
Specification of Dynamic Structure Cellular Automata & Agents

Alexandre Muzy

UMR CNRS - LISA
Università di Corsica – Pasquale Paoli

Corti, ID 20250, France
a.muzy@univ-corse.fr

Xiaolin Hu

Computer Science Department
Georgia State University
Atlanta, GA 30303, USA

xhu@cs.gsu.edu

Abstract –This paper proposes a framework for dynamic
structure cellular automata & agent (DSCA2). Using such
framework allows preserving modularity of components and
modeling dynamic structural changes of components during the
simulation. The formal and component-based treatment of
DSCA2 builds a solid ground for future applications to complex
system modeling and simulation.

I. INTRODUCTION

Cellular automata modeling and agent-based modeling are
two major paradigms to model and simulate complex
dynamical systems. The cellular automata modeling
includes a grid of cells where each cell’s state can affect
and be affected by its neighboring cells’ states. It models
spatiotemporal interactions and behaviors of a system.
Examples of cellular automata modeling and simulation
include urban environment simulation, forest fire
simulating, and disease spreading simulation, etc. The
agent-based modeling includes a group of agents that
interact with each other and with an environment. Each
agent has relatively simple behaviors and interaction rules,
exhibiting emergent behaviors when working together.
Examples of agent-based modeling and simulation are in
many different fields, including social system simulation,
software systems, traffic simulation, etc.

This paper concerns a modeling approach where
cellular automata models work together with agent-based
models and act as a spatial (physical) environment in
which agents are situated. Within this context, we are
particularly interested in how these models can also
support dynamic structure modeling for complex systems.
At a physical level, natural and software systems
frequently change structure. Growing, a plant adds
numerous behaviors and branches. In a computer network,
nodes are dynamically added and deleted changing their
behavior. At a software design level, allowing components
to change (their or other) structures increases the
complexity and the flexibility of the systems developed.
Using such approach allows modeling more faithfully
reality and opens huge research perspectives to modeling
and simulation.

In this modeling approach, the environment is
spatially modeled as a cellular space model composed of
multiple cells. Each cell corresponds to a sub-area of the
environment and has its own states. An example is a
pedestrian crowd simulation where the streets are modeled
by street cells and pedestrian are modeled as agents. In a
more complex case, a cell may also have its own
dynamical behavior. For example, in a forest firefighting

simulation, forest cells are used to model the behavior of
fire spread and agents are used to model the behavior of
firefighters. The interaction between an agent and the cells
(its environment) is supported by the couplings between
the agents and cells. Dynamic structure of these models
include the structure change of CA models such as
adding/deleting cells, the structure change of agent models
such as adding/removing agents, and the structure change
of the connections between agents and cells. For example,
when an agent moves spatially in the environment (the
cellular space), the couplings between the agent and the
corresponding cells are dynamically changed. This hybrid
modeling approach separates the modeling concerns of
agents and the environment (the cellular space). The
dynamic structure capability can greatly enhances its
modeling power by supporting adding/deleting cells or
agents and their couplings. Furthermore, using such
approach preserves component modularity thus enhancing
model reusability. We name this modeling paradigm
Dynamic Structure Cellular Automata & Agents (DSCA²)
in this paper.

To leverage the power of DSCA² described above, it is
important to treat both models and their connections in a
formal and structural manner. In this paper, we propose a
generic architecture to preserve modularity of components
while letting them free to modify their structure themselves
or to be modified during the simulation or to be specified
by the modeler. We provide a specification for this
dynamic structure cellular automata and agent modeling.
While many specifications exist for CA and agent, most do
not account for structural changes during the simulation. In
this paper, we base our specification on the Discrete Event
System Specification (DEVS) formalism. The remainder
of the paper is organized as follows. Section II describes
usual component-based approaches for CA modeling.
Section III discusses the specification of a single agent and
multiple agent system. Based on these discussions, Section
IV provides a formal specification of DSCA2. Section V
presents related works and perspectives.

