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ABSTRACT 
In this article, we study the different ways to develop a multi-paradigm model of a hybrid system. VLE (Virtual Laboratory 
Environment) offers two ways: the DEVS mapping and the DEVS wrapping in order to manage existing models in VLE 
framework. We deal with the wrapping technique which consists in connecting existing simulators models to DEVS 
compliant simulators. Our approach is illustrated with several simple examples: an ordinary differential equations system in 
the case of wrapping and a spatial differential equations system in the case of mapping. The second aim of this article is to 
propose an approach to develop a multimodel of hybrid system in the formal and efficient application programming interface 
of VLE. 

KEYWORDS 
DEVS, Wrapping, Mapping, ODE, PDE, Quantized System, Cell-DEVS 

1. Introduction 
Nowadays, it is recognized that multimodelling is a powerful concept for modelling and simulation of large complex 
systems. At the end of 80's, P.A. Fishwick and B.P. Zeigler [Fishwick 1992] introduced the multimodelling basis concepts. 
One can define multi-models as large models which are composed of different types of models (i.e. different paradigms) 
[Fishwick 1995]. Concepts like refinement and hierarchical composition are basis of multimodelling. The first describes the 
decomposition of one model into several other ones in order to refine the behaviour of the composed model. The last defines 
the opposite process: it is say models aggregation. In this context, a major issue is how to deal with the coupling of 
heterogeneous models. Several works deal with the coupling of heterogeneous models. For a review of concepts and 
techniques, see the book of B.P. Zeigler et al. [Zeigler et al. 2000]. With DEVS, Discrete Event System Specification 
[Zeigler 1976], B.P. Zeigler has provided formal basis for coupled model construction in a network or graph manner. If 
models we want to couple are specified in a unique formalism, it does not appear unsolvable problems, whereas the coupling 
of models which are formally different can lead to several coupling strategies. 

The work presented here takes place in the field of formally heterogeneous models coupling. To tackle this issue, we briefly 
recall concepts like mapping and wrapping. Then we give example of “formal” wrapping and show the feasibility with a 
particular and very simple application. 

1.1. Heterogeneous Models Coupling 
In their book, B.P. Zeigler et al. give formal basis for the specification of multi-formalism models. In the same way, H. 
Vangheluwe proposes a framework for multi-paradigm modelling and simulation [Vangheluwe et al. 2002]. In all those 
works, the DEVS formalism appears as the common denominator for the integration of heterogeneous models. DEVS 
provides two ways for integration of non-DEVS models into DEVS simulator: Mapping and Wrapping: 

Mapping: Mapping concept means to find a total equivalence between an existing formalism and DEVS. We can find an 
example in Jacques and Wainer's works for the mapping of Petri nets into DEVS [Jacques 2002]. 

Wrapping: Wrapping means to build an algorithm that is compatible with DEVS abstract simulators i.e. to develop a 
functional interface between a particular model and a DEVS simulator. 

In this paper, we propose to deal with wrapping. As we have applications in ecology [Duboz 2003], we need to address 
systems complexity. Wrapping seems to be a powerful mean to achieve it. We develop a free and open source platform: VLE, 
available on sourceforge.net website. Initially, VLE only deals with agent based modelling. This platform is now oriented 
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toward the integration of heterogeneous models. Actually, VLE uses the DEVS formalism and abstract simulators [Zeigler et 
al. 2000] for coupling models by integrating the concept of DEVS-Bus [Kim 1996]. VLE provides a framework for 
heterogeneous simulators coupling. Furthermore, VLE integrates XML applications to describe experiments and model 
coupling [Duboz 2002]. VLE is oriented toward the managing of existing models. Figure 2 shows the DEVS-Bus framework 
in the context of VLE.  

We distinguish two layers: the top layer which is in concern with the formal integration and the simulation layer which is in 
concern with abstract simulators integration into DEVS-Bus.  

