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Abstract –This paper proposes a framework for dynamic 
structure cellular automata & agent (DSCA2). Using such 
framework allows preserving modularity of components and 
modeling dynamic structural changes of components during the 
simulation. The formal and component-based treatment of 
DSCA2 builds a solid ground for future applications to complex 
system modeling and simulation. 
 

I. INTRODUCTION 
 

Cellular automata modeling and agent-based modeling are 
two major paradigms to model and simulate complex 
dynamical systems. The cellular automata modeling 
includes a grid of cells where each cell’s state can affect 
and be affected by its neighboring cells’ states. It models 
spatiotemporal interactions and behaviors of a system. 
Examples of cellular automata modeling and simulation 
include urban environment simulation, forest fire 
simulating, and disease spreading simulation, etc. The 
agent-based modeling includes a group of agents that 
interact with each other and with an environment. Each 
agent has relatively simple behaviors and interaction rules, 
exhibiting emergent behaviors when working together. 
Examples of agent-based modeling and simulation are in 
many different fields, including social system simulation, 
software systems, traffic simulation, etc. 

This paper concerns a modeling approach where 
cellular automata models work together with agent-based 
models and act as a spatial (physical) environment in 
which agents are situated. Within this context, we are 
particularly interested in how these models can also 
support dynamic structure modeling for complex systems. 
At a physical level, natural and software systems 
frequently change structure. Growing, a plant adds 
numerous behaviors and branches. In a computer network, 
nodes are dynamically added and deleted changing their 
behavior. At a software design level, allowing components 
to change (their or other) structures increases the 
complexity and the flexibility of the systems developed. 
Using such approach allows modeling more faithfully 
reality and opens huge research perspectives to modeling 
and simulation. 

In this modeling approach, the environment is 
spatially modeled as a cellular space model composed of 
multiple cells. Each cell corresponds to a sub-area of the 
environment and has its own states. An example is a 
pedestrian crowd simulation where the streets are modeled 
by street cells and pedestrian are modeled as agents. In a 
more complex case, a cell may also have its own 
dynamical behavior. For example, in a forest firefighting 

simulation, forest cells are used to model the behavior of 
fire spread and agents are used to model the behavior of 
firefighters. The interaction between an agent and the cells 
(its environment) is supported by the couplings between 
the agents and cells. Dynamic structure of these models 
include the structure change of CA models such as 
adding/deleting cells, the structure change of agent models 
such as adding/removing agents, and the structure change 
of the connections between agents and cells. For example, 
when an agent moves spatially in the environment (the 
cellular space), the couplings between the agent and the 
corresponding cells are dynamically changed. This hybrid 
modeling approach separates the modeling concerns of 
agents and the environment (the cellular space). The 
dynamic structure capability can greatly enhances its 
modeling power by supporting adding/deleting cells or 
agents and their couplings. Furthermore, using such 
approach preserves component modularity thus enhancing 
model reusability. We name this modeling paradigm 
Dynamic Structure Cellular Automata & Agents (DSCA²) 
in this paper. 

To leverage the power of DSCA² described above, it is 
important to treat both models and their connections in a 
formal and structural manner. In this paper, we propose a 
generic architecture to preserve modularity of components 
while letting them free to modify their structure themselves 
or to be modified during the simulation or to be specified 
by the modeler. We provide a specification for this 
dynamic structure cellular automata and agent modeling. 
While many specifications exist for CA and agent, most do 
not account for structural changes during the simulation. In 
this paper, we base our specification on the Discrete Event 
System Specification (DEVS) formalism. The remainder 
of the paper is organized as follows. Section II describes 
usual component-based approaches for CA modeling. 
Section III discusses the specification of a single agent and 
multiple agent system. Based on these discussions, Section 
IV provides a formal specification of DSCA2. Section V 
presents related works and perspectives.  
 