II. CELLULAR SYSTEMS

Figure 1 presents a usual component-based cellular system.
To describe the latter different modularity and
specification levels can be used. Couplings between cells
include internal couplings [neighbourhoods (von Newman,
etc.)] and external input and output couplings (cell external
influences). Case (1) on figure corresponds to a non-
modular case, case (2) to a modular one. When using ports,

mailto:a.muzy@univ-corse.fr
mailto:xhu@cs.gsu.edu

many modularity choices can be achieved too. When using
a discrete-event description of systems, transition functions
of cells are decomposed in many sub-transitions, each one
activated according to the port name or the event kind
received as input. Ports can be highly modular, i.e., to a
single port name corresponds a single event kind.
Otherwise, ports can be aggregated, i.e., to a single port
name correspond many event kinds. Let us take an
example to explain this notion: The use of ports to account
for wind influences in a fire spread system. The first
solution will consist of adding two ports named
“WindDirection” and “WindStrength”. The first port can
only carry values of wind directions, and the second port
can only carry values of wind strength. In the second
solution, we can consider a single port named “Wind”, in
which distinct values of directions and strength can be
carried. In the first solution, a test on the name port will
lead to the activation of the corresponding sub-transition
function. In the second solution, a test on the event value
will lead to the activation of the corresponding sub-
transition function. Notice that both approaches can be
mixed (as for system modularity), i.e., cells could have
ports named “Wind” and ports named “Water.” Hence,
both tests on port names and then event values will have to
be achieved.

Figure 1. A Usual component-based cellular system

When modeling component-based cellular systems,
according to modularity choices, three representative
levels (corresponding to research directions) can be used.
These levels can be described from the less to the more
modular level:

1. States of a cellular system can be wrapped in a
single atomic model fully autonomous and
modular;

2. Usual multi-components in which external input
ports can directly influence state transitions of
cells [1];

3. Highly modular cellular systems consisting of a
coupled model in which cells consists of atomic
models fully autonomous and modular [2].

Beyond this modularity classification, higher

specifications can be built on usual modular descriptions
[3] or on a non-modular specification [4].

Notice that a cellular model could be a multi-agent

system. However, we consider here agents as mobile
independent components.

In the next sub-section we investigate a new research
direction to integrate previous modularity and dynamic
structure changes during the simulation.

III. ENDOMORPHIC AGENTS

Currently, as a new paradigm, artificial agents are
constituted of many different structures and goal. Merging
these different facets in a coherent single structure allows
improving interoperability and facilitates understanding.

A. A Single Agent

What is an artificial agent? In (distributed or not) artificial
intelligence, machine learning, economics, biology, control
theory, and mind architecture, etc., plethora of structures
and behaviors of computer systems are built to map
“intelligent” behaviors and structures of animals or
humans. However, what is an “intelligent behavior”? Is it
planning, learning or adaptation? The notion is very broad
and subject to interpretation.

We propose here an open mathematical structure
framework to map these interpretations on computers to
achieve simulation. Using these structures, a modeler will
be able to build component blocks constituting their agent-
based system. Both structure and behavior of components
can be specified gradually. Using such component-based
approach of modeling and simulation, multiple hierarchical
compositions of components can be drawn. To precise the
open structure in the hierarchy, let us draw frontiers and
identify entities of an intelligent agent in modeling and
simulation.

 Cellular system

When we speak about agents, we need to speak about
an agent interacting with an environment. This
environment can be social and/or physical. In the latter
case, it can reflect dynamics of a phenomenon, and/or
simply consist of the physical space (physical objects).

To draw frontiers to agents, we can consider
interactions between the agent and its environment. Using
a priori knowledge and simulation, interactions of agents
can be mental (what will be the consequences of that
action in that configuration of the environment) and/or
physical (an animal searching food). In both cases, an
agent has to be able to build a model of itself and of its
environment. Such ability is called endomorphism [5].
According to us, model-making is what make an agent
intelligent, its goal.