 

Spatial differential 
equations 

Differential 
equations 

DEVS model Modelling layer 

DEVS 
Wrapper

 

In this article, we discuss the articulation between the modelling and the simulation layer (Figure 2). It means that we address 
the issue of the wrapping of different pre-defined formal models into the VLE framework in order to simulate them.  

In such a wrapping, the main difficulty is in concern with the connection of continuous time models or non timed models 
within the DEVS-Bus framework. Indeed, DEVS specifies discrete events based simulations. It may be difficult to connect 
simulators with another time scheduling or without explicit representation of what is an event. In this paper, we take an 
example with the coupling of a DEVS model with a Petri net and an ordinary differential equations system to illustrate this 
issue. Before presenting our example, we briefly present the formal basis of our works. 

1.2. DEVS and VLE 
A DEVS atomic model is defined as a structure: 

taSYXM ext ,,,,,, int λδδ=  

Where: 

( ){ }pXvInPortspvpX ∈∈= ,, , is the set of input ports and values. 

( ){ }pYvOutPortspvpY ∈∈= ,, , is the set of output ports and values. 

S , is the set of sequential states. 
SS →:intδ , is the internal transition function. 

SXQext →×:δ , is the external transition function. 

YS →:λ , is the output function. 
+ℜ→ 0: Sta , is the time advance function. 

( ){ })(0,, staeSsesQ ≤<∈= ,  

 is the set of total states, Q
  e is the time elapsed since last transition. 

DEVS BUS

DEVS COORDINATOR 

Cell-DEVS + QSS 
Simulation layer 

Figure 2: The use of DEVS-Bus for operational and formal coupling in VLE. 
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A DEVS coupled model defines how to couple atomic models in order to build a new model. The property of closure under 
coupling guaranties that a DEVS coupled model is equivalent to an atomic one in an upper hierarchical level. Hierarchical 
decomposition and modularity are fundamental in the DEVS formalism [Zeigler and al. 2000]. In VLE, as in DEVS, we 
consider that intδ , extδ ¸ λ and  are functions which encapsulate the dynamic and the behaviour of a model. We are 
particularly interested in formalism wrapping. Two questions are addressed: 

ta

1. “How to translate input and output event notions?” 

2. “How to translate, intδ , extδ ¸ λ and ?”. ta

Indeed, if we are able to specify those functions considering a particular formalism, we can connect the associated simulators. 
Into the framework VLE, interaction between simulators and coordinators is given by the five “classical” DEVS functions 
[Zeigler and al. 2000]. 

EventList getOutputFunction(Time currentTime) 

Time getTimeAdvance() 

void init() 

void processInternalEvent(InternalEvent event) 

void processExternalEvent(ExternalEvent event) 

 

1.3. Wrapping 
Input and output events for non-DEVS formalism: If the designed formalism is based on the discrete events concept, it does 
not appear major problems. We just have to check that exchanged events are compatible in term of data type and semantics. 
If there is no notion of input and/or output event in the formalism we want to couple with a DEVS simulator, we need to find 
equivalence for those notions. We can propose various strategies for each formalisms, lets us give an example. What does an 
input or output event “means” for an Ordinary Differential Equation (ODE). In this case, input event can be seen as a 
perturbation on a particular variable of the ODE system. Therefore, the ODE model must incorporate the adequate behaviour 
in order to react in a good manner. For instance, the perturbation can be viewed as the definition of new initial conditions. As 
a consequence, the wrapper has to specify the type of input and output events it can accept. Then, some rules of translation 
(analogy) explicit how the data of the input events are interpreted in the target formalism. 

In a more general way, the exchanged data related to events belong to a mathematical domain (For instance: or ). 
When using a wrapper, this domain is constrained by the formalism encapsulated in the wrapper. If we consider a Coloured 
Petri nets (CPN) [Jensen 1997], we can imagine that attributes of coloured tokens take there values from information shared 
by input events. For outputs events, the wrapper of CPN must translate the arrival of a coloured token in a particular format 
to generate an output event. The rules of translation depend on the context of coupling, i.e. the models which are coupled 
with the wrapper [Quesnel 2005]. 

