
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/336388924

Modelling VM Migration in a Fog Computing Environment

Article in Elektronika ir Elektrotechnika · October 2019

DOI: 10.5755/j01.eie.25.5.24360

CITATIONS

0
READS

40

4 authors:

Some of the authors of this publication are also working on these related projects:

Capacitación para el posterior asesoramiento en la implementación en la Universidad Internacional del Ecuador del Gobierno de las Tecnologías de la Información y la

Comunicación View project

Web servers Energy Efficiency, VIrtuaLization and performance (WEEVIL) View project

Pedro Juan Roig

Universidad Miguel Hernández de Elche

10 PUBLICATIONS 3 CITATIONS

SEE PROFILE

Salvador Alcaraz

Universidad Miguel Hernández de Elche

28 PUBLICATIONS 56 CITATIONS

SEE PROFILE

Katja Gilly

Universidad Miguel Hernández de Elche

39 PUBLICATIONS 140 CITATIONS

SEE PROFILE

Carlos Juiz

University of the Balearic Islands

153 PUBLICATIONS 594 CITATIONS

SEE PROFILE

All content following this page was uploaded by Pedro Juan Roig on 20 October 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/336388924_Modelling_VM_Migration_in_a_Fog_Computing_Environment?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/336388924_Modelling_VM_Migration_in_a_Fog_Computing_Environment?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Capacitacion-para-el-posterior-asesoramiento-en-la-implementacion-en-la-Universidad-Internacional-del-Ecuador-del-Gobierno-de-las-Tecnologias-de-la-Informacion-y-la-Comunicacion?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Web-servers-Energy-Efficiency-VIrtuaLization-and-performance-WEEVIL?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pedro_Roig?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pedro_Roig?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_Miguel_Hernandez_de_Elche?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pedro_Roig?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Salvador_Alcaraz?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Salvador_Alcaraz?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_Miguel_Hernandez_de_Elche?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Salvador_Alcaraz?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Katja_Gilly?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Katja_Gilly?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_Miguel_Hernandez_de_Elche?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Katja_Gilly?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carlos_Juiz?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carlos_Juiz?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_the_Balearic_Islands?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carlos_Juiz?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pedro_Roig?enrichId=rgreq-97320ad28de303312289d324afa1b831-XXX&enrichSource=Y292ZXJQYWdlOzMzNjM4ODkyNDtBUzo4MTYwNDE2MzAzODQxMzBAMTU3MTU3MDg5NDQ0OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. XX, NO. X, 20XX

1Abstract—Fog Computing was created to efficiently store

and access data without the limitations challenging Cloud
Computing deployments, such as network latency or
bandwidth constraints. This is achieved by performing most of
the processing on servers located as close as possible to where
data is being collected. When mobile devices are equipped with
limited resources and small capabilities, it would be convenient
to make their associated computing and network resources
follow them as much as possible. In this paper, migration
process is studied and an algorithmic model is designed,
selecting a generic Fat Tree architecture as the underlying
topology, which may be useful to get a list of all devices being
traversed through each of the redundant paths available.

 Index Terms— fog computing; migration; modelling;
networking.

I. INTRODUCTION

Fog Computing paradigm is characterised by the
allocation of computing resources at the edge of the
network, thus bringing the cloud computing assets closer to
the end user [1]. In this context, special attention may be set
on its use in Internet of Things (IoT) deployments, and
particularly, in IoT moving environments [2].

Such moving IoT devices have special characteristics
according to its limited computing capacity, limited battery
resources and limited bandwidth [3], so a good solution for
their implementation is to decouple their computing assets
and move them to more resourceful facilities, powerful
enough to take responsibility for a lot of IoT devices, but
close enough to reduce latency and bandwidth usage [4].
Therefore, those facilities are composed of a bunch of
capable servers, being able to assign a Virtual Machine
(VM) to each user to cover the computing needs of each IoT
device.

When talking about moving IoT devices, this outlook is
crucial, as those devices lack resources of all kinds [5], such
as those related before, and the use of a VM to carry the
computing assets of each device may help to cope with the
issues regarding resources [6].

