
DevsServer: Ambient Intelligence and DEVS Modeling
Based Simulation Server

Mostefa Mokadem
Computer Science Dept.

Lab. of Informatics of Oran
Univ. of Oran 1 Ahmed BenBella

Oran, Algeria
mokaddem.mustapha@univ-oran.dz

Baghdad Atmani
Computer Science Dept.

Lab. of Informatics of Oran
Univ. Of Oran Ahmed BenBella

Oran, Algeria
atmani.baghdad@univ-oran.dz

Abdelmalek Boularas
Computer Information System Dept.
Ahmed Bin Mohamed Milit. College

Doha, Qatar
boularas@abmmc.edu.qa

ABSTRACT
To improve disease surveillance systems (DSS) with faster
and accurate outbreak detection and epidemics propagation
capabilities, the availability of fine-tuned models is required
along with the design of server based solution that simulate
the effects of public health authorities’ measures, and
integrate Ambient Intelligence (AmI) capabilities to
semantize epidemic models. Hosting Discrete Event System
Specifications (DEVS) models, these AmI servers and their
communication protocols are different, miscellaneous and
require interoperability. The Triple Space Computing (TSC)
paradigm addresses interoperability by sharing information
represented in a semantic format through a common virtual
space. In this this paper we present DevsServer, a fully
distributed TSC simulation server solution (middleware)
designed to meet the needs of parallel and distributed discrete
event simulation. DevsServer defines an SOA (service oriented
architecture) interface for the TSC operations. This interface
convinces with DEVS formalism and focuses on simplicity,
conviviality and modularity, so that a single or many
simulations that support different models can still interact.

Authors Keywords
Ambient intelligence; Triple Space-based computing;
Service Oriented Simulation; DEVS; Epidemic modeling

ACM Classification Keywords
I.6 SIMULATION AND MODELING: I.6.1 Simulation
Theory, I.6.5 Modeling development, I.6.3 Applications,
I.6.8 types of simulation

1. INTRODUCTION
In recent years, contamination and its interaction with huge
flow of quantitative social, demographic and behavioural
data are used to improve DSS with faster and more accurate
outbreak detection and epidemics propagation capabilities
which depend on the availability of fine-tuned models along
with server based simulation.

Due to significant changes in health contexts, the SEMEP
(French acronym for Service d'Epidémiologie et de Médecine
Préventive, i.e. Service of Epidemiology and Preventive

Medicine) is involved in applying new simulation solutions
to deal with human interaction model in a modern society
(Figure 1) where Ambient Intelligence (AmI) is widely used
capturing spatial and social network structures influencing
infectious disease transmission within populations.

SEMEP activities [6] concern the Environmental health
(water surveillance, food hygiene, beach water quality, etc.),
school health (vaccination, medical examination, health
education, and school hygiene), immunization strategies, and
diseases surveillance (tracking diseases evolution). Owning
big data, the SEMEP needs designing new DSS with
epidemic modeling complements integrating AmI
capabilities.

Epidemic Modeling and computational infrastructures, such
as SOA (service oriented architecture) [2], enable creating
very detailed representations. With accurate models, we can
predict the outbreak detection, the spread of diseases and
simulate the effects of public health authorities’ measures.

Parallel Discrete-Event Simulation (PDES) has received
increasing interest as simulations become more time
consuming and geographically distributed. A rich literature
has already been developed in the last three decades, taking

Hospital

Isolation &
Treatment

Policy

Vaccination
Policy Home Town

Tomb

Personal
Contamination

Protection
Excretion
Control

Disinfection
Control

Traffic

Virtual
Density
Control

Disinfection
Control

School

Excretion
Control

Personal
Contamination

Protection
Office Area

30 minutes
is a tick

Figure 1. Disease simulation in a virtual city.

SpringSim-MSCIAAS 2016, April 3-6, 2016, Pasadena, CA, USA.
© Copyright 2016 Society for Modeling & Simulation International (SCS)

830

advantage of the increasing availability of parallel and
distributed computing platforms, especially on emerging
platforms such as many-core processors, internet scale
simulation environments, and cloud-based virtualized
infrastructures [1,7,14,26,27,28,29]. Like popular PDES
environments and their hybrid synchronization techniques, in
SOA oriented simulations [27], the entire simulation task is
divided into a set of services (each model is handled by a
service) with each executed on a different server.

SIF (Simulation, Integration & Fouille de données (Data
Mining)) researchers involved with SEMEP in such design
issues are developing a specific modeling platform to help
model, simulate and evaluate DSS. An important challenge
in designing DSS is to define immunization strategies that
discover a meaningful group of individuals (community) that
are strongly related to the disease. Once this community
discarded, disease can be eradicated. AmI based approaches
using semantic temporal network need to be applied as novel
intelligent and dynamical immunization strategies.

To simulate such strategies, a new AmI based parallel and
distributed discrete event simulation server solution is
required allowing the design of semantic atomic and coupled
models integrated in Epidemic Modeling Digital Libraries
(EMDL) [30] within simulation servers. EMDL hold models
as Resource Description Framework (RDF) graph to
semantize modeling. The semantic associated to models
describes the how to of models and help simulation servers to
perform intelligently. Thus, providing Modeling and
Simulation with semantics is prerequisite. To pursue this
goal, simulation servers use EMDL to manage models while
describing them with ontologies. Knowledge may be shared
between modelers and servers themselves. Simulation
servers perform a distributed simulation execution requiring
interoperability and natural and transparent interactions that
are important in AmI to defend the fact that servers should
subtly work on behalf of the human tasks and minimize the
psychological impact of servers use. Furthermore, AmI based
servers can be used in the same way in simulation to avoid
modelers from doing low-level but yet time-consuming
modeling tasks such as interoperability. Modelers can now
focus on modeling with a high aggregate-value, where the
importance of the human capital is vital [10,25].

