64 1573.07 2379.04 5869.7
Social user (100) (h) 0.62 4.01 12.6 43.7 66.08 163.05

in JAMES II. The plot shows the mean values and standard deviations of execution times
on a logarithmic scale.

Surprisingly, with increasing node size, simulation runs with the more complex user model
require less time than with the simple user model. Social users exchange coordination mes-
sages in addition to network messages, such that a communication overhead was expected.
However, the execution times reflect the original intention for introducing the social user.
Nodes clustering induced by group formation and verbal communication between group
members reduce the number of messages that are actually sent over the network. Thereby,
the measured execution times indirectly substantiate that adding social behavior to network
users has an effect on overall network performance.

In Table 17.1 an estimation of execution times (for 100 repetitions) for the model described
above is given. It can be easily seen that the simulation of the simple user with 300 nodes
requires more than ≈ 249 hours (for 100 repetitions) on a single machine. The repetitions are
required due to the stochastic in the model - i.e., 100 repetitions may still not be enough for
getting reliable results. If the effect of slightly modified parameters (e.g. different user model,
or just 50 nodes less and the same user model) shall be examined in more detail, the overall
time required for all runs might be too high to execute these runs on a single computer.
Here a scalable simulation framework, supporting in addition a distributed simulation of
models, is essential to allow more detailed experiments with the already existing model.

The performance evaluation of the simulation model shows that the developed Manet
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model is suited to conduct experiments faster than real-time up to 200 nodes. However,
measured execution times also indicate that robust and confidential results would benefit
from advanced execution capabilities, e.g., to parallelize the execution of simulation runs
with different parameter configurations.

17.6 Experiences and Interpretations

JAMES II is not only used for the simulation of completely modeled agent systems. E.g.,
we used JAMES II to test an agent software called Autominder [Gierke et al., 2006]. In this
context the need arose to be able to integrate externally running processes into JAMES II.
Two new formalisms have been created allowing such an integration: PepiDEVS (Parallel
external process interface DEVS), and PepiDynDEVS (Parallel external process interface
dynamic DEVS) [Himmelspach, 2007]. The first extends PDEVS, the second the PdynDEVS
formalism (see 17.3.1). Models being based on these formalisms can communicate with
external processes (either in paced or unpaced mode).

In addition, JAMES II is being used for nonagent models, and it is being used by third
parties. By opening the framework for different user groups, developments from these can
be reused easily reducing the time required to create new algorithms or models. An example
for this might be a new event queue, maybe developed newly for a specialized non agent
simulator, which can be automatically used for the computation of the next discrete event
based agent model - this makes it possible to use basic scientific results and improvements
cross research fields and application scenarios.

Flexible systems for modeling and simulation are highly required. It is not enough if mod-
eling and simulation frameworks are restricted to single execution mechanisms. Especially
multi-agent models require - due to their size and heterogeneity in regards to their com-
putational complexity - efficient and alternatively usable algorithms for their computation.
The example illustrates the time needed to compute a model and thereby the need for effi-
cient algorithms. As we have already shown, different models may be best simulated using
different algorithms / data structures [Himmelspach and Uhrmacher, 2006, 2007b; Him-
melspach, 2007]. JAMES II provides the base for such a flexible system. The algorithms
realized so far allow the execution of multi agent models on a diverse set of hardware (e.g.,
home PCs, heterogeneous LANs, grid like infrastructures). In addition, these algorithms
should be adaptable in accordance to the model that shall be computed by them - e.g., by
being able to integrate different event queues.

17.7 Outlook

Future research will add new formalisms and simulation algorithms to JAMES II. New
formalisms will extend the usage of JAMES II for various disciplines and applications.
Further advancements of model descriptions and model reuse can significantly add to gain
new insights by reducing the overall time needed to create models and to experiment with
these. The support of further modeling formalisms and languages for multi agent systems
may add to the advancement of multi agent research due to the possibility to reuse new
technologies from all fields of modeling and simulation implemented for the framework.
Examples for such new technologies are new simulation algorithms which can add to the
scalability of JAMES II. The experimentation with new algorithms is essential during the
development of new algorithms [Tichy, 1998; Johnson, 2002; McGeoch, 2007], and in a fixed
context as the one provided by JAMES II the evaluation of algorithms may additionally
reveal inherent properties of these. Up to now JAMES II has been used only in hetero-
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geneous networks and on standalone machines. In the future JAMES II shall additionally
run on Grid inspired and cluster based approaches. To improve the usability of JAMES