However, a new problem arises with moving IoT devices,

Manuscript received April XX, 20XX; accepted April XX, 20XX.
This research was funded by a grant (No. XXX-00/0000) from the

Research Council of Lithuania. This research was performed in cooperation
with the Institution.

because as they are moving around, those VMs might end
up being too far away in the complex network architecture
from their associated devices, hence, those VMs should be
moved as close as possible. This mechanism is called VM
migration and must be taken into account in those
environments [7].

Therefore, two types of movements are to be
distinguished herein, this is, the movement of the device
throughout the coverage area and the movement of the
virtual machine associated to that device trying to get as
close as possible to its owner.

The first sort of movement, this is, the one regarding just
the moving IoT device is called mobility and its study is all
about trying to model the most usual movements as well as
the not so usual ones. Regarding literature, there have been
some attempts to model general human movements in
wireless environments, such as [8] and [9]. There are also
some simple mathematical models, such as the ones
proposed in [10] and [11], and other more complex models
related to crowd interaction, such as [12], [13] and [14].

The second kind of movement, this is, the one related to
VMs associated to moving IoT devices trying to follow
them around, brings about the issue of trying to migrate a
VM from the server hosting it to another one being located
nearer to the actual position of the moving IoT device in
order to facilitate the interaction between the device and its
computing power, as a consequence of reducing the latency
and bandwidth of such communications.

Regarding literature, a conceptual live VM migration
framework is proposed in [15], also agreed in [16] for Cloud
Computing and in [17] for Fog Computing, whereas a
comparison between live VM migration in both
environments for multimedia services is presented in [18].

In this paper, we are going to focus on studying the VM
migration happening in such situations and furthermore
getting a general algorithm for modelling it in a generic Fat
Tree architecture, that making an interesting framework
being able to support the necessary infrastructure for
allocating VMs within physical servers and facilitating VM
migration throughout any pair of available servers.

The organisation of this paper will be as follows: first,
Section 2 introduces a general procedure for live VM
migration, then, Section 3 shows a Clos network overview,

Modelling VM Migration in a Fog Computing
Environment

Pedro Juan Roig1,2, Salvador Alcaraz1, Katja Gilly1, Carlos Juiz2
1Department of Physics and Computer Architecture, Miguel Hernández University,

Avda. Universidad, s/n - 03202 Elche (Alicante), Spain
2Department of Computer Science, University of the Balearic Islands,

Ctra. Valldemossa, km 7.5 - 07122 Palma de Mallorca, Spain
pedro.roig@goumh.umh.es, salcaraz@umh.es, katya@umh.es, cjuiz@uib.es

http://dx.doi.org/10.5755/j01.eee

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. XX, NO. X, 20XX

next, Section 4 describes the behaviour of a Fat Tree
architecture from the modelling point of view, later, Section
5 proposes a general algorithm aimed at modelling VM
migration in a Fat Tree topology, after that, Section 6
presents a method for getting all devices on redundant paths,
and finally, Section 7 will draw the final conclusions.

II. LIVE VM MIGRATION PROCESS

Regarding VM migration, there are three main
approaches to be taken [19], such as cold migration, where
the VM is shut down before moving it, hot migration, where
just its OS is suspended before the movement, and finally
live migration, thus allowing the services running on it to be
keep going in a seamless manner whilst the movement is
performed, that being the most interesting situation.

There are three key parameters to measure the
performance of live migration [20], such as downtime,
representing the amount of time the VM is halted during the
migration, total migration time, carrying the amount of time
elapsed for the whole process, and the amount of dirty pages
migrated, referring to the data being changed during the
process, and therefore, having to be further sent over again.

Regarding the live VM migration process, a tradeoff must
be considered between downtime and total migration time.
In order to achieve this, the memory transfer is the key
player, although connections to local devices and network
interfaces may also be taken into account.

Generally speaking, memory transfers may be broken up
into three stages [21], such as push phase, where source VM
keeps running whilst the transfer process starts taking place,
stop-and-copy phase, where source VM is halted, pages are
copied through and, in turn, destination VM is started, and
pull phase, where the new VM runs and if a requested page
has not yet being copied, it is retrieved from the source VM.

Based on the above, some techniques have been proposed
to undertake the live VM migration process in an efficient
manner by just focusing on one or two of the stages
described above, such as pure stop-and-copy, pure demand-
migration or post-copy live migration. However, it seems
that the most efficient approach is the pre-copy migration,
composed by a combination of a bounded iterative push
stage with a very short stop-and-copy stage, where a number
of iterations take place until all dirty pages have already
been transferred.