To achieve these aims, AmI based servers need to integrate
and coordinate heterogeneous data sources or service
providers. Current trends, such as the Web of Things (WoT)
initiative [11], propose a straightforward integration of
servers with the web using RESTful web services (RWS).
Independently of the used model, the messages usually
exchanged between servers are diverse and simulation
session dependent. This implies that messages will not be
meaningful in other simulations unless a specialized system
converts and reinterprets them. A way to solve this problem

is annotating the message semantically as proposed by the
World Wide Web (WWW) [5,10].

Triple Space Computing (TSC) has been involved as a
coordination paradigm supporting indirect communication
based on semantic data. As simple as possible, a model writes
semantically annotated information in a shared space that is
queried out and used by other models.

In order to achieve this interoperability through Triple
Spaces, we propose a simulation Server middleware solution
called DevsServer. This solution provides two core features:
(a) it is designed to be simple, modular and extensible and (b)
it runs in different computational platforms, allowing Java
SE, Java Mobile and Android interaction. The underlying
interface is based on SOA [18] and covers isolated features
such as discovery, maintenance or data access. Different
simulations can provide only certain features and still interact
with each other. This way, it is possible to embed it in other
real-time simulations.

Regarding the immunization strategy simulation, we do not
provide any specification, it is out of the scope of this paper
which is only concerned with the design of DevsServer over
AmI interoperability.

The rest of the paper is organized as follows. Section 2
outlines related work. Section 3 describes the conceptual
model for an SOA based TSC solution, let’s say DEVSServer
principles. Section 4 details the implementation made to
adapt it to the necessities of AmI needs. Finally, Section 5
concludes and discusses future work.

2. RELATED WORK
In the following two subsections, we analyze both semantic
solutions of interoperability involving mobile and embedded
devices and concluding with TSC paradigm, and the SOA
based Modeling/Simulation as synthetized by Al-zoubi and
Wainer [1]. Among the analysis, we compare our solution
with the rest emphasizing their strengths and weaknesses.

2.1. Ambient Intelligence Interoperability
Regarding representational state transfer (REST), its use in
resource constrained devices is a current trend defended by
the WoT initiative [11]. WoT proposes to embed web servers
in everyday things. These objects expose their capabilities
following the REST principles. In this way, they fully
integrate with the web. This has several benefits: Availability
of digital libraries and frameworks in most of the existing
computing platforms. Reuse of mechanism that have made
the web truly scalable. E.g. searching, caching, load-
balancing or indexing. The users can interact with the objects
through a familiar tool: the browser. They can browse or
bookmark them, share on social networks, etc. Direct
integration with other web applications.

Tuple Space (TS), also called space-based computing, is a
coordination paradigm based on the shared memory approach

831

[8]. TS works with semi structured data, which is accessed in
an associative manner. Several TS solutions have used
semantics to enhance the shared data [19]. sTuples was
conceived for scenarios [15]. In sTuples, the clients access a
centralized space through a communication gateway. The
centralization completely simplifies the solution, but makes
the whole system dependent on a single machine. Besides,
Otsopack [10] avoids the need of gateways by requiring a
prominent protocol (i.e. HTTP) for the communication
between the nodes. TripCom distributes the space among
different super-peers using distributed hash tables.
Specifically, it uses a hash function over the subject,
predicate, object and space URL to decide where to store each
triple. TripCom draws a clear distinction between the clients,
which consume data, and the devices where the space resides.
Otsopack also promotes the direct communication between
devices. Doing so, they can access to the most updated data
and manage their own data. Finally, Smart-M3 [13]
constitutes a remarkable effort to bring the semantic space-
based computing to many different devices and protocols. To
that end, it distinguishes between two types of nodes:
Knowledge Processors (KPs) and Semantic Information
Brokers (SIBs). The SIBs manage the space. The KPs are
nodes accessing the space information. The Smart Access
Protocol (SSAP) is used for the communication between both
types of nodes. Although theoretically possible, to the best of
our knowledge no results have been presented on the
federation of two or more SIBs. This makes the solution de
facto centralized and also avoids the definition of any new
communication protocol. Instead, it assumes that all the
nodes will be able to work at HTTP-level or have a gateway
to do so on their behalf. Thanks to that and to the prominence
of libraries and tools for this protocol the implementation on
new platforms is greatly simplified.

As was previously stated, our API is based on the TSC
paradigm. TSC is a TS variation where the information is
stored in RDF. Three key concepts are important at this point:
models share information in a common space. A space is
identified by an uniform resource identifier (URI). Therefore,
all the operations in TSC are performed against a particular
space. By default, all simulation sessions connect to a
common standard space, but they can optionally choose to
connect to a particular private space. Within a space, the
information is stored in sets of triples called graphs. Each
graph can also be identified by an URI. The RDF triples are
the underlying concept of all the Semantic Web (SW)
languages. Each triple is composed by a subject (which is
a URI), a predicate (also a URI) and a value (which can
be a URI or a literal). As detailed later, the operations
supported attempt to add or remove graphs, as well as to
query for graphs or for sets of triples retrieved from different
graphs. In order to perform the queries, which enable the
selection of a subset of the semantic content hold in a given
space, a template is required. We follow Otsopack to address

these operations. [9] presents further discussion about
knowledge distribution strategies.