II simulation algorithms shall be automatically - based on characteristics of the model and
the algorithms - selectable in the future [Ewald et al., 2008]. In addition, this mechanism
could form a base to extend the framework with a dynamic adaptation mechanism of the
simulation infrastructure according to structural changes of multi agent models.
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M. Röhl and A. M. Uhrmacher. Composing simulations from XML-specified model
components. In Proceedings of the Winter Simulation Conference, Monterey,
CA, Dec. 3-6, pages 1083–1090. WSC, 2006.
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Glossary

AGV transportation system: A system that consists of a set of automated guided
vehicles (AGVs), controlled by a multi-agent system, that transport loads in a
warehouse.

Architectural view: A representation of a coherent set of architectural elements and
the relations among them. A view presents a particular perspective on the archi-
tecture or a part thereof.

Artifact: According to the A&A Metamodel, artifacts are passive, reactive computa-
tional entities aimed at the agent’s use, working as agent’s instruments and tools.
Artifacts typically implement those behaviors that cannot or do not require to
be modeled as goal-oriented, and provide agents with the services and functions
they require to ease the achievement of the agent’s goals.

Automated guided vehicle (AGV): An unmanned, computer-controlled vehicle
that transports loads in a warehouse and that uses a battery as its energy source.

Avatar: A software agent in the polyagent modeling construct that manages the cor-
respondence with a domain entity. It persists as long as its entity, generates ghosts
to explore alternative possible behaviors, and may employ complex agent logic
such as BDI reasoning.

Behavioral implicit communication: It is a form of communication that, to be
effective, it is sufficient that the receiver reads the act or structure as a cue and
not as a signal. In particular the receiver is able to use a practical behavior or a
trace of a practical behavior.

Car-following model: A car-following or follow-the-leader model describes the lon-
gitudinal movement of a driver-vehicle agent. It assumes that drivers react to the
stimulus from neighboring vehicles with the dominant influence from the direct
leader. Together with lane-changing models, car-following models constitute the
basis of microscopic traffic simulations.

Cellular automata crowd model: In this approach pedestrians are viewed as spe-
cific states for the cells, units in which the environment is discretized. The move-
ment is generated by the uniform CA transition rule. The environment has an
explicit and discrete representation.

Communication: The production of any act or structure which alters the behavior
of other agents, which evolved (or is learnt or deliberated) because of that effect,
and which is effective because the receiver’s response has also evolved (or is learnt
or designed). Defined in this way, communication is a form of coordination by
hetero-adjustment.

Continuous strategy space: Instead of a finite (or discrete) set of strategies a con-
tinuum of strategies is considered.

Coordination: It is a form of individual social action in which an agent adapts to
another agent’s behavior in order to increase its own success. More precisely it is
adaptation by reading cues of interference. Coordination is direct when the cues
of interference are the other agent’s behavior themselves. Coordination is indirect
when, by acting on the basis of some cue other than the behavior of some other
agent, the agent is also adapting its own behavior to those of the other agent.
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Crowd (of pedestrians): There is no precise and shared definition of the term; a
qualitative but effective definition is ”(Too) many people in (too) little space”.

Cue: Any animate or inanimate feature of the environment that an agent is adapted
(thanks to evolution, learning or deliberation) to use as a guide for future actions.

Decision model: Represents a model of possible decision making options in the phys-
ical system. Different what-if scenarios are created by using the decision model.
It is used only in the context of an symbiotic simulation control system (SSCS)
and a symbiotic simulation decision support system (SSDSS).

Delegate MAS: A multi-agent system that is assigned a task to perform on behalf
of a higher-level agent; in the polyagent construct, corresponds to a collection of
ghosts supporting an avatar.

Differentiated cells: Cells which have a specialized function such as blood or heart
cells and which have (at least in general) lost the potential to “dedifferentiate”
and become less specialized. Fully differentiated cells have lost the ability to
divide.