3ℜ ℜ×ℵ2

DEVS transition functions for non-DEVS formalisms: Transition functions specify the dynamic of state changes. These 
changes are triggered by two functions: the external transition function and the time advance function. Considering non-
DEVS formalism, these functions we want to incorporate in a DEVS model must find an equivalent in the targeted 
formalism. In the case of the external transition function, we have to specify which functions are activated if an external 
event occurs. As the concept of state is specific to formalism, the state changes are described by the formalism. In other 
words, there are no major difficulties. In the case of time advance function, it can be more difficult. Indeed, we are facing the 
definition of time in formalisms. Time can be continuous, discrete or simply missing. In the latter case, the definition of time 
is given in the context of model coupling. The answer is then given by the context of model coupling. 

2. Wrapping and mapping in VLE 
In this section, we describe the shift from classical formalisms to a wrapper based on two examples: an ordinary differential 
equations system and a spatial differential equations system. 
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2.1. ODE Wrapper 
In this section, we develop a wrapper to encapsulate an Ordinary Differential Equation system. The ODE system is resolved 
by the classical 4th order Runge-Kutta integration. This method is used in this paper in order to simplify the presentation. We 
can use any integration method. In VLE, we can deal with any ODE system following the form: 

( )nii
i xxxf

dt
dx ,...,,...,0=  

Where equations are composed with different elements: variables, parameters, functions with parameters, operators (+, −, × 
or ÷) and real constants. The Runge-Kutta integration method can be change by another integration method like quantized 
methods QSS1 or QSS2 [Kofman 2001]. These last methods have the advantage to express with DEVS abstract simulator. 

In the following sections, we discuss on wrapper signification for an ODE system, we define formally ODE Wrapper and we 
show an example. 

2.1.1 Presentation 
First, the equation parameters are initialised at time tmin and they don't change during the system resolution. This parameters 
are useful for us to perform some experiences with just modify their values. 

The system variables can be modified at any moment. These modifications are named perturbation. In this wrapper, we 
define two types of perturbation: additive and reset. The aim of this property is to apply change on current state of model to 
manage incoming events. On each perturbation, the resolution algorithm is restarted (i.e. the perturbation defines new initial 
conditions). 

Considering output event, we borrow an example from combined discrete and continuous formalism DEV&DESS [Zeigler et 
al. 2000]. We consider that output events are generated on thresholds. We distinguish three types of thresholds: a threshold 
on a value, on first derivative and on second derivate. Furthermore, we consider that an output event is generated at each time 
step of resolution of the integration method. 

In the case of output events are generated when a threshold is reached, they are associated with a set of data which are built 
starting from the state of the system. The data types attached with event are specified by the modeller and they can depend on 
others models which are connected with the ODE wrapper. 

After the translation of input and output events, we must define the transition functions. The internal transition function and 
the time advance function are related to the integration time step. At each time step, the state of system changes according to 
a numerical scheme. 

According with the DEVS formalism, the output function is computed just before the internal transition function. In our 
example, the output function must generate an event if a threshold is reached. This computation is made possible thanks to an 
on line estimation of the derivatives. One can formalise this operation using a DEVS model. 

2.1.2 Formal description 
In this part, we formally define the ODE Wrapper: 

OtaSYXM extode ,,,,,,,, int Ω= λδδ  

The set of states S, is define like: 

( )TXXXS ,,,
r
&&

r
&

r
=  

Where: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

nx

x
X

&

M

&r
&

1

 

With Ω∈ω  set of definitions of thresholds, T  a set of reached thresholds, number of reached 

threshold. 

ℵ∈Ω⊂∈ pTT p ,,ω
( vi ,,, )σαω =  defines of threshold with:  index of variable, i α  type of threshold (constant, derive1 and 
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derive2), { } 0, U−+∈σ . σ represents the direction of variation and  value of variable. v ({ )}ω,pO =  defines the set of 
output port and threshold couple. 

