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1Abstract—Fog Computing was created to efficiently store 

and access data without the limitations challenging Cloud 
Computing deployments, such as network latency or 
bandwidth constraints. This is achieved by performing most of 
the processing on servers located as close as possible to where 
data is being collected. When mobile devices are equipped with 
limited resources and small capabilities, it would be convenient 
to make their associated computing and network resources 
follow them as much as possible. In this paper, migration 
process is studied and an algorithmic model is designed, 
selecting a generic Fat Tree architecture as the underlying 
topology, which may be useful to get a list of all devices being 
traversed through each of the redundant paths available. 
 

 Index Terms— fog computing; migration; modelling; 
networking.  

I. INTRODUCTION 

Fog Computing paradigm is characterised by the 
allocation of computing resources at the edge of the 
network, thus bringing the cloud computing assets closer to 
the end user [1]. In this context, special attention may be set 
on its use in Internet of Things (IoT) deployments, and 
particularly, in IoT moving environments [2]. 

Such moving IoT devices have special characteristics 
according to its limited computing capacity, limited battery 
resources and limited bandwidth [3], so a good solution for 
their implementation is to decouple their computing assets 
and move them to more resourceful facilities, powerful 
enough to take responsibility for a lot of IoT devices, but 
close enough to reduce latency and bandwidth usage [4]. 
Therefore, those facilities are composed of a bunch of 
capable servers, being able to assign a Virtual Machine 
(VM) to each user to cover the computing needs of each IoT 
device. 

When talking about moving IoT devices, this outlook is 
crucial, as those devices lack resources of all kinds [5], such 
as those related before, and the use of a VM to carry the 
computing assets of each device may help to cope with the 
issues regarding resources [6]. 

However, a new problem arises with moving IoT devices, 
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because as they are moving around, those VMs might end 
up being too far away in the complex network architecture 
from their associated devices, hence, those VMs should be 
moved as close as possible. This mechanism is called VM 
migration and must be taken into account in those 
environments [7]. 

Therefore, two types of movements are to be 
distinguished herein, this is, the movement of the device 
throughout the coverage area and the movement of the 
virtual machine associated to that device trying to get as 
close as possible to its owner. 

The first sort of movement, this is, the one regarding just 
the moving IoT device is called mobility and its study is all 
about trying to model the most usual movements as well as 
the not so usual ones. Regarding literature, there have been 
some attempts to model general human movements in 
wireless environments, such as [8] and [9]. There are also 
some simple mathematical models, such as the ones 
proposed in [10] and [11], and other more complex models 
related to crowd interaction, such as [12], [13] and [14]. 

The second kind of movement, this is, the one related to 
VMs associated to moving IoT devices trying to follow 
them around, brings about the issue of trying to migrate a 
VM from the server hosting it to another one being located 
nearer to the actual position of the moving IoT device in 
order to facilitate the interaction between the device and its 
computing power, as a consequence of reducing the latency 
and bandwidth of such communications. 

Regarding literature, a conceptual live VM migration 
framework is proposed in [15], also agreed in [16] for Cloud 
Computing and in [17] for Fog Computing, whereas a 
comparison between live VM migration in both 
environments for multimedia services is presented in [18]. 

In this paper, we are going to focus on studying the VM 
migration happening in such situations and furthermore 
getting a general algorithm for modelling it in a generic Fat 
Tree architecture, that making an interesting framework 
being able to support the necessary infrastructure for 
allocating VMs within physical servers and facilitating VM 
migration throughout any pair of available servers. 

The organisation of this paper will be as follows: first, 
Section 2 introduces a general procedure for live VM 
migration, then, Section 3 shows a Clos network overview, 
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next, Section 4 describes the behaviour of a Fat Tree 
architecture from the modelling point of view, later, Section 
5 proposes a general algorithm aimed at modelling VM 
migration in a Fat Tree topology, after that, Section 6 
presents a method for getting all devices on redundant paths, 
and finally, Section 7 will draw the final conclusions. 