2.2. Modeling and Simulation Interoperability
Mittal & al [29] present a test and development environment
using Discrete Event System Specification Modeling
Language (DEVSML) [28] and the Service Oriented
Architecture (SOA) framework. DEVSML is built on XML
and provides model interoperability among DEVS models
hosted at remote network addresses. The client application
that communicates with multiple servers hosting DEVS
simulation services and the underlying Service Oriented
Architecture for DEVS (SOADEVS) framework [27].
Authors show how SOADEVS is positioned to address the
need for a Department of Defense Architecture Framework,
DoDAF-based net-centric paradigm [26] for test and
evaluation at the system-of-systems and enterprise systems
levels. The SOADEVS framework provides the needed
feature of runtime composability of coupled systems using
the SOA framework. The integration of DEVSML and
SOADEVS is performed with the layout as shown in Figure
2. The manner in which DEVSJAVA/DEVS-Suite [42]
models could be attained or developed by client can be
manifold. The models can be created through Natural
Language Processing (NLP) methods, raw .java format, or
BPMN/BPEL files. The models rest with the client (Step 3,
Figure 2). Once the client has DEVSJAVA models,
DEVSML server can be used to integrate the client’s model
with model available at some other place on the web to get an
enhanced integrated DEVSML file that can reproduce
DEVSJAVA model in .java format (Step 4 and 5).

Figure 2. DEVSML and SOADEVS integrated.

The SOADEVS enabled server can either take this integrated
DEVSML file directly or can ask user to provide the top-level
coupled model through the SOADEVS client application.
Finally the remote simulation is conducted at various DEVS
simulation engines located over the web (Step 6) and be used
for simulation-based testing in a distributed environment.

Wainer [1] presents a better simulation interoperability
concept background, and describes his RISE (RESTful
Interoperability Simulation Environment) middleware that

832

fits within this concept. Wainer objectives were to enhance
interoperability, by decoupling/hiding implementations. He
highlighted some guidelines to be followed to a general Web-
based middleware container. Interoperability, as Wainer
stated, enables two or more different software systems to
interface and use each service correctly [31]. The complexity
of interoperability arises when systems are heterogeneous, as
in the case of distributed simulation. This is usually because
systems have been developed independently with different
semantics (i.e. the meaning of the exchanged information)
and/or syntactic (i.e. the rules of structuring and exchanging
the information). Since such capabilities are realized in
software design and implementation, interoperability needs
to be studied from the software perspective, in particular, at
the Application Programming Interface (API) level (since
this is how systems access and use other systems services).

Wainer presented RISE middleware as a layered architecture
where each layer defines its interoperability methods, and
provides services to the layer above it. Following this
concept, RISE is organized in the three layers: middleware,
simulation, and modeling. The middleware layer provides a
number of services to the simulation layer, such as all means
of communication and managing all simulation experiments
lifecycle and executions. The simulation layer deploys
different simulation environment types, each of which
supports its own time management. The modeling layer
operates above the simulation layer. This represents the
system under study, which is simulated by a specific
simulation environment. This RISE model layers match other
existing interoperability conceptual layers, particularly the
Level of Conceptual Interoperability Model (LCIM).

In RISE, all functionalities are hidden in resources, named
with URIs. Those resources (URIs) are connected to each
other via uniform virtual channels in which the simulation
synchronization is done using XML messages. Thus, the
RESTful interoperability approach allows system designers,
to decompose the systems in components (i.e. called
resources/URIs), and to hide the implementation within those
components, hence separating component interfaces from
software implementation. These fundamentals were adapted
by the RWS style, which was adapted by the WWW, the
largest open computing environment. In contrast, existing
simulation interoperability approaches do the opposite to
these principles by following procedural programming style,
hence mixing systems implementation and interface. By
going against the Web interoperability principles will always
cause serious difficult interoperability issues when
interoperating on the Web with other existing systems. These
issues became obvious during the current efforts on
standardization of DEVS [30-35,37]. This standardization
effort is aiming on interoperating various DEVS-based
implementations systems via the Web [34].

RISE is not a real server based solution and no semantic is
present may be in message nor in models. Uploading model
to specified servers to perform simulation is not a full or real
SOA based simulation. SOA means that Application
(Simulation) Servers hold services that are orchestrated over
the web. Services are hosted by the servers not uploaded at
runtime. So the best solution is to implement simulation
servers that host their own models. The Admin of the server
develop and update models that are stored in digital libraries.
Epidemiologists can develop epidemic models for a full
variety of diseases in different formalisms and store these
models in digital libraries. These models are ready to use by
communities, they have just to integrate them through RWS
in their own work.

Therefore, we have to develop models in a way that they can
be invoked by a RWS using java reflection. This RWS can
hold any model if this model has a standard specification such
as DEVS. All previously developed models in the DEVS
formalism (DEVSJAVA) will be conserved in the server
store as they are without any change. RWS is an abstraction
designed to call DEVS class methods using java reflection
(Figure 3). The RWS first load the class model from the store.
It obtains all the model parameters. Each method, let it be
DeltaExt(), DeltaInt(), Out() or the Conf(), has its proper
parameters that differ from one model to another. So, the
RWS asks the class for each method parameters. It must
obtain parameters values from the TSC. Thus, these
parameters must be annotated semantically. Obtaining
parameters, the RWS passes them to the loaded class (DEVS
model) and asks it to perform its specific transition function
according to the events scheduling.

In the TSC, information must be semantically annotated.
Especially, messages need to be semantized, designed as
graphs. Each RWS can easily find all graphs (messages)
destined to it. So, a RWS takes access to the TSC, looks for
its input messages, performs its transitions and generates
semantically outputs (graphs) that it writes to the TSC.