The internal transition is defined: 

( ) ( )TXXXXXX ,,,0,,,int ′′′=/
r
&&

r
&

rr
&&

r
&

r
δ  

Where X
r

′ , X
r
& ′ , X ′

r
&& are estimated variable at next time. We use Range-Kutta integration method to build estimated variables 

from X
r

to X
r

′ , X
r
&  to X

r
& ′  and X

r
&& to X ′

r
&& . But all other integration method can be use. 

( ) ∅=/0,,, XXX
r
&&

r
&

r
λ  

( )( ) ∆=/0,,, XXXta
r
&&

r
&

r
 

With is the integration step. ℜ∈∆
The previous functions show the integration of ODE. The following functions allow the management of events on the 
thresholds i.e. when  ∅≠T

( ) ( )0,,,,,,int /= XXXTXXX
r
&&

r
&

rr
&&

r
&

r
δ  

( ) ( )( ){ }XiithresholdpTXXX ,,,,, =
r
&&

r
&

r
λ  

( )( ) 0,,, =TXXXta
r
&&

r
&

r
 

Where such as i ( ) Tvi ∈= ,,, σαω and ( ) Op ∈ω, . In this article, we generalise the  function if integration 
method don’t use a synchronous method (for instance QSS2 [Kofman 2001]). If we use only a Range-Kutta integration, we 
can produce output events and next state of system in same time. In this case, 

)(Sta

( )( ) ∆=TXXXta ,,,
r
&&

r
&

r
 

The external transition function is: 

( )( ) ( )( )( ) ( )( )
( )( )⎪⎩

⎪
⎨
⎧

=

=+=
resetifTXXXvX
additiveifTXXXvXXvipeTXXXXX

n

ni
niext

α
ααδ

,,,,,,,
,,,,,,,,,,,,,,,,,,,

0

0
0 r

&&
r
&KK

r
&&

r
&KKr

&&
r
&KK  

( )( ) eTXXXta −= σ,,,
r
&&

r
&

r
 

Such as: 

( )( ){ } InPortspvipX ∈= ,,,, α . 

Where X ′
r
&  and X ′

r
&&  are re-initialised. If ∅≠T  then conflict between internal and external event. The modeller must 

determine priority management between internal and external events. σ is the time that rest in current state. This method 
allows system to advance if the wrapper receive external event between two steps. 

2.1.3 Algorithms 
In this part, we describe algorithms written into the ODE Wrapper of VLE framework. For the processInternalEvent 
function, we present only the detection of constant and positive threshold. The others cases are similar. 
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processInternalEvent(internalEvent : Event) 

If T = ∅ Then 
 S’ = S 
 ODE.solveSystem() 

 For each ( ) Ω∈= vi ,,, σαω  Loop 

  If iiii XXS,XSX <<′∈′∈′=+= νασ ,,constant'',  Then { }ω∪= TT  

  ... 
 End Loop 
Else T = ∅ 

∆=σ  
End If 

Two cases for advance time function: the transient state for the generation of output (ta is null) and the state of numerical 
integration. The variable σ is equal to ∆, the integration step, in the majority of case. If an external event occurs then σ is 
decrease with the time elapsed since last transition (e). 

Time getTimeAdvance() 

If T = ∅ Then Return σ  
Else Return 0 
End If 

The output function is active when the set of reached thresholds isn’t empty. The outputs of the model are building from the 
set of threshold and are also only discrete. Contrary to HFS (Heterogeneous Flow Systems – [Barros 2002]) or FSPN (Fluid 
Stochastic Petri Nets – [Kulkarni 1993] [Horton 1998] [Tuffin 2001]), our ODE wrapper didn’t process continuous outputs 
and continuous inputs. The aim of this paper is to show how to build a DEVS wrapper in VLE framework. HFS and FSPN 
are more efficient methods for modelling and simulation of hybrid systems. Our ODE wrapper is more similar to 
DTSS/DESS (Discrete Time System Specification / Differential Equation System Specification [Zeigler 2000]). 