II. LIVE VM MIGRATION PROCESS 

Regarding VM migration, there are three main 
approaches to be taken [19], such as cold migration, where 
the VM is shut down before moving it, hot migration, where 
just its OS is suspended before the movement, and finally 
live migration, thus allowing the services running on it to be 
keep going in a seamless manner whilst the movement is 
performed, that being the most interesting situation. 

There are three key parameters to measure the 
performance of live migration [20], such as downtime, 
representing the amount of time the VM is halted during the 
migration, total migration time, carrying the amount of time 
elapsed for the whole process, and the amount of dirty pages 
migrated, referring to the data being changed during the 
process, and therefore, having to be further sent over again. 

Regarding the live VM migration process, a tradeoff must 
be considered between downtime and total migration time. 
In order to achieve this, the memory transfer is the key 
player, although connections to local devices and network 
interfaces may also be taken into account.  

Generally speaking, memory transfers may be broken up 
into three stages [21], such as push phase, where source VM 
keeps running whilst the transfer process starts taking place, 
stop-and-copy phase, where source VM is halted, pages are 
copied through and, in turn, destination VM is started, and 
pull phase, where the new VM runs and if a requested page 
has not yet being copied, it is retrieved from the source VM. 

Based on the above, some techniques have been proposed 
to undertake the live VM migration process in an efficient 
manner by just focusing on one or two of the stages 
described above, such as pure stop-and-copy, pure demand-
migration or post-copy live migration. However, it seems 
that the most efficient approach is the pre-copy migration, 
composed by a combination of a bounded iterative push 
stage with a very short stop-and-copy stage, where a number 
of iterations take place until all dirty pages have already 
been transferred. 

The pre-copy migration process between two hosts may 
be divided into some six stages, where a VM transaction 
between any two hosts takes place, according to a pre-
established migration timeline: 

1. Pre-migration, where a destination host with 
enough resources is preselected 

2. Reservation, where resources are allocated 
beforehand at that destination host 

3. Iterative pre-copy, where the whole RAM is sent 
in the first iteration, and dirty pages are sent in 
the following iterations 

4. Stop-and-copy, where the source VM is halted so 
as to copy its CPU state and remaining 
inconsistent pages to the destination VM 

5. Commitment, where destination host 
acknowledges it has received a consistent VM 

copy and the source host acknowledges it back 
prior to discarding the original VM 

6. Activation, where the migrated VM gets activated 
and  device drivers are attached to the new VM 

To round it all up, Figure 1 exhibits the timeline for the 
live VM iterative pre-copy migration process. 

 

Stage 3: Iterative Pre-copy

Stage 1: Pre-Migration

Stage 2: Reservation

Stage 4: Stop and Copy

Stage 5: Commitment

Stage 6: Activation

VM running on
Host A

Overhead

Downtime

VM running on
Host B

(copy of dirty pages)

(VM halted)

 
Fig. 1. VM Migration Timeline 

III. CLOS NETWORKS 

Back in the fifties, Clos networks were designed in order 
to switch telephone calls in an efficient manner [22] by 
virtue of using crossbar switches. Basically, the point was 
the use of equipment with multiple stages of interconnection 
in order for the calls to be completed, hence providing 
alternative paths between sources and destinations, thus 
allowing the phone call to be always connected and not 
blocked by any other call. 

Later in the nineties, Ethernet switches came along and 
the concept of Clos networks was expanded so as to achieve 
cost-effective, reduced operational complexity and limited 
scalability [23]. The point there was to create multistage 
topologies built with commodity switches, so cost-effective 
deployments might be attained. 

Afterwards, with the arrival of the 21st century, Data 
Centers and Cloud Computing facilities are still making use 
of those topologies, with different proposals such as two-
stage designs [24], three-stage ones [25], or even alternative 
ones [26], each one having its own benefits and drawbacks, 
hence providing a full range of solutions in order to deal 
with different situations. 

