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ct

nt evidence suggests that SARS-CoV-2, which is the virus causing a global pandemic in 2020, is predom
tted via airborne aerosols in indoor environments. This calls for novel strategies when assessing and con
g’s indoor air quality (IAQ). IAQ can generally be controlled by ventilation and/or policies to regulate

-interaction. However, in a building, occupants use rooms in different ways, and it may not be obviou
or combination of measures leads to a cost- and energy-effective solution ensuring good IAQ across th

. Therefore, in this article, we introduce a novel agent-based simulator, ArchABM, designed to assist in c
dapt existing buildings by estimating adequate room sizes, ventilation parameters and testing the effect of
king into account IAQ as a result of complex human-building interaction patterns. A recently published
as adapted to calculate time-dependent carbon dioxide (CO2) and virus quanta concentrations in each ro
CO2 and virus quanta for each occupant over a day as a measure of physiological response. ArchABM is
g the aerosol model and the building layout due to its modular architecture, which allows implementing
any number and size of rooms, agents, and actions reflecting human-building interaction patterns. We
se based on a real floor plan and working schedules adopted in our research center. This study demon
anced simulation tools can contribute to improving IAQ across a building, thereby ensuring a healthy
ent.

s: agent-based modeling, indoor air quality, building ventilation, aerosol model, building design, simul

oduction

tivation

ence is growing that the virus SARS-CoV-2 that
global pandemic in 2020 can be transmitted via

n of virus-containing aerosols [1, 2, 3] and re-
dies point towards increased infection risk indoors
7]. For these reasons, the concept of indoor air
IAQ) is currently under scrutiny. IAQ is typically

ned by air temperature, humidity, and pollutant
ation in closed environments [8, 9]. Due to SARS-
significant impact on population health around

e, authors are calling for taking into consideration
entration of airborne pathogens or quanta (viral
., a physical measure of infectious material being
[10]) when evaluating IAQ [11, 12, 13]. Further,
odies and organizations are updating their guide-

andards, and regulations in this regard [9, 14, 15].
refore evident that IAQ will need to play a more
nt role when designing a new building or adapting
ing building. After all, one room with bad IAQ

sponding author
l address: imartinez@vicomtech.org (Iñigo Martinez)

alone may lead to a significant health risk for build
cupants.

IAQ is ultimately a product of human interac
a closed environment as temperature, humidity, a
lutants will rise with the number of occupants an
time if no measure is taken. Generally, IAQ can
trolled via engineering measures (ventilation, air fil
air disinfection, larger rooms, etc.) or by applying
or conventions to regulate human interaction in a ro
strict access, limit residence time, etc.). However, a
measures come at a cost or have external constrain
it is not always obvious which combination of m
will lead to a cost and energy-effective solution t
sures good IAQ throughout the entire building g
use. Novel tools and innovative approaches are th
necessary [6] to design future buildings and adapt
existing buildings such that they can provide signi
improved IAQ, thereby ensuring a healthy, comf
and productive indoor environment.

To address this challenge, we propose ArchA
novel agent-based simulator designed to assist arc
engineers, and building managers to estimate ad
room sizes, determine adequate ventilation param
test the effect of policies while taking into accou

1
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he entire building as a result of complex human-
interaction patterns. In addition, ArchABM can
simulating various scenarios to make more in-

decisions. Its agent-based engine allows for simu-
omplex interaction patterns of agents (i.e., occu-
n various rooms, taking into account daily sched-
licies/conventions, and a random factor of agents
when to go where and with whom.

ddress the call for an ”updated” IAQ taking into
airborne virus transmission, we adapted a recently
d aerosol model tuned to SARS-CoV-2 [16] and
pute time-dependent carbon dioxide (CO2) con-

ons and virus quanta levels [3] produced by occu-
rooms. Further, the amount of CO2 inhaled by

t throughout the day and the number of quanta
by each agent are calculated to reflect a potential
gical response. Both result from the interaction
created by all agents acting and interacting in

ed environment. The CO2 level calculations for a
room were validated by using a well-documented
dy from the literature [17] that reported accurate
centrations over the course of a day in an office.
ABM is flexible with regard to the aerosol model
to its modular architecture, which allows for the
ntation of further models calculating other met-

interest such as temperature, humidity, or even
ssion metrics for other types of viruses. Further-
rchABM is dynamic in the sense that any num-
ooms (”places”), agents (”people”) and actions
”) can be defined in a configuration file in or-
flect various human-building-interaction patterns.
tion categories for places (”building”) and people
ments”) exist as well. Relevant examples could
buildings designed for any type of work, hospitals
ng homes, or buildings from the educational sec-
ame a few. Note that one ArchABM simulation
s how agents (occupants) follow or take part in
activities) occurring in various places as defined
onfiguration file over the course of one day. This
hat long-term effects from one day to another are
elled. However, as there is a random component

ed with agents’ actions and interactions through-
day, simulation output parameters such as inhaled
d virus quanta levels for individual agents as well

ulated CO2 and virus levels for individual places
er from simulation to simulation, even if the con-
n file is not changed. The simulation engine that
rchABM is event-driven, resulting in higher com-

al performance compared to traditional continu-
-stepped ABMs, as an unnecessary update of all

ents (agents and their environment) at each time
voided – components are only updated when an
triggered. This allows running a high number of
ons Srun (i.e. simulate a high number of individ-

of agents interacting in the given environment)
en configuration file, enabling in-depth statistical
of output parameter distributions when compar-

ing different simulation scenarios.
To demonstrate ArchABM’s capabilities, we

a human-building-interaction use case for an offi
nario with 14 rooms and 60 agents, based on an re
plan and close-to-real working schedules adopted
research center. We thereby investigate the impa
building-related measures, b) policy-related measur
c) a building-policy combined case on IAQ in ind
locations and the overall building, as well as their
on individual people in terms of inhaled CO2 an
quanta.