EventList getOutputFunction(currentTime : Time) 

Y = ∅ 
If T ≠ ∅ Then 

 For each ( ) Tvi ∈= ,,, σαω  Loop 

  Y = Y ∪ ( ) ( ){ }OpXp i ∈ω,,  

 End Loop 
End If 
Return Y 

When an external event occurs on a variable of the differential equations system, a discontinuity appears. The derivative and 
the second derivative are undefined. The numerical integration method is reset. 

processExternalEvent(externalEvent : Event) 

Let ( )( )α,,, vipxXx =∈  

If α = additive Then 

 ν+= ii XX  

Else If α = reset Then 

 ν=iX  

End If 

 are undefined ii XX &&& ∀∀ ,
e−= σσ  
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2.1.4 Example 
In this section, we develop an example of model for using ODE wrapper. We construct a toy model simulating the regulation 
of prey and predator population dynamic by an external intervention. All unit and parameters values are arbitrary. 

We just want an illustration of our approach. We first consider a the prey-predator model defined by Lotka-Volterra [Lotka 
1925]: 

dxycy
dt
dY

bxyax
dt
dX

+−=

−=
 

With X the concentration of preys and Y the concentration of predators. Parameters a=0.2, b=0.2, c=0.5 and d=0.5 are 
arbitrary. We use these values in order to obtain a stable equilibrium between preys and predatory. Initial condition are X=1 
and Y=0.1. 

 

⎪
⎩

⎪
⎨

⎧

+−=

−=

dxycy
dt
dY

bxyax
dt
dX

Y 

 

X 

 

The ODE wrapper can receives disturbances from connected model on its input ports. This model send external event to the 
wrapper to decrease X variable by a constant: 1.2. ODE wrapper sends external events when Y variable reaches a constant 
threshold with value 3. The connected model who receives this events, wait 3 events and send an event to decrease X 
variable. 

 

 
Figure 3: This figure shows a discontinuity in the predator concentration evolution. It corresponds to an event of predator 

uptake. At the same date, we can see another discontinuity in the evolution of prey concentration. 
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Figure 4: Oscillation of preys and predator concentration over time. Predator are taking off (-1.2 predators) if the 

concentration reach 3 times the arbitrary units of 3 predators. Taking predator introduce instabilities in the evolution of 
populations. 

2.2. CellQSS mapping in VLE : Spatial Differential Equations 
Another class of differential equations is partial differential equation. For this class, it’s possible to use the previous tool, the 
ODE wrapper but, in this section, we propose another approach: the mapping technique in VLE framework. We will show 
that it is possible to generalize the use of DEVS formalism, Cell-DEVS and QSS with the partial differential equations with 
the derivative. 

In the first part, we present the concept of quantification integrator and an extension of DEVS for cellular automaton. The 
first permits to propose a method to solve an ordinary differential equation. The mainly property of this method is to be 
express into DEVS framework. The second formalism is an extension of DEVS and proposes formalism for spatial process. 
In our case, the partial differential equation, we limit ourselves to the partial derivatives according to the time and the space. 

2.2.1 Brief presentation of quantification integrators 
Parallel to the traditional methods appeared new techniques of numerical resolution of differential equations based on the 
quantification of the output values rather than on the discretization of time. Thus, Kofman proposes in [Kofman 2001] 
[Kofman 2002] through QSS1 and QSS2 two methods of numerical resolution of first order differential equations. For the 
presentation of these two methods, let us consider the following system: 

( ) ( ) ( )( )

( ) ( ) ( )( )⎪
⎩

⎪
⎨

⎧

=

=

txtxftx

txtxftx
S

nnn

ni

,,

,,

1

11

K&

M

K&

 

The global idea is to approximate the functions xi(t) by constant piecewise functions (for QSS1) or of the affine piecewise 
functions (for QSS2) then to encapsulate each xi in an atomic DEVS model. At an instant denoted t, each model has like state 
variable a constant for QSS1 or an affine function for QSS2. Lastly, it's appropriate for the models to compute an internal 
transition when their states move away too much the theoretical curve to integrate. 