Differentiation and dedifferentiation: The first is the process of becoming more
specialised which may or may not be independent of division, and the second is
any process where a cell becomes more “stem-like”.

DIME: DIME stands for Diplomatic, Intelligence, Military, and Economic actions.
Discrete strategy set: A finite set of strategies.
Driver-vehicle agent: In a microscopic traffic simulation, the driver-vehicle agent is

the atomic entity which represents the internal characteristics of a driver (driving
style) as well as properties of the vehicle such as acceleration and braking capa-
bilities. The operational tasks are the longitudinal movement as well as changing
lanes.

Dynamic environment: An environment in which the operating conditions of a
multi-agent control system are continuously changing. In a dynamic environ-
ment, an agent cannot determine the outcome of its actions a priori, as other
activities happening in the environment can have a significant impact on the
outcome of actions.

Dynamic uncertainty: Uncertainty about a system variable that is due, not to lack
of knowledge (e.g., sensor noise), but to the repeated iteration of nonlinear pro-
cesses.

Emergence: A phenomenon observed in a system is said to be emergent if and only if
it cannot be explained in the same terms (same structures, same laws) describing
the states and dynamics of the generating system.

Evolutionary game theory: The evolutionary version of Game Theory arose from
the application of traditional Game Theory to biology. Its central concepts are
the replicator dynamics and evolutionary stable strategies.

External influence: Represents influence factors which have their origins in the envi-
ronment of the physical system. They affect the behaviour of the physical system
but cannot be controlled by it or the simulation system.

FactionSim: FactionSim is an environment that captures a globally recurring socio-
cultural “game” that focuses upon inter-group competition for control of re-
sources (Security, Economic, and Political Tanks).

Functional components: Realise various functionalities which are required for typ-
ical activities in a symbiotic simulation system. They are implemented by means
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of capabilities in the agent-based framework.
Ghost: A software agent in the polyagent modeling construct that explores one

possible behavior for its avatar. It is transient to make room for later ghosts
from its avatar. Ghosts interact with each other and with avatars, not directly,
but through digital pheromones that they deposit in the environment. This
lightweight reasoning allows the concurrent execution of multiple ghosts.

GSP: The Goals, Standards, and Preference tree is a multi-attribute value structure.
It is designed to capture an agent’s short term needs and motivations (Goals),
its preferred means to achieving its end (Standards), and its long-term desires
(Preferences).

HBM: HBM stands for human behavior modeling.
Hematopoeitic stem cells: The hematopoietic stem cells (HSCs), which can be

found mostly in the bone marrow, are responsible for the constant replacement
of blood cells lost to normal turnover processes as well as to illness or trauma.

Hematopoietis: The entire process of production and maintenance of all types of
blood cells which exhibit very different functions, such as transport of oxygen,
production of antibodies to fight infection and blood clotting.

Hetero-adjustment: It is a strategy of coordination in which an agent coordinates
with the obstacles or the opportunities created by another agent’s actions by
changing its own behavior in order to influence the behavior of the other agent.
When the interference is negative, hetero-adjustment takes the form of imped-
iment. When the interference is positive, hetero-adjustment takes the form of
inducement.

High Level Architecture (HLA): HLA is general purpose architecture for dis-
tributed computer simulation systems. IEEE 1516 is a standardized process for
developing interoperable HLA based federations. With HLA, computer simula-
tions can communicate to other computer simulations.

IDE: IDE stands for an Integrated Development Environment.
Influence/Reaction model: This model, which has been proposed in the mid

nineties by Ferber, defines an action representation providing a solution to the
representation of simultaneous actions in multi-agent systems.

Inter-driver variability: Inter-driver variability comprises the heterogeneity be-
tween driver-vehicle agents with respect to driving style and vehicle properties.
In the agent-based approach, inter-driver variability is implemented by different
sets of parameter values for each agent.

Interference: The process of reciprocal causal influence of agents’ living in a common
environment. Interference is the most basic social relation between the agents
since each individual success is also a function of the obstacles (negative inter-
ference) or opportunities (positive interference) created by the actions of other
agents.

Intra-driver variability: Intra-driver variability describes the observation that even
identical driver-vehicle agents may respond differently to a given traffic situation
depending on the agent’s history and experience. In an agent-based approach
intra-driver variability can be modeled, e.g., by means of time-dependent model
parameters.