Hence, interactions can be simulated through physical
or mental sensors (for vision, communication and/or
property sensations). Sensors are controlled by an agent to
collect data from the environment. Sensors and actuators
(for motion, communication and/or property actions) are
controlled by the agent according to a state value to reach
(continuous or discrete). Perception consists of information
construction based on the interpretation of states from
sensors and actuators (physical or mental) through the

X

…

(K,L)

Y

(0,0)

Cell
1

2

Xc
Yc

mind. In mind, by memory, an agent is able to construct
models of itself and of the environment. As depicted in [6],
current and long term memories can be used to retrieve
models and data. Using perception and action through
memory, an agent can learn and plan model constructions.

Sensors and actuators constitute the body of an agent.
Components of the mind are constituted of memory,
planning, learning, perception, model of the agent itself
and model of the model (metamodel) of the environment
(physical and/or social). As an agent contains a model of
itself (body and/or mind), it can contain a model of other
agents, or a model of model (…) of other agents.

B. Multi-agent systems and environment

Usually, an agent is an active entity that can sense the
environment (the cells) and carry out actions to affect the
environment (changing the states of the corresponding
cells). Examples of agents’ actions are movement in the
pedestrian crowd simulation and both movement and fire
suppression actions in the firefighting simulation. To
support interactions between an agent and its environment,
the agent needs to be coupled to the cells in the CA model.
Two types of couplings can exist. The first one is from the
CA model to the agent model. This allows agents to sense
properties of the cells (corresponding to the sensory
function of the agent). The second one is from the agent
model to the CA model. This allows agents to change cells
properties (corresponding to the actuation function of the
agent). How a cell changes its states based on the inputs
from the agent can be specified using the specification
described after (section IV).

Typically, an agent can only sense and affects its local
environment. Thus an agent should only be coupled to a
group of local cells based on the agent location. This
brings out an interesting issue when the agent changes its
location, i.e., moving from one place to another. When an
agent moves, couplings between the agent and its local
cells should be changed dynamically. Specifying such
behavior depends on the modularity of the system. Using a
multicomponent specification [1], cells influenced by
agents can be embedded as a list of influenced non-
modular components. Using a modular specification, each
cell consists of a modular component (coupled or atomic)
interacting with agents through ports. When the agent
moves, to interact with cells, two specifications can be
achieved. First, a third omniscient component (let us say a
“space manager” [5]) has to keep track of agent positions
and deal with agent-cell communications. Second, every
single moving agents have to be connected to all cells or
every cells they will move on.

A more intuitive and modularity preservation
approach can be achieved through a dynamic structure
specification. Specifically, when an agent moves from a
current position to a new position, couplings between the
agent and its current local cells should be dynamically
removed and new couplings to the new local cells should
be dynamically added. To support dynamic structure, a

structure manager model 2DSCAχ (cf. Figure 2) can be
used. When an agent changes its location, this model is
responsible to dynamically change the couplings between
the agent and its environment (the cells). Note that this
dynamical change of coupling is not part of the decision
making of the agent, nor part of the dynamics of the
environment. (Although one can argue that it is related to
both the agent and the environment because, for example,
the range of local cells is actually governed by the
sensor/actuator capability of the agent and the physical
laws of the environment). In this paper, we treat it as a
separated component (and a general component in the
specification) for the purpose of separation of concerns,
i.e., the structure manager is responsible for the dynamic
structure aspect of the system.

The second goal of the structure manager is: to embed
the definition of agents and cells, to receive general
structure changes (changes of behavior, adding/deleting
components, etc.) order and execute these orders.

Note that for the case of multiple agents, this paper
pays less attention to the social network of agent
communications. In our specification, communications
from other agents are treated in the same way as getting
sensory inputs from the environment. In this sense, an
agent views other agents and the physical environment
together as its environmental context.

Let us illustrate the major concepts of DSCA2
discussed above through a simple forest firefighting
example originally developed in [7] . In this example, the
agent model is used to model firefighting resources and the
CA model is used to model fire spread behavior. An agent
can move in the cellular space with a certain speed. During
the movement, an agent keeps track of its own position and
constantly sends its position to a structure manager.
Whenever the structure manager receives a message that
contains the agent’s (new) positions (x, y), it will find the
cell where the agent locates. If the cell ID has changed, the
coupling manager will remove the couplings between the
agent and the old cell and add the couplings between the
agent and the new cell. After the agent moves to a new cell
and receives a message about the cell’s state, it will make a
decision to carry out fire suppression actions (send a fire
suppression message to the cell) based on certain wildfire
suppression rules (some examples rules are given in [7]).
After the fire is suppressed, the cell’s state is changed to
“suppressed”. Meanwhile, the cell will send a message to
the agent, who then makes a decision where to move to
continue suppressing the fire. Thus the agent can be
specified as having one sensor that allows the agent to
know the state of the environment (the cell) and two
actuators: one for the movement (moving from one cell to
another after the current cell is suppressed), and one for the
fire suppression (send a fire suppression message to the
cell). The mind of the agent makes decisions about
carrying out fire suppression (connected to the fire
suppression actuator), or moving to a new cell (connected
to the motion actuator). This decision making is based on
the sensory inputs (messages from the cell about the cell’s

state).

IV. DYNAMIC STRUCTURE CELLULAR
AUTOMATA AND AGENTS

A DSCA² (Dynamic Structure Cellular Automata &
Agents) is a structure:

2 2, ,DSCA DSCADSCA X Y DSCAχ=< >
With,

(){ }, /DSCAX p v p IPorts v V= ∈ ∧ ∈

V∈

}

2

,

(){ }, /DSCAY p v p OPorts v= ∈ ∧ , where OPorts and
IPorts are respectively output and input port names and V
are whatever values received as external influences for
cells.

Dynamic structure changes are handed by:

2 2 2 2 2 2
2 , , , , ,

DSCA DSCA DSCA DSCA DSCA DSCA
DSCA X Y S

χ χ χ χ χ χ
χ δ λ τ=< >

The structural state is defined as

. As defined in the

DSDEVS formalism or in Kiltera language [8], the DSCAχ
state is linked to the structure to represent explicitly
structure configurations at one point in time. For all sub-
systems contains the DSCA² names of active cells,
{Zi,j} is the set of coupling functions (all cells can be
externally connected to both input XDSCA and output YDSCA
of the DSCA:

{ } { } {2 ,, , ,i i i i jDSCA
S D C A I Z

χ
=< ∪ >

i D∈

2 2 : DSCADSCA DSCA DSCA
Z X X

χ χ
→

→

2 2: cDSCA c DSCA

,

Z X X
→

→ : cc DSCA
Z Y

→

2 2 2 2:

, 1
2 2DSCA

Y→ ,

DSCA DSCA DSCA DSCA
Z Y Y

χ χ→
→ , and { }2,c cI N DSCA= ,

{ } { }{ }2, ,a i iI cell agent DSCA= ,

{ } { }{2 ,iDSCA }iI cell agent
χ
=

(){ , / , ,c p p c p pN i j p I i= ∈

 where is the neighborhood

of a cell c. It is a set of pairs representing the relative
positions of the neighboring cells p and the cell c:

.

cN

,p pi∈ ∧ }[1,1]j j ∈ −

2 2 2: 2DSCA DSCA DSCA DSCA
X S S

χ χ χ χ
δ × →

{2 2 2int t
DSCA DSCA

exDSCAχ χ χ

δ δ δ= ∪

, is the structural state

transition function. According to current structural state
and inputs, the transition function can compute new
structural states. Changes in structure include changes in
cells neighborhoods, changes in cell definitions, and
addition or deletion of cells. The structural state transition
function is composed of internal and external functions

. External transitions allow

accounting for external events and internal ones for
autonomous computations of self states (for more
information: [9].)

}

' ':c c c c

1 For a modular specification, internal couplings of influenced
neighboring cells are defined [case (2) of Figure 1] as:

Y X→ →

2

.

2 2:
DSCA DSCA DSCA

S Y
χ χ χ

λ → is the structural state output

function. Through the output function structural states can
be sent to other models.

Z

Figure 2. Agents and environment components

Each agent and each cell is a black box, which can be:

- A single atomic model, or
- A (dynamic structure) network.

C. Minimum specification of cells

As a minimum assumption, each cell c can be specified as
an atomic component:

, , , , ,c c c c c cC X Y S δ λ τ=< >

(), , ,dN
cS m n S phase=< > , with

{ }
{ }

/

" "," ",...

dN
p cS s p I

phase active passive

⎧ = ∈⎪
⎨

=⎪⎩

When receiving or sending its state, a cell is in phase
“active”, otherwise it is in phase “passive”.

:c c c cX S Sδ × → is the transition function2 composed of

internal and external functions , where { }int tccδ δ δ= ∪
cex

cint :
c cS Sδ → , and :

cext c c cX S Sδ × → .

:c c cS Yλ → is the output function.

0:c cSτ +→ for discrete-event systems and 0cτ
+∈ is a

constant time advance for discrete-time systems.

For a more complex cell, the latter can be decomposed
as a network (dynamic structure or not) of sub-components
[10]. However, regarding the closure under coupling of

2 Modularity cases: (1) and (assuming

external influences of cells), (2)

c
c
N

cS S= c DSCAX X=
cN

c DSCA cX X X= × , with

{ }/cN
c p cX x p I= ∈ .

DSCA²

… (K,L) Yc
Xc

C

(0,0)

 2DSCAχ

a

YDSCA² XDSCA²

DSDEVS, precise network specifications can be expressed
by (or is equivalent to) a single atomic specification (more
details in [1]).

D. Minimum specification of Agents

As a minimum assumption, each agent a can be specified
as an atomic component:

, , , , ,A A A A A AA X Y S δ λ τ=< >
Where,

(){ " ", /A }X sensor v v V= ∈

}V∈

}
..

A

,where V are whatever values,

(){ " ", /AY actuator v v= , where V are whatever
values,

(){ ,AS phase v=< >

{" ",phase active p=

, with

 and v , where V are
whatever values. The main assumption here is that a finite
set of phases guided the agent behavior. At each phase,
states and values can be modified. More explanations will
be given here after.

} V∈" ",.assive

:A A AX S Sδ × → is the transition function composed of

internal and external functions , where { }int tAAδ δ δ= ∪
Aex

Aint :
A AS Sδ → corresponds to the autonomous behavior of

an agent.
:

Aext A A AX S Sδ × → , corresponds to the reaction of agents
to input sensors.

:A A AS Yλ → is the output function corresponding to the
actuator activation.

0:A ASτ +→ for discrete-event systems and 0Aτ
+∈ is a

constant time advance for discrete-time systems.
For a more complex agent, the latter can be

decomposed as a network (dynamic structure or not) of
sub-components. However, regarding the closure under
coupling of DSDEVS, precise network specifications can
be expressed by (or is equivalent to) a single atomic
specification (more details in ZEI2000).

E. Specification levels inside agents

Structure of agents is very variable. Our scope here is to be
specific enough to guide the modeler in his design phase
and large enough to let him free. One generic structure
everyone agrees is the mind / body decoupling. The body
is responsible for interactions with the environment
through sensors and actuators. Then, the mind is
responsible for interpreting data received from sensors and
actuators for making interpretation and then decision
making. According to the complexity of an agent behavior,

level, the mind acts as a controller over the body,
commanding and interpreting sensors and activators. We
investigate an agent structure through the decomposition of
mind and body.

At a first st

many levels of specification can be detailed. At every

ructure level, an agent can be an atomic
comp

cification level, two kind of
deco

ore generic, we choose here to specify the
body

onent. Autonomy and (mind) of agents correspond to
internal transitions. External events can activate sensor
sub-routines (according to their type, e.g., “vision”,
“tactile”, etc.) trough external transitions to represent
sensors and interpretations of agents. Actuators are piloted
by the mind through internal events. They act upon
environment through output external events and output
functions. The mind can be represented as a finite-state
atomic model whose states correspond to agent phases. At
a first behavioral level, the agent can be considered in
general phases “active” or “inactive”. Then, these phases
can correspond to the activation or deactivation of general
tasks of the agent : “get_prop(erty)”, “set_prop(erty)”,
“move”, etc. To represent it, the graphical language
defined in [11], and used in [12] for agents, can be used.
An example is depicted on the top of Figure 3. External
transitions are represented in red, internals in black.
Receiving inputs leads on sensors to an external transition,
which actives the “get_prop” phase. Then, an internal
transition decides to “move” or to set a property
(“set_prop”) of a cell. This is a very simple example. Other
finite states can be added.

To progress in spe
mpositions can be achieved, one on body, the other

one on mind. The first is more physical, the second is more
behavioral.

To be m
. Hence, a second level of structure specification of

agents can be considered. Three kinds of sub-components
within an agent network: sensors, actuators and the mind.
The bottom of Figure 3 describes a first network
decomposition of agents. Sensors can be for: vision,
communication and properties. Actuators can be for:
properties, moving and communications. A minimum
assertion is that the mind can pilot both sensors and
actuators, which send events to cells and receive events.
However, sensors could only receive and transmit inputs as
passive components. Figure 3 describes such
decomposition. A single example of sensor remains in a
“waiting” phase as long as it does not receive an external
event from a cell or the mind. In the same way, an actuator
will be activated when it receives a command order from
the mind to set a property of a cell. In mind, the
“get_prop[erty]” phase can be activated either by an
external event or a internal decision event. Setting
properties depends on an internal decision.

Figure 3. Precising agent specification

V. RELATED WORKS & PERSPECTIVES

Currently, agents constitute an emerging paradigm in many
disciplines (social sciences, biology, computer
engineering, etc.) Decision planning, artificial (or
distributed) intelligence open new perspectives to these
disciplines. Agent structures are designed to improve
system understanding and reactivity. However, although
low-level simulation languages (e.g., [13]) and
philosophical discussions have already been proposed,
agents lack formal structures and a specification
framework. We depict here after the consistency of our
approach with other ones.

In [14], a proposal of standard protocol for the
description of agent-based models consists of: (i)
Overview: Purpose, state variables and scales, process
overview and scheduling (flowcharts, etc.), (ii) Design
concepts: Emergence, adaptation, fitness, prediction,
sensing, interaction, stochasticity, collectives (groups),
observation (data collection), and (iii) Details:
Initialization, input, sub-models (mathematical
“skeleton”). Our approach can be used to specify each
level.

In [15], Finite Deterministic (FD-) DEVS is
introduced. A sound mathematical relation to DEVS is
depicted. Linking this approach with a graphical language
X, allows defining minimum structure DEVS models
whose finite states can be refined at a second stage.

In [5], Bernie ZEIGLER introduces a new insight for
detecting state transitions of continuous flows of the real
world through discrete event specifications. Although
discrete-time sensors continuously check for state
transitions, advancing upon discrete time steps, a discrete
event specification allows to reason on time. Time
windows are defined to check for state thresholds. Activity
tracking [16] and quantization [1] constitute an open

research field. The latter constitute a new framework to
model system dynamics. Still in [5], a model base
management of agents components pinpoint the interest of
our component based approach.

Combining DSCA² (at a low specification level) and
PRIMA language [12] (at a higher one) opens promising
application perspectives. Our next goal will be to describe
a precise DSCA² specification in a fire spreading
application [7]. Hence, dynamic structure changes in both
cellular and agent models will be validated and described.

V. ACKNOWLEDGEMENTS

The first author would like to thank Juan de LARA and
Ernesto POSSE for their collaboration on agent
specification and graphical language use.

V. REFERENCES

[1] Zeigler, B.P., H. Praehofer, and T.G. Kim, Theory of

modelling and simulation. 2000: Academic Press.
[2] Ntaimo, L.B. and B.P. Zeigler. Expressing a forest cell

model in Parallel DEVS and Timed Cell-DEVS
formalisms. in Summer Computer Simulation
Conference (SCSC'04). 2004. San Jose, USA.

[3] Wainer, G. and N. Giambiasi, Application of the Cell-
DEVS paradigm for cell spaces modeling and
simulation. Simulation, 2001. 76(1): p. 22-39.

[4] Shiginah, F.A.S.B., Multi-Layer Cellular DEVS
Formalism for Faster Model Development and
Simulator Efficiency, in Electrical and Computer
Engineering Dept., University of Arizona. 2006.

[5] Zeigler, B.P., Object-oriented simulation with
hierarchical, modular models. 1990: Academic Press.

[6] Zeigler, B., A. Muzy, and L. Yilmaz, Aritificial
Intelligence in Modeling and Simulation, in

Encyclopedia of Complexity and System Science. 2008,
Springer-Verlag: Heidelberg, Germany. p. Accepted for
publication.

[7] Hu, X., A. Muzy, and L. Ntaimo. A Hybrid Agent-
Cellular Space Modeling Approach for Fire Spread
and Suppression Simulation. in Winter Simulation
Conference (WSC), IEEE/ACM/SIGSIM/SCS. 2005.
Orlando, USA. p. 248-255.

[8] Posse, E. and H. Vangheluwe. kiltera: a simulation
language for timed, dynamic structure systems. in 40th
Annual Simulation Symposium (ANSS). 2007. p. 293-
300.

[9] Barros, F.J., Modelling Formalisms for Dynamic
Structure Systems. ACM Transactions on Modelling
and Computer Simulation, 1997. 7(4): p. 501-515.

[10] Muzy, A., A. Aïello, P.-A. Santoni, B.P. Zeigler,
J.J. Nutaro, and R. Jammalamadaka. Discrete event
simulation of large-scale spatial continuous systems. in
International Conference on Systems, Man and
Cybernetics (SMC), IEEE. 2005. Hawaii, USA. p.
2991-2998.

[11] Posse, E. and J.S. Bolduc. Generation of DEVS
modelling and simulation environments. in Summer
Computer Simulation Conference. Society for
Computer Simulation International (SCS). 2003.
Montréal, Canada. p. 139-146.

[12] Muzy, A., J.d. Lara, and E. Guerra. Designing
PRIMA: A Precise Visual Language for Modeling with
Agents, in a Physical environment. in MSV'07- The
2007 International Conference on Modeling,
Simulation and Visualization Methods, Intel, MIT
Media Laboratory…. 2007. Monte Carlo Resort, Las
Vegas, Nevada, USA p. 231-238.

[13] Ascape. [cited 2007; Available from:
http://www.brook.edu/es/dynamics/models/ascape/].

[14] Grimm, V., U. Berger, F. Bastiansen, S. Eliassen,
V. Ginot, J. Giske, J. Goss-Custard, T. Grand, S.K.
Heinz, G. Huse, A. Huth, J.U. Jepsen, C. Jørgensen,
W.M. Mooij, B. Müller, G. Pe’er, C. Piou, S.F.
Railsback, A.M. Robbins, M.M. Robbins, E.
Rossmanith, N. Rüger, E. Strand, S. Souissi, R.A.
Stillman, R. Vabø, U. Visser, and D.L. DeAngelis, A
standard protocol for describing individual-based and
agent-based models. Ecological modelling, 2006.
198(1-2): p. 115-126.

[15] Hwang, M.H. and B.P. Zeigler. A Modular
Verification Framework using Finite and Deterministic
DEVS. in DEVS Symposium. 2006. Huntsville,
Alabama, USA. p. 57-65.

[16] Muzy, A. and B.P. ZEIGLER, The activity
tracking paradigm. The Open Cybernetics and
Systemics Journal, 2008: p. Submitted.

http://www.brook.edu/es/dynamics/models/ascape/%5D

	Specification of Dynamic Structure Cellular Automata & Agents