Those topologies may well be used regarding the 
underlying structure of Fog Computing environments, in 
order to host VMs and support the necessary live VM 
migrations, where two of the main proposals in literature are 
Leaf and Spine [27] and Fat Tree architectures [28]. 

Leaf and Spine is a 2-tier topology, where the lower one 
is composed by switches directly connecting with servers, 
and the upper one is made of switches interconnecting the 
lower ones in a full mesh fashion. This design provides full 
redundancy, as there are always a number of redundant 
paths among any two given switches which is equal to the 
number of switches being part of the upper layer. However, 
that is its main drawback, as it is prone to scalability issues 
as the number of switches gets increased, and so is the 
number of redundant connections to be provided. Figure 2 
depicts an example of such topology with 4 switches in the 
Spine layer. 
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Spine

Leaf

 
Fig. 2. Leaf and Spine topology 

 
On the other hand, Fat Tree is an alternative to the above, 

allowing better scalability. It is a 3-tier topology, subdivided 
in Pods, where there is full mesh interconnection among the 
switches located in the lower layer and the upper layer of 
each Pod, such as the above case, but there is an extra top 
layer which is in charge of interconnecting the different 
Pods taking part of the topology.  

This way, there are less redundant paths among any two 
given switches, but there are no scalability issues any more. 
Figure 3 exhibits an example of that topology with K=4 and 
1:1 oversubscription, meaning that all theoretical links in the 
topology have been used.  

 

 
Fig. 3. Fat Tree topology 

IV. FAT TREE BEHAVIOUR FOR MODELLING 

In order to obtain a modelling for the Fat Tree 
architecture, it is necessary to describe how each layer of the 
topology behaves. To start with, taking the Fat Tree 
architecture depicted above as a ground for a formal model, 
devices have been identified from left to right for each 
different layer so as to design a model showing how this 
architecture allows the communication flow among servers. 

Fat Tree architecture is composed by 3 layers of switches, 
where Edge layer is the lower one, Aggregation layer is the 
middle one, and Core layer is the upper one. Additionally, a 
bottom layer holding hosts, or servers, is also considered. 

Taking the name of Fat Tree, the word “Tree” comes 
from the inverted tree-like structure of this architecture, 
where Core layer might be seen as the root layer and Hosts 
layer as the leaves layer.  

Furthermore, following that analogy, the word “Fat” 
comes from the existence of more links on the root layer 
than in the leaves layer, such that there are (K/2)2 links 
between upper and middle layer, (K/2)1 links between 
middle and lower layer, and (K/2)0, this is, 1 link between 
lower and hosts layer. 

The Fat Tree structure may be considered as a K-ary tree, 
being K the main parameter of this structure, as there are K 
Pods, each of those containing K switches, divided into 
lower and middle layer, and also each switch has K ports. 

In Figure 3 exhibited above, K=4 has been used, although 
it may be extended to any natural even number, and as such, 
it will be represented by the algorithmic model to be shown. 

Therefore, the model might be built up by looking at 
Figure 3 exhibited above as a reference. As it may be seen 

over there, switches at the all layers have been numbered 
from 0 onwards, considering left to right direction.  

As a matter of fact, there is a total of (K/2) hosts hanging 
out of each lower switch, which means that there are (K2/2) 
hosts hanging out of each Pod, which also means that there 
are (K3/4) hosts in the whole topology. In addition to that, 
there is a total of (K2/2) switches in both the lower layer and 
the middle layer, whereas there are (K2/4) in the upper one. 

As per the nomenclature of the ports of each item, it is to 
be said that the servers only have one port, which will be 
called as 0, whereas on the switches the ports will be named 
from 0 to (K-1) from left to right, starting from the bottom 
and finishing on the top. All this is represented in Figure 4. 