Load the model from the Store (Java Class)
Obtain model parameters for each of its methods
Choose Initialization parameters
Read semantically the Initialization parameters from the shared space (TSC)
Ask the model to initialize itself by passing parameters to it
When event occurs choose transition specific parameters and do:

Read semantically, when necessary, DeltaExt parameters values from TSC
Pass values to the model class
Ask the model to execute its DeltaExt function
Read semantically, when necessary, DeltaInt parameters values from TSC
Pass values to the model class
Ask the model to execute its DeltaInt function
Ask the model to compute its outputs

Write semantically outputs to the TSC

Restful Web Service handling the model

Model Implementation
(Java or XML)

Figure 3. Web Service model driving.

Request
Respons

833

3. DEVSSERVER PRINCIPLES
To deal with DevsServer principles, let us consider two
coupled epidemic models AB and AC with atomic models A,
B and C according to DEVS formalism, Figure 4. Each of A,
B and C is stored in a separate simulation server and invoked
via RWS. A is participating in two parallel simulation
sessions at the same time; AB and AC simulations are
sessions performed on separate servers by two different
clients. Servers store models in respective EMDL. Each
epidemic model consumes information from its own EMDL
[30]. Thus, A, B and C are a data mining based model where
a mining of some data is used to generate output as described
in [4,19-20].
Data are in the same EMDL as the model using them. A and
B are described with ontologies to allow a modeler to link
servers hosting these models while trying to use each of them
as sub-model of its own coupled model. Many modelers may
realize a coupled model conjointly. AB, A and B and AC, A
and C, respectively, represent exchanged information as a
Friend of a Friend (FOAF) ontology. This ontology is
designed as a shared space between these models. In Figure
4, two shared spaces are used by the two sessions. In each
shared space, models output RDF triples to be added to the
shared space. Models may read triples into the shared space
and perform their transition functions. A is participating in
the two sessions; it uses the shared space according to the
session. Finally, it stores such ontology in the modeler’s
server Triple Spaces. Since Triple Spaces is used as shared
space, this knowledge is available for other servers using that
shared space.

Another model (coordinator) may notify the other models or
users that there is a friend in this simulation session or in this
shared space. This coordinator may populate the shared space
with information produced by different other models [32].
Prior to the information retrieving, the coordinator semantizes
the information according to the FOAF ontology. Finally, it
periodically looks into the space to check whom is friend of

this model. Data mining based model uses preview data as
follow: data are organized in a view from dataset inside digital
libraries. Each row of this view is an entity. Many columns
are properties of this entity. We apply knowledge discovery
from data (KDD) on these data to extract rules that will be
used by the model [4,19-20]. Therefore, a modeler begins by
applying KDD to discover knowledge that is used to define
transition functions of the model. The interoperability is
achieved when AC model, which does not support the AB
digital libraries, automatically discovers a friend who is using
the first model. This is possible because both clients may share
information in a common space and use the same ontology.

A node, in DevsServer architecture (Figure 5), is composed of
a Repository, a Collector and a Mediator. The Repository
stores epidemic models, their datasets and ontologies to
characterize their semantic information. The Mediator is a
collection of web services that will provide access to internal
data and external sources, using state-of-the-art semantic-
web/grid technologies. The Collector retrieves diseases
models and their information from publicly available
DevsServer servers. Interfaces enable the Admin of the Server
and the Client to perform Modeling and Simulation. Each
node hosts its own models developed by its Administrators.
Models are kept in a NoSQL database to ensure a quick
search of models and to deal with semantics inside models
description for a machine adequate use. A node makes use of
the TSC paradigm to establish communication between
models during simulation. A simulation is performed by
many Mediators and RWS each one handling specific
models. Many nodes interact to perform a distributed
simulation execution.

In this section, we detail how models are hosted by DevsServer
and how TSC is used to perform an SOA simulation. Models
read inputs and write outputs to the TSC parameterized by
the Client (DEVS Modeler). Two subsections are detailed.
The 1st one concerns the Admin of the server and the 2nd one
the client part. The Admin of the server is responsible to add,
update or delete models from the server. Any client can
perform a simulation while using the models stored in the
server. Let us see these 2 tasks in detail involving the
Mediator, the Repository and the Collector.

3.1. The Admin Tasks
Figure 5 depicts the diagram of the admin operations on the
server. The configuration of the server consists of adding and
updating users and models. Models need to be described with
semantics to let machines (other DevsServer) use them
adequately. Semantic is conceived with RDF triples. The
semantic of each function must consider parameters of the
model and the way they are utilized. A model is described as
an RDF graph to be easily added to the NoSQL store. Such
graph can be also converted to an ontology. The following
are some RDF triples depicting the graph of a DEVS Dengue
of the Figure 6.

Digital Libraries
Models & Ontologies

Stores

Simulation Servers
Restful Web Services

Managing models

S
im

u
latin

g
C

S
im

u
latin

g
A

B

S
im

u
latin

g
B

S
im

u
latin

g
A

C

S
im

u
latin

g
A

AC
Shared
Space

AB
 Shared
Space

Sharing of
A in the 2
sessions

Client performing
AC

Simulation

Client performing
AB

Simulation Session

Figure 4. Simulation sessions with model sharing.

834

Figure 5. DevsServer architecture.

Each model owns its functions such as Initialize(),
DeltaExt(), DeltaInt(), Out() and the Conf(). The Initialize()
function lets the model perform its initialization.

