

Maze Solving
Algorithms

(Category: Computer Science)

Paintbrush Algorithm, Breadth First Search Algorithm, Depth First Search

Algorithm, Trimming Algorithm & Compass Algorithm

Manish Chand
Semester – IV
Department of Computer Science
Maharaja Agrasen Institute of Technology
G.G.S.I.P.U., New Delhi.

Mayank Goel
Semester – IV
Department of Computer Science
Maharaja Agrasen Institute of Technology
G.G.S.I.P.U., New Delhi

Shantur Rathore
Semester – IV
Department of Electronics & Communication
Maharaja Agrasen Institute of Technology
G.G.S.I.P.U., New Delhi

Abstract

Maze solving - a seemingly minor challenge for the analytical minds of humans – has
generated enough curiosity and challenges for A.I. experts to make their machines (robots)
solve any given maze. Although, there are a lot of algorithms but we thought that we might
not be having algorithm which we can easily say is the fastest. Here, we won’t go on the record
and say that, “Yes!! We have found the quickest way of solving a maze”, but yes here are
some methods which we feel will take the quest to find a perfect algorithm at least a step
further. The question that automatically comes into mind is that why do we require our
robots to solve maze? Is it really required? The answer is “Yes”. Robotics is a field of wide
reaching applications. From bomb sniffing robots to devices for finding humans in wreckage
to home automation, we require our robots to have a certain degree of analytical mind and if
our robots can solve mazes, as complex as it can get, then we think that their analyticity will
be improved significantly. The existing algorithms have the problem that all of them
concentrated on finding the shortest possible way present in the maze and this made these
algorithms a bit slow. Here, consider the situation where the maze has only one solution. In
this case, most of the existing algorithms failed to keep up the pace as they tried to find
alternative routes at every junction to find a shorter path, and this made the algorithms slow.
We tried to improve on this, and we deviced these algorithms keeping in mind that the time
taken by them in finding the way out of the maze should be as less as possible. The algorithms
that we will be discussing in full detail are Paintbrush Algorithm, Compass Algorithm,
Trimming Algorithm, Depth First Search Algorithm and Breadth First Search Algorithm.

1. What is the problem with the existing algorithms?

The problem, as discussed in abstract, is that most of the existing algorithms try to
find the shortest possible way and ignoring the time taken by these algorithms. The
question is that why do all these algorithms concentrate on providing the shortest
way? And, the answer is the concept of robotics competitions in which the robots
compete in a race to complete the given maze. One of the competitions with the
richest history is MicroMouse Competition.

MicroMouse Competition (Ref. # 6)
The MicroMouse Competition has existed for almost 20 years in United States, and
even longer in Japan. Micromice are small, autonomous devices designed to solve
maze quickly, and efficiently. The goal of the contest is simple: the robot must
navigate from the corner of a maze to the target as quickly as possible. The actual
final score for a robot is primarily is a function of the total time in the maze and the
time of the fastest run. The most widely used algorithms in these competitions are:
Random Algorithm, Left / Right Algorithm and Bellman Flooding Algorithm. We
will be discussing all these algorithms and others.

2. How to define the complexity of a maze?

2.1 For Human Brain

The characteristic of human brain does not provide the strong senses of
direction and position. The brain is easily confused by similar environments.
Therefore, if a maze comprises of many junctions, dead ends and loops, the
maze is considered to be a complex one for human.

2.2 For Robotic Brain

The robot or computer is able to remember the orientation and position
correctly. This is due to the ability of the software algorithm and retrieval of
data from memory storage. Therefore, a maze with large number of junctions,
dead ends and loops is no longer complex for robot.

3. Existing Algorithms (Ref. #1 & 2)

3.1 Random Algorithm

This is by far the simplest way of solving a maze. Keep in mind that we are
saying that it is the simplest algorithm and in no way be the fastest or most
efficient. You simply have your robot running around making a random
decision to turn or not when it encounters an opening to the left or right. The
only problem with this, as mentioned above, is that it will be slow, and there
is a good possibility that the robot will not find the exit in the time allotted
i.e. your robot could wander for hours always taking the wrong turns.
Needless to say, it is probably well worth it to invest some programming time
into a better algorithm if your looking for speed or accuracy.

3.2 Left / Right Algorithm

This algorithm is the amateur programmers’ favorite. The whole principle
behind this algorithm is that you can solve any continuous, i.e. no "islands",
maze by following either the right hand or left hand wall. This will always get
you out, unless the finish is an "island," like the picture below.