 

Ha Hb

0 0

Ei

k/2 k-1···

0 k/2-1···

Aj

k/2 k-1···

0 k/2-1···

Cl

0 k-1···
 

Fig. 4. Links on each layer of the Fat Tree architecture 

 
With all this in mind, the model will state the atomic 

actions for communicating messages involved in the live 
VM migration process, such as send or receive, in a way 
that both will bear the item and the corresponding port 
taking part in such communication. Furthermore, the model 
will show the decision-making processes in order to guide a 
VM from a given source to the proper destination, following 
the optimum paths, that being one, two or three hops away. 

The arguments for the send and receive actions are the 
source host (a), the destination host (b) and the proper VM 
to be migrated owned by a user identifier (u), this is, VM(u). 

All items within each layer are modelled in a generic 
manner, such as Host Hh, Edge Ei, Aggregation Aj and Core 
Cl , where each variable is bounded by the number of items 
for each layer exposed above. The model has been 
expressed with some snippets coded in C-style for clarity 
purposes, and it takes into account all considerations made. 

V. VM MIGRATION MODEL 

 HOST Hh: 
The server layer, also known as Host layer, is the easiest 

to model, as each server (h) may perform just two actions, 
such as receiving or sending a VM, those being the key 
actions chosen herein for modelling the VM migration 
process. Further considerations such as VM creation or VM 
termination are not borne in mind for simplification 
purposes. Let us also suppose there is enough room to 
allocate the VMs assigned to all the users within the system. 

Therefore, all the servers in the topology are awaiting to 
undertake any of those two actions at any given time, at it is 
not usually known beforehand when a VM migration is 
going to take place. As per the receiving part, it is 
performed when the VM associated to a particular user is 
not located into a given host, hence, the host is ready to 
receive that VM in anytime. Otherwise, the sending part is 
carried out when the aforesaid VM is indeed located in that 
host and it is time to leave. This is shown in Algorithm 1. 
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Additionally, each server has only one port, namely eth0, 
so messages to and from the Edge layer move through that 
single port, whilst messages have the structure (a,b,VM(u)). 

 
for (h = 0; h < (K3/4); h++)  
{ 
 while (1)  
 {  
  for (u = 0; u < TOTAL_USERS; u++) 
  { 
   if NOT (VM(u) in h)  
    receive HOST {h}, PORT {eth0} (a,h,VM(u)); 
   else if LEAVE_NOW(VM(u)) 
    send HOST {h}, PORT {eth0} (h,b,VM(u)); 
   else 
    STAY_IN(VM(u)); 
   } 
  } 
 } 
} 

Algorithm 1. HOST( ) 

 
 EDGE Ei: 

The lower layer, also known as Edge layer, is the one 
directly connected to the servers. Each switch located 
therein is continuously monitoring all its ports in order to 
receive a VM to be translated from a source host to a 
destination host.  

It is to be remarked that any switch located in this layer 
has the lower half of its ports looking downwards, whereas 
the upper half are looking upwards. 

On the one hand, in case a VM is received from a given 
host on any switch, it will be coming from any of its lower 
ports, and then, two cases may be distinguished. If the 
destination is another host hanging on the same switch, it 
will be forwarded downwards straight to that other host. In 
this case, both hosts may be considered as being part of the 
same IntraNet, as they may be just one-hop away to each 
other. Otherwise, if that is not the case, it will be forwarded 
upwards. 