The pre-copy migration process between two hosts may
be divided into some six stages, where a VM transaction
between any two hosts takes place, according to a pre-
established migration timeline:

1. Pre-migration, where a destination host with
enough resources is preselected

2. Reservation, where resources are allocated
beforehand at that destination host

3. Iterative pre-copy, where the whole RAM is sent
in the first iteration, and dirty pages are sent in
the following iterations

4. Stop-and-copy, where the source VM is halted so
as to copy its CPU state and remaining
inconsistent pages to the destination VM

5. Commitment, where destination host
acknowledges it has received a consistent VM

copy and the source host acknowledges it back
prior to discarding the original VM

6. Activation, where the migrated VM gets activated
and device drivers are attached to the new VM

To round it all up, Figure 1 exhibits the timeline for the
live VM iterative pre-copy migration process.

Stage 3: Iterative Pre-copy

Stage 1: Pre-Migration

Stage 2: Reservation

Stage 4: Stop and Copy

Stage 5: Commitment

Stage 6: Activation

VM running on
Host A

Overhead

Downtime

VM running on
Host B

(copy of dirty pages)

(VM halted)

Fig. 1. VM Migration Timeline

III. CLOS NETWORKS

Back in the fifties, Clos networks were designed in order
to switch telephone calls in an efficient manner [22] by
virtue of using crossbar switches. Basically, the point was
the use of equipment with multiple stages of interconnection
in order for the calls to be completed, hence providing
alternative paths between sources and destinations, thus
allowing the phone call to be always connected and not
blocked by any other call.

Later in the nineties, Ethernet switches came along and
the concept of Clos networks was expanded so as to achieve
cost-effective, reduced operational complexity and limited
scalability [23]. The point there was to create multistage
topologies built with commodity switches, so cost-effective
deployments might be attained.

Afterwards, with the arrival of the 21st century, Data
Centers and Cloud Computing facilities are still making use
of those topologies, with different proposals such as two-
stage designs [24], three-stage ones [25], or even alternative
ones [26], each one having its own benefits and drawbacks,
hence providing a full range of solutions in order to deal
with different situations.

Those topologies may well be used regarding the
underlying structure of Fog Computing environments, in
order to host VMs and support the necessary live VM
migrations, where two of the main proposals in literature are
Leaf and Spine [27] and Fat Tree architectures [28].

Leaf and Spine is a 2-tier topology, where the lower one
is composed by switches directly connecting with servers,
and the upper one is made of switches interconnecting the
lower ones in a full mesh fashion. This design provides full
redundancy, as there are always a number of redundant
paths among any two given switches which is equal to the
number of switches being part of the upper layer. However,
that is its main drawback, as it is prone to scalability issues
as the number of switches gets increased, and so is the
number of redundant connections to be provided. Figure 2
depicts an example of such topology with 4 switches in the
Spine layer.

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. XX, NO. X, 20XX

Spine

Leaf

Fig. 2. Leaf and Spine topology

On the other hand, Fat Tree is an alternative to the above,

allowing better scalability. It is a 3-tier topology, subdivided
in Pods, where there is full mesh interconnection among the
switches located in the lower layer and the upper layer of
each Pod, such as the above case, but there is an extra top
layer which is in charge of interconnecting the different
Pods taking part of the topology.

This way, there are less redundant paths among any two
given switches, but there are no scalability issues any more.
Figure 3 exhibits an example of that topology with K=4 and
1:1 oversubscription, meaning that all theoretical links in the
topology have been used.

Fig. 3. Fat Tree topology

IV. FAT TREE BEHAVIOUR FOR MODELLING

In order to obtain a modelling for the Fat Tree
architecture, it is necessary to describe how each layer of the
topology behaves. To start with, taking the Fat Tree
architecture depicted above as a ground for a formal model,
devices have been identified from left to right for each
different layer so as to design a model showing how this
architecture allows the communication flow among servers.

Fat Tree architecture is composed by 3 layers of switches,
where Edge layer is the lower one, Aggregation layer is the
middle one, and Core layer is the upper one. Additionally, a
bottom layer holding hosts, or servers, is also considered.

Taking the name of Fat Tree, the word “Tree” comes
from the inverted tree-like structure of this architecture,
where Core layer might be seen as the root layer and Hosts
layer as the leaves layer.