II. CELLULAR SYSTEMS 
 

Figure 1 presents a usual component-based cellular system. 
To describe the latter different modularity and 
specification levels can be used. Couplings between cells 
include internal couplings [neighbourhoods (von Newman, 
etc.)] and external input and output couplings (cell external 
influences). Case (1) on figure corresponds to a non-
modular case, case (2) to a modular one. When using ports, 
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many modularity choices can be achieved too. When using 
a discrete-event description of systems, transition functions 
of cells are decomposed in many sub-transitions, each one 
activated according to the port name or the event kind 
received as input. Ports can be highly modular, i.e., to a 
single port name corresponds a single event kind. 
Otherwise, ports can be aggregated, i.e., to a single port 
name correspond many event kinds. Let us take an 
example to explain this notion: The use of ports to account 
for wind influences in a fire spread system. The first 
solution will consist of adding two ports named 
“WindDirection” and “WindStrength”. The first port can 
only carry values of wind directions, and the second port 
can only carry values of wind strength. In the second 
solution, we can consider a single port named “Wind”, in 
which distinct values of directions and strength can be 
carried. In the first solution, a test on the name port will 
lead to the activation of the corresponding sub-transition 
function. In the second solution, a test on the event value 
will lead to the activation of the corresponding sub-
transition function. Notice that both approaches can be 
mixed (as for system modularity), i.e., cells could have 
ports named “Wind” and ports named “Water.” Hence, 
both tests on port names and then event values will have to 
be achieved. 
 

 
Figure 1. A Usual component-based cellular system 

 
When modeling component-based cellular systems, 
according to modularity choices, three representative 
levels (corresponding to research directions) can be used. 
These levels can be described from the less to the more 
modular level: 

1. States of a cellular system can be wrapped in a 
single atomic model fully autonomous and 
modular; 

2. Usual multi-components in which external input 
ports can directly influence state transitions of 
cells [1]; 

3. Highly modular cellular systems consisting of a 
coupled model in which cells consists of atomic 
models fully autonomous and modular [2]. 

 
Beyond this modularity classification, higher 

specifications can be built on usual modular descriptions 
[3] or on a non-modular specification [4]. 

Notice that a cellular model could be a multi-agent 

system. However, we consider here agents as mobile 
independent components. 

In the next sub-section we investigate a new research 
direction to integrate previous modularity and dynamic 
structure changes during the simulation. 
 

III. ENDOMORPHIC AGENTS  
 
Currently, as a new paradigm, artificial agents are 
constituted of many different structures and goal. Merging 
these different facets in a coherent single structure allows 
improving interoperability and facilitates understanding. 
 
A. A Single Agent 
 
What is an artificial agent? In (distributed or not) artificial 
intelligence, machine learning, economics, biology, control 
theory, and mind architecture, etc., plethora of structures 
and behaviors of computer systems are built to map 
“intelligent” behaviors and structures of animals or 
humans. However, what is an “intelligent behavior”? Is it 
planning, learning or adaptation? The notion is very broad 
and subject to interpretation. 

We propose here an open mathematical structure 
framework to map these interpretations on computers to 
achieve simulation. Using these structures, a modeler will 
be able to build component blocks constituting their agent-
based system. Both structure and behavior of components 
can be specified gradually. Using such component-based 
approach of modeling and simulation, multiple hierarchical 
compositions of components can be drawn. To precise the 
open structure in the hierarchy, let us draw frontiers and 
identify entities of an intelligent agent in modeling and 
simulation. 

      Cellular system 

When we speak about agents, we need to speak about 
an agent interacting with an environment. This 
environment can be social and/or physical. In the latter 
case, it can reflect dynamics of a phenomenon, and/or 
simply consist of the physical space (physical objects).  

To draw frontiers to agents, we can consider 
interactions between the agent and its environment. Using 
a priori knowledge and simulation, interactions of agents 
can be mental (what will be the consequences of that 
action in that configuration of the environment) and/or 
physical (an animal searching food). In both cases, an 
agent has to be able to build a model of itself and of its 
environment. Such ability is called endomorphism [5]. 
According to us, model-making is what make an agent 
intelligent, its goal.  

