
MECSYCO: a Multi-agent DEVS Wrapping Platform

for the Co-simulation of Complex Systems

Benjamin Camus, Thomas Paris, Julien Vaubourg, Yannick Presse, Christine

Bourjot, Laurent Ciarletta, Vincent Chevrier

To cite this version:

Benjamin Camus, Thomas Paris, Julien Vaubourg, Yannick Presse, Christine Bourjot, et al..
MECSYCO: a Multi-agent DEVS Wrapping Platform for the Co-simulation of Complex Sys-
tems. [Research Report] LORIA, UMR 7503, Université de Lorraine, CNRS, Vandoeuvre-lès-
Nancy; Inria Nancy - Grand Est (Villers-lès-Nancy, France). 2016. <hal-01399978>

HAL Id: hal-01399978

https://hal.inria.fr/hal-01399978

Submitted on 21 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01399978


MECSYCO: a Multi-agent DEVS Wrapping Platform for the
Co-simulation of Complex Systems

Benjamin Camus1, Thomas Paris1, Julien Vaubourg2, Yannick Presse2, Christine Bourjot1, Laurent
Ciarletta1, and Vincent Chevrier1

1Université de Lorraine, CNRS, Inria, LORIA, UMR 7503, Vandœuvre-lès-Nancy, F-54506, France.
firstname.lastname@loria.fr

2Inria, 54600 Villers-lès-Nancy, France. firstname.lastname@inria.fr

Abstract

Most modeling and simulation (M&S) questions about
complex systems require to take simultaneously account
of several points of view. Phenomena evolving at differ-
ent scales and at different levels of resolution have to be
considered. Moreover, expert skills belonging to differ-
ent scientific fields are needed. The challenges are then to
reconcile these heterogeneous points of view, and to inte-
grate each domain tools (formalisms and simulation soft-
ware) within the rigorous framework of the M&S process.
To answer to this issue, we propose here the specifications
of the MECSYCO co-simulation middleware. MECSYCO
relies on the universality of the DEVS formalism in order
to integrate models written in different formalism. This in-
tegration is based on a wrapping strategy in order to make
models implemented in different simulation software inter-
operable. The middleware performs the co-simulation in
a parallel, decentralized and distributable fashion thanks
to its modular multi-agent architecture. We detail how
MECSYCO perform hybrid co-simulations by integrating
in a generic way already implemented continuous models
thanks to the FMI standard, the DEV&DESS formalism and
the QSS method. The DEVS wrapping of FMI that we pro-
pose is not restricted to MECSYCO but can be performed in
any DEVS-based platform. We show the modularity and the
genericity of our approach through an iterative smart heat-
ing system M&S. Compared to other works in the literature,
our proposition is generic thanks to the strong foundation of
DEVS and the unifying features of the FMI standard, while
being fully specified from the concepts to their implemen-
tations.

Keywords : DEVS, FMI/FMU, QSS, DEV&DESS, hy-
brid modeling, parallel simulation, multi-agent

1 Introduction

In this article, we are interested in the modeling and simu-
lation (M&S) of complex systems. These systems formed a
particular type of dynamic systems defined as being ”com-
prised of a great number of heterogeneous entities, among
which local interactions create multiple levels of collective
structure and organization” [1]. Complex systems can cor-
respond to natural or artificial systems: the former range
from insect colony (e.g. ants, bees, termites) to collective
motion (e.g. crowds, birds flocking)[2], while the latter in-
clude cities [3, 4], traffic networks and smart grids.

By experimenting in a rigorous way on a simplification
of a complex system (i.e. a model) instead of a real one,
the M&S process avoids cost, time and ethic constraints,
and thus position itself as a choice tool for the complex sys-
tems science. However, when applied in this latter context,
the M&S process faces many specific challenges. Indeed,
most questions on complex systems require taking simulta-
neously account of several points of view. Then, we need to
consider phenomena evolving at different scales (temporal
and spatial), and different levels of resolutions (from micro
to macro). Moreover, the expert skills required for describ-
ing a system may come from different domains (e.g. for a
smart grid: the telecommunication, the information system,
the electrical grid), each of them having their own tried and
tested models and M&S tools (i.e. formalisms and simula-
tion software). The challenges are then to reconcile these
heterogeneous points of view, and to integrate each do-
main models and tools within the rigorous framework
of the M&S process.