2.2.2 Another extension of DEVS: Cell-DEVS 

 

The extension named Cell-DEVS was born from the following observation: many models use discrete spaces and use 
formalisms such as the cellular automata. Wainer and Giambiasi in [Wainer 01] developed Cell-DEVS. This extension must 
be able to describe and simulate models as a multidimensional cellular automata and discrete events. The dynamics of the 
cells is time-lag i.e. that the state of cell will be modified according to the state of its neighbour cells, but it will be known by 
neighbour cells after a certain time. The basic idea is to provide a simple mechanism of definition of the synchronization of 
the cells. As for any proposal for an extension, the authors offer at the same time the extension of the formalism which is 
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summarized with the addition of variables and their semantics, and the abstract simulator. In this paper, we propose a 
simplified structure according to the coupling with QSS formalisms. 

Our Cell-DEVS atomic model is defined as a structure: 

NdtaSIYXM ext ,,,,,,,,,, int σλδδ=  

Where 

X is the set of external input events; 
Y is the set of external output events; 
I is the interface of cell (list of neighbours); 

( ){ IsN iii ∈= }ηη ,  is the state of neighbourhood (it’s a simplification compared to the original version); 
S is the state variables used in each cell without the state of neighbourhood; 
d ∈ R0

+ is the diffusion delay of the state; 
SS →:intδ is the internal transition function; 

SXQext →×:δ  is the external transition function, where Q is the state values defined as: 

( ) ( )[ ]{ }staOedSsesQ ,,, ∈×∈=  
λ: S → Y is the output function; 
ta: S x d → R0

+ ∪ ∞, is the state's duration function. 
 

2.2.3 Integration of QSS into Cell-DEVS 
By applying directly the principle of discretization of space and the transformation into linear system of order 1, it is already 
possible to integrate this kind of equation: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
∂

∂∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

−

−

K
K

KK ,,,,,,,,
121

2

1
1

1

p

p

n

n

n

n

xx
T

xx
T

x
TT

t
T

t
T

t
T ϕ  if an approximation of p

p xxT ∂∂∂ K1  is 

possible. 

Let us show this assertion: let  the discretization of ( )tf i p
p xxT ∂∂∂ K1  then  will depend on 

 and will not depend on differential. Let us 

( )tf i

( ) ( ) K,,,, hxtTxtT − ( ) ( ) 1

1

11 ,,
−

−

− ∂
∂

=
∂
∂

= n

n

n t
TtT

t
TtT K . Thus the previous 

equation becomes: 

( ) ( ) ( ) ( ) ( ) ( )( )tftftftTtTtT
T

T
pnn

n

,,,,,,, 2111 KK−=
∂
∂ ϕ  

and it’s possible to transform to a system: 
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( ) ( ) ( ) ( ) ( ) ( )( )

⎪
⎪
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⎩

⎪
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,,,,,,, 2111
1

1
2

3
2

2
1

1

KK

M

ϕ

 

Only ordinary differential equations are defined. Each equation depends on several ODE. In the case of spatial differential 
equation, if the space is discretized then these equations depend on neighbourhood. 

2.2.4 Algorithms 
In this part, we describe algorithms written with VLE framework. Before the description of algorithms, we define some 
variables of DEVS abstract simulator: 

 t : the current time 

 tL : the time of last event 

 tN : the time of next event (tN = tL + ta(S)) 

 e : the time elapsed since last transition 

 σ : the time remaining in the current state (σ = t – tN = ta(S) - e) 

Each variable is indexed by the number of differential equation and by the index of cell. In the following, we omit to indicate 
the index of cell in order to simplify algorithms. 

The internal transition function is identical to that of QSS. Indeed, if no event occurs before σi then the threshold qi is reached 
and the gradient must be revalued. 

processInternalEvent(internalEvent : Event) 

Let i the current differential equation (i. e. 0=iσ ) 

If  Then  Else 0>ix& 1+= ii qq 1−= ii qq  

 

 

qqx ii ∆=
( )tfx ii =&

ijjij σσσ −=≠∀ ,  

[ ] ini
σσ

;1min min
∈

=  

If ε<ix&  Then +∞=iσ  

Else If  Then 0>ix& ( )
i

ii
i x

xqq
&

−∆+
=

1
σ  

 Else 
i

ii
i x

xqq
&

−∆
=σ  
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The advanced time function is very simple. The duration of state without external perturbation is equal to the minimal of time 
to reach a threshold qi. 

Time getTimeAdvance() 

Return minσ  

When the gradient of one or more equations is modified by internal event (i.e. the state is modified), the values of variables 
of the system are posted to neighbour cells from the output function. Each cell has only one output port for the propagation of 
state of cell. 

EventList getOutputFunction(currentTime : Time) 

Y = ∅ 
If state is modified Then 
 V = ∅ 

 For all differential equation fi Loop V = V ∪ { }iX  End Loop 

 Y = Y ∪  
Return Y 

( ){ }Vout,

Two kinds of external event can occurs: one of neighbour cell have changed its state or another model coupled to CellQSS 
model makes a perturbation. In these two cases, the gradient of each function can be modified. So, one must to compute the 
state of system when external event occurs and the gradient function is compute too in order to estimate the new σi. 

processExternalEvent(externalEvent : Event) 

If externalEvent is a change of state of neighbour Then 

 Let , the name of neighbour 
 Let v, the new state of current neighbour 

  where 

Ip ∈

vs p = ( ) Nsp p ∈,  

Else processPerturbation 
For all differential equation fi Loop 

 Let  

 If Then  

  

 If 

iLi tte −=

0>e iii xexx &+=
( )tfx ii =&

ε<ix&  Then +∞=iσ  

 Else If  Then 0>ix& ( )
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End Loop 
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In case of external perturbation, the gradient of each function is reset and the quantum is updated. 
processPerturbation(externalEvent : Event) 

For all differential equation fi Loop 
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2.2.5 Example 

Let us consider the example of the equation of diffusion of heat on a bar [Fletcher 2000] for illustration of QSS and Cell-
DEVS: 

( ) ( )
2

2 ,,
x

xtTK
t

xtT
∂

∂
=

∂
∂

 

where K is the coefficient of diffusion. 

We make an approximation of T(t,x) by its values in various points of the bar after having chosen a space step x∂ . Denoted 
 these values, the previous equation becomes: ( )tTi

( ) ( )
( )2

11 )(2)(
x

tTtTtTK
t
tT iiii

∆
+−

=
∂

∂ +−  

for all i from 1 to N, using, by example, an approximation of the second derivative in three points.  

One of the traditional approaches (the explicit method, for instance) would now consist to approximating ( ) ttTi ∂∂  by 

( ) ( )( ) ttTttT ii ∆−∆+ . But the equations form at this level a system of first order differential equations in ( )tTi . It is thus 
possible to solve them using a QSS method. 

L L L L 

 

 

3. Discussion and Perspectives 
The first question in this article is how to bring making of VLE wrapper from existing models. Several stages are necessary. 
The first part, we must find in study model, elements like time, states, events etc. Some models like Petri net can make 
problems because time does not exist in basic Petri net structure however time is a principal element of DEVS formalism. In 
this case, time must be recreated in the formalism in order to satisfy DEVS functions [Quesnel 2005]. 