Hence, interactions can be simulated through physical 
or mental sensors (for vision, communication and/or 
property sensations). Sensors are controlled by an agent to 
collect data from the environment. Sensors and actuators 
(for motion, communication and/or property actions) are 
controlled by the agent according to a state value to reach 
(continuous or discrete). Perception consists of information 
construction based on the interpretation of states from 
sensors and actuators (physical or mental) through the 
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mind. In mind, by memory, an agent is able to construct 
models of itself and of the environment. As depicted in [6], 
current and long term memories can be used to retrieve 
models and data. Using perception and action through 
memory, an agent can learn and plan model constructions.  

Sensors and actuators constitute the body of an agent. 
Components of the mind are constituted of memory, 
planning, learning, perception, model of the agent itself 
and model of the model (metamodel) of the environment 
(physical and/or social). As an agent contains a model of 
itself (body and/or mind), it can contain a model of other 
agents, or a model of model (…) of other agents.  
 
B. Multi-agent systems and environment 
 
Usually, an agent is an active entity that can sense the 
environment (the cells) and carry out actions to affect the 
environment (changing the states of the corresponding 
cells). Examples of agents’ actions are movement in the 
pedestrian crowd simulation and both movement and fire 
suppression actions in the firefighting simulation. To 
support interactions between an agent and its environment, 
the agent needs to be coupled to the cells in the CA model. 
Two types of couplings can exist. The first one is from the 
CA model to the agent model. This allows agents to sense 
properties of the cells (corresponding to the sensory 
function of the agent). The second one is from the agent 
model to the CA model. This allows agents to change cells 
properties (corresponding to the actuation function of the 
agent). How a cell changes its states based on the inputs 
from the agent can be specified using the specification 
described after (section IV).   

Typically, an agent can only sense and affects its local 
environment. Thus an agent should only be coupled to a 
group of local cells based on the agent location. This 
brings out an interesting issue when the agent changes its 
location, i.e., moving from one place to another. When an 
agent moves, couplings between the agent and its local 
cells should be changed dynamically. Specifying such 
behavior depends on the modularity of the system. Using a 
multicomponent specification [1], cells influenced by 
agents can be embedded as a list of influenced non-
modular components. Using a modular specification, each 
cell consists of a modular component (coupled or atomic) 
interacting with agents through ports. When the agent 
moves, to interact with cells, two specifications can be 
achieved. First, a third omniscient component (let us say a 
“space manager” [5]) has to keep track of agent positions 
and deal with agent-cell communications. Second, every 
single moving agents have to be connected to all cells or 
every cells they will move on. 

A more intuitive and modularity preservation 
approach can be achieved through a dynamic structure 
specification. Specifically, when an agent moves from a 
current position to a new position, couplings between the 
agent and its current local cells should be dynamically 
removed and new couplings to the new local cells should 
be dynamically added. To support dynamic structure, a 

structure manager model 2DSCAχ  (cf. Figure 2) can be 
used. When an agent changes its location, this model is 
responsible to dynamically change the couplings between 
the agent and its environment (the cells). Note that this 
dynamical change of coupling is not part of the decision 
making of the agent, nor part of the dynamics of the 
environment. (Although one can argue that it is related to 
both the agent and the environment because, for example, 
the range of local cells is actually governed by the 
sensor/actuator capability of the agent and the physical 
laws of the environment). In this paper, we treat it as a 
separated component (and a general component in the 
specification) for the purpose of separation of concerns, 
i.e., the structure manager is responsible for the dynamic 
structure aspect of the system. 

The second goal of the structure manager is: to embed 
the definition of agents and cells, to receive general 
structure changes (changes of behavior, adding/deleting 
components, etc.) order and execute these orders. 

Note that for the case of multiple agents, this paper 
pays less attention to the social network of agent 
communications. In our specification, communications 
from other agents are treated in the same way as getting 
sensory inputs from the environment. In this sense, an 
agent views other agents and the physical environment 
together as its environmental context.  