On the other hand, in case a VM is received from any 
switch standing on the middle layer, it will be coming from 
any of its upper ports, and then, it will be guided through 
the port directly connected to the destination host. This all 
may be observed in Algorithm 2. 
 
for (i = 0; i < (K2/2); i++)  
{ 
 while (1)   
 { 
  for (m = 0; m < (K/2); m++) { 
   if(receive EDGE {i}, PORT {m} (a,b,VM(u))){ 
    if (int[a/(K/2)] == int[b/(K/2)])   
     send EDGE {i}, PORT {b mod (k/2)} (a,b,VM(u)); 
    else 
     for (m’ =(K/2); m’ < K; m’++)  
      send EDGE {i}, PORT {m’} (a,b,VM(u)); 
   } 
  } 
  for (m’ = (K/2); m’ < K; m’++) { 
   if(receive EDGE {i}, PORT {m’} (a,b,VM(u))){ 
    send EDGE {i}, PORT {b mod (k/2)} (a,b,VM(u)); 
  } 
 } 
} 

Algorithm 2. EDGE( )  
 
 AGGREGATION Aj: 

The middle layer, also known as Aggregation layer, has 
the same port configuration as the lower layer. It is to be 

noted that there is a full mesh topology among switches 
staying on both layers within a single Pod. 

As in the previous layer, all switches therein are 
monitoring its ports all the time waiting for incoming VMs. 
Therefore, if a VM is received from any lower ports of any 
of these switches, two case scenarios may be distinguished. 

 If the destination is another host situated on the same 
Pod, that VM will be forwarded downwards through the 
lower switch where the destination is hanging on, as both 
source and destination hosts may be considered as being 
part of the same Pod, also known as IntraPod, this is, both 
being two-hops away to each other. Otherwise, if this is not 
the case, it will be forwarded upwards. 

Alternatively, if a VM is received from any upper ports of 
any of those switches, it will be headed for the lower layer 
switch where the destination host is hanging on. This all is 
displayed in Algorithm 3. 
 
for (j = 0; j < (K2/2); j++)  
{ 
 while (1)   
 { 
  for (n = 0; n < (K/2); n++) { 
   if (receive AGGR {j}, PORT {n} (a,b,VM(u))){ 
    if (int[a/(K/2)2] == int[b/(K/2)2])     
     send AGGR {j}, PORT {int[b/(k/2)]} (a,b,VM(u)); 
    else 
     for (n’ = (K/2); n’ < K; n’++)  
      send AGGR {j}, PORT {n’} (a,b,VM(u)); 
   } 
  } 
  for (n’ = (K/2); n’ < K; n’++) { 
   if(receive AGGR {j}, PORT {n’} (a,b,VM(u))){ 
    send AGGR {j}, PORT {int[b/(k/2)]} (a,b,VM(u)); 
  } 
 } 
} 

Algorithm 3. AGGREGATION( ) 

 
 CORE Cl: 

The upper layer, also known as Core layer, is the one 
interconnecting the different Pods, so the ports of all its 
switches are looking downwards, providing a full mesh 
topology among all the existing Pods. 

Therefore, all of switches are waiting to receive a VM 
through any of its corresponding ports, and when that 
happens, it is redirected to its directly connected middle 
layer switch on the Pod holding the destination host.  

In this case, source and destination hosts do not share the 
same Pod, also known as InterPod, meaning both are three-
hops away to each other. This all is shown in Algorithm 4. 
 
for (l = 0; l < (K2/4); l++)  
{ 
 while (1)   
 { 
  for (p = 0; p < K; p++) { 
   if(receive CORE {l}, PORT {p} (a,b,VM(u))){ 
    send CORE {l}, PORT {int[b/(k/2)2]} (a,b,VM(u)); 
 } 
} 

Algorithm 4. CORE( ) 

VI. GETTING ALL DEVICES ON REDUNDANT PATHS 

All the above may be used in order to get a list of devices 
for each of the redundant paths taken from a given source 
host to a given destination host, as it may be seen in 
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Algorithm 5. The nomenclature for the devices is the same 
one used so far. 