ArchABM is ready for use as an open source
library, is available to the public on the official
Package Index (PyPI) repository1 [18] and comes
full documentation2 [19]. All data generated in thi
is openly accessible via Mendeley Data3 [20].

1.2. Related work

Agent-based models (ABMs) can simulate actio
interactions of autonomous agents within a pre-
computational environment to calculate outcomes d
ing how the overall system behaves [21]. Since the o
the pandemic induced by SARS-CoV-2, many studi
been published employing ABMs to model virus tr
sion dynamics, thereby mainly focused on simulat
effects of policy changes or strategies such as the
mentation of social distancing measures or travel
tions. Most of these studies, however, focus on
macro-scale scenarios, in which agents act and i
within an environment representing an entire cou
region, or a city [22, 23, 24].

Regarding indoor environments, studies involvin
have predominantly analyzed university buildings a
puses, supermarkets, or public spaces such as mu
yet mainly apply exposure-time and contact-distanc
or traditional compartmental SEIR (Susceptible, E
Infected, Recovered) [10, 25] virus transmission mo
calculate the number of infected people after a giv
[26, 27, 28, 29, 30]. IAQ and, specifically, possi
borne transmission via aerosols is often not taken
count. Some other studies apply (pedestrian) mo
models to simulate indoor movement patterns witho
ing into account virus-related parameters [31, 32].
simulating indoor environments, only a few recen
ies explicitly address airborne transmission via aer
their ABM [33, 34, 35, 36]. While these studies
phisticated aerosol models, most of them focus on
ing one single room as the simulation environmen
plified supermarket, choir practice, restaurant, clas
without taking into account the complex human-b
interaction patterns that may emerge when agent
around a building to different rooms for carrying
verse activities while being in contact with other

1https://pypi.org/project/archABM/
2https://vicomtech.github.io/ArchABM/
3https://data.mendeley.com/datasets/cx3byrjx7b/1
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ore, most of these studies investigate the impact
-based measures (such as wearing a mask) on in-

risk and do not analyze the impact of building-
measures on IAQ, such as natural or mechanical
on [9], or varying ventilation rates or room sizes.
e building domain, ABMs have been employed to
uilding occupants’ energy use [37, 38] and IAQ in
CO2 and other parameters [39, 40, 41]. However,

ese studies are typically constrained to simulating
le room which agents can enter and leave and do
sider possible airborne virus transmission. Arch-
ies to address these issues by providing an easy-to-
easy-to-install, fast, and flexible agent-based simu-
t can simulate complex human-building-interaction
while calculating relevant IAQ parameters that

ential airborne virus transmission into account.

hods

nt-based simulator

is article, a novel event-based multi-agent simu-
amework is proposed to simulate complex human
ion patterns with and within the built environment
alculate IAQ metrics and physiological responses.
tion summarizes the key features of the proposed
rk and formalizes its main components: events,
eople and aerosol model.
t-based simulators can be implemented in two ways:
nuous simulation and b) event-based simulation.
ous simulations have a fixed time-step, and the
state is updated in every step. For these simula-
is critical to select an appropriate period parame-

ch indicates how much time elapses between state
. Furthermore, these simulations can be highly in-
, as there may not be any changes from one step to
. Conversely, in discrete event-based simulations,
em is only updated when a new event occurs. The
r processes new events in sequential order as they
or triggered by the simulated entities or agents.

t-based approach is followed for this work.

The simulator was implemented using Python 3.7.9
n object-oriented paradigm was adopted, where
ent is a class instance. The engine was devel-

top of the SimPy 4.0.1 [43] library, a process-
iscrete-event simulation framework. Under this

, processes are used to model the behavior of
omponents, such as users. Processes live in an

ent and interact with the environment and with
er via events. The most important event type for
lication is the timeout, which allows a process to

the given time, determining the duration of the
Events of this type are triggered after a certain

of simulated time has passed.

Components. The simulator’s core is composed o
crete event-based engine that manages every activ
ried out by the agents during their life-cycle usin
ority event queue, ordered by time. The main b
blocks of the simulator are depicted in Fig. 1. The
based engine is at the core of the simulator and is
events produced by the agents. During the simulat
ecution, events are handled sequentially, in chron
order. Whenever any agent does an action or takes
sion, it generates and inserts new events into the
queue. As actions and activities occur, each event
tered on the simulation history to be further explo
visualization and data analysis purposes.

PeoplePlaces

Events
Aerosol
Model

Event-Based
Engine

Figure 1: ArchABM main components: event-based engine
people, events and aerosol model

The workflow of the simulator is described as
first, Simpy’s environment is created, and the p
configuration data is used to generate events, plac
people, as well as to initialize the aerosol model. Peo
introduced into the environment at the start of t
and their goal is to complete events until the end
day arrives.

An event is an activity that takes place at a
physical location for a finite time. Event models (fo
ple: work, meeting, coffee, lunch, etc.) are restrict
schedule, a set duration, and a number of repetition
schedule specifies the times when an activity is pe
to take place. Lower and upper bounds apply to b
duration τ and the number of repetitions. Concern
aerosol model, the mask efficiency is also indicated f
activity. Activities invoked by an individual but in
many people, such as meetings, can also be defined
are called collective events.