Let us illustrate the major concepts of DSCA2 
discussed above through a simple forest firefighting 
example originally developed in [7] . In this example, the 
agent model is used to model firefighting resources and the 
CA model is used to model fire spread behavior. An agent 
can move in the cellular space with a certain speed. During 
the movement, an agent keeps track of its own position and 
constantly sends its position to a structure manager. 
Whenever the structure manager receives a message that 
contains the agent’s (new) positions (x, y), it will find the 
cell where the agent locates. If the cell ID has changed, the 
coupling manager will remove the couplings between the 
agent and the old cell and add the couplings between the 
agent and the new cell. After the agent moves to a new cell 
and receives a message about the cell’s state, it will make a 
decision to carry out fire suppression actions (send a fire 
suppression message to the cell) based on certain wildfire 
suppression rules (some examples rules are given in [7]). 
After the fire is suppressed, the cell’s state is changed to 
“suppressed”. Meanwhile, the cell will send a message to 
the agent, who then makes a decision where to move to 
continue suppressing the fire. Thus the agent can be 
specified as having one sensor that allows the agent to 
know the state of the environment (the cell) and two 
actuators: one for the movement (moving from one cell to 
another after the current cell is suppressed), and one for the 
fire suppression (send a fire suppression message to the 
cell). The mind of the agent makes decisions about 
carrying out fire suppression (connected to the fire 
suppression actuator), or moving to a new cell (connected 
to the motion actuator). This decision making is based on 
the sensory inputs (messages from the cell about the cell’s 

 



state). 
 

IV. DYNAMIC STRUCTURE CELLULAR 
AUTOMATA AND AGENTS 

 
A DSCA² (Dynamic Structure Cellular Automata & 
Agents) is a structure: 

2 2, ,DSCA DSCADSCA X Y DSCAχ=< >  
With, 

( ){ }, /DSCAX p v p IPorts v V= ∈ ∧ ∈

V∈

}

2

,  

( ){ }, /DSCAY p v p OPorts v= ∈ ∧ , where OPorts and 
IPorts are respectively output and input port names and V 
are whatever values received as external influences for 
cells. 
 
Dynamic structure changes are handed by: 

2 2 2 2 2 2
2 , , , , ,

DSCA DSCA DSCA DSCA DSCA DSCA
DSCA X Y S

χ χ χ χ χ χ
χ δ λ τ=< >  

 
The structural state is defined as 

. As defined in the 

DSDEVS formalism or in Kiltera language [8], the DSCAχ 
state is linked to the structure to represent explicitly 
structure configurations at one point in time. For all sub-
systems  contains the DSCA² names of active cells, 
{Zi,j} is the set of coupling functions (all cells can be 
externally connected to both input XDSCA and output YDSCA 
of the DSCA: 

{ } { } {2 ,, , ,i i i i jDSCA
S D C A I Z

χ
=< ∪ >

i D∈

2 2 : DSCADSCA DSCA DSCA
Z X X

χ χ
→

→

2 2: cDSCA c DSCA

, 

Z X X
→

→ : cc DSCA
Z Y

→

2 2 2 2:

, 1
2 2DSCA

Y→ ,

DSCA DSCA DSCA DSCA
Z Y Y

χ χ→
→ , and { }2,c cI N DSCA= , 

{ } { }{ }2, ,a i iI cell agent DSCA= , 

{ } { }{2 ,iDSCA }iI cell agent
χ
=

( ){ , / , ,c p p c p pN i j p I i= ∈

 where  is the neighborhood 

of a cell c. It is a set of pairs representing the relative 
positions of the neighboring cells p and the cell  c: 

. 

cN

,p pi∈ ∧ }[ 1,1]j j ∈ −

2 2 2: 2DSCA DSCA DSCA DSCA
X S S

χ χ χ χ
δ × →

{2 2 2int t
DSCA DSCA

exDSCAχ χ χ

δ δ δ= ∪

, is the structural state 

transition function. According to current structural state 
and inputs, the transition function can compute new 
structural states. Changes in structure include changes in 
cells neighborhoods, changes in cell definitions, and 
addition or deletion of cells. The structural state transition 
function is composed of internal and external functions 

. External transitions allow 

accounting for external events and internal ones for 
autonomous computations of self states (for more 
information: [9].) 