Furthermore, following that analogy, the word “Fat”
comes from the existence of more links on the root layer
than in the leaves layer, such that there are (K/2)2 links
between upper and middle layer, (K/2)1 links between
middle and lower layer, and (K/2)0, this is, 1 link between
lower and hosts layer.

The Fat Tree structure may be considered as a K-ary tree,
being K the main parameter of this structure, as there are K
Pods, each of those containing K switches, divided into
lower and middle layer, and also each switch has K ports.

In Figure 3 exhibited above, K=4 has been used, although
it may be extended to any natural even number, and as such,
it will be represented by the algorithmic model to be shown.

Therefore, the model might be built up by looking at
Figure 3 exhibited above as a reference. As it may be seen

over there, switches at the all layers have been numbered
from 0 onwards, considering left to right direction.

As a matter of fact, there is a total of (K/2) hosts hanging
out of each lower switch, which means that there are (K2/2)
hosts hanging out of each Pod, which also means that there
are (K3/4) hosts in the whole topology. In addition to that,
there is a total of (K2/2) switches in both the lower layer and
the middle layer, whereas there are (K2/4) in the upper one.

As per the nomenclature of the ports of each item, it is to
be said that the servers only have one port, which will be
called as 0, whereas on the switches the ports will be named
from 0 to (K-1) from left to right, starting from the bottom
and finishing on the top. All this is represented in Figure 4.

Ha Hb

0 0

Ei

k/2 k-1···

0 k/2-1···

Aj

k/2 k-1···

0 k/2-1···

Cl

0 k-1···

Fig. 4. Links on each layer of the Fat Tree architecture

With all this in mind, the model will state the atomic

actions for communicating messages involved in the live
VM migration process, such as send or receive, in a way
that both will bear the item and the corresponding port
taking part in such communication. Furthermore, the model
will show the decision-making processes in order to guide a
VM from a given source to the proper destination, following
the optimum paths, that being one, two or three hops away.

The arguments for the send and receive actions are the
source host (a), the destination host (b) and the proper VM
to be migrated owned by a user identifier (u), this is, VM(u).

All items within each layer are modelled in a generic
manner, such as Host Hh, Edge Ei, Aggregation Aj and Core
Cl , where each variable is bounded by the number of items
for each layer exposed above. The model has been
expressed with some snippets coded in C-style for clarity
purposes, and it takes into account all considerations made.

V. VM MIGRATION MODEL

 HOST Hh:
The server layer, also known as Host layer, is the easiest

to model, as each server (h) may perform just two actions,
such as receiving or sending a VM, those being the key
actions chosen herein for modelling the VM migration
process. Further considerations such as VM creation or VM
termination are not borne in mind for simplification
purposes. Let us also suppose there is enough room to
allocate the VMs assigned to all the users within the system.

Therefore, all the servers in the topology are awaiting to
undertake any of those two actions at any given time, at it is
not usually known beforehand when a VM migration is
going to take place. As per the receiving part, it is
performed when the VM associated to a particular user is
not located into a given host, hence, the host is ready to
receive that VM in anytime. Otherwise, the sending part is
carried out when the aforesaid VM is indeed located in that
host and it is time to leave. This is shown in Algorithm 1.

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. XX, NO. X, 20XX

Additionally, each server has only one port, namely eth0,
so messages to and from the Edge layer move through that
single port, whilst messages have the structure (a,b,VM(u)).

for (h = 0; h < (K3/4); h++)
{
 while (1)
 {
 for (u = 0; u < TOTAL_USERS; u++)
 {
 if NOT (VM(u) in h)
 receive HOST {h}, PORT {eth0} (a,h,VM(u));
 else if LEAVE_NOW(VM(u))
 send HOST {h}, PORT {eth0} (h,b,VM(u));
 else
 STAY_IN(VM(u));
 }
 }
 }
}

Algorithm 1. HOST()

 EDGE Ei:

The lower layer, also known as Edge layer, is the one
directly connected to the servers. Each switch located
therein is continuously monitoring all its ports in order to
receive a VM to be translated from a source host to a
destination host.

It is to be remarked that any switch located in this layer
has the lower half of its ports looking downwards, whereas
the upper half are looking upwards.