The event generation process selects the next
based on the priority values of each event model.
ity values are used to weigh the importance of eac
model rather than sampling from a uniform discr
tribution. The priority value is determined by a pi
linear function (Fig. 2), which is parametrized by
minimum number of repetitions r, b) maximum
of repetitions R, and c) the event repetition count

A place is an enclosed section of a building desig
specific activities and is defined by the following
eters: building, departments allowed to enter, ar

3
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Event
count e

rity

r R

riority(e) =





1− (1− α)e
r
, 0 ≤ e < r

α
R− e
R− r , r ≤ e < R

The priority function weighs the importance of each event
the number of event repetitions e.

or volume), capacity N , and natural λa and me-
λr ventilation rates. Note that in the following
rstand natural ventilation as the introduction of
air into a building driven by naturally produced
differentials [9], opposed to mechanical ventila-

., recirculation of indoor air by mechanical means
ir conditioning (AC) but without outdoor air sup-

rding the people dimension, specific departments
s need to be defined, each one associated with a
and some people. Finally, the aerosol model es-

the indoor aerosolized virus quanta concentration,
adjustable parameters such as room size, number

ed subjects, inhalation volume, and aerosol pro-
from breathing and vocalization, among others.

osol model is thoroughly explained in Section 2.2.

ance. In order to analyze ArchABM’s computa-
rformance, several simulations were computed with
nt number of people and places, as illustrated in
A grid of values for the number of people {6, 30,
300, 600, 1200, 2400} and the number of places
25, 30, 35} was established. The computational
uired to compute 24h of simulated time is mea-

n order to yield stable results, the simulations are
20 times. The number of people is indeed the

uential parameter concerning the simulator’s per-
e. Using the number of people as the predictor,
ariate linear regression model applied to the re-
ariable time yields a slope parameter of 2.4 10−3

per person. Thus, on average, ArchABM is able to
of simulated time with 1000 people and 20 places
ximately 2.4 seconds.

W

Coffee

Lunch Time

Restroom

Remote Meeting

Quitting Time

Home

Figure 3: Illustration of a daily schedule example that can
lated in ArchABM. The radial graph shows the activities’ pr
density along the day. Colors represent different activities
stance, lunch is concentrated at noon and coffee breaks du
morning and afternoon, whereas meetings and office work
uniformly throughout the day.

ŷ = 2.4·10-3 x

0

1
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Ti
m

e 
pe

r s
im
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(s
)
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Figure 4: ArchABM computational time performance for
scenarios. The linear regression yields a slope parameter of
seconds/simulated person.

2.2. Aerosol model

Several models have been proposed to simulate
borne transmission of SARS-CoV-2, [44, 45, 16].
these models, the model developed by Peng et
the University of Colorado, [16], calculates both th
quanta concentration and the CO2 mixing ratio pr
a specific place. The virus quanta is defined as t
of airborne droplet nuclei required to cause infec
63% of susceptible people [3], and the CO2 mixin
refers to the amount of CO2, measured in parts-per
(ppm), present in the air. These two metrics pro
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icture of IAQ, which is why this model was se-
r ArchABM.

tandard model by Peng and Jimenez [16]

nt studies suggest that indoor CO2 measurements
mise to be used as a proxy for the mass moni-

f indoor aerosol transmission risk for SARS-CoV-2
er respiratory viruses, [16, 46, 47, 48]. The aerosol
resented by Peng and Jimenez[16] derives analyt-
ressions of CO2 based risk proxies, assuming the
istance is maintained. The relative infection risk
en environment scales with excess CO2 level, and
eping CO2 as low as possible is essential to reduc-
likelihood of infection.
aerosol model [16] considers some parameters to
ant across the entire building, as shown in Table
e constant values, breathing or virus related, are
the study undertaken by Peng and Jimenez, [16].

contrary, certain parameters are specified for each
ch as volume, ventilation, or the number of people
as shown in Table 2.

Notation Units Value

g related
nd CO2 concentration CO2(back) ppm 415

P atm 0.95
ture T ◦C 20

ng related
eathing flow rate Qb m3/h 0.52
ission rate (1 person)
K and 1 atm

CO2(rate) L/s 0.005

oV-2 virus related
exhalation rate Q quanta/h 25
te of virus k h−1 0.62
on to surfaces λdep h−1 0.3
enhancement due to variants Qe - 1

ion related
of people using mask mf % 100

Aerosol model parameters: values assumed to be constant
entire building

Notation Units

ng related
of place V m3

r, or natural, air exchange rate λa h−1

lating, or mechanical, air exchange rate λr h−1

tion related
fficiency me %
r of people N -
r of infected people Ni -
f exposure τ h

Aerosol model parameters: variable building- and
n-related parameters to be defined by the ArchABM user

the infection probability point of view, the model
s enclosed spaces, in which virus-containing aerosols
med to be rapidly uniformly mixed compared to
spent by the occupants in the spaces [16]. It states

that the probability p for a single person to be inf
related to the number of quanta n of virus inhaled,
cording to the Wells-Riley model of aerosol infect
can be calculated as p = 1− e−n.

When p is low, as it should be for a safe enviro
the use of the Taylor expansion for an exponentia
approximating p as p ≈ n.

The quanta inhaled per person n (in quanta uni
siders the average quanta concentration Cavg [quan
the mean breathing flow rate Qb defined in Table 2,
as the exposed time τ , the mask efficiency, me, a
fraction of people using masks, mf :

n = Cavg ·Qb · τ · (1−me ·mf )

Note that assuming a constant mf = 100% = 1
fined in Table 1 means that one can control whethe
are being used by setting me either to 0 (no mask
or to a value referring to low (0.3), medium (0.5)
(0.75) mask efficiency, following [16] and [45]. The
quanta concentration increases with time from an
value of zero following a f(x) = 1 − ex function, w
the standard dynamic response of a well-mixed ind
ume to a constant input source, [50]. The average
concentration, Cavg, is calculated as follows:

Cavg =
E

λ · V ·
[
1−

(
1− e−λ·τ
λ · τ

)]

where E is the net emission rate in [quanta/h
and λ the total first order loss rate in [h−1] units:

E = Q · (1−me ·mf ) ·Ni ·Qe

λ = λa + λr + λdep + k

λr in Eq. 4 is the recirculating, or mechanica
tilation, and has to do with the flow rate of the A
tem, QAC , the filter efficiency, εfilter, the removal in
εducts, and additional removal measures, εextra:

λr =
QAC
V
·min{εfilter + εducts + εextra, 1}

The model also calculates the CO2 mixing levels
within the specified area, given that there are no ot
nificant CO2 sources or sinks, i.e., indoor excess C
duction, relative to the outdoor background level,
due to human exhalation and its loss is ventilation

CO2 ← CO2(emit) ·
3.6 · 106

λa · V
·
[
1− (1− e−λa·τ )

λa · τ
+ CO2(back)

The CO2(emit) represents the total amount o
emitted by all people present, and is calculated
ing into account the CO2 emission rate for one pe

5
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in Table 1, at nominal temperature and pressure
ns (273 K, 1 atm). This value should be adjusted
ressure and temperature of the building being sim-
nd multiplied by the number of people present:

CO2(emit) = CO2(rate) ·
N

P
· (273.15 + T )

273.15
(7)

xtended model for ArchABM

model developed by Peng and Jimenez [16] pro-
uations for a single event of a given duration. How-
rchABM simulates an entire day through short-
ents. As a result, there must be some continu-
a transition from a static model that assumes an
lean environment towards a dynamic and contin-
dapting model that considers how the previous
ects the next state.
rding to Eq. 2, the quanta concentration can only
during an event. However, in the scenario pre-

y ArchABM, people are moving between different
s and when no contagious people are present the
concentration should decay (see Eq. 8), due to the

oval rate, λ, which takes into account the venti-
tes, λa and λr, as well as the decay rate of the

, along with its deposition rate to surfaces, λdep
4). Eq. 2 was adapted to account for this fact:

← E

λ · V ·
[
1−

(
1− e−λ·τ
λ · τ

)]
+ Cavg · e−λ·τ (8)

quanta inhaled per person n is calculated as in Eq.
onsidering the updated expression for the quanta
Eq. 8.
CO2 level formulated in Eq. 6 follows a similar
ion process. In the original aerosol model, the CO2

ation can only increase when people are present
breathing for a specified time. However, when sim-

day through short-term events, the model should
sider the scenario of these people leaving the room
effect of the ventilation. The CO2 concentration

ould decrease if the ventilation continues and the
empty. Therefore, the extended CO2 mixing equa-

takes the previous state into account:

← CO2(emit) ·
3.6 · 106

λa · V
·
[
1− (1− e−λa·τ )

λa · τ

]

+ CO2(back) +
(
CO2 − CO2(back)

)
· e−λa·τ

(9)

these modified equations, the ArchABM simula-
estimate the CO2 mixing ratio level [ppm] at each
well as the quanta concentration Cavg [quanta/m3],
g an overall picture of the IAQ distribution per
roughout the day.

2.3. Simulator input and outputs

In order to run a simulation, information ab
event types, people, places, and the aerosol mod
be provided to the ArchABM framework:

– Events input parameters: name (string), s
(list of tuples), duration range (integer, intege
ber of repetitions (integer, integer), mask effi
(float), and collective (boolean).

– Places input parameters: name (string),
(string), building (string), department (list of
area (float), height (float), capacity (int),
ventilation (float), and mechanical ventilation

– People input parameters: name (string), b
(string), and department (string).

– Aerosol model input parameters: included
bles 1 and 2

Regarding ArchABM’s output, whenever a new
occurs, the simulator saves the state of each pers
each place in the simulation history data structur
following attributes are stored:

– Places output metrics: place ID (int), num
people (int), number of infected people (int
level (float), and quanta level (float).

– Person output metrics: person ID (int), sim
time (float), place ID (int), event ID (int), CO
at current place (float), and quanta inhaled
the event (float).

In this way, ArchABM provides full tractability
places visited by every person, their physiological re
as well as the instantaneous IAQ at each place.

2.4. Experimental setup

The simulated configuration is based on the re
plan of one building of our research center, as shown
5. It should be noted that the floor plan is only
for illustration purposes and is not required to r
simulator. As explained in Section 2.1, the simulat
requires information about the types of events th
occur, places’ spatial parameters (area & capacit
number of people initially present and the aeroso
physical parameters. The events and places defi
this simulation are summarized in Tables 3 and 4.
are five types of events: work, meeting, coffee, re
and lunch. Meetings and lunch activities are rega
collective events. Each event model is limited to a
schedule, duration τ , and a number of repetition
each event model, the mask efficiency me is also d

The floor area of each location was measured,
volume V was estimated assuming a height of 2.7
initial number of people present N , the maximum
of people that can fit in the room, and the ventilatio

6
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echanical λr, i.e., without outdoor air supply, and
λa, i.e., with outdoor air supply) are also defined.
rooms A, B, C, and restrooms A and B are subject
natural ventilation, as they are oriented towards

rior of the building and do not have direct access
dow.
e are 60 people distributed in 7 different depart-
D1, D2, and D3 have 16 people each; D4 refers
ormation Technology (IT) workers, and D5, D6,

the head of departments and the Chief Execu-
cer (CEO), with 2, 2, and 1 people respectively.
ace is only accessible to people from specific de-
ts. This is determined by the ”departments al-
arameter on Table 4. The IT office, for example,

accessible to members of the IT department D4.
ccessibility limitations (no unisex bathrooms), one
strooms (restroom B) is open to all departments
7 (CEO). Note that departments D1-D4 can work
en office for extended periods of time throughout
whereas managers (departments D5-D7) can only

rough and cannot work or meet with employees
partments D1-D4 in the open office. The num-
nfected people Ni is set to 3 in all the proposed
s. The aerosol model parameters are described in
2.2.1.

Restroom A
20 m2

Restroom B
20 m2

Lunch
150 m2

 Office
2 m2

Meeting D
66 m2

Meeting A
16 m2

Coffee A
25 m2

Meeting C
11 m2

Meeting B
16 m2

Coffee B
55 m2

ce A
2

Open Office
330 m2

ce B
2

ce C
2

gure 5: Building floor plan used in the experiments

easures

following section describes what actions can be
nted to control indoor air quality and reduce CO2

nta concentration levels.