Second stage is to define state of model. State  is an important element. The state can be accompanied of DEVS formalism 
elements. After state, we must define an internal transition function 

S
intδ who allows changing state. An external transition 

function extδ can be defined to manage external events. We must attach each element to its DEVS function. Lastly, we must 
find in the model how an input event could come to disturb the current state. 

This paper is a first step toward the integration of complex model such as multi-paradigm systems. If we consider pre-
existing models which are not formalised, Wrapping techniques can be very useful to permits there reusability 

In section 2, we defined two DEVS models used in VLE framework to model continuous systems. First, we use wrapping 
technique to develop a wrapper to an ODE formalism based on Runge Kutta integration method. Second, we develop a model 
based on mapping method to perform coupling between a cell automata, CellDEVS, and an ODE system, QSS, to build 
spatialized equation systems. 

With these models, we offer to model continuous and discrete models. However, is VLE framework providing tools and 
models to build hybrid systems? 

Hybrid systems are defined as systems using both continuous and discrete behaviour. Differential equations are used for 
representing continuous system, discrete event for discontinuities. There is some works on this type of systems like the Fluid 
Stochastic Petri Nets (FSPNs) defined by V.G. Kulkarni and K.S Trivedi [Horton Kulkarni 1998]. In this type of Petri net, 
some features are different from traditional Petri net. 

• The tokens transport continuous variables. 

out 
R 

out 
R 

out out out 
R R 
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• Two type of transition exist: 

o Stochastic: Transitions are fired after a random timed. 

o Classical but with condition: Transitions are fired fallow some conditions. The Conditions are function of 
continuous variables on tokens. 

In next section, we study the implementation possibilities, in VLE framework, of hybrid system. We explain the 
Heterogeneous Flow System Specification (HFSS) defined by F.J. Barros [Barros 2002] and its potential integration in VLE. 

The HFSS is a paradigm for simulating hybrid systems. HFSS is based on DEVS formalism and provides discrete and 
continuous input and output ports, a set of states, a transition function which depends on discrete and continuous inputs.  

HFFS is defined by: 

( )λδτρ ,,,,,,,, 0 cqSYXHFSS Λ=  

Where: 

dc XXX ×= is the of input flow values, the set of continuous input flow values, the set of discrete input 
flow values. 

cX dX

dc YYY ×= is the of output flow values, the set of continuous output flow values, the set of discrete output 
flow values. 

cY dY

S is the set of partial states. 

+ℜ→ 0: Sρ is the time to input function. 
+ℜ→ 0: Sτ is the time to output function. 

( ) Qesq ∈= 000 , is the initial state, with e is the time to transition function. 

( ) SXXQ dc →×× /0:δ is the transition function 

HFSS entries are continuous or discrete. Continuous input ports, using sampling, have an influence on continuous system. 
Discrete inputs can change the state of HFSS model. HFSS uses threshold to build discrete outputs and continuous output 
ports. The fundamental idea of HFSS paradigm is the discrete entries cause change of state on system and thus cause change 
between differential functions. 

HFSS seems to be a technique to develop efficient hybrid systems in speed building and simulation. HFSS uses optimisation 
in simulator to increase simulation. However, the main critical remark for us is the incompatibility with DEVS formalism 
used in VLE framework. In DEVS we need two transition functions: an internal and an external to make models compliant 
with DEVS abstract simulator. 

An alternative to HFSS i.e., to allow creation of hybrid systems and to create an equivalent to HFSS, is to use the GDEVS 
(Generalized Discrete Event Specification formalism [Giambiasi et al. 2000]). It’s a compliant DEVS models that uses 
polynomials of arbitrary degree to represent the piecewise input-output trajectories of a discrete event model instead of 
DEVS who approximates the input, output, and state trajectories through piecewise constant segments. The input ports can 
change a coefficient to change state of continuous variables. A coefficient event is considered as an instantaneous event. The 
GDEVS model provides to VLE framework new methods to develop hybrid systems and a good replacement to HFSS. 
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