}

                                                           

' ':c c c c

1 For a modular specification, internal couplings of influenced 
neighboring cells are defined [case (2) of Figure 1] as: 

Y X→ →

2

. 

2 2:
DSCA DSCA DSCA

S Y
χ χ χ

λ →  is the structural state output 

function. Through the output function structural states can 
be sent to other models.  
 

Z

 
Figure 2. Agents and environment components 

 
Each agent and each cell is a black box, which can be: 

- A single atomic model, or 
- A (dynamic structure) network. 

 
C. Minimum specification of cells 
 
As a minimum assumption, each cell c can be specified as 
an atomic component: 

, , , , ,c c c c c cC X Y S δ λ τ=< >  

( ), , ,dN
cS m n S phase=< > , with 

{ }
{ }

/

" "," ",...

dN
p cS s p I

phase active passive

⎧ = ∈⎪
⎨

=⎪⎩
 

  
When receiving or sending its state, a cell is in phase 
“active”, otherwise it is in phase “passive”. 

:c c c cX S Sδ × →  is the transition function2 composed of 

internal and external functions , where  { }int tccδ δ δ= ∪
cex

cint :
c cS Sδ → , and :

cext c c cX S Sδ × → . 

:c c cS Yλ →  is the output function. 

0:c cSτ +→  for discrete-event systems and 0cτ
+∈  is a 

constant time advance for discrete-time systems. 
 

For a more complex cell, the latter can be decomposed 
as a network (dynamic structure or not) of sub-components 
[10]. However, regarding the closure under coupling of 
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DSDEVS, precise network specifications can be expressed 
by (or is equivalent to) a single atomic specification (more 
details in [1]). 
 
D. Minimum specification of Agents 
 

 

As a minimum assumption, each agent a can be specified 
as an atomic component: 

, , , , ,A A A A A AA X Y S δ λ τ=< >  
Where,  
 

( ){ " ", /A }X sensor v v V= ∈

}V∈

}
..

A

,where V are whatever values, 

( ){ " ", /AY actuator v v= , where V are whatever 
values, 
 

( ){ ,AS phase v=< >

{" ",phase active p=

, with 

 and v , where V are 
whatever values. The main assumption here is that a finite 
set of phases guided the agent behavior. At each phase, 
states and values can be modified. More explanations will 
be given here after. 

} V∈" ",.assive

:A A AX S Sδ × →  is the transition function composed of 

internal and external functions , where  { }int tAAδ δ δ= ∪
Aex

Aint :
A AS Sδ →  corresponds to the autonomous behavior of 

an agent. 
:

Aext A A AX S Sδ × → , corresponds to the reaction of agents 
to input sensors. 

:A A AS Yλ →  is the output function corresponding to the 
actuator activation. 

0:A ASτ +→  for discrete-event systems and 0Aτ
+∈  is a 

constant time advance for discrete-time systems. 
For a more complex agent, the latter can be 

decomposed as a network (dynamic structure or not) of 
sub-components. However, regarding the closure under 
coupling of DSDEVS, precise network specifications can 
be expressed by (or is equivalent to) a single atomic 
specification (more details in ZEI2000). 
 
E. Specification levels inside agents 
 
Structure of agents is very variable. Our scope here is to be 
specific enough to guide the modeler in his design phase 
and large enough to let him free. One generic structure 
everyone agrees is the mind / body decoupling. The body 
is responsible for interactions with the environment 
through sensors and actuators. Then, the mind is 
responsible for interpreting data received from sensors and 
actuators for making interpretation and then decision 
making. According to the complexity of an agent behavior, 

level, the mind acts as a controller over the body, 
commanding and interpreting sensors and activators. We 
investigate an agent structure through the decomposition of 
mind and body.  