A very promising strategy to tackles these challenges
lies in co-simulation. Co-simulation consists in perform-
ing a simulation by reusing models implemented in differ-
ent simulation software, and managing exchanges of data
between these software in order to make their models inter-
act. It allows each specialist involved in a complex system

1



to keep using the tools which are popular in his/her com-
munity while providing to each of them a realistic context.
In addition, each simulator can (in some cases) execute on a
different machine, which makes possible the co-simulation
of very large systems. However, co-simulation faces many
issues directly related to the heterogeneity of the models
and tools that need to interact.

Our contribution to tackle these issues is twofold in this
paper:

• We give the whole operational specification of the
MECSYCO (Multi-Agent Environment for Complex-
SYstem CO-simulation) co-simulation middleware
dedicated to the DEVS (Discrete EVent System speci-
fication) wrapping of pre-existing simulation tools.

• We propose DEVS wrappers for the FMI (Functional
Mockup Interface) standard in order to make continu-
ous equation-based models interact with discrete event
models in a generic way.

The paper is organized as follows. Section 2 details the
different challenges related to the M&S of complex sys-
tems. Section 3 details how the DEVS formalism -and
more precisely the DEVS wrapping strategy- offers an es-
sential solution to these challenges. The Section 4 details
the MECSYCO platform which enables the parallel simu-
lation of complex systems models in a rigorous and decen-
tralized way. Section 5 details the promising benefits of the
FMI standard regarding the integration of equation-based
tools, and how we achieve the DEVS wrapping of this stan-
dard. Finally, in Section 9 we validate our proposition with
a smart heating use case.

2 Co-simulation Challenges

2.1 Multi-representation integration

When modeling a non-complex dynamic system, we usu-
ally describe the system at a specific level of resolution.
However, in order to represent a complex system, several
levels of resolution may be simultaneously considered (e.g.
micro, meso, macro) [5]. Such multi-level representation
could be needed, for instance, when there is a lack of ex-
pressiveness of one level and a second one is required [6];
when available data explicitly refer to different levels of
representation [5]; or when the modeling question is ex-
plicitly to study the mutual influences between the cou-
pled levels dynamics[7]. Finally, a multi-level represen-
tation can be used in order to find a trade-off between a
micro representation which offers more accurate results,
and a macro representation which enables speeding-up the
simulation[8, 9, 10].

As a consequence, the models involved in a co-
simulation may have different representations of the sys-
tem. The issue is then to reconcile the heterogeneous rep-
resentations -i.e. given output data of a model which de-
scribes the system at a level of resolution, what operations
are needed to translate these data into the level of resolution
of another model?

2.2 Multi-formalism integration

Because of its heterogeneity, a complex system may ex-
hibit both discrete and continuous dynamics, and several
formalisms maybe required to describe the system [11].
Such formalisms may be for instance differential or alge-
braic equations for the continuous parts, and event-based,
finite-state automata or one of the many formalization of
the multi-agent paradigm for the discrete part.

As a consequence, discrete and continuous models may
interact and co-evolve inside a co-simulation. At the ex-
ecution level, this formalism heterogeneity implies deal-
ing with different scheduling policies: cyclic or variable
time-steps, event-based, etc. A rigorous framework is then
needed to integrate these different models in order to have
an univocal behavior of the co-simulation [12].

Two solutions exist to integrate these different
formalisms[11]:

Translate the models in a same formalism and per-
form the simulation using the abstract simulator of this
formalism. This is the solution chosen by AToM3 [13],
which enables to automatically translate two models by a
sequence of transformations in their closest common for-
malism. To do so, AToM3 relies on a Formalism Transfor-
mation Graph where each node corresponds to a formalism
and each arc represents an existing automatic translation.
The shortcoming of this solution is that it forces to rewrite
and re-implement the existing models, thus loosing the co-
simulation advantages -i.e. effort of translation (if not auto-
matic) and then possibilities of errors.

