
DevsServer: Ambient Intelligence and DEVS Modeling 
Based Simulation Server 

Mostefa Mokadem  
Computer Science Dept. 

Lab. of Informatics of Oran 
Univ. of Oran 1 Ahmed BenBella 

Oran, Algeria 
mokaddem.mustapha@univ-oran.dz  

Baghdad Atmani  
Computer Science Dept. 

Lab. of Informatics of Oran 
Univ. Of Oran Ahmed BenBella 

Oran, Algeria 
atmani.baghdad@univ-oran.dz  

Abdelmalek Boularas  
Computer Information System Dept. 
Ahmed Bin Mohamed Milit. College 

Doha, Qatar 
boularas@abmmc.edu.qa   

 
 

ABSTRACT 
To improve disease surveillance systems (DSS) with faster 
and accurate outbreak detection and epidemics propagation 
capabilities, the availability of fine-tuned models is required 
along with the design of server based solution that simulate 
the effects of public health authorities’ measures, and 
integrate Ambient Intelligence (AmI) capabilities to 
semantize epidemic models. Hosting Discrete Event System 
Specifications (DEVS) models, these AmI servers and their 
communication protocols are different, miscellaneous and 
require interoperability. The Triple Space Computing (TSC) 
paradigm addresses interoperability by sharing information 
represented in a semantic format through a common virtual 
space. In this this paper we present DevsServer, a fully 
distributed TSC simulation server solution (middleware) 
designed to meet the needs of parallel and distributed discrete 
event simulation. DevsServer defines an SOA (service oriented 
architecture) interface for the TSC operations. This interface 
convinces with DEVS formalism and focuses on simplicity, 
conviviality and modularity, so that a single or many 
simulations that support different models can still interact.  
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ACM Classification Keywords 
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1. INTRODUCTION 
In recent years, contamination and its interaction with huge 
flow of quantitative social, demographic and behavioural 
data are used to improve DSS with faster and more accurate 
outbreak detection and epidemics propagation capabilities 
which depend on the availability of fine-tuned models along 
with server based simulation.  

Due to significant changes in health contexts, the SEMEP 
(French acronym for Service d'Epidémiologie et de Médecine 
Préventive, i.e. Service of Epidemiology and Preventive 

Medicine) is involved in applying new simulation solutions 
to deal with human interaction model in a modern society 
(Figure 1) where Ambient Intelligence (AmI) is widely used 
capturing spatial and social network structures influencing 
infectious disease transmission within populations.  

SEMEP activities [6] concern the Environmental health 
(water surveillance, food hygiene, beach water quality, etc.), 
school health (vaccination, medical examination, health 
education, and school hygiene), immunization strategies, and 
diseases surveillance (tracking diseases evolution). Owning 
big data, the SEMEP needs designing new DSS with 
epidemic modeling complements integrating AmI 
capabilities.  

Epidemic Modeling and computational infrastructures, such 
as SOA (service oriented architecture) [2], enable creating 
very detailed representations. With accurate models, we can 
predict the outbreak detection, the spread of diseases and 
simulate the effects of public health authorities’ measures.   

Parallel Discrete-Event Simulation (PDES) has received 
increasing interest as simulations become more time 
consuming and geographically distributed. A rich literature 
has already been developed in the last three decades, taking 
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Figure 1. Disease simulation in a virtual city.
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advantage of the increasing availability of parallel and 
distributed computing platforms, especially on emerging 
platforms such as many-core processors, internet scale 
simulation environments, and cloud-based virtualized 
infrastructures [1,7,14,26,27,28,29]. Like popular PDES 
environments and their hybrid synchronization techniques, in 
SOA oriented simulations [27], the entire simulation task is 
divided into a set of services (each model is handled by a 
service) with each executed on a different server. 

SIF (Simulation, Integration & Fouille de données (Data 
Mining)) researchers involved with SEMEP in such design 
issues are developing a specific modeling platform to help 
model, simulate and evaluate DSS. An important challenge 
in designing DSS is to define immunization strategies that 
discover a meaningful group of individuals (community) that 
are strongly related to the disease. Once this community 
discarded, disease can be eradicated.  AmI based approaches 
using semantic temporal network need to be applied as novel 
intelligent and dynamical immunization strategies.  