-related. Architects and engineers can increase the
area and/or height during the design stage and
pen spaces or more separated workspaces. The
on strategy can also be changed through mechan-
ems like air conditioning (AC) or portable high-
y particulate air (HEPA) filters, or through nat-
tilation, obtaining outdoor air exchange through
or doors.

Company policy-related. Physical measures include
tory masks, locking / restricting access to small ro
renting additional rooms. Other measures entail r
the number of people working from the office thro
mote shifts, reducing the number or duration of m
restricting movements between buildings or depar
and, in some cases, prohibiting eating lunch in the o
avoid no-mask scenarios. This latter possibility, h
may be unrealistic.

2.4.2. Experiments

ArchABM can help to quantify the impact o
of these building- and company policy-related me
Therefore, the proposed experiments are defined
section.

Baseline case - no measures. A baseline case with n
sures and reduced ventilation is first studied. The
parameters are summarized in Table 3, where an s
is set for each event type, along with their minimu
maximum duration τ , and the number of repetition
mask is not used anywhere (me = 0). Meetings a
lunch activity are considered to be collective event

Places’ parameters are summarized in Table 3.
pacity refers to the maximum number of people t
be present in that specified space. A low natural
tion rate is established (λa = 1.5, and λa = 0.5 f
ventilated rooms) and there is no mechanical ven
(λr = 0).

Building-related.

1. Larger building: each room’s area (and thu
room’s volume) is increased by 20%. This m
needs to take into account the increase in costs
according to [51] would mean an increase of
20% in the final construction costs as well.

2. Separate workspaces: the open office is divid
three identical offices, each one with 110 m2,
ple (48/3), and a capacity of 20 (60/3).

3. Better natural ventilation: windows are ope
erywhere except in restrooms for better outd
supply. λa is increased up to 5 h−1.

4. Better mechanical ventilation: the flow rate
the AC system is incremented, assuming a 2
ter efficiency εfilter, a 10% of removal in duct
and no additional εextra removal measures. A
ing to [51], adding AC to the building woul
an increase of 14% in the building overall cos
cording to Eq. 5, the values resulting for
summarized in Table 5:

Policy-related.

1. Shifts between workers: this would imply a re
in the number of people present in each roo
this experiment, the population is reduced b
resulting in 29 people in the open office, 4 in

7
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Activity Schedule
Duration
τ [h]

Repetitions
[times]

Mask Eff.
me [%]

Collective

Work 8:00 - 17:00 0.5 - 1 0 - ∞ 0 ×
Meeting 9:00 - 16:00 0.3̂ - 1.5 0 - 5 0 X
Coffee

10:00 - 10:30
15:00 - 16:00

0.083̂ - 0.25 0 - 2 0 ×
Restroom 8:00 - 17:00 0.05 - 0.1 0 - 4 0 ×
Lunch 13:00 - 15:00 0.3̂ - 0.75 1 - 1 0 X

Table 3: Event parameters for the baseline case

Area [m2] People N Capacity [people] λa [h−1] λr [h−1]
Departments

allowed
Activity

Offices

Work

Open Office 330 48 60 1.5 0 D1,D2,D3,D4
IT Office 52 7 10 1.5 0 D4
Chief Office A 21 2 5 1.5 0 D5,D6,D7
Chief Office B 21 2 5 1.5 0 D5,D6,D7
Chief Office C 24 1 5 1.5 0 D5,D6,D7

Meeting rooms

Meeting
Meeting Room A 16 - 6 0.5 0 All except D4
Meeting Room B 16 - 6 0.5 0 All except D4
Meeting Room C 11 - 4 0.5 0 All except D4
Meeting Room D 66 - 24 1.5 0 All

Coffee rooms
CoffeeCoffee A 25 - 10 1.5 0 All

Coffee B 55 - 20 1.5 0 All

Restrooms
RestroomRestroom A 20 - 4 0.5 0 All

Restroom B 20 - 4 0.5 0 All except D7

Lunch room
Lunch 150 - 60 1.5 0 All Lunch

Table 4: Place parameters for the baseline case

QAC [m3/h] λr [h−1]

Offices
Open Office 1000 0.337
IT Office 300 0.641
Chief Office A 300 1.587
Chief Office B 300 1.587

Chief Office C 300 1.38̂

Meeting rooms

Meeting Room A 300 2.083̂

Meeting Room B 300 2.083̂

Meeting Room C 300 3.0̂3
Meeting Room D 1000 1.68

Coffee

Coffee A 300 1.3̂

Coffee B 1000 2.0̂2

Restrooms
Restroom A 0 0
Restroom B 0 0

Lunch

Lunch 1000 0. ˆ740

Parameters for a better mechanical ventilation experiment
AC with air recirculation, but no outdoor air supply

Office, and 1 in each chief office, summing u
people. This measure also entails a non-quan
cost to the company.

2. Limit duration of events: the duration of m
is limited to a maximum of 30 minutes, sett
[0.3̂− 0.5]h. The duration of coffee breaks w
limited to 5 minutes, meaning τ = 0.083̂h, an
would be of 20 minutes, τ = 0.3̂h.

3. Use of masks: in this case, the mask use is
tory, meaning that mf = 1 and the mask effi
me, is set to 0.75 in the offices and meeting
to 0.5 in the restrooms, to 0.3 for coffee brea
leaving it at 0 for lunch breaks, representing
sence of masks while eating.

Combined case. Finally, in order to quantify the
of implementing both building and policy measur
experiments of better natural ventilation and limit
duration are combined in a new experiment.