Use a hybrid M&S formalism which explicitly de-
scribe how continuous and discrete systems interact
and co-evolve. This super-formalism can be notably
DEV&DESS [14] or HFSS (Heterogeneous Flow System
Specification)[15], which merge a whole set of traditional
techniques used in the field of hybrid modeling. Such tech-
niques include notably (1) the integration of discrete in-
put events during the evolution of the continuous system,
and (2) the generation during the simulation of two kinds
of discrete-events from the continuous system state: time-
events and state-events[12]. While the former consist of
events scheduled at predefined simulation times, the latter
correspond to events whose occurrence is related to some
specific condition on the continuous state (usually when a
continuous variable cross a given threshold). From a simu-

2



lation perspective, the challenge is to integrate in a generic
way this discrete-event logic during the numerical resolu-
tion of the continuous system (this latter being concern with
finding the best trade-off between the accuracy of the solu-
tion and the simulation performances[16]). Most notably,
the detection and the accurate localization in time of state-
events during the simulation is a well known issue in hybrid
simulation [17].

2.3 Simulation software interoperability
From a software perspective, co-simulation implies deal-
ing with a heterogeneous set of simulation software. In-
deed, as shown in Table 1, the different domain of expertise
may have different simulation software which may be im-
plemented in different programming languages and be com-
pliant with different operating systems. Moreover some of
these simulation software must be available only on some
specific hardware (e.g. if a private license is required). In-
teroperability processes are then required[18] to synchro-
nize these heterogeneous software execution and manage
exchanges of usable data between them [19].

This interoperability can be achieve in an ad-hoc way by
directly modifying the simulation software to make them
compliant with each others. A more generic solution con-
sist of using a simulation middleware dedicated to the man-
agement of the interoperability within the co-simulation.
The advantage of this solution is its flexibility which en-
ables easily adding, removing and changing some simula-
tion software without impacting the rest of co-simulation
implementation. This is feasible because in this case, the
simulation software do not have to be directly interoperable
with each others, but have to be interoperable with the mid-
dleware instead. The co-simulation middleware can also
serves as a communication middleware thus enabling the
distribution of the co-simulation, and being therefore com-
pliant with the required hardware and OS diversity.

2.4 Synthesis
To sum up, setting up a co-simulation requires solving a set
of specific issues at the representations, the formalisms and
the software levels. The solutions that have to be provided
are directly related to the heterogeneity found at each of
these levels.

Additionally in a M&S process, the need for modular-
ity is required -i.e. to enable adding, removing or changing
models and simulation software and their connections with-
out having to redefine all the co-simulation from scratch
[24].

In order to fulfill this latter requirements, ad-hoc solu-
tions should be avoided as a more generic and rigorous
framework is needed. In the following we details how the
DEVS formalism brings solution to these requirements.

3 DEVS as a pivotal formalism for
heterogeneity integration

3.1 The DEVS formalism
DEVS [25] is an event-based formalism for the M&S of
system of systems. One important feature of DEVS is
its universality which positions it as a pivot formalism for
multi-paradigm modelling and simulation [26]. Indeed, not
only DEVS appears to be universal for describing discrete-
event systems [25], but it can also integrate continuous sys-
tems [27] expressed for instance with differential equations
[28]. Of particular interest in the scope of this article is
the fact that, as shown by Zeigler[29], DEVS can also em-
bed the DEV&DESS formalism [14]. This formalism offers
a sound framework for describing hybrid systems as it de-
scribes how continuous systems interact and co-evolve with
the discrete world.

Moreover, DEVS can encapsulate differential and alge-
braic equation solvers by relying on a quantized integrator
approach like the Quantized State Systems (QSS) method
[30]. This approach which is based on state quantization in-
stead of the time discretization used by traditional integra-
tion methods, shows in some case[31] better performance
than these latter [32]. QSS is well-suited for hybrid mod-
eling as it makes the continuous component equivalent to a
DEVS model which naturally integrates input events, and
makes state-events detection trivial and costless [33].

As summarized by Quesnel[28], the integration of a for-
malism in DEVS can be performed either by a mapping
or a wrapping. While the former consists in establishing
the equivalence between the formalisms, the latter implies
bridging the gap between the two abstract simulators [34].
The advantage of the wrapping strategy is to enable reusing
pre-existing models already implemented in some simula-
tion software [35].

DEVS distinguishes between atomic and coupled mod-
els. A DEVS atomic model describes the behavior of the
system and corresponds to the structure:

Mi = (Xi, Yi, S, δext, δint, λ, ta) (1)

where:

Xi = {(p, v)|p ∈ InPortsi, v ∈ Xi} is the set of input
ports and values. These ports can receive external in-
put events,

Yi = {(p, v)|p ∈ OutPortsi, v ∈ Yi} is the set of output
ports and values. These ports can send external output
events,

S is the set of the model states,

δext : Q×Xi → S is the external transition function (de-
scribing how the model reacts to input events) where

3



Table 1: Example of M&S application domains and their simulation software.