To simulate such strategies, a new AmI based parallel and 
distributed discrete event simulation server solution is 
required allowing the design of semantic atomic and coupled 
models integrated in Epidemic Modeling Digital Libraries 
(EMDL) [30] within simulation servers. EMDL hold models 
as Resource Description Framework (RDF) graph to 
semantize modeling. The semantic associated to models 
describes the how to of models and help simulation servers to 
perform intelligently. Thus, providing Modeling and 
Simulation with semantics is prerequisite. To pursue this 
goal, simulation servers use EMDL to manage models while 
describing them with ontologies. Knowledge may be shared 
between modelers and servers themselves. Simulation 
servers perform a distributed simulation execution requiring 
interoperability and natural and transparent interactions that 
are important in AmI to defend the fact that servers should 
subtly work on behalf of the human tasks and minimize the 
psychological impact of servers use. Furthermore, AmI based 
servers can be used in the same way in simulation to avoid 
modelers from doing low-level but yet time-consuming 
modeling tasks such as interoperability. Modelers can now 
focus on modeling with a high aggregate-value, where the 
importance of the human capital is vital [10,25].  

To achieve these aims, AmI based servers need to integrate 
and coordinate heterogeneous data sources or service 
providers. Current trends, such as the Web of Things (WoT) 
initiative [11], propose a straightforward integration of 
servers with the web using RESTful web services (RWS). 
Independently of the used model, the messages usually 
exchanged between servers are diverse and simulation 
session dependent. This implies that messages will not be 
meaningful in other simulations unless a specialized system 
converts and reinterprets them. A way to solve this problem 

is annotating the message semantically as proposed by the 
World Wide Web (WWW) [5,10].  

Triple Space Computing (TSC) has been involved as a 
coordination paradigm supporting indirect communication 
based on semantic data. As simple as possible, a model writes 
semantically annotated information in a shared space that is 
queried out and used by other models. 

In order to achieve this interoperability through Triple 
Spaces, we propose a simulation Server middleware solution 
called DevsServer. This solution provides two core features: 
(a) it is designed to be simple, modular and extensible and (b) 
it runs in different computational platforms, allowing Java 
SE, Java Mobile and Android interaction. The underlying 
interface is based on SOA [18] and covers isolated features 
such as discovery, maintenance or data access. Different 
simulations can provide only certain features and still interact 
with each other. This way, it is possible to embed it in other 
real-time simulations.  

Regarding the immunization strategy simulation, we do not 
provide any specification, it is out of the scope of this paper 
which is only concerned with the design of DevsServer over 
AmI interoperability. 

The rest of the paper is organized as follows. Section 2 
outlines related work. Section 3 describes the conceptual 
model for an SOA based TSC solution, let’s say DEVSServer 
principles. Section 4 details the implementation made to 
adapt it to the necessities of AmI needs. Finally, Section 5 
concludes and discusses future work. 

2. RELATED WORK 
In the following two subsections, we analyze both semantic 
solutions of interoperability involving mobile and embedded 
devices and concluding with TSC paradigm, and the SOA 
based Modeling/Simulation as synthetized by Al-zoubi and 
Wainer [1]. Among the analysis, we compare our solution 
with the rest emphasizing their strengths and weaknesses. 

2.1. Ambient Intelligence Interoperability 
Regarding representational state transfer (REST), its use in 
resource constrained devices is a current trend defended by 
the WoT initiative [11]. WoT proposes to embed web servers 
in everyday things. These objects expose their capabilities 
following the REST principles. In this way, they fully 
integrate with the web. This has several benefits: Availability 
of digital libraries and frameworks in most of the existing 
computing platforms. Reuse of mechanism that have made 
the web truly scalable. E.g. searching, caching, load-
balancing or indexing. The users can interact with the objects 
through a familiar tool: the browser. They can browse or 
bookmark them, share on social networks, etc. Direct 
integration with other web applications. 

Tuple Space (TS), also called space-based computing, is a 
coordination paradigm based on the shared memory approach 
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[8]. TS works with semi structured data, which is accessed in 
an associative manner. Several TS solutions have used 
semantics to enhance the shared data [19]. sTuples was 
conceived for scenarios [15]. In sTuples, the clients access a 
centralized space through a communication gateway. The 
centralization completely simplifies the solution, but makes 
the whole system dependent on a single machine. Besides, 
Otsopack [10] avoids the need of gateways by requiring a 
prominent protocol (i.e. HTTP) for the communication 
between the nodes. TripCom distributes the space among 
different super-peers using distributed hash tables. 
Specifically, it uses a hash function over the subject, 
predicate, object and space URL to decide where to store each 
triple. TripCom draws a clear distinction between the clients, 
which consume data, and the devices where the space resides. 
Otsopack also promotes the direct communication between 
devices. Doing so, they can access to the most updated data 
and manage their own data. Finally, Smart-M3 [13] 
constitutes a remarkable effort to bring the semantic space-
based computing to many different devices and protocols. To 
that end, it distinguishes between two types of nodes: 
Knowledge Processors (KPs) and Semantic Information 
Brokers (SIBs). The SIBs manage the space. The KPs are 
nodes accessing the space information. The Smart Access 
Protocol (SSAP) is used for the communication between both 
types of nodes. Although theoretically possible, to the best of 
our knowledge no results have been presented on the 
federation of two or more SIBs. This makes the solution de 
facto centralized and also avoids the definition of any new 
communication protocol. Instead, it assumes that all the 
nodes will be able to work at HTTP-level or have a gateway 
to do so on their behalf. Thanks to that and to the prominence 
of libraries and tools for this protocol the implementation on 
new platforms is greatly simplified. 