Key indicator: A quantitative measure used by the simulation system in order to
compare the simulation results of different what-if scenarios with each other, or

© 2009 by Taylor and Francis Group, LLC



538 Multi-Agent Systems: Simulation and Applications

with the physical system.
Macroscopic traffic simulation: In contrast to an agent-based simulation, the

macroscopic simulation is based on aggregated quantities such as density or av-
erage velocity. Macroscopic models make use of the picture of traffic flow as a
physical flow of a fluid.

Microscopic traffic simulation: The microscopic simulation approach describes the
motion of the vehicles on an individual basis including the interactions with other
vehicle-driver agents and with the road infrastructure. It can be considered as an
example of a multi-agent simulation.

Microsimulation: Proposed by Orcutt in 1957, microsimulation was the first model-
ing approach which tried to directly represent the characteristics and behaviors
of individual entities in system.

Modeling relation: Defined in the scope of the Zeigler’s framework for M&S, the
modeling relation concerns the study of the relation between a simulation model
and its corresponding source system (i.e. the phenomenon to be modeled). This
study notably addresses validity issues in computer simulation experiments.

OODA: OODA refers to the Observe, Orient, Decide, and Act loop that is involved
in an agent’s decision-making process.

PageRank: PageRank is an algorithm that has been used in Google. It assigns a
numerical weighting to each element of a hyperlinked set of the World Wide
Web. The algorithm may be applied to any collection of entities with quotations
and references.

Participatory simulation: Participatory Simulation is a concept that basically
stands for human involvement in a running simulation. The human does not only
control the time advance by stepping or stopping the simulation, but may ma-
nipulate various facets of the simulated situation. Sometimes, the notion focusses
on a human taking over the control of a particular agent similar to role-playing
experiments. A related notion is serious gaming.

Particle-based crowd model: In this approach, pedestrians are viewed as particles
subject to forces, representing geometrical features of the environment, goals of
pedestrians, interactions among them and the environment. The environment is
implicitly represented in the “laws of motion”.

Pedestrian: A person traveling on foot, whether walking or running. It is considered
the basic analytical unit of pedestrian and crowd models.

Pheromonal communication: A pheromone is an explicit signal whose production
is evolved (or learnt or deliberated) for influencing another agent, and that is
effective because the receiver’s response has also evolved (or learnt or designed).
Though it is a form of indirect communication, it is not an instance of stigmergic
behavior since the receiver’s response depends on the fact that the traces are
considered signals and not only cues.

Pheromone: In biology, a chemical marker deposited in the environment to enable
stigmergic coordination. In polyagent systems, a scalar variable, indexed to a
location in the environment, that agents can augment and read.

PMESII: PMESII stands for Political, Military, Economic, Social, Informational, and
Infrastructure systems of a given country of interest.

PMF: A Performance Moderator Function (PMF) is a micro-model covering how
human performance (e.g., perception, memory, or decision-making) might vary
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as a function of a single factor (e.g., sleep, temperature, boredom, grievance, and
so on).

PMFserv: PMFserv is a unifying architecture for agent cognition built from best
available PMF theories.

Polyagent: A modeling construct consisting of a single avatar and a collection of
ghosts that explore alternative behaviors for the avatar.

Prediction horizon: The distance in the future at which prediction becomes unreli-
able due to dynamic uncertainty.

Progenitor cells: Are somewhere between stem cells and differentiated cells. Their
definition is vague in the literature but essentially they have less flexibility in their
range of differentiation possibilities but still retain some stem cell like properties.

Reference model: A model (including corresponding values for its parameters) that
describes the current behaviour of the physical system with sufficient accuracy.
The reference model is essential for symbiotic simulation model validation system
(SSMVS) and symbiotic simulation anomaly detection system (SSADS).

Reinforcement learning: Is a sub area of machine learning which is concerned with
learning from experience (trial and error) instead of learning from examples (or
a teacher).

Replicator dynamics: The replicator dynamics are a system of differential equations
which describe how a population of strategies evolves through time.

RoboCup: RoboCup is an international research and education initiative. Its ultimate
goal is to develop a team of fully autonomous humanoid robots that can win
against the human world champion team in soccer by 2050.