8
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Difference between means
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◣ <0.05

Welch's or
Mann–Whitney
test p-value

◥ <0.0001
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0.2 < small (S) < 0.5
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Statistical comparison of two distributions (baseline vs experiment). The legend is annotated to aid in the interpre
t figures.

tistical analysis

results of the described experiments are evaluated
ard to three levels: places, people (i.e., depart-
and the entire building. In terms of outcome pa-
s related to IAQ at the place-level, the maximum
el (concentration in ppm) and the maximum virus
level (concentration in ppm) reached during the
place are calculated. In terms of physiological re-
utcome at person-level, the time-weighted average
CO2 over the day and the maximum quanta in-
the end of the day per person are used. At the
level, volume-weighted average maximum CO2

ted in terms of IAQ parameters per experiment,
olume refers to the volume of each place. To sum-
hysiological response parameters on the building
e maximum quanta level at the end of the day is

over all people.
r to further statistical analyses of these outcome
ers, we conducted a set of trial simulations to

ne an adequate number of simulation runs Srun.
at one simulation, i.e. one simulation run refers
ating agents’ actions and interactions in the given
ent as defined in the input configuration file over

rse of one day. Certain ABMs are prone to be
ally underpowered as they may require much com-
al time and effort to complete one single simu-
2]. This promotes Type-I errors of not detect-

actual effect. ArchABM is computationally effi-
d takes less than a second on a standard laptop to
e one simulation with the given baseline configu-
hich could encourage running many simulations.

wever, may lead to overpowered analyses, promot-
e-II errors of detecting a non-existent effect. For

this, we ran each of the nine experimental configu
from Srun = 10 up to Srun = 1000 simulations in
steps and repeated each setting 100 times (e.g., w
puted a set of 100 simulations for each Srun). Fo
single simulation, we computed further the coeffic
variation (CV ) [53], defined as the ratio of the st
deviation of a sample to its mean for each of the fou
cal outcome parameters (maximum CO2 and quan
per place and mean inhaled CO2 and inhaled qua
department). Low consecutive CV s imply the stab
the results. Therefore, CV s were plotted for all sim
sets over Srun for all outcome parameters, and conv
of CV towards a stable range was visually assesse
resulting plots are detailed in the Appendix A. Fo
this analysis, the adequate Srun was 500 for all
ments.

Each experimental configuration is compared
baseline experiment to determine whether signific
ferences were achieved for all four outcome para
We hypothesized for each of the experimental con
tions that the respective measures would positively
IAQ and physiologic response, i.e., would yield low
and quanta levels in places and lower inhaled C
quanta amounts in people compared to baseline.
this hypothesis, we first apply the Shapiro-Wilk
normality to the respective distributions. Then, f
mally distributed data, Welch’s t-test is used to com
p-value, and the effect size [54] is calculated using C
d. For not normally distributed data, Mann-Whit
test is used to compute a p-value, and the Wilcox
is used to calculate the effect size. Finally, the per
difference between means is reported. A statistica
nificant difference between distributions, however,

9
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whenever the p-value is below 0.001 and the ef-
is moderate (between 0.5 and 0.8) or large (greater
). Fig. 6 provides a visual summary of the statisti-
yses performed. All statistical tests are performed
v3.6.3 [55].
that for all quanta-related outcome parameters

ed in places, all simulation runs that yield a final
evel of zero at the end of the day are excluded from
riments. The reason is that otherwise, the quanta
tributions end up being bi-modal, with a skew to-
ero. This happens predominantly for the chief of-
o infected person ever enters the office throughout

Having run each experimental configuration for
ns, we assume this to occur in the same frequency
out all experiments - including the baseline exper-
which makes each experiment comparable to base-
n removing these simulations. In this way, only
simulations in which quanta levels rose due to an
being present are considered.

lts and Discussion

idation experiment

ntly, efforts have been made to analyze CO2 lev-
e buildings, and many studies can be found in the
e [46, 39, 17]. The study of Candanedo et al. [17],
measurements4 of CO2 during a day in an office

o people present. Replicating their presented pa-
s for office room area and volume, timetable, and
resent, we compare their data, which is available,
esults produced by ArchABM. This comparison
nted in Fig. 7. In the real measurements, the
el begins to rise shortly before 8:00 a.m., when

is first occupied. When the second occupant ar-
t past 9:00 a.m., the slope of the CO2 readings
s. Between 11:00 a.m. to 1:00 pm natural ventila-
reases, obtaining outdoor air supply through door
and/or occupants leaving, and thus the CO2 de-
Also, when the room is not occupied around 1:00
m., the CO2 sensors register a slight drop in their
. For this simulation, a constant outdoor air ex-
rate of 0.25 h−1 was set. It can be observed that
lated data follow the measurements presented by

edo et al. [17] in a satisfactory manner, and as
, we proceeded with the experiments proposed in
2.4.2.

ults for baseline experiment

results of a single simulation with the baseline con-
n are presented in this section. Fig. 8a summa-

e types of events (coffee, lunch, meetings, go to
room, do office work) performed by all occupants
out the day, while Fig. 8b shows a detailed break-
the activities performed by each person through-

day.

://github.com/LuisM78/Occupancy-detection-data

600

900

1200

1500

07:00 09:00 11:00 13:00 15:00

CO
2 

(p
pm

)

Empiric

Simulat

Figure 7: ArchABM validation experiment with empirical d
istered by Candanedo et al. [17] using a Telaire 6613 sen
range 0-2000 ppm and 1 ppm resolution. The blue shado
sents the accuracy of the sensor: ±30 ppm at 400-1250 ppm
of reading ±30 ppm at 1250-2000.

As it can be observed on Fig. 8b, agents are
adhering to the specified schedule, with two coffee
one main lunch event, and meetings, restrooms, an
events spread throughout the day. The three rando
fected people are also highlighted in Fig. 8b. The
of quanta inhaled per person is depicted in Fig. 8c
line represents a person, and the red dotted lines i
the three infected people. The color of the line
sents the activity that each agent is performing.
stance, meetings and lunch activities primarily con
to quanta inhalation between the agents. The total
inhaled by each person at the end of the day is sh
Fig. 8d, and the three infected people are highlight
red dots.