As was previously stated, our API is based on the TSC 
paradigm. TSC is a TS variation where the information is 
stored in RDF. Three key concepts are important at this point: 
models share information in a common space. A space is 
identified by an uniform resource identifier (URI). Therefore, 
all the operations in TSC are performed against a particular 
space. By default, all simulation sessions connect to a 
common standard space, but they can optionally choose to 
connect to a particular private space. Within a space, the 
information is stored in sets of triples called graphs. Each 
graph can also be identified by an URI. The RDF triples are 
the underlying concept of all the Semantic Web (SW) 
languages. Each triple is composed by  a  subject  (which is  
a  URI),  a  predicate  (also a  URI) and a  value (which can  
be  a  URI or  a  literal). As detailed later, the operations 
supported attempt to add or remove graphs, as well as to 
query for graphs or for sets of triples retrieved from different 
graphs. In order to perform the queries, which enable the 
selection of a subset of the semantic content hold in a given 
space, a template is required. We follow Otsopack to address 

these operations. [9] presents further discussion about 
knowledge distribution strategies. 

2.2. Modeling and Simulation Interoperability 
Mittal & al [29] present a test and development environment 
using Discrete Event System Specification Modeling 
Language (DEVSML) [28] and the Service Oriented 
Architecture (SOA) framework. DEVSML is built on XML 
and provides model interoperability among DEVS models 
hosted at remote network addresses. The client application 
that communicates with multiple servers hosting DEVS 
simulation services and the underlying Service Oriented 
Architecture for DEVS (SOADEVS) framework [27].  
Authors show how SOADEVS is positioned to address the 
need for a Department of Defense Architecture Framework, 
DoDAF-based net-centric paradigm [26] for test and 
evaluation at the system-of-systems and enterprise systems 
levels. The SOADEVS framework provides the needed 
feature of runtime composability of coupled systems using 
the SOA framework. The integration of DEVSML and 
SOADEVS is performed with the layout as shown in Figure 
2. The manner in which DEVSJAVA/DEVS-Suite [42] 
models could be attained or developed by client can be 
manifold. The models can be created through Natural 
Language Processing (NLP) methods, raw .java format, or 
BPMN/BPEL files. The models rest with the client (Step 3, 
Figure 2). Once the client has DEVSJAVA models, 
DEVSML server can be used to integrate the client’s model 
with model available at some other place on the web to get an 
enhanced integrated DEVSML file that can reproduce 
DEVSJAVA model in .java format (Step 4 and 5).  

 

Figure 2. DEVSML and SOADEVS integrated. 

The SOADEVS enabled server can either take this integrated 
DEVSML file directly or can ask user to provide the top-level 
coupled model through the SOADEVS client application. 
Finally the remote simulation is conducted at various DEVS 
simulation engines located over the web (Step 6) and be used 
for simulation-based testing in a distributed environment. 

Wainer [1] presents a better simulation interoperability 
concept background, and describes his RISE (RESTful 
Interoperability Simulation Environment) middleware that 
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fits within this concept. Wainer objectives were to enhance 
interoperability, by decoupling/hiding implementations. He 
highlighted some guidelines to be followed to a general Web-
based middleware container. Interoperability, as Wainer 
stated, enables two or more different software systems to 
interface and use each service correctly [31]. The complexity 
of interoperability arises when systems are heterogeneous, as 
in the case of distributed simulation. This is usually because 
systems have been developed independently with different 
semantics (i.e. the meaning of the exchanged information) 
and/or syntactic (i.e. the rules of structuring and exchanging 
the information). Since such capabilities are realized in 
software design and implementation, interoperability needs 
to be studied from the software perspective, in particular, at 
the Application Programming Interface (API) level (since 
this is how systems access and use other systems services).  