RoboCupRescue: RoboCupRescue project is one of RoboCup leagues. The intention
of the league is to promote research and development in the rescue domain by in-
volving software/physical robotic agents for search and decision support systems,
and evaluation benchmarks that are all integrated into a system in future.

Self-adjustment: It is a strategy of coordination in which an agent coordinates with
the obstacles or the opportunities created by another agent’s actions by changing
its own behavior. When the interference is negative, self-adjustment takes the
form of avoidance. When the interference is positive, self-adjustment takes the
form of exploitation.

Self-organizing system: A system able to re-organize itself by managing the re-
lations between components (either topological, structural or functional) upon
environment perturbations, solely via the interactions of its components, with no
need of external forces super-imposing organization.

Simulation relation: Defined in the scope of the Zeigler’s framework for M&S, the
simulation relation concerns the verification of a simulator with respect to a sim-
ulation model. This study notably should ensure that the simulator does generate
the behavior of the model correctly.

Situated agents crowd model: In this approach pedestrians are reified as au-
tonomous entities situated in an environment, characterized by an explicit rep-
resentation. Agents perceive their local context, decide on their movements ac-
cording to (possibly heterogeneous) behavioural specifications, interact with the
environment and with other agents.

Socionics: An approach to socially inspired computing which tries to use knowledge
from social science theories about adaptive social systems to learn from them in
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order to improve the adaptivity of computer systems.
Software architecture: The structure or structures of a system, which comprise soft-

ware elements, the externally visible properties of those elements, and the rela-
tionships among them.

Software-in-the-loop simulation: A simulation in which the software of a real con-
trol system is embedded in the simulation loop.

Stakeholder approach: In multi-agent social simulation, the term Stakeholder Ap-
proach is used for characterizing a strong involvement of domain experts, clients
or other people that are knowledgeable about the structure and dynamics of the
original system when developing an agent-based simulation. It basically corre-
sponds to the guideline in traditional simulation domains to involve contracting
entities into the development of a simulation model.

Stem cells: Cells which have the ability to maintain their own population and to
re-generate the population after disease or injury through cell division which is
called proliferation. They can also produce specialised functional cells through
the process of differentiation.

Stem cell niche: Specific areas in the body where stem cells are abundant. With
hematopoietic stem cells (HSCs) for example this is in the bone marrow. The
niche acts as a micro-environment for regulating the behavior of stem cells.

Stigmergy (Gardelli, Viroli, Omicini): First observed in social insects, stigmergy
is today generally regarded as a set of mechanisms promoting environment-
based coordination, where coordination is achieved by using specific markers—
pheromone in social insects, or their digital equivalent in computational systems.

Stigmergy (Parunak, Brueckner): Coordination of multiple agents by making and
sensing changes to a shared environment.

Stigmergy (Tummolini, Mirolli, Castelfranchi): Is a form of indirect coordina-
tion in which an agent adapts its behavior to a specific set of cues: i.e. the practical
behavioral traces of other agents. Stigmergic self-adjustment is adaptation by the
detection of practical behavioral traces. Stigmergic communication is influence
by an evolved (or learned or deliberated) production of this form of cues.

Stochastic model checking: Model checking is a formal technique for automatically
verifying the properties of a target systems against its model. When applied
to stochastic systems, model checking makes it possible to compute the actual
likelyhood for the properties under test.

Symbiotic simulation: A simulation paradigm in which a simulation system is
closely coupled with a physical system. Both symbionts, the physical system
and the simulation system, may benefit from this relationship.

Visual programming: Visual Programming refers to specifying a program in an at
least two-dimensional fashion. Basic strategies found in Visual Programming sys-
tems are direct manipulation of concrete objects and their graphical notations,
immediate feedback, and explicitness.

What-if analysis: An essential concept in symbiotic simulation which is concerned
with the evaluation of a number of what-if scenarios by means of simulation.
The purpose of the what-if analysis process is to determine the optimal what-if
scenario in the given application context.

What-if scenario: A what-if scenario consists of a particular model, an initial state
for the simulation, and information regarding external influence. Its purpose de-
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pends on the type of symbiotic simulation.
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