On the one hand, in case a VM is received from a given
host on any switch, it will be coming from any of its lower
ports, and then, two cases may be distinguished. If the
destination is another host hanging on the same switch, it
will be forwarded downwards straight to that other host. In
this case, both hosts may be considered as being part of the
same IntraNet, as they may be just one-hop away to each
other. Otherwise, if that is not the case, it will be forwarded
upwards.

On the other hand, in case a VM is received from any
switch standing on the middle layer, it will be coming from
any of its upper ports, and then, it will be guided through
the port directly connected to the destination host. This all
may be observed in Algorithm 2.

for (i = 0; i < (K2/2); i++)
{
 while (1)
 {
 for (m = 0; m < (K/2); m++) {
 if(receive EDGE {i}, PORT {m} (a,b,VM(u))){
 if (int[a/(K/2)] == int[b/(K/2)])
 send EDGE {i}, PORT {b mod (k/2)} (a,b,VM(u));
 else
 for (m’ =(K/2); m’ < K; m’++)
 send EDGE {i}, PORT {m’} (a,b,VM(u));
 }
 }
 for (m’ = (K/2); m’ < K; m’++) {
 if(receive EDGE {i}, PORT {m’} (a,b,VM(u))){
 send EDGE {i}, PORT {b mod (k/2)} (a,b,VM(u));
 }
 }
}

Algorithm 2. EDGE()

 AGGREGATION Aj:

The middle layer, also known as Aggregation layer, has
the same port configuration as the lower layer. It is to be

noted that there is a full mesh topology among switches
staying on both layers within a single Pod.

As in the previous layer, all switches therein are
monitoring its ports all the time waiting for incoming VMs.
Therefore, if a VM is received from any lower ports of any
of these switches, two case scenarios may be distinguished.

 If the destination is another host situated on the same
Pod, that VM will be forwarded downwards through the
lower switch where the destination is hanging on, as both
source and destination hosts may be considered as being
part of the same Pod, also known as IntraPod, this is, both
being two-hops away to each other. Otherwise, if this is not
the case, it will be forwarded upwards.

Alternatively, if a VM is received from any upper ports of
any of those switches, it will be headed for the lower layer
switch where the destination host is hanging on. This all is
displayed in Algorithm 3.

for (j = 0; j < (K2/2); j++)
{
 while (1)
 {
 for (n = 0; n < (K/2); n++) {
 if (receive AGGR {j}, PORT {n} (a,b,VM(u))){
 if (int[a/(K/2)2] == int[b/(K/2)2])
 send AGGR {j}, PORT {int[b/(k/2)]} (a,b,VM(u));
 else
 for (n’ = (K/2); n’ < K; n’++)
 send AGGR {j}, PORT {n’} (a,b,VM(u));
 }
 }
 for (n’ = (K/2); n’ < K; n’++) {
 if(receive AGGR {j}, PORT {n’} (a,b,VM(u))){
 send AGGR {j}, PORT {int[b/(k/2)]} (a,b,VM(u));
 }
 }
}

Algorithm 3. AGGREGATION()

 CORE Cl:

The upper layer, also known as Core layer, is the one
interconnecting the different Pods, so the ports of all its
switches are looking downwards, providing a full mesh
topology among all the existing Pods.

Therefore, all of switches are waiting to receive a VM
through any of its corresponding ports, and when that
happens, it is redirected to its directly connected middle
layer switch on the Pod holding the destination host.

In this case, source and destination hosts do not share the
same Pod, also known as InterPod, meaning both are three-
hops away to each other. This all is shown in Algorithm 4.

for (l = 0; l < (K2/4); l++)
{
 while (1)
 {
 for (p = 0; p < K; p++) {
 if(receive CORE {l}, PORT {p} (a,b,VM(u))){
 send CORE {l}, PORT {int[b/(k/2)2]} (a,b,VM(u));
 }
}

Algorithm 4. CORE()

VI. GETTING ALL DEVICES ON REDUNDANT PATHS

All the above may be used in order to get a list of devices
for each of the redundant paths taken from a given source
host to a given destination host, as it may be seen in

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. XX, NO. X, 20XX

Algorithm 5. The nomenclature for the devices is the same
one used so far.