<u:Dengue> <u:hasOwner> <u:Mokaddem>.
<u:Dengue> <u:hasType> <u:AtomicModel>.
<u:Dengue> <u:hasCreationDate> <u:12/02/2014>.
 ………………..
<u:Dengue> <u:hasInitialize> <u:DengueDengueInitializeIndex>.
<u:Dengue> <u:hasDeltaInt> <u:DengueDeltaIntIndex>.
<u:Dengue> <u:hasDeltaExt> <u:DengueDeltaExtIndex>.
<u:Dengue> <u:hasJavaClass> <u:DengueJavaClassIndex>.
<u:Dengue> <u:hasXML> <u:DengueXMLIndex>.

<u:Dengue> <u:hasInPorts> <number>.
 <u:Dengue> <u:hasOutPorts> <number>.
<u:Dengue> <u:hasInPort> <u:Inport1>.
<u:Dengue> <u:hasInPort> <u:Inport2>.
<u:Dengue> <u:hasOutPort> <u:OutPort1>.
<u:DengueInitializeIndex> <u:hasIntputParameter> <u:param1>.
<u:DengueInitializeIndex> <u:hasOutputParameter> <u:param2>.

Figure 6. Graph model of a DEVS Dengue example.

Such initialization concerns the time and the states of the
model. DeltaExt() transition function concerns the action to
be performed when some inputs X1, X2; etc. are received. Let
us notice that the inputs number differs from a model to
another. DeltaInt() transition function deals with the inside
states change. The Out() function generates the outputs of the
model. The predicate <u:hasJavaClass> refers to the java
code that will be loaded by the RWS by java reflection. That
means when calling a RWS handling any model to initialize
itself then the RWS just does a java reflection to call at
runtime the initialize() method of this java class included in
this code. This class is inserted as a LOB (Large Object
Binary) in the NoSQL store. So, the related RWS must first
load this class from the store then use it by reflection (Figure
7). A description of the model in natural language may also
help understanding the model behavior. The RWS always
reads/writes from/to TSC. When an event occurs, the RWS
detects the event type. If the event is an internal event, the
RWS ensures that all parameters are ready to invoke the
model DeltaInt() transition. It does so for the external and
initialization events. The RWS looks like the driver of the
model. insertModel(), deleteModel(), getModel() are some
Admin methods to insert, delete and load a model from the
Store. The readModelClass() is used by getModel() to load
the java class (DEVSJAVA) of the model. The WSDeltaExt()
performs a DeltaExt() reflection.

Dengue

AtomicModel
Mokaddem

12/02/2016

JavaClassIndex

InitializeIndex
DeltaExtIndex

DeltaIntIndex

XMLIndex

hasOwner
hasCreationDate hasType

hasXML
hasJavaClass

hasDeltaExt
hasInitialize

hasDeltaInt

NOSQL STORE

NODE
NODE

Health
Data

Environmental
Data

Notification

Simulation Visualization

Route

Routes

Simulation

Models

Modeling

 DevsSERVER APIs

Restful WS Restful WS

Client Admin

Simulation Data

TSC
Mediator Repository

Collector

Restful
Web Service

Restful
Web Service

Restful
Web Service

NOSQL STORE

Java Class Java Class Java Class

NODE

Map Visualization

Restful WS

Contact
Information

Disease
Information

Traffic
Information

Restful WS

835

3.2. Client Tasks
Figure 5, also, shows a client loop, depicting the steps
followed by a client in a simulation session. A client may
simulate an atomic or a coupled model. A coupled model
execution is more complex. In the following, we show the 2
executions respectively, commenting Figure 5 for each case.

3.2.1. Atomic Model Execution
A client starts by selecting a model (atomic), no coupling is
needed, only the interaction with the client interface (CI).

This selection is performed as a natural language search. The
CI invokes the Mediator which performs a lookup by starting
its Repository which returns the URLs of the RWS handling
the searched model which may be remote. The Mediator
passes this URLs to its Collector which invokes the
local/remote RWS that extracts the requested model RDF
graphs. The Mediator places these graphs in the TSC and
allows the client to query it (SPARQL). The client can ask
for the input/output ports, the owner, a short description, etc.
Finally, he chooses one from the listed models. The Mediator
updates the TSC by deleting the no needed models and
adding the full information of the retained one as inserted by
the Admin (Figure 5). Since there is no coupling, the client
launches its simulation, after initializing the simulation
parameters. The Mediator adds these parameters to the TSC
and invokes the RWS to perform its simulation. The RWS
will follow a standard DEVS simulation of atomic model,
according to Figures 3 and 7, but intelligently. Before
requesting any step or any transition function, it looks for its
parameters and adds appropriate triples to allow a significant
and correct run. For each output, out()result, it semantizes its
results before inserting in the TSC. The Mediator sends this
information to the CI for visualization. This simulation
driving is given in Figure 3.

3.2.2. Coupled Model Execution
When a coupled model is invoked, this means that each
atomic model involved must execute and synchronize itself
with respect to the coupling rules. Only RWS supervising the
models have to communicate and synchronize and each RWS
routes the request to its own model. Figure 8 depicts 2 client
sessions. The 1st one runs the AB coupled model and the 2nd
the AC one. Each user uses a CI to connect. He calibrates his
simulation using the simulation interface (SI) implemented as
a Session Bean. Once a simulation started, each Mediator
creates a TSC and inserts the simulation parameters. These
parameters involve the atomic models, the coupling
information and the initialization conditions. Now, RWS
read/write intelligently from/to TSC until the simulation
ends. Periodically, the SI picks and sends to CI intermediate
results for visualization. Coupling rules are RDF triples
added by the Mediator once the client finished his simulation
configuration. These rules can be obtained intelligently
according to the model ontology
The coupling is specified by the <u:isCouledTo> predicate
as follows:
 <u: A> <u: hasInPort> <u: InPort1>.