 
 LIST OF DEVICES: 
DeviceList(a,b){ 
 items = []; 
 items += [ Ha ]; 
 if (int[a/(K/2)] == int[b/(K/2)]) 
 { 
  items += [ Eint[a/(K/2)] Hb ]; 
  t = 1; 
  topology = “INTRANET”; 
 } 
 else if (int[a/(K/2)2] == int[b/(K/2)2])   
 { 
  items += [ Eint[a/(K/2)] “(“ ]; 
  for (q = (K/2) · int[a/(K/2)2];  

     q < K/2) · int[a/(K/2)2] + (K/2); q++) 
   items += [ Aq ]; 
  items += [ “)” Eint[b/(K/2)] Hb ]; 
  t = 2; 
  topology = “INTRAPOD”; 
 } 
 else 
 { 
  items += [ Eint[a/(K/2)] “(“ ]; 
  for (q = (K/2) · int[a/(K/2)2];  

     q < K/2) · int[a/(K/2)2] + (K/2); q++) 
  { 
   items += [ Aq “{“ ]; 
   for (r = q · (K/2); r < q · k; r++) 
    items += [ Cr ]; 
   s = (K/2) · int[b/(K/2)2]  + r mod (K/2) ; 

   items += [ “}” As ]; 
  } 
  items += [ “)”Eint[b/(K/2)] Hb ]; 
  t = 3; 
  topology = “INTERPOD”; 
 } 
  print(“Topology: %s\n”,topology); 
 print(“Number of Hops: %d\n”,t); 
 print(“Redundant Paths: %d\n”,(K/2)^(t-1)); 
 print(“Items: %s\n”, items); 
} 

Algorithm 5. DeviceList(a,b) 

 
 The list presented above may be extended with the 

corresponding ports used in each link for all redundant 
paths, as it may be seen in Algorithm 6. The ports will be 
expressed within parenthesis, attached to its corresponding 
device with the sign “*”, and a link between two ports will 
be expressed by the signs “---”, appearing in between both 
ends of such a link. 
 
 LIST OF DEVICES AND PORTS: 
DeviceAndPortsList(a,b){ 
 if (int[a/(K/2)] == int[b/(K/2)]) 
 { 
  t = 1; 
  topology = “INTRANET”; 
 } 
 else if (int[a/(K/2)2] == int[b/(K/2)2]) 
 { 
  t = 2; 
  topology = “INTRAPOD”;  
 } 
 else 
 { 
  t = 3; 
  topology = “INTERPOD”; 
 }    
  print(“Topology: %s\n”,topology); 
 print(“Number of Hops: %d\n”,t); 
 print(“Redundant Paths: %d\n”,(K/2)^(t-1)); 
 // REDUNDANT PATHS 
  if (topology == “INTRANET”) 
 { 
  Path(0) = [ Ha *    

          * (0) --- (a mod (K/2))* 
          * Eint[a/(K/2)] *  
          * (b mod (K/2)) --- (0) *  
          * Hb ]; 
 } 
 else if (topology = “INTRAPOD”) 
 { 
  x = 0; 
  for (q = (K/2) · int[a/(K/2)2];  
       q < K/2) · int[a/(K/2)2] + (K/2); q++) 
  {  
   Path(x) = [ Ha *  
           * (0) --- (a mod (K/2))* 
           * Eint[a/(K/2)] *  
           * ((K/2) + x) --- (int[a/(K/2)])* 
           * Aq * 
           * (int[b/(K/2)]) --- ((K/2) + x) * 
           * Eint[b/(K/2)] *  
           * (b mod (K/2)) --- (0) * 
           * Hb]; 
   x++; 
 }              
 } 
 else  // if(topology == “INTERPOD”) 
 { 
  y = 0; 
  for (q = (K/2) · int[a/(K/2)2];  
       q < K/2) · int[a/(K/2)2] + (K/2); q++) 
  { 
   z = 0; 
   for (r = q · (K/2); r < q · K; r++) 
   { 
    s = (K/2) · int[b/(K/2)2] + r ·mod (K/2);    
    Path(y · (K/2) + z) = 
         = [ Ha *   
           * (0) --- (a mod (K/2))* 
           * Eint[a/(K/2)] *  
           * ((K/2) + y) --- (int[a/(K/2)])* 
           * Aq * 
           * ((K/2) + z mod (K/2)) ---  
             --- (int[a/(K/2)2]) * 
           * Cr 
           * (int[b/(K/2)2]) --- 
             --- ((K/2) + z mod (K/2)) * 
           * As * 
         * (int[b/(K/2)]) --- ((K/2) + y) * 
           * Eint[b/(K/2)] * 
           * (b mod (K/2)) --- (0) * 
           * Hb]; 
    z++; 
   } 
   y++; 
  }  
 } 
 // SUMMARY OF PATHS 
 for (c = 0; c < (K/2)^(t-1); c++) 
  print(“Path(%d) = %s\n”,c,Path(c)); 
} 