 LIST OF DEVICES:
DeviceList(a,b){
 items = [];
 items += [Ha];
 if (int[a/(K/2)] == int[b/(K/2)])
 {
 items += [Eint[a/(K/2)] Hb];
 t = 1;
 topology = “INTRANET”;
 }
 else if (int[a/(K/2)2] == int[b/(K/2)2])
 {
 items += [Eint[a/(K/2)] “(“];
 for (q = (K/2) · int[a/(K/2)2];

 q < K/2) · int[a/(K/2)2] + (K/2); q++)
 items += [Aq];
 items += [“)” Eint[b/(K/2)] Hb];
 t = 2;
 topology = “INTRAPOD”;
 }
 else
 {
 items += [Eint[a/(K/2)] “(“];
 for (q = (K/2) · int[a/(K/2)2];

 q < K/2) · int[a/(K/2)2] + (K/2); q++)
 {
 items += [Aq “{“];
 for (r = q · (K/2); r < q · k; r++)
 items += [Cr];
 s = (K/2) · int[b/(K/2)2] + r mod (K/2) ;

 items += [“}” As];
 }
 items += [“)”Eint[b/(K/2)] Hb];
 t = 3;
 topology = “INTERPOD”;
 }
 print(“Topology: %s\n”,topology);
 print(“Number of Hops: %d\n”,t);
 print(“Redundant Paths: %d\n”,(K/2)^(t-1));
 print(“Items: %s\n”, items);
}

Algorithm 5. DeviceList(a,b)

 The list presented above may be extended with the

corresponding ports used in each link for all redundant
paths, as it may be seen in Algorithm 6. The ports will be
expressed within parenthesis, attached to its corresponding
device with the sign “*”, and a link between two ports will
be expressed by the signs “---”, appearing in between both
ends of such a link.

 LIST OF DEVICES AND PORTS:
DeviceAndPortsList(a,b){
 if (int[a/(K/2)] == int[b/(K/2)])
 {
 t = 1;
 topology = “INTRANET”;
 }
 else if (int[a/(K/2)2] == int[b/(K/2)2])
 {
 t = 2;
 topology = “INTRAPOD”;
 }
 else
 {
 t = 3;
 topology = “INTERPOD”;
 }
 print(“Topology: %s\n”,topology);
 print(“Number of Hops: %d\n”,t);
 print(“Redundant Paths: %d\n”,(K/2)^(t-1));
 // REDUNDANT PATHS
 if (topology == “INTRANET”)
 {
 Path(0) = [Ha *

 * (0) --- (a mod (K/2))*
 * Eint[a/(K/2)] *
 * (b mod (K/2)) --- (0) *
 * Hb];
 }
 else if (topology = “INTRAPOD”)
 {
 x = 0;
 for (q = (K/2) · int[a/(K/2)2];
 q < K/2) · int[a/(K/2)2] + (K/2); q++)
 {
 Path(x) = [Ha *
 * (0) --- (a mod (K/2))*
 * Eint[a/(K/2)] *
 * ((K/2) + x) --- (int[a/(K/2)])*
 * Aq *
 * (int[b/(K/2)]) --- ((K/2) + x) *
 * Eint[b/(K/2)] *
 * (b mod (K/2)) --- (0) *
 * Hb];
 x++;
 }
 }
 else // if(topology == “INTERPOD”)
 {
 y = 0;
 for (q = (K/2) · int[a/(K/2)2];
 q < K/2) · int[a/(K/2)2] + (K/2); q++)
 {
 z = 0;
 for (r = q · (K/2); r < q · K; r++)
 {
 s = (K/2) · int[b/(K/2)2] + r ·mod (K/2);
 Path(y · (K/2) + z) =
 = [Ha *
 * (0) --- (a mod (K/2))*
 * Eint[a/(K/2)] *
 * ((K/2) + y) --- (int[a/(K/2)])*
 * Aq *
 * ((K/2) + z mod (K/2)) ---
 --- (int[a/(K/2)2]) *
 * Cr
 * (int[b/(K/2)2]) ---
 --- ((K/2) + z mod (K/2)) *
 * As *
 * (int[b/(K/2)]) --- ((K/2) + y) *
 * Eint[b/(K/2)] *
 * (b mod (K/2)) --- (0) *
 * Hb];
 z++;
 }
 y++;
 }
 }
 // SUMMARY OF PATHS
 for (c = 0; c < (K/2)^(t-1); c++)
 print(“Path(%d) = %s\n”,c,Path(c));
}

Algorithm 6. DeviceAndPortsList(a,b)

Regarding evaluation and verification of the VM

migration algorithms proposed, some executions showing
all case scenarios may do it, thus considering source and
destination Hosts being 1-hop away, 2-hops away or 3-hops
away, with a generic K. Let us focus on the algorithm
DeviceList, as the algorithm DeviceAndPortsList is just an
extension of the former showing the port identifiers
involved for each device.