<u: A> <u: hasOutPort> <u: OutPort1>.
<u: B> <u: hasInPort> <u: InPort2>.
<u: B> <u: hasOutPort> <u: OutPort2>.
<u: AB> <u:hasInPort> <u:InPort3>.
<u: AB> <u: hasOutPort> <u:OutPort3>.
<u:InPort3> <u: isCoupledTo> <u:InPort1>.
<u:OutPort2> <u: isCoupledTo> <u:InPort1>.

@XmlRootElement
public class ModelAccess {
private static Key key = null;
private static KVStore mystore;
public static final String MOD_PREFIX = "DEVS”;
public static KVStore getStore() { }
public static void insertModel(String username, String modelName, int inports,
 int outports, String owner, String CreationDate, String Description,
 String Inisliaze, String DeltaExt, String DeltaInt, File modelFile){ }
public static ModelSchema getModel(String username, String modelName){
ModelSchema model = new ModelSchema(nameOfModel, inports, outports,
 owner, DateCreation, Description, Inisliaze, DeltaExt, DeltaInt, modelClass);
return model;}
public static void deleteModel(String username, String modelName){ }
}

@XmlRootElement
public class ModelSchema {
String Name, Owner, CreationDate, Description, Inisliaze, DeltaExt, DeltaInt;
 int Inports; int Outports; byte[] Modelclass ;

@GET
@Produces(value = { "application/xml", "text/plain" })
@Path("readModelClass/{username}/{modelName}")
public Object readModelClass(@PathParam("username") String username,
 @PathParam("modelName") String modelName) {
 ModelSchema model = new ModelSchema();
 model = ModelAccess.getModel(username, modelName);
 Object o = null;
 ByteArrayClassLoader baCL = new ByteArrayClassLoader();
 Class modelClass = baCL.findClass(model.getClasse());
 try {
 o = modelClass.newInstance();
 } catch (IllegalAccessException e) { System.out.println("access not found "); }
 catch (InstantiationException e) { System.out.println("instance not found");
}
 return o;
 }
 @GET

@Produces(value = { "application/xml", "text/plain" })
@Path("readModelClass/{username}/{modelName}")
public void WSDeltaExt (@PathParam("username") String username,
 @PathParam("modelName") String modelName) {
 ……..
try {
 Object o = mv.readModelClass(username, modelName);
 for (Field field : o.getClass().getDeclaredFields())
 for (Method method : o .getClass().getDeclaredMethods())
 o.getClass().getDeclaredField("state").equals("S");
 Method method = o.getClass().getDeclaredMethod("DeltaExt",String.class);
 Object r = method.invoke(o, "infection");
 } catch (Exception io) {
 io.printStackTrace();
 System.out.println("model "+ modelName+ " not found");
 } finally { }
 ModelSchema mm = mv.readModel(username, modelName);
 ………..
 }

Figure 7. Restful Web Service model invocation.

836

Since the RWS driving the model has the same functionalities
as the driven model, the RWS may read semantics of each
transition function before invoking it to synchronize itself
within the simulation. The synchronization is also designed
as triples. Each model has and can compute its TL and TN

times of its last and next events with respect to TNOW the
current simulation time. When any transition function is
invoked, the RWS checks if necessary parameters are already
computed. Though, a model B can now know by reading the
TSC that a model A must product its output at a specified
time and write it in the TSC. If B does not find A output, it
must wait until its arriving before running its DeltaExt(). This
is described by the semantic of the Out() of A. According to
a disease spread, Epidemic Modeling can predict the next
infected contact time which is reported in the TSC. The triple
<u: A> <u:hasOutPort1NextTime> <u: value> specifies
that A will produce its next output on OutPort 1 at time equals
value. The log of the events times is recorded in the TSC
until the end of the simulation session. OutPorts events next
times are also reported according to TNOW. Intelligently, the
RWS evaluates the transition function parameters before
execution.

4. AMBIENT INTELLIGENCE ADAPTATION
Nowadays Constrained Devices such as Smartphones are
furnished with Global Positioning System (GPS). Free
Android/iOS applications can record contact locations in data
stores (NoSQL) using RWS. In the same way, other health
data, temperature, blood pressure, etc. can be captured and
recorded. These data are integrated to Real-time Simulation
to allow simulation be conducted with online data.

The mathematical modeling of infectious disease spreading
has been extensively studied for a long time [12]. A lot of
epidemic models, such as the compartmental models that are
composed of differential equations, have been developed and
analyzed [12,36]. The population is divided into different
compartments and each compartment corresponds to an
epidemiological state which depends on the characteristics of

the particular disease being modeled and its transmission
over complex heterogeneous networks where a node is an
individual and an edge stands for interaction between nodes
allowing disease transmission [19-21,23-24,36-37,39–41]. It
is shown that the SIS [3] and the SIR [21] models indicated
that the connectivity fluctuations of the network play a major
role by strongly enhancing the incidence of infection. To deal
with these connectivity fluctuations, AmI is utilized to a high
degree.

Spreading processes are strongly interacting with huge flow
of quantitative social, demographic and behavioral data that
may be used to improve the immunization strategy. The
topology of the pattern of contacts between individuals plays
a fundamental role in determining the spreading patterns of
epidemic processes embedding the mechanism of diverse
infection periods and is an impact on the properties of the
dynamical behaviors of the spreading process. The existing
immunization strategies are limited by their computational
requirements and still have the problem of scaling in large
networks. Optimal immunization strategies shed light on how
the role and importance of nodes depend on their properties,
and can yield importance rankings of nodes.