Algorithm 6. DeviceAndPortsList(a,b) 

 
Regarding evaluation and verification of the VM 

migration algorithms proposed, some executions showing 
all case scenarios may do it, thus considering source and 
destination Hosts being 1-hop away, 2-hops away or 3-hops 
away, with a generic K. Let us focus on the algorithm 
DeviceList, as the algorithm DeviceAndPortsList is just an 
extension of the former showing the port identifiers 
involved for each device.  

First of all, let us take a scenario being IntraNet. The 
model considers both Hosts being 1-hop away, with just 1 
path between them, as there is just a single Edge switch 
defining the only path for any pair of Hosts hanging out of 
it. Therefore, the first conditional sentence in the algorithm 
will hold and that Edge switch is going to be identified.  

Then, let us take an IntraPod scenario. The model 
considers both Hosts being 2-hops away, with K/2 
redundant paths in between, as both Hosts share the same 
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Pod, so each Aggregation switch within that single Pod 
defines a different path, being reached from the same source 
Edge switch and being redirected to the same destination 
Edge switch. Thus, the second conditional sentence in the 
algorithm will hold and the components of each path are 
going to be identified. 

Finally, let us take an InterPod scenario. The model 
considers both Hosts being 3-hops away, with K2/4 
redundant paths between both, as both Hosts stand in 
different Pods, hence, each Core switch defines a different 
path, being reached from one of the Aggregation switches in 
the source Pod and being redirected to one of the 
Aggregation switches in the destination Pod. Therefore, the 
else sentence in the conditional sentence will hold and all 
the components of each path are to be identified. 

To round it all up, the use of this algorithm matches 
what happen in a real Fat Tree architecture regarding all 
possible case scenarios, therefore, the model may be 
considered as verified. 

VII. CONCLUSIONS 

In this paper we have been studying the VM migration 
process between a given source host and a given destination 
host, both being interconnected through a Fat Tree 
architecture. First of all, migration types have been exposed, 
noting that live VM migration is the most interesting one, 
and among all its variations, iterative pre-copy is the most 
efficient regarding the tradeoff between downtime and total 
migration time. 

Then, Clos networks have been presented, and a 
comparison between Leaf and Spine and Fat Tree 
architectures has been introduced, leading to the 
consideration of Fat Tree as being more scalable, and as 
such, that has been select to build an algorithmic model 
regarding VM migration. 

Eventually, each three layers of Fat Tree and an 
additional layer for the hosts where VMs are located have 
been modelled. The behaviour of each layer have been 
expressed in terms of receiving a VM owned by a user, 
coming from a source host and going to a destination host, 
and in turn, sending it to the optimal path, to reach that 
destination with the minimal possible number of hops. If 
that number of hops is more than one, there are redundant 
paths being all of them optimal, so the model gives them all. 

As a sort of proof of concept, two algorithms has been 
proposed, the first one listing the devices to be traversed 
through all redundant paths available from a given source 
host to a given destination host, and the second one being an 
extension of the former by also quoting the ports involved in 
each link through each redundant path. 

In conclusion, the algorithmic model proposed, based on 
arithmetic operations, succeeds in expressing the VM 
migration process from one host to another in a Fat Tree 
architecture. 
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