First of all, let us take a scenario being IntraNet. The
model considers both Hosts being 1-hop away, with just 1
path between them, as there is just a single Edge switch
defining the only path for any pair of Hosts hanging out of
it. Therefore, the first conditional sentence in the algorithm
will hold and that Edge switch is going to be identified.

Then, let us take an IntraPod scenario. The model
considers both Hosts being 2-hops away, with K/2
redundant paths in between, as both Hosts share the same

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. XX, NO. X, 20XX

Pod, so each Aggregation switch within that single Pod
defines a different path, being reached from the same source
Edge switch and being redirected to the same destination
Edge switch. Thus, the second conditional sentence in the
algorithm will hold and the components of each path are
going to be identified.

Finally, let us take an InterPod scenario. The model
considers both Hosts being 3-hops away, with K2/4
redundant paths between both, as both Hosts stand in
different Pods, hence, each Core switch defines a different
path, being reached from one of the Aggregation switches in
the source Pod and being redirected to one of the
Aggregation switches in the destination Pod. Therefore, the
else sentence in the conditional sentence will hold and all
the components of each path are to be identified.

To round it all up, the use of this algorithm matches
what happen in a real Fat Tree architecture regarding all
possible case scenarios, therefore, the model may be
considered as verified.

VII. CONCLUSIONS

In this paper we have been studying the VM migration
process between a given source host and a given destination
host, both being interconnected through a Fat Tree
architecture. First of all, migration types have been exposed,
noting that live VM migration is the most interesting one,
and among all its variations, iterative pre-copy is the most
efficient regarding the tradeoff between downtime and total
migration time.

Then, Clos networks have been presented, and a
comparison between Leaf and Spine and Fat Tree
architectures has been introduced, leading to the
consideration of Fat Tree as being more scalable, and as
such, that has been select to build an algorithmic model
regarding VM migration.

Eventually, each three layers of Fat Tree and an
additional layer for the hosts where VMs are located have
been modelled. The behaviour of each layer have been
expressed in terms of receiving a VM owned by a user,
coming from a source host and going to a destination host,
and in turn, sending it to the optimal path, to reach that
destination with the minimal possible number of hops. If
that number of hops is more than one, there are redundant
paths being all of them optimal, so the model gives them all.

As a sort of proof of concept, two algorithms has been
proposed, the first one listing the devices to be traversed
through all redundant paths available from a given source
host to a given destination host, and the second one being an
extension of the former by also quoting the ports involved in
each link through each redundant path.

In conclusion, the algorithmic model proposed, based on
arithmetic operations, succeeds in expressing the VM
migration process from one host to another in a Fat Tree
architecture.

REFERENCES
[1] C.S.R. Prabhu, Overview - Fog Computing and Internet-of-Things

(IoT), EAI Endorsed Transactions on Cloud Systems 2017, Issue 10,
Article 5, pp. 1-24.

[2] M.R. Anawar, S. Wang, M.A. Zia, A.K. Jadoon, U. Akram, S. Raza,
Fog Computing: An Overview of Big IoT Data Analytics,
WCMC’2018, Article ID 7157192, pp. 1-22.

[3] R. Mahmud, K. Ramamohanarao, R. Buyya, Latency-aware
Application Module Management for Fog Computing Environments,
ACM Transactions on Internet Technology, March 2018, Vol. 1, No.
1, pp. 1-22.

[4] T. Patel, K. Jariwala, Fog Computing in IoT, in ARSSS International
Conference’2018, Vol. 1, pp. 17-21.

[5] S. Virushabadoss, C. Bhuvaneswari, Analysis of Behavior Profiling
Algorithm to Detect Usage Anomalies in Fog Computing, IJESI-
NCIOT'2018, Vol. 1, pp. 14-19.

[6] J. Abdelaziz, M. Adda, H. MCheick, An Architectural Model for Fog
Computing, JUSPN'2018, Vol. 10. No. 1, pp 21-25.