At a first st

many levels of specification can be detailed. At every 

ructure level, an agent can be an atomic 
comp

cification level, two kind of 
deco

ore generic, we choose here to specify the 
body

 

onent. Autonomy and (mind) of agents correspond to 
internal transitions. External events can activate sensor 
sub-routines (according to their type, e.g., “vision”, 
“tactile”, etc.) trough external transitions to represent 
sensors and interpretations of agents. Actuators are piloted 
by the mind through internal events. They act upon 
environment through output external events and output 
functions. The mind can be represented as a finite-state 
atomic model whose states correspond to agent phases. At 
a first behavioral level, the agent can be considered in 
general phases “active” or “inactive”. Then, these phases 
can correspond to the activation or deactivation of general 
tasks of the agent : “get_prop(erty)”, “set_prop(erty)”, 
“move”, etc. To represent it, the graphical language 
defined in [11], and used in [12] for agents, can be used. 
An example is depicted on the top of Figure 3. External 
transitions are represented in red, internals in black. 
Receiving inputs leads on sensors to an external transition, 
which actives the “get_prop” phase. Then, an internal 
transition decides to “move” or to set a property 
(“set_prop”) of a cell. This is a very simple example. Other 
finite states can be added. 

To progress in spe
mpositions can be achieved, one on body, the other 

one on mind. The first is more physical, the second is more 
behavioral.  

To be m
. Hence, a second level of structure specification of 

agents can be considered.  Three kinds of sub-components 
within an agent network: sensors, actuators and the mind. 
The bottom of Figure 3 describes a first network 
decomposition of agents. Sensors can be for: vision, 
communication and properties. Actuators can be for: 
properties, moving and communications. A minimum 
assertion is that the mind can pilot both sensors and 
actuators, which send events to cells and receive events. 
However, sensors could only receive and transmit inputs as 
passive components.  Figure 3 describes such 
decomposition. A single example of sensor remains in a 
“waiting” phase as long as it does not receive an external 
event from a cell or the mind. In the same way, an actuator 
will be activated when it receives a command order from 
the mind to set a property of a cell. In mind, the 
“get_prop[erty]” phase can be activated either by an 
external event or a internal decision event. Setting 
properties depends on an internal decision. 
 
 



  
Figure 3. Precising agent specification 

 
V. RELATED WORKS & PERSPECTIVES 

 
Currently, agents constitute an emerging paradigm in many 
disciplines (social sciences, biology, computer 
engineering, etc.) Decision planning, artificial (or 
distributed) intelligence open new perspectives to these 
disciplines. Agent structures are designed to improve 
system understanding and reactivity. However, although 
low-level simulation languages (e.g., [13]) and 
philosophical discussions have already been proposed, 
agents lack formal structures and a specification 
framework. We depict here after the consistency of our 
approach with other ones. 

In [14], a proposal of standard protocol for the 
description of agent-based models consists of: (i) 
Overview: Purpose, state variables and scales, process 
overview and scheduling (flowcharts, etc.), (ii) Design 
concepts: Emergence, adaptation, fitness, prediction, 
sensing, interaction, stochasticity, collectives (groups), 
observation (data collection), and (iii) Details: 
Initialization, input, sub-models (mathematical 
“skeleton”). Our approach can be used to specify each 
level. 

In [15], Finite Deterministic (FD-) DEVS is 
introduced. A sound mathematical relation to DEVS is 
depicted. Linking this approach with a graphical language 
X, allows defining minimum structure DEVS models 
whose finite states can be refined at a second stage. 

In [5], Bernie ZEIGLER introduces a new insight for 
detecting state transitions of continuous flows of the real 
world through discrete event specifications. Although 
discrete-time sensors continuously check for state 
transitions, advancing upon discrete time steps, a discrete 
event specification allows to reason on time. Time 
windows are defined to check for state thresholds. Activity 
tracking [16] and quantization [1] constitute an open 

research field. The latter constitute a new framework to 
model system dynamics. Still in [5], a model base 
management of agents components pinpoint the interest of 
our component based approach. 

Combining DSCA² (at a low specification level) and 
PRIMA language [12] (at a higher one) opens promising 
application perspectives. Our next goal will be to describe 
a precise DSCA² specification in a fire spreading 
application [7]. Hence, dynamic structure changes in both 
cellular and agent models will be validated and described. 
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