In the above maze, a robot using the left/right algorithm would never reach
the exit. This algorithm is just slightly more complex to code, but its benefits
over the random algorithm are large. Simply have your robot turn to the left
(or right) whenever it encounters an obstruction. Again, the downside of this

algorithm is speed. One wall may continue for a long way before reaching the
end.

3.3 Branch & Return Algorithm

The principle behind this algorithm is that by exploring each branch of the
maze you will eventually find the exit. This algorithm requires that you
"remember" when you come to a branch, and begin to record your steps from
that branch. After exploring that branch and you come to a dead end, you
simple follow your path back to the original branch and take the next turn.
This algorithm requires much more coding, and some way of knowing your
distance and direction. The problem with this algorithm is that the robot could
fall into an endless loop. For instance suppose we had a maze that looked like
this:

If the robot is heading from the top of the maze toward 'a' then it may decide
to take a right and follow the corridor until it reaches 'b', it then might turn
left and reach 'a' again, and then follow back to 'b', and never realize that it is
going in a circle. One possible way to combat this is to have the robot take a
random corridor when coming to an intersection. Giving the robot a degree of
"forgetfulness", i.e. having it forget intersections encountered long ago could
prevent it from being caught in a very long loop.

4. Our New Algorithms

4.1 Paintbrush Algorithm

This is easily the highlight of the whole paper. This algorithm makes use of
the concept of floodfill in paintbrush – that if there is an opening in a
seemingly closed figure and if you fill it with color than whole of the painting
gets filled i.e. the paint floods from that opening.

Now, here consider a regular maze as shown in fig.

Here, S is the starting point and you have to reach T. Now, consider that this
is a bitmap that you have opened in paintbrush. Now if you fill the starting
cell (S) with any colour, the whole (or most part of the maze) will be colored as
you can reach any point of the maze from one way or the other. And, if there
exists a path from S to T then T will also be filled with that color. Now, at cell
S, you have two options for where to go. Either the robot will go in right
direction or downwards. Here, according to our Paintbrush Algorithm, if you
block one of these ways and now fill the cell S with any colour and now also if
the T cell is painted then this means that you can reach T through the path
which you haven’t blocked. Thus, you can directly neglect the whole of the
maze that you can access through that blocked way at cell S. And, if the cell T
is not painted, then this means that in order to reach T you have to take the
path which you blocked. The following illustration will fully explain the
concept to you.

So, here you saw that using this algorithm, we can easily solve any given
maze, no matter what it contains i.e. junctions, loops, islands or anything for
that matter. And, mind you it is also very fast. A systematic algorithm for
this process is as follows:

1. Start scanning from first cell and scan for a cell with three openings.
(Because if a cell has two openings then one will be used for coming and
one for exit, so there won’t be any problem).

2. As soon as you get a cell with three openings, select one of the openings
and block it.

3. Flood fill the cell.

4. If the target is filled, then move ahead i.e. into the opening you haven’t
blocked.

5. Else if the target is not filled, this means that the blocked opening was the
key. So release this opening and block the other opening and move into
the released opening.

6. You will soon reach the target.

4.2 Breadth First Search Algorithm (Ref. # 5)

Breadth first search is a graph traversing technique. According to this
technique, we select a root node and add it into a queue. Then, we will add its
neighbours into the queue (from rear) and will remove one more element from
queue (from front) and will add its neighbours into the queue. This way, we
traverse the whole graph.

Now, we consider that this technique of graph traversal can be easily used to
solve a maze. What you have to do is that, you have to convert the whole
maze into a graph. And, this is how you have to do it:

1. Consider the following maze:

2. Now, consider the cell 1 and you can see that it has three openings: top,
right and bottom. So, in the graph, instead of a cell, we will represent 1 by
a dot and join this dot with the top, right and bottom cell (dot in case of

graph). The following illustration will explain the concept to you in full
detail.

3. So, we have made our graph. Now, as we do in regular breadth first
search, we will keep on adding elements into the queue and removing
them and at the same time adding their neighbours into the queue. After
all the vertices of the graph will be traversed, we will backtrack the
traversed vertices, in accordance to their origin vertices and we will get
different paths (if more than one path exist) to the target and the one
with lesser number of traversed vertices will be shorter one.

4. The above example has only two ways to the target (116) and the shortest
path will be:

The advantage of this algorithm above all algorithms is that it gives you
the shortest path from any number of possible paths in a maze.