[7] K. Gilly, S. Filiposka, A. Mishev, Supporting Location Transparent
Services in a Mobile Edge Computing Environment, AECE’2018,
Vol.18, No.4, pp.11-22.

[8] M. Musolesi, C. Mascolo, Mobility Models for Systems Evaluation - A
Survey, 2008.

[9] A. Hess, K.A. Hummel, W.N. Gansterer, G. Haring, Data-driven
Human Mobility Modeling: A Survey and Engineering Guidance for
Mobile Networking, in ACM Computer Survey, 2016, Vol. 48, No. 3,
Art. 38, pp. 1-39.

[10] T. Camp, J. Boleng and V. Davies, A survey of mobility models for ad
hoc network research, in WCMC’2002, Vol. 2, Issue 5, pp. 483-502.

[11] P.J. Roig, S. Alcaraz, K. Gilly, C. Juiz, Study on Mobility and
Migration in a Fog Computing Environment, in
ELECTRONICS’2018, pp. 1-6.

[12] O. Hesham, G.A. Wainer, Centroidal particles for interactive crowd
simulation, 2016.

[13] Y. Xu, Z. Piao, S. Gao, Encoding Crowd Interaction with Deep
Neural Network for Pedestrian Trajectory Prediction, in CVPR’2018,
Vol 1, pp. 5275-5284.

[14] T. Bosse, M. Hoogendoorn, M. Klein, J.Treur, C. van der Wal, A. van
Wissen, Modelling collective decision making in groups and crowds:
Integrating social, in AAMAS’2013, Vol 27, Issue 1, pp. 52-84.

[15] O. Osanaiye, S. Chen, Z. Yan, R. Lu, K.R. Choo, M. Dlodlo, From
Cloud to Fog Computing: A Review and a Conceptual Live VM
Migration Framework, in RACRAN’2017, Vol. 5, pp. 8284-8300.

[16] P. Kaur, A. Rani, Virtual Machine Migration in Cloud Computing, in
IJGDC’2015, Vol. 8, No. 5, pp. 337-342.

[17] Y.S. Rao, K.B. Sree, A Review on Fog Computing : Conceptual Live
Vm Migration Framework, Issues, Applications and Its Challenges,
IJSRCSEIT’2018, Vol. 3, Issue 1, pp. 1175-1184.

[18] D. Rosário et al., Service Migration from Cloud to Multi-tier Fog
Nodes for Multimedia Dissemination with QoE Support, in Sensors
2018, Issue 2, Article 329, pp. 1-17.

[19] M. Forsman, A. Glad, L. Lundberg, D. Ilie, Algorithms for automated
live migration of virtual machines, in JSS’2015, Vol. 101, pp. 110-
126.

[20] Y. Ruan, Z. Cao, Z. Cui, Pre-filter-copy: Efficient and self-adaptive
live migration of virtual machines, IEEE S.J.’2016, Vol. 10, No. 4,
pp. 1459-1469.

[21] C. Clark et al., Live migration of virtual machines, in NSDI’2005,
Vol. 2, pp. 273-286.

[22] C. Clos, A study of non-blocking switching networks, BST
Journal’1953, Vol. 32, Issue 2, pp. 406-424.

[23] A. Singh et al., Jupiter Rising: A Decade of Clos Topologies and
Centralized Control in Google’s Datacenter Network, SIGCOMM’15,
pp. 1-15.

[24] R. Rojas-Cessa, C. Lin, Scalable two-stage Clos-network switch and
module-first matching, in HPSR’2006, pp. 1-6.

[25] X. Yuan, On Nonblocking Folded-Clos Networks in Computer
Communication Environments, in IEEE IPDPS’2011, pp. 1-9.

[26] F. Hassen, L. Mhamdi, High-Capacity Clos-Network Switch for Data
Center Networks, in IEEE ICC'2017, pp. 1-7.

[27] K.C. Okafor, Leveraging Fog Computing for scalable IoT datacenter
using Spine-Leaf network topology, in JECE’2017, pp. 1-11.

[28] M. Al-Fares, A. Loukissas and A. Vahdat, A scalable, commodity
data center network architecture, in SIGCOMM’2008, pp. 63-74.

View publication statsView publication stats

https://www.researchgate.net/publication/336388924