From the places perspective, ArchABM also off
possibility of tracking the CO2 and quanta concen
levels (Fig. 9). Examining the CO2 level at eac
throughout the day (Fig. 10.a), it can be observ
the meeting rooms accumulate the highest CO2

tration throughout the day. The coffee places rap
cumulate CO2 during the coffee events, but the air
is restored between the coffee breaks. Other rooms,
ample, restrooms and office places show a more c
CO2 level. The distribution of CO2 concentration
rectly be observed in Fig. 9b, where a box-plot is o
on top of a violin plot. A similar interpretation can
cluded with the quanta concentration for this sim
run.

In addition, metrics related to IAQ at the pla
have been overlaid on the floor plan, as shown in F
Concerning the CO2 level, meeting rooms are high
as the worst locations. With regard to the quant
meeting rooms B and C come out worst in this case
results demonstrate ArchABM’s capabilities of de
”hotspots” in terms of high CO2 and virus quanta
trations (in our case meeting rooms and the coffee
across the entire building.
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Figure 8: Baseline experiment results: activities throughout the day and quanta inhaled per person

ould be noted that the results in this section refer
le simulation run and that the quanta-related met-
very dependent on the randomly selected infected
However, the high computational performance of
M allows running multiple simulations, as is ex-

plained in the following section.

3.3. Results for further experiments

The impact of different building-related and co
policy-related measures are presented in this secti
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Figure 9: Baseline experiment results: indoor air quality at place-level with CO2 and quanta levels

xplained in Section 2.4.2, nine experiments are
d, including the baseline case and the combined
-policy case. The results of the described exper-
re evaluated with regard to three levels: places,
i.e., departments), and the entire building.

esults for places

rms of outcome parameters related to IAQ at the
el, the maximum CO2 level (concentration in ppm)
maximum virus quanta level (concentration in

ached during the day per place are calculated.
tion examines the results from a location stand-
igures 11 and 12, and we will concentrate solely
ential aspects between places at each experiment.
lysis of these results takes into account the statisti-

cal significance of the hypothesis tests explained in
2.5.

Maximum CO2 level. Designing a 20% larger build
increasing each room’s area by 20%) reduces the
mum level of CO2 in every room, and especially aff
meeting rooms, where the reduction nearly double
compared to the rest of the building. Separate wor
have a significant impact only in the IT office and th
office. This strategy, in particular, lowers the ma
level of CO2 in the IT office by up to 11% while i
ing it by 2% in the open office. Designing better
ventilation systems greatly improves the indoor air
in terms of CO2 level, particularly in meeting room
proved mechanical ventilation systems, on the othe

12
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Figure 10: Baseline experiment metrics related to IAQ at place-level overlaid on the floorplan

effect on CO2 levels due to the way they were
nted in the model (no air exchange/replacement).
strategy of working in shifts affects the entire build-
ept for the chiefs’ rooms, and reduces the maxi-

2 level of the meeting rooms in particular. Short-
e duration of events produces interesting results in
CO2. People are not allowed to take long coffee

lunch activities or meetings, so they spend more
other places (for instance, chiefs, IT office, open
d restrooms), where the CO2 level rises. Estab-
mandatory mask policy has no effect on the CO2

the model does not take mask filtration into ac-
r CO2 calculations. Finally, the combination of
d natural ventilation and events duration limita-
responds to the confluence of the aforementioned
ions about these experiments.

m quanta level. The design of a larger building in
room area reduces the maximum quanta level in

om by up to 18%. Separate workspaces have a sig-
impact exclusively in the open office, which is di-
to three distinct spaces according to this strategy.
ilding configuration specifically raises the maxi-
anta level in the open office by up to 57%. This
in the mean quanta level is due to the fact that in
eriment, one of the three spaces is more likely to
y contaminated, which raises the mean value. Bet-
ral ventilation system design improves indoor air
in terms of quanta, especially in meeting rooms.
g better mechanical ventilation systems reduces
concentration levels in all rooms, with a greater
n chief offices and meeting rooms.
strategy of working in shifts increases the preva-
the virus, affecting the quanta levels of the entire
as we kept the number of infected people con-
our experiments. Larger spaces where a large

of people can congregate (such as the lunch room
largest meeting room D) are particularly affected.

Limiting the duration of events produces the same
as analyzing the CO2 level under this strategy.
spend more time in other places (for example, ch
office, open office, and restrooms, where the quan
increases) because they are not allowed to take lo
fee breaks, lunch activities, or meetings. Establi
mandatory mask policy affects every area in the
ing, except the lunch room, and has a greater eff
the quanta level of the chief offices and meeting
Combining the experiment of improved natural
tion with the limitation of events’ duration produc
similar results to the former experiment. However,
case there is a slight improvement in the quanta
the coffee places and the lunch room.

3.3.2. Results for people/departments

In terms of physiological response outcome at
level, the time-weighted average inhaled CO2 over
and the maximum quanta inhaled at the end of the
person are used. This section examines the results
departmental viewpoint (Fig. 13), and we will conc
solely on differential aspects between departments
experiment. Once again, the analysis of these resul
into account the statistical significance of the hyp
tests explained in Section 2.5.