Contacts positions, social and environment information are
dynamically and periodically gathered by devices before
applying any strategy. The simulated strategy detects the
appropriate contacts once running on DevsServer. Contacts on
constrained devices are dynamically advised to avoid a
critical and unsafe location as a prediction due to AmI
servers’ simulation. Contacts can move safely avoiding
disease contamination. Notification, data gathering and
geographical visualization applications for mobile are part of
the platform and may be installed on contacts constrained
devices. Typical information on disease can also be
visualized and critical regions colored (Figure 5). Parallel
diseases surveillance is captured so that contacts related to a
specific disease are advised with their disease state.

Load B.
Ask B to initialize.
Ask B to execute its Deltaext.
Ask B to execute its Deltaint.
Ask B to compute its outputs.

RWS of B

Class of B

Load A.
Ask A to initialize.
Ask A to execute its Deltaext.
Ask A to execute its Deltaint.
Ask A to compute its outputs.

RWS of A

Class of A

Load C.
Ask C to initialize.
Ask C to execute its Deltaext.
Ask C to execute its Deltaint.
Ask C to compute its outputs.

RWS of C

Class of C

TSC
AB

TSC
AC

Mediator

Mediator

Simulation Interface 1 Simulation Interface 2

User Interface 1 User Interface 2

 DEVSServer of B DEVSServer of A DEVSServer of C

Figure 8. A coupled model execution within three distant servers.

837

5. CONCLUSION
A new concept and ideas for distributed simulation are
implemented as DevsServer showing that the design of
DevsServer principles (TSC paradigm, Mediator, Collector,
Repository) can achieve interoperability. The TSC
interoperability style at the Web level (RWS) allows
DevsServer to take advantage of new Web-based features or
technologies. On the other hand, DevsServer provides better
interoperability applying RWS principles among the TSC
paradigm.

DevsServer is specially designed to deal with DSS but it can be
applied to similar systems. DSS with Epidemic Modeling
deal with a large number of contacts moving dynamically and
temporally. Each contact is using AmI devices to join/disjoin
the distributed structure dynamically at run time. Therefore,
DevsServer is designed to adapt to AmI environments and aims
to distribute the simulation among different types of nodes in
a dynamic way.

Before detailing future directions such as DevsServer cloud
implementation, we aim to consider an incoming paper
integrating a full execution of an epidemic simulation
scenario under AmI assistance to show the DevsServer ability
to a wide range of interaction and pursue its intelligent
interoperability aspect.

ACKNOWLEDGMENTS
This work has been supported by a CNEPRU research project
entitled BIOSIF II (Code: B*01820120086) an extension of
BIOSIF I (Code: B*01820080016) funded by the SIF Team
under the supervision of the LIO labs and the SEMEP
services of the Algerian Health Ministry.

REFERENCES
1. Al-zoubi K., Wainer G. (2013). RISE: A general

simulation interoperability middleware container.
Journal of Parallel and Distributed Computing, Elsevier.
Vol. 73. Issue 5.

2. Amamra L., Mokaddem M., Atmani B., Mesure de la
qualité de la vaccination guidée par les données. Sixième
Atelier sur les Systèmes Décisionnels ASD’2012, 1 -3
Avril 2012, Université Saad Dahlab, Blida, Algérie.
ISBN 978-9947-0-3416-3.

3. Barabási A-L, Albert R. Emergence of scaling in random
networks. Science 1999;286:509–12.

4. Barigou F., Mokaddem M., Atmani B., Beldjilali B.
‘Towards an Automated System for Extracting Named
Entity from Medical Reports’ International Congress on
Models Optimization and Security of Systems. Du 29-31
May 2010, Tiaret, Algeria.

5. Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The
semantic web. Scientific American, 284, 3443.

6. Brahami M., Atmani B., Mokaddem M., CARTOCEL:
un outil de cartographie des connaissances guidée par la
machine cellulaire CASI. EGC 2010: 625-626.

7. Fujimoto R. (2000). Parallel and Distribution Simulation
Systems, John Wiley & Sons, New York.

8. Gelernter, D. (1985). Generative communication in
Linda. ACM Transactions on Programming Languages
and Systems (TOPLAS), 7, 80112.

9. Gómez-Goiri A., López-de-Ipiña D. (2012). Assessing
data dissemination strategies within triple spaces on the
web of things. In: Sixth International Conference on
Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS), (pp. 763–769).

10. Gómez Goiri A., Orduña P., Diego J., López-de-Ipiña
D., (2014). Otsopack: Lightweight semantic framework
for interoperable ambient intelligence applications" In
Computers in Human Behavior. vol. 30. p. 460-467.
DOI: 10.1016/j.chb.2013.06.022.

11. Guinard, D. (2011). A web of things application
architecture integrating the real-world into the web.
Ph.D. ETH Zurich.

12. Hethcote HW. The mathematics of infectious diseases.
SIAM Rev 2000;42:599–653.

13. Honkola, J., Laine, H., Brown, R., & Tyrkko, O. Smart-
M3 information sharing platform. In 2010 IEEE
Symposium on Computers and Communications
(ISCCs) (pp. 1041–1046). IEEE. 2010.

14. Jafer, S; Liu, Q; Wainer, G, (2012) Synchronization
methods in parallel and distributed, DEVS Integrative
M&S Symposium, SpringSim Multi-Conference.

15. Khushraj, D., Lassila, O., & Finin, T. (2004). sTuples:
Semantic tuple spaces. In The first annual international
conference on mobile and ubiquitous systems:
Networking and services, 2004. MOBIQUITOUS 2004
(pp. 268–277).

16. Liu J, Zhang T. Epidemic spreading of an SEIRS model
in scale-free networks. Commun Nonlinear Sci Numer
Simul 2011;16:3375–84.