Domain Simulation software Languages Operating system

Collective mo-
tion

NetLogo [20] Java API Java & Scala GNU/Linux, Windows, Mac OS
GAMA [21] Java GNU/Linux, Windows, Mac OS

Telecom net-
works

NS-3 [22] C++, Python API GNU/Linux
OMNeT++ [23] C++ GNU/Linux, Windows, Mac OS

Robotic VREP C/C++, Lua, Python, Java GNU/Linux, Windows, Mac OS

Physical system Dymola Proprietary code Windows
Matlab/Simulink Proprietary code, C/C++ API, Fortran GNU/Linux, Windows, Mac OS

Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} is the total state
of the model,

e is the elapsed time since the last transition,

δint : S → S is the internal transition function describing
the internal dynamic of the model -i.e. the function
processes an internal event which changes the model
state,

λ : S → Yi is the output function describing the output
events of the model according to its current state,

ta : S → R+
0,∞ is the time advance function describing the

time during which the model will stay in the same cur-
rent state (in the absence of input event). The function
is used to get the date of the next internal event.

A coupled model describes the structure of the system. It
corresponds to the following structure which describes a set
of interconnected atomic models:

N = (X,Y,D, {Md|d ∈ D}, EIC,EOC, IC) (2)

where:

X = {(p, v)|p ∈ InPorts, v ∈ X} is the set of input
ports and values

Y = {(p, v)|p ∈ OutPorts, v ∈ Y } is the set of output
ports and values,

D is the set of models id,

EIC = {((N, ipN ), (d, ipd))|ipN ∈ InPorts, d ∈
D, ipd ∈ InPortsd} is the set of external input cou-
plings,

EOC = {((d, opd), (N, opN ))|opN ∈ OutPorts, d ∈
D, opd ∈ OutPortsd} is the set of external output
couplings,

IC = {((a, opa), (b, ipb))|a, b ∈ D, opa ∈
OutPortsa, ipb ∈ InPortsb} is the set of in-
ternal couplings,

The closure under the coupling of DEVS is an important
property which enables hierarchical modeling by proving
that a coupled model is equivalent to an atomic one. Thus,
a DEVS coupled model can be both composed of intercon-
nected DEVS atomic and coupled models (these latter may
be at their turn composed of coupled models etc.). DEVS
proposes sequential and parallel abstract simulators and co-
ordinators for respectively simulating the atomic and the
coupled models. Thanks to the closure under the coupling
of DEVS, these abstract simulators and coordinators can
be controlled in an unified way using the DEVS simulation
protocol.

3.2 Positioning
DEVS have striking advantages for managing the integra-
tion of the formal and the software heterogeneity required
by the co-simulation of complex system. This approach is
the product of several decades of research, and constitutes
a crucial scientific work we must capitalize.

In order to fulfill the requirements of complex system co-
simulation, we propose to define a modular co-simulation
middleware called MECSYCO (Multi-agent Environment
for Complex SYstem CO-simulation) for managing in a
generic way software interoperability. In this middleware,
we propose to integrate heterogeneous formal models by
using DEVS as a pivotal formalism in the following way:

1. integrate the different models in DEVS without imple-
menting them again by using a wrapping strategy.

2. make these wrapped models interact within a DEVS
coupled model.

3. simulate the DEVS coupled model using the DEVS
simulation protocol in order to perform the co-
simulation in an unified way.

Thus, we respond both to the formal integration and to
the software interoperability requirements of the complex
system co-simulation (detailed in Section 2). In the fol-
lowing section, we details the MECSYCO DEVS wrapping
platform which is based on this proposition.

4



4 The MECSYCO platform

4.1 A Multi-agent Environment for M&S

MECSYCO [36] is a DEVS wrapping platform that takes
advantage of the DEVS universality for enabling multi-
paradigm co-simulation of complex systems. As shown
in previous work [37], the platform also supports multi-
level modeling. It is currently used for the M&S of smart
electrical grids in the context of a partnership between LO-
RIA/Inria1 and EDF R&D (leading French electric utility
company) [38