4.3 Depth First Search Algorithm (Ref # 5)

Depth first search technique is used to traverse the graph. The difference
between breadth first search and depth first search is that in depth first search
technique we make use of stack instead of queue, which is used in breadth first
search.

So, even depth first search technique can be used to solve any maze. But, the
difference is that this algorithm merely gives you a solution of the maze, not
necessarily the shortest one. But, depth first search gives you the solution
much earlier than breadth first search algorithm, because in breadth first
search you have to traverse all the vertices of the graph, but in depth first
search, the process terminates as soon as you reach the target vertex.

Here also you have to make use of the same way of getting the graph from the
given maze, as we did in the case of breadth first search. And, then we have to
carry out normal depth first search on this graph with the use of stacks. And,
as soon as you traverse the target vertex, you will have to backtrack the
traversed vertices with the help of their recorded origins. Now, the question
that might be troubling you will be that how will we get the origin of a
vertex? The answer is simple: When you remove (in case of queue) or pop (in
case of stack) a particular vertex (say A) and add its neighbours into the
respective data structure then you will have to record somewhere along with
these added vertices that they are added as neighbours of A and hence, their
origin is A.

So, this way the maze can be solved using depth first search also. And, the
answer in this case will be same as shown in breadth first search. And, the
only practical difference between both the algorithms is that in breadth first
search algorithm we get the shortest path but the time taken in computing
this path might be a bit larger than what depth first search takes.

4.4 Trimming Algorithm

In this algorithm, we have to make use of the corresponding graph of the
given maze. The way of obtaining the graph is exactly same as in breadth first
search or depth first search algorithms. Here, we trim all the vertices that
have degree 1 (except starting and ending vertices). For example, consider the
following graph:

4.5 Compass Algorithm

This is probably most complex algorithm in this whole paper. And, this is also
the most useful one. All the algorithms that we have discussed till now had

one condition, that the entire maze configuration is known a priori, and that
we have random access to the whole maze configuration. But, this algorithm
has no such limitation and it will work in any circumstances.

There are some algorithms that are designed in such a way that they will work
if the maze configuration is not known initially. But, there are some problems
that most of them face. The problems which we discussed in the Section – 3
(Existing Algorithms), such as islands problem and loop problems constantly
plague most of the existing algorithms. But, this compass algorithm has been
designed in such a way that it can counter any of these problems. The
algorithm is called Compass Algorithm because the machine has to constantly
deal with directions and it has to virtually remember which direction it has
traversed and which direction is pending and also that its parent cell is in
which direction. This algorithm is based on recursion and the machine will
change direction recursively, so that it can conveniently come back to the
parent cell after full traversal of the respective children cells. This algorithm is
inspired by the preorder, inorder and postorder traversal of a binary tree.

To use this algorithm, we once again have to convert the given maze into its
respective graph, as we did in Breadth First Search Algorithm and Depth
First Search Algorithm. But, here the work is not over after you achieve the
graph. Instead, now you have to make a matrix of (nX4) where n is the
number of vertices of the graph. Suppose the graph obtained by the given
maze is:

 Matrix:

Now, how did we get this matrix? The answer is write all the vertices in the y-
axis, now consider vertex – 1, it is connected only to its eastern and southern
vertices, so we have 1 under E & S in front of 1 in the matrix. This way we can
easily make the whole matrix. Although, this matrix won’t be required once
you implement this algorithm in physical conditions, here we require it only
for simulation purposes.

Under this algorithm, the machine knows, what is the smallest unit of
distance within the given maze i.e. the distance between the vertices 1 & 2

(under the given example)? Now, the complete explanation of compass
algorithm is as follows:

The current cell number of machine is saved in x, number of vertices in
horizontal direction is m (we don’t require it in physical implementation, but
is necessary for mathematical simulation of the algorithm). And, the target
vertex is saved in y.

Now, the algorithm will start from cell 1 and will first try to move in south
direction. It will be checked whether there is an opening in southern direction
or not. It there is no opening out there, then the computer will try western,
then northern & at the end eastern direction. And, whenever the machine will
get an opening, the current cell no (x) will be suitably updated. For example,
take a look at the above graph. When the machine is at vertex – 1, it will
check in southern direction and will move to 5th vertex (and hence, the value
of x will be updated to 5, i.e. x+m). x is always updated according to this rule:
x+1 for east, x-1 for west, x-m for north & x+m for south. For example, if you
move in east direction from cell 5 then you will reach 6(x+1), and so on.

Now, whenever a machine moves into a particular direction, it looks for new
directions i.e. if we have entered a new cell from southern direction, then we
will look into west, north and east directions (strictly in that order) i.e.
whichever way you have moved you always have to first look towards your
left, then front and then right. This kind of direction rule never lets the robot
to endlessly move into a loop. Here is an illustration on how this happens:

Here, you can see that there is a blue square in the middle of the figure and
red extensions of the edges of this square. The blue portion signifies the loop
(in which our machine might just fall) and the red lines signify the way into
and out of the loop. And, in the middle of the square you can see that we have
some kind of code written. One of them says, If North – W N E. By this we
mean that if our robot is facing northern direction then it will first check
W (West) then North and at last East.

So, now consider that the machine is coming from 1, as the robot is facing
east, so firstly it will check north and then east. At this point, if the robot has
to fall into the loop then this would mean that path 2 does not exist. Okay,

let’s assume this thing and move further. Now, on reaching the top – right
corner of Blue Square, the robot is facing east. Here it will again check north,
then east and at last south. At this point if the robot still has to end up in the
loop then again this would mean that paths 3 & 4 can’t exist. So, let’s assume
this also. Now we are at the bottom – right corner of the square. Here the
robot is facing south. Now, it will first check east, then south and at the end
west. So, paths 5 & 6 also can’t exist. Now, at bottom – left corner of the
square, the machine will first check south, then west and at last north. So, the
paths 7 & 8 can’t exist. So, if the robot has to fall into the loop then none of
the red edges can exist and if we remove all these red edges, then the blue
square itself will become inaccessible. So, here we infer that if the machine is
running on Compass Algorithm, then it can never fall into a loop.

And, at the end, as soon as value of x (current cell number of the machine) is
equal to y (target cell number), the algorithm is completed.

Conclusion

Now that we have gone through all these algorithms, one thing is clear that, some algorithms
do existed, but they definitely had some problems, like unable to counter islands and loops.
But, all the four algorithms that we have devised (although Breadth First Search and Depth
First Search were probably present even earlier, but only thing that everyone has to offer is
that you can’t use them directly, you have to modify them. Here, we have provided those
modifications) can easily counter all these problems. Our Paintbrush Algorithm is perhaps,
one of the fastest ways of solving a maze. Breadth First Search Algorithm can provide you all
the possible ways that can exist in a maze and also give you the shortest of them all. Also, for
the MicroMouse competitors, we would like to say that with minor adjustments you can also
find the fastest way. We are differentiating between fastest and shortest way because in some
cases the shortest way might be having a large number of turns whereas its nearest
competitor, it terms of distance, might be having far lesser number of turns. And, as far as the
Depth First Search Algorithm goes, it is practically a cousin of Breadth First Algorithm only
and it can employed when only one path exists in the maze and you have serious time
constraints. And, at last our Compass Algorithm. Most of the existing algorithms considered
that they know the complete maze configuration by default and those which didn’t were
constantly plagued by a lot of problems (as discussed earlier). But, our Compass Algorithm
efficiently takes care of all these problems. So, we think that we are successful in devising
some simple and efficient algorithms for a problem that can be definitely used in robots for
achieving certain degree of analyticity.

 References

1. Building A Maze Solving Robot – My Experiences.
www.gorobotics.net/articles/article.php?name=mazebot

2. C. Scott Ananian & Greg Humphreys, Theseus : A Maze Solving Robot (1997)
3. Kevin Lam & Gabriel Wainer, Modelling of Maze Solving Systems using Cell-DEVS
4. Maze Solving Algorithm. www.lboro.ac.uk/departments/el/robotics/maze_solver.html
5. Swapan Kumar Sarkar, A Textbook on Discrete Mathematics. S. Chand Publications.
6. The MicroMouse Competition. World Wide Web.

http://www.nis.lanl.gov/projects/robot/html/rules/micromouse.html
7. Think Labyrinth: Maze Algorithms. www.astrolog.org/labyrnth/algrithm.htm

http://www.gorobotics.net/articles/article.php?name=mazebot
http://www.lboro.ac.uk/departments/el/robotics/maze_solver.html
http://www.nis.lanl.gov/projects/robot/html/rules/micromouse.html
http://www.astrolog.org/labyrnth/algrithm.htm