17. Liu Z, Hu B. Epidemic spreading in community
networks. Europhys Lett 2005;72:315–21.

18. Mokaddem M., Bahnes A., Atmani B., ‘création
dynamique orientée services de contenu pédagogique en
e-Learning’, JDLIO’2011, Journées Doctorales du
Laboratoire d’informatique d’Oran, 2011 , Oran, Algérie

19. Mokeddem S., Atmani B., Mokaddem M. Supervised
Feature Selection for Diagnosis of Coronary Artery
Disease Based on Genetic Algorithm. First International
Conference on Computational Science and Engineering
(CSE 2013). Dubai, UAE. May 2013. pp 53-64. ISSN
2231-5403, ISBN 978-1-921987-23-6.

838

20. Mokeddem S., Atmani B., Mokaddem M. ‘An Effective
Feature Selection Approach Driven Genetic Algorithm
Wrapped Bayes Naïve’.Int. Nat. Journal of Data
Analysis Technics and Strategies, (2015).ISSN
online:1755-8069 ISSN print: 1755-8050.

21. Moreno Y, Pastor-Satorras R, Vespignani A. Epidemic
outbreaks in complex heterogeneous networks. Eur Phys
J B 2002;26:521–9.

22. Nixon, L. J., Simperl, E., Krummenacher, R., & Martin-
Recuerda, F. (2008). Tuple space-based computing for
the semantic web: A survey of the state-ofthe-art.
Knowledge Engineering Review, 23, 181212.

23. Olinky R, Stone L. Unexpected epidemic thresholds in
heterogeneous networks: the role of disease
transmission. Phys Rev E 2004;70:030902(R).

24. Pastor-Satorras R, Vespignani A. Epidemic dynamics in
scale-free networks. Phys Rev Lett 2001;86:3200.

25. Pirkkalainen, H., & Pawlowski, J. M. (2012). The
knowledge intervention integration process: A process-
oriented view to enable global social knowledge
management. International Journal of Knowledge
Society Research (IJKSR), 3, 45–57.

26. S. Mittal, “Extending DoDAF to Allow DEVS-Based
Modeling and Simulation”, Special Issue on DoDAF,
Journal of Defense Modeling and Simulation, Vol III,
No. 2, 2006

27. Saurabh Mittal, José L. Risco-Martín and Bernard P.
Zeigler (2009), "DEVS/SOA: A Cross-Platform
Framework for Net-centric Modeling and Simulation in
DEVS Unified Process", SIMULATION., July, 2009.
Vol. 85(7), pp. 419-450.

28. Saurabh Mittal, José L. Risco-Martín and Bernard P.
Zeigler (2007), "DEVSML: automating DEVS execution
over SOA towards transparent simulators", In SpringSim
'07: Proceedings of the 2007 spring simulation
multiconference. San Diego, CA, USA , pp. 287-295.
Society for Computer Simulation International.

29. Saurabh Mittal, José L. Risco-Martín and Bernard P.
Zeigler (2007), "DEVS-based simulation web services
for net-centric T&E", In SCSC: Proceedings of the 2007
summer computer simulation conference. San Diego,
CA, USA, pp. 357-366. Society for Computer
Simulation International.

30. Silva M. J., da Silva F. A. B., Lopes L. F., Couto F. M.,
(2010). Building a Digital Library for Epidemic
Modelling, Proceedings of ICDL 2010 – The
International Conference on Digital Libraries New
Delhi, India, February.

31. Tolk A., (2010). Interoperability and composability, in:
C. Banks, J. Sokolowski (Eds.), Modeling and
Simulation Fundamentals: Theoretical Underpinnings
and Practical Domains, Wiley, New Jersey, pp. 373–402.

32. Varela-Candamio L., García-Álvarez M. T. (2012).
Analysis of information and communication
technologies in higher education: A case study of
business degree. International Journal of Engineering
Education, 28, 1301–1308.

33. Wainer G., (2009). Discrete-Event Modeling and
Simulation: A Practitioner’s Approach, CRC press,
Taylor & Francis Group, Boca Raton, Florida.

34. Wainer G., Al-Zoubi K., Mittal S., Risco Martín J.,
Sarjoughian H., Zeigler B. (2010), in: G. Wainer, P.
Mosterman (Eds.). Discrete-Event Modeling and
Simulation: Theory and Applications, CRC Press. Taylor
and Francis, pp. 389–494 (Chapters 15–18).

35. Wainer G., Madhoun R., Al-Zoubi K. (2008).
Distributed simulation of DEVS and Cell-DEVS models
in CD++ using Web services, Simulation Modelling
Practice and Theory 16 (9) 1266–1292.

36. Xiao Y, Zhou Y, Tang S. Modelling disease spread in
dispersal networks at two levels. Math Med Biol
2011;28:227–44.

37. Yang R, Wang B-H, Ren J, Bai W-J, Shi Z-W, Wang W-
X, Zhou T. Epidemic spreading on heterogeneous
networks with identical infectivity. Phys Lett A
2007;364:189–93

38. Zeigler B., Praehofer H., Kim T., (2000). Theory of
Modeling and Simulation, Academic Press, San Diego,
CA.

39. Zhang H, Fu X. Spreading of epidemics on scale-free
networks with nonlinear infectivity. Nonlinear Anal
Theory Methods Appl 2009;70:3273–8.

40. Zhang J-P, Jin Z. The analysis of an epidemic model on
networks. Appl Math Comput 2011;217:7053–64.

41. Zhang J-P, Jin Z. Epidemic spreading on complex
networks with community structure. Appl Math Comput
2012;219:2829–38.

42. ACIMS software site:
http://acims.asu.edu/software

839