Wainer presented RISE middleware as a layered architecture 
where each layer defines its interoperability methods, and 
provides services to the layer above it. Following this 
concept, RISE is organized in the three layers: middleware, 
simulation, and modeling. The middleware layer provides a 
number of services to the simulation layer, such as all means 
of communication and managing all simulation experiments 
lifecycle and executions. The simulation layer deploys 
different simulation environment types, each of which 
supports its own time management. The modeling layer 
operates above the simulation layer. This represents the 
system under study, which is simulated by a specific 
simulation environment. This RISE model layers match other 
existing interoperability conceptual layers, particularly the 
Level of Conceptual Interoperability Model (LCIM). 

In RISE, all functionalities are hidden in resources, named 
with URIs. Those resources (URIs) are connected to each 
other via uniform virtual channels in which the simulation 
synchronization is done using XML messages. Thus, the 
RESTful interoperability approach allows system designers, 
to decompose the systems in components (i.e. called 
resources/URIs), and to hide the implementation within those 
components, hence separating component interfaces from 
software implementation. These fundamentals were adapted 
by the RWS style, which was adapted by the WWW, the 
largest open computing environment. In contrast, existing 
simulation interoperability approaches do the opposite to 
these principles by following procedural programming style, 
hence mixing systems implementation and interface. By 
going against the Web interoperability principles will always 
cause serious difficult interoperability issues when 
interoperating on the Web with other existing systems. These 
issues became obvious during the current efforts on 
standardization of DEVS [30-35,37]. This standardization 
effort is aiming on interoperating various DEVS-based 
implementations systems via the Web [34].  

RISE is not a real server based solution and no semantic is 
present may be in message nor in models. Uploading model 
to specified servers to perform simulation is not a full or real 
SOA based simulation. SOA means that Application 
(Simulation) Servers hold services that are orchestrated over 
the web. Services are hosted by the servers not uploaded at 
runtime. So the best solution is to implement simulation 
servers that host their own models. The Admin of the server 
develop and update models that are stored in digital libraries. 
Epidemiologists can develop epidemic models for a full 
variety of diseases in different formalisms and store these 
models in digital libraries. These models are ready to use by 
communities, they have just to integrate them through RWS 
in their own work.  

Therefore, we have to develop models in a way that they can 
be invoked by a RWS using java reflection. This RWS can 
hold any model if this model has a standard specification such 
as DEVS. All previously developed models in the DEVS 
formalism (DEVSJAVA) will be conserved in the server 
store as they are without any change. RWS is an abstraction 
designed to call DEVS class methods using java reflection 
(Figure 3). The RWS first load the class model from the store. 
It obtains all the model parameters. Each method, let it be 
DeltaExt(), DeltaInt(), Out() or the Conf(),  has its proper 
parameters that differ from one model to another. So, the 
RWS asks the class for each method parameters. It must 
obtain parameters values from the TSC. Thus, these 
parameters must be annotated semantically. Obtaining 
parameters, the RWS passes them to the loaded class (DEVS 
model) and asks it to perform its specific transition function 
according to the events scheduling.   

 

In the TSC, information must be semantically annotated. 
Especially, messages need to be semantized, designed as 
graphs. Each RWS can easily find all graphs (messages) 
destined to it. So, a RWS takes access to the TSC, looks for 
its input messages, performs its transitions and generates 
semantically outputs (graphs) that it writes to the TSC.       

Load the model from the Store (Java Class) 
Obtain model parameters for each of its methods  
Choose Initialization parameters  
Read semantically the Initialization parameters from the shared space (TSC) 
Ask the model to initialize itself by passing parameters to it 
When event occurs choose transition specific parameters and do: 

Read semantically, when necessary, DeltaExt parameters values from TSC 
Pass values to the model class 
Ask the model to execute its DeltaExt function 
Read semantically, when necessary, DeltaInt parameters values from TSC 
Pass values to the model class 
Ask the model to execute its DeltaInt function 
Ask the model to compute its outputs 

Write semantically outputs to the TSC 

Restful Web Service handling the model 

Model Implementation 
(Java or XML) 

Figure 3.  Web Service model driving.
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3. DEVSSERVER PRINCIPLES 
To deal with DevsServer principles, let us consider two 
coupled epidemic models AB and AC with atomic models A, 
B and C according to DEVS formalism, Figure 4. Each of A, 
B and C is stored in a separate simulation server and invoked 
via RWS. A is participating in two parallel simulation 
sessions at the same time; AB and AC simulations are 
sessions performed on separate servers by two different 
clients. Servers store models in respective EMDL. Each 
epidemic model consumes information from its own EMDL 
[30]. Thus, A, B and C are a data mining based model where 
a mining of some data is used to generate output as described 
in [4,19-20].  
Data are in the same EMDL as the model using them. A and 
B are described with ontologies to allow a modeler to link 
servers hosting these models while trying to use each of them 
as sub-model of its own coupled model. Many modelers may 
realize a coupled model conjointly. AB, A and B and AC, A 
and C, respectively, represent exchanged information as a 
Friend of a Friend (FOAF) ontology. This ontology is 
designed as a shared space between these models. In Figure 
4, two shared spaces are used by the two sessions. In each 
shared space, models output RDF triples to be added to the 
shared space. Models may read triples into the shared space 
and perform their transition functions. A is participating in 
the two sessions; it uses the shared space according to the 
session.  Finally, it stores such ontology in the modeler’s 
server Triple Spaces. Since Triple Spaces is used as shared 
space, this knowledge is available for other servers using that 
shared space.  

Another model (coordinator) may notify the other models or 
users that there is a friend in this simulation session or in this 
shared space. This coordinator may populate the shared space 
with information produced by different other models [32]. 
Prior to the information retrieving, the coordinator semantizes 
the information according to the FOAF ontology. Finally, it 
periodically looks into the space to check whom is friend of 

this model. Data mining based model uses preview data as 
follow: data are organized in a view from dataset inside digital 
libraries. Each row of this view is an entity. Many columns 
are properties of this entity. We apply knowledge discovery 
from data (KDD) on these data to extract rules that will be 
used by the model [4,19-20]. Therefore, a modeler begins by 
applying KDD to discover knowledge that is used to define 
transition functions of the model. The interoperability is 
achieved when AC model, which does not support the AB 
digital libraries, automatically discovers a friend who is using 
the first model. This is possible because both clients may share 
information in a common space and use the same ontology.   

A node, in DevsServer architecture (Figure 5), is composed of 
a Repository, a Collector and a Mediator. The Repository 
stores epidemic models, their datasets and ontologies to 
characterize their semantic information. The Mediator is a 
collection of web services that will provide access to internal 
data and external sources, using state-of-the-art semantic-
web/grid technologies. The Collector retrieves diseases 
models and their information from publicly available 
DevsServer servers. Interfaces enable the Admin of the Server 
and the Client to perform Modeling and Simulation. Each 
node hosts its own models developed by its Administrators. 
Models are kept in a NoSQL database to ensure a quick 
search of models and to deal with semantics inside models 
description for a machine adequate use. A node makes use of 
the TSC paradigm to establish communication between 
models during simulation. A simulation is performed by 
many Mediators and RWS each one handling specific 
models. Many nodes interact to perform a distributed 
simulation execution. 

In this section, we detail how models are hosted by DevsServer 
and how TSC is used to perform an SOA simulation. Models 
read inputs and write outputs to the TSC parameterized by 
the Client (DEVS Modeler). Two subsections are detailed. 
The 1st one concerns the Admin of the server and the 2nd one 
the client part. The Admin of the server is responsible to add, 
update or delete models from the server. Any client can 
perform a simulation while using the models stored in the 
server. Let us see these 2 tasks in detail involving the 
Mediator, the Repository and the Collector.    

3.1. The Admin Tasks 
Figure 5 depicts the diagram of the admin operations on the 
server. The configuration of the server consists of adding and 
updating users and models. Models need to be described with 
semantics to let machines (other DevsServer) use them 
adequately. Semantic is conceived with RDF triples. The 
semantic of each function must consider parameters of the 
model and the way they are utilized. A model is described as 
an RDF graph to be easily added to the NoSQL store. Such 
graph can be also converted to an ontology. The following 
are some RDF triples depicting the graph of a DEVS Dengue 
of the Figure 6. 
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Figure 5. DevsServer architecture. 

Each model owns its functions such as Initialize(), 
DeltaExt(), DeltaInt(), Out() and the Conf(). The Initialize() 
function lets the model perform its initialization. 

<u:Dengue> <u:hasOwner> <u:Mokaddem>. 
<u:Dengue> <u:hasType> <u:AtomicModel>.  
<u:Dengue> <u:hasCreationDate> <u:12/02/2014>. 
                           ……………….. 
<u:Dengue> <u:hasInitialize> <u:DengueDengueInitializeIndex>.  
<u:Dengue> <u:hasDeltaInt> <u:DengueDeltaIntIndex>.  
<u:Dengue> <u:hasDeltaExt> <u:DengueDeltaExtIndex>.  
<u:Dengue> <u:hasJavaClass> <u:DengueJavaClassIndex>.  
<u:Dengue> <u:hasXML> <u:DengueXMLIndex>.  
                                  .................... 
<u:Dengue> <u:hasInPorts> <number>. 
 <u:Dengue> <u:hasOutPorts> <number>. 
<u:Dengue> <u:hasInPort> <u:Inport1>.  
<u:Dengue> <u:hasInPort> <u:Inport2>.  
<u:Dengue> <u:hasOutPort> <u:OutPort1>.  
<u:DengueInitializeIndex> <u:hasIntputParameter> <u:param1>.  
<u:DengueInitializeIndex> <u:hasOutputParameter> <u:param2>.  
 

 

 

 

 

 

Figure 6. Graph model of a DEVS Dengue example. 

Such initialization concerns the time and the states of the 
model. DeltaExt() transition function concerns the action to 
be performed when some inputs X1, X2; etc. are received.  Let 
us notice that the inputs number differs from a model to 
another. DeltaInt() transition function deals with the inside 
states change. The Out() function generates the outputs of the 
model. The predicate <u:hasJavaClass> refers to the java 
code that will be loaded by the RWS by java reflection. That 
means when calling a RWS handling any model to initialize 
itself then the RWS just does a java reflection to call at 
runtime the initialize() method of this java class included in 
this code. This class is inserted as a LOB (Large Object 
Binary) in the NoSQL store. So, the related RWS must first 
load this class from the store then use it by reflection (Figure 
7). A description of the model in natural language may also 
help understanding the model behavior. The RWS always 
reads/writes from/to TSC. When an event occurs, the RWS 
detects the event type. If the event is an internal event, the 
RWS ensures that all parameters are ready to invoke the 
model DeltaInt() transition. It does so for the external and 
initialization events. The RWS looks like the driver of the 
model. insertModel(), deleteModel(), getModel() are some 
Admin methods to insert, delete and load a model from the 
Store. The readModelClass() is used by getModel() to load 
the java class (DEVSJAVA) of the model. The WSDeltaExt() 
performs a DeltaExt() reflection. 
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3.2. Client Tasks  
Figure 5, also, shows a client loop, depicting the steps 
followed by a client in a simulation session. A client may 
simulate an atomic or a coupled model. A coupled model 
execution is more complex. In the following, we show the 2 
executions respectively, commenting Figure 5 for each case.  

3.2.1. Atomic Model Execution 
A client starts by selecting a model (atomic), no coupling is 
needed, only the interaction with the client interface (CI). 

This selection is performed as a natural language search. The 
CI invokes the Mediator which performs a lookup by starting 
its Repository which returns the URLs of the RWS handling 
the searched model which may be remote. The Mediator 
passes this URLs to its Collector which invokes the 
local/remote RWS that extracts the requested model RDF 
graphs. The Mediator places these graphs in the TSC and 
allows the client to query it (SPARQL). The client can ask 
for the input/output ports, the owner, a short description, etc. 
Finally, he chooses one from the listed models. The Mediator 
updates the TSC by deleting the no needed models and 
adding the full information of the retained one as inserted by 
the Admin (Figure 5). Since there is no coupling, the client 
launches its simulation, after initializing the simulation 
parameters. The Mediator adds these parameters to the TSC 
and invokes the RWS to perform its simulation. The RWS 
will follow a standard DEVS simulation of atomic model, 
according to Figures 3 and 7, but intelligently. Before 
requesting any step or any transition function, it looks for its 
parameters and adds appropriate triples to allow a significant 
and correct run. For each output, out()result, it semantizes its 
results before inserting in the TSC. The Mediator sends this 
information to the CI for visualization. This simulation 
driving is given in Figure 3.   

3.2.2. Coupled Model Execution 
When a coupled model is invoked, this means that each 
atomic model involved must execute and synchronize itself 
with respect to the coupling rules. Only RWS supervising the 
models have to communicate and synchronize and each RWS 
routes the request to its own model.  Figure 8 depicts 2 client 
sessions. The 1st one runs the AB coupled model and the 2nd 
the AC one. Each user uses a CI to connect. He calibrates his 
simulation using the simulation interface (SI) implemented as 
a Session Bean. Once a simulation started, each Mediator 
creates a TSC and inserts the simulation parameters. These 
parameters involve the atomic models, the coupling 
information and the initialization conditions. Now, RWS 
read/write intelligently from/to TSC until the simulation 
ends. Periodically, the SI picks and sends to CI intermediate 
results for visualization. Coupling rules are RDF triples 
added by the Mediator once the client finished his simulation 
configuration. These rules can be obtained intelligently 
according to the model ontology 
The coupling is specified by the <u:isCouledTo> predicate 
as follows:    
                    <u: A> <u: hasInPort> <u: InPort1>.  

<u: A> <u: hasOutPort> <u: OutPort1>.  
<u: B> <u: hasInPort> <u: InPort2>.  
<u: B> <u: hasOutPort> <u: OutPort2>.  
<u: AB> <u:hasInPort> <u:InPort3>.  
<u: AB> <u: hasOutPort> <u:OutPort3>.  
<u:InPort3> <u: isCoupledTo> <u:InPort1>.  
<u:OutPort2> <u: isCoupledTo> <u:InPort1>.  

@XmlRootElement 
public class ModelAccess { 
private static Key key = null;      
private static KVStore mystore; 
public static final String MOD_PREFIX = "DEVS”; 
public static KVStore getStore()      {    } 
public static void insertModel(String username, String modelName, int inports, 
                      int outports, String owner, String  CreationDate, String Description,  
                      String Inisliaze, String DeltaExt, String DeltaInt, File modelFile){      } 
public static ModelSchema getModel(String username, String modelName){ 
ModelSchema model = new ModelSchema( nameOfModel, inports, outports,  
     owner, DateCreation,   Description, Inisliaze,  DeltaExt, DeltaInt, modelClass); 
return model;}  
public static void deleteModel(String username, String modelName){   }  
}                               

@XmlRootElement 
public class ModelSchema { 
String Name, Owner, CreationDate, Description, Inisliaze, DeltaExt, DeltaInt;
 int Inports; int Outports;  byte[] Modelclass ; 

@GET 
@Produces(value = { "application/xml", "text/plain" }) 
@Path("readModelClass/{username}/{modelName}") 
public Object readModelClass(@PathParam("username") String username,    
                                                      @PathParam("modelName") String modelName) { 
    ModelSchema model = new ModelSchema(); 
    model = ModelAccess.getModel(username, modelName);                                             
    Object o = null; 
    ByteArrayClassLoader baCL = new ByteArrayClassLoader(); 
    Class modelClass = baCL.findClass(model.getClasse()); 
    try { 
      o = modelClass.newInstance(); 
     } catch (IllegalAccessException e) { System.out.println("access not found "); }  
        catch (InstantiationException e) { System.out.println("instance not found ....");  
} 
        return o; 
        } 
 @GET 

@Produces(value = { "application/xml", "text/plain" }) 
@Path("readModelClass/{username}/{modelName}") 
public void WSDeltaExt (@PathParam("username") String username,  
                                            @PathParam("modelName") String modelName) { 
       …….. 
try {  
  Object o = mv.readModelClass(username, modelName); 
     for (Field field : o.getClass().getDeclaredFields())                 
      for (Method method : o .getClass().getDeclaredMethods())  
        o.getClass().getDeclaredField("state").equals("S"); 
       Method method = o.getClass().getDeclaredMethod("DeltaExt",String.class); 
       Object r = method.invoke(o,  "infection" ); 
         } catch (Exception io) { 
            io.printStackTrace(); 
            System.out.println("model "+  modelName+ "  not found"); 
        } finally { } 
          ModelSchema mm = mv.readModel(username, modelName); 
         ……….. 
      } 

Figure 7. Restful Web Service model invocation. 
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Since the RWS driving the model has the same functionalities 
as the driven model, the RWS may read semantics of each 
transition function before invoking it to synchronize itself 
within the simulation. The synchronization is also designed 
as triples. Each model has and can compute its TL and TN 

times of its last and next events with respect to TNOW the 
current simulation time. When any transition function is 
invoked, the RWS checks if necessary parameters are already 
computed. Though, a model B can now know by reading the 
TSC that a model A must product its output at a specified 
time and write it in the TSC. If B does not find A output, it 
must wait until its arriving before running its DeltaExt(). This 
is described by the semantic of the Out() of A. According to 
a disease spread, Epidemic Modeling can predict the next 
infected contact time which is reported in the TSC. The triple 
<u: A> <u:hasOutPort1NextTime> <u: value> specifies 
that A will produce its next output on OutPort 1 at time equals 
value.  The log of the events times is recorded in the TSC 
until the end of the simulation session. OutPorts events next 
times are also reported according to TNOW. Intelligently, the 
RWS evaluates the transition function parameters before 
execution.    

4. AMBIENT INTELLIGENCE ADAPTATION 
Nowadays Constrained Devices such as Smartphones are 
furnished with Global Positioning System (GPS). Free 
Android/iOS applications can record contact locations in data 
stores (NoSQL) using RWS. In the same way, other health 
data, temperature, blood pressure, etc. can be captured and 
recorded. These data are integrated to Real-time Simulation 
to allow simulation be conducted with online data.  

The mathematical modeling of infectious disease spreading 
has been extensively studied for a long time [12]. A lot of 
epidemic models, such as the compartmental models that are 
composed of differential equations, have been developed and 
analyzed [12,36]. The population is divided into different 
compartments and each compartment corresponds to an 
epidemiological state which depends on the characteristics of 

the particular disease being modeled and its transmission 
over complex heterogeneous networks where a node is an 
individual and an edge stands for interaction between nodes 
allowing disease transmission [19-21,23-24,36-37,39–41].  It 
is shown that the SIS [3] and the SIR [21] models indicated 
that the connectivity fluctuations of the network play a major 
role by strongly enhancing the incidence of infection. To deal 
with these connectivity fluctuations, AmI is utilized to a high 
degree. 

Spreading processes are strongly interacting with huge flow 
of quantitative social, demographic and behavioral data that 
may be used to improve the immunization strategy. The 
topology of the pattern of contacts between individuals plays 
a fundamental role in determining the spreading patterns of 
epidemic processes embedding the mechanism of diverse 
infection periods and is an impact on the properties of the 
dynamical behaviors of the spreading process. The existing 
immunization strategies are limited by their computational 
requirements and still have the problem of scaling in large 
networks. Optimal immunization strategies shed light on how 
the role and importance of nodes depend on their properties, 
and can yield importance rankings of nodes.  

Contacts positions, social and environment information are 
dynamically and periodically gathered by devices before 
applying any strategy. The simulated strategy detects the 
appropriate contacts once running on DevsServer. Contacts on 
constrained devices are dynamically advised to avoid a 
critical and unsafe location as a prediction due to AmI 
servers’ simulation. Contacts can move safely avoiding 
disease contamination. Notification, data gathering and 
geographical visualization applications for mobile are part of 
the platform and may be installed on contacts constrained 
devices. Typical information on disease can also be 
visualized and critical regions colored (Figure 5). Parallel 
diseases surveillance is captured so that contacts related to a 
specific disease are advised with their disease state.  

Load B. 
Ask B to initialize. 
Ask B to execute its Deltaext. 
Ask B to execute its Deltaint. 
Ask B to compute its outputs. 

 

RWS of B 

Class of B 

Load A. 
Ask A to initialize. 
Ask A to execute its Deltaext. 
Ask A to execute its Deltaint. 
Ask A to compute its outputs. 

RWS of A 

Class of A 

Load C. 
Ask C to initialize. 
Ask C to execute its Deltaext. 
Ask C to execute its Deltaint. 
Ask C to compute its outputs. 

RWS of C 

Class of C 

TSC 
AB 

TSC 
AC 

Mediator 

Mediator

Simulation Interface 1 Simulation Interface 2 

User Interface 1 User Interface 2 

           DEVSServer of B                                               DEVSServer of A                                                   DEVSServer of C 

Figure 8.  A coupled model execution within three distant servers. 
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5. CONCLUSION 
A new concept and ideas for distributed simulation are 
implemented as DevsServer showing that the design of 
DevsServer principles (TSC paradigm, Mediator, Collector, 
Repository) can achieve interoperability. The TSC 
interoperability style at the Web level (RWS) allows 
DevsServer to take advantage of new Web-based features or 
technologies. On the other hand, DevsServer provides better 
interoperability applying RWS principles among the TSC 
paradigm. 

DevsServer is specially designed to deal with DSS but it can be 
applied to similar systems. DSS with Epidemic Modeling 
deal with a large number of contacts moving dynamically and 
temporally. Each contact is using AmI devices to join/disjoin 
the distributed structure dynamically at run time. Therefore, 
DevsServer is designed to adapt to AmI environments and aims 
to distribute the simulation among different types of nodes in 
a dynamic way.  

Before detailing future directions such as DevsServer cloud 
implementation, we aim to consider an incoming paper 
integrating a full execution of an epidemic simulation 
scenario under AmI assistance to show the DevsServer ability 
to a wide range of interaction and pursue its intelligent 
interoperability aspect.       
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