Working in shifts reduces the average of CO2 l
haled by all departments, but particularly in depar
D1, D2, and D3. This difference is clearly explained
fact that in this experiment the number of people i
departments gets reduced, and thus, the emitted C
creases as well. Nonetheless, in terms of quanta
this shift-work strategy, maintaining a constant nu
infected people while reducing the total number
ple increases the virus prevalence among the pop
which has the greatest impact on the IT office depa
As a consequence, the quanta level at the departm
(IT office) is increased by 38%, while the rest of
partments suffer an increase of 15 to 25%, approxi
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To summarize physiological response parameters
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present here a realistic use case applying Arch-
ased on a real floor plan with realistic room sizes,
of people, and workday routines, which results in
of interaction patterns that in turn lead to differ-
distributions in different rooms. While some of

stigated measures resulted in expected outcomes in
CO2 and virus quanta levels (such as masks hav-

sitive effect on quanta levels and inhaled quanta),
M allows quantifying and comparing these effects
l - revealing, for example, that relatively ”simple”
s such as improved natural ventilation (increase
air supply by opening windows) or reducing the
of events have a relatively significant positive im-

esults from our simulations further show how poor
terms of CO2 and virus quanta levels can be de-
or each room in the building, highlighting in our
t in particular meeting rooms are problematic in
f IAQ. ArchABM allows combining, testing and
ing a set of various measures, whose outcome may
asy to predict, taking into account the use of the

entire building by its occupants. Combining better
ventilation with limiting meeting duration, for in
could decrease average CO2 levels on the buildin
by 31% and average virus quanta levels by 68%. I
scenarios, ArchABM can provide valuable quantita
sights to architects, engineers, or building and hum
source managers.

3.4.1. IAQ including aerosols

IAQ in this study has been principally defined
lutant concentration. A recently published aeroso
calculating both the amount of exhaled and inhale
as well as virus quanta (here for SARS-CoV-2), was
to account for the dynamics of people entering and
different rooms over a day to be applicable in our
based simulation. ArchABM’s calculations regardi
levels in a room were validated against a well-docu
case from the literature where CO2 was measure
recorded [17]. Validating inhaled CO2 and in pa
accumulated and inhaled virus quanta levels is to
complex as to measure virus concentrations in a ro
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egarding SARS-CoV-2, this is currently a critical
topic, and viable options may become available in

re. For now, we have to rely on the applied aerosol
hich in any case has been validated against real
SARS-CoV-2 transmissions [50]. We would like
out that here we deliberately refrained from cal-
parameters such as ”infection risk” as we under-
at it is still not fully known which amount of virus
leads to which amount of risk. We therefore only
irus quanta levels for rooms and inhaled quanta
pants. ArchABM being flexible and modular, and

as an Open Source Python library, it is straight-
to adapt the current SARS-CoV-2 aerosol model
er model related to airborne virus transmission.
e applies to extending the definition of the cal-

IAQ in order to include other relevant parameters
temperature, or humidity [17] - this can be ad-
in future work.

ocalised air flow

pared to other ABM-related studies using aerosol
for indoor environments, to the best of our knowl-
is study is the first to analyse differences between
cal and natural ventilation configurations which
arying ventilation rates. One limitation of the
model included in ArchABM though is related to
re of ventilation, which removes both CO2 and
anta from a room over time. Here, we assume
eous mixing of air constituents and do not take

ount airflow direction or any localized airflows in-
ther by people or the ventilation itself, depending
oom geometry or interference with objects or oc-
in the room. This is currently another important
topic, with authors conducting detailed (mostly

ational Fluid Dynamics (CFD)-based) studies of
irflows and different ventilation systems [56, 47,
7]. Evidence suggests that the position of venti-
lets and outlets, as well as occupants’ individual
s relative to an infected person play an important
airborne virus transmission [13, 36]. Accounting

complex air flow-related effects is generally diffi-
gent-based models as computational efforts even

gle room are typically high. However, recent stud-
est model adjustments taking into account airflow
s or locally spread quanta [35, 36].

gent characteristics

rding the agents’ (i.e., building occupants’) char-
cs used in this study, future work could involve
agents’ profiles in order to account for different
respiratory activities (speaking, shouting, breath-
), respiratory parameters (e.g., inhalation rate) or
level (resting, standing, walking, etc.) [3]. Even
individual agent behavior based on agent physi-
eption or physiology may be added [39, 58]. Yet,
uch complexities to the model will result in per-
e loss and may reduce the comprehensibility and

explainability of the model’s output. For certain a
tions, such a level of detail regarding ”agent micro
ics” may not be necessary.

3.4.4. Building optimisation

ArchABM’s good computational performance an
dard output format (JavaScript Object Notation,
make it attractive for coupling with advanced op
tion methods such as Reinforcement Learning [8] o
traditional Knapsack [59], or Design of Experime
proaches [60], with which optimal room sizes and
butions or ventilation configurations could be est
based on simulated human-building behavior. We
there is an immense potential for future studies to
such building design optimization in order to find c
energy-effective solutions that at the same time
good IAQ across the entire building - given its use

4. Conclusion and summary

In this study, we present a novel, fast and open
agent-based modelling framework, ArchABM, wh
lows for simulating complex human-building-inte
patterns to estimate IAQ across the entire building
taking into account potential airborne virus con
tions. A recently published aerosol model for SAR
2 was adapted to calculate time-dependent carbo
ide (CO2) and virus quanta concentrations in eac
as a measure of IAQ as well as inhaled CO2 an
quanta for each agent (occupant) over the course o
as a measure of physiological response. ArchAB
then applied to simulate a realistic office scenario
ing 14 rooms and 60 agents to investigate the im
building-related measures and policy-related meas
overall IAQ and physiological response of occupan
sults allowed determining critical and not-so-critica
in terms of IAQ and allowed for a quantitative asse
of the impact of single and combinations of meas
IAQ and physiological response, suggesting that im
natural ventilation, limiting meeting duration and w
masks were among the most effective measures.

The pandemic caused by SARS-CoV-2 has demo
that we need to focus more on improving IAQ in o
avoid risking occupants’ health. We believe that ad
simulation tools such as ArchABM can provide n
sights and moreover may assist stakeholders in find
and energy effective solutions, ensuring good IAQ a
building, while taking into account how single roo
actually used. Using ArchABM in optimisation sc
may even lead to new ways of designing future bu
that provide healthier indoor environments.
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.15: Results for determining an adequate number of simulation runs Srun. The Coefficient of Variation (CV) was pl
itions of the same simulation configuration using different number of simulation runs. A stable CV was reached for Sru

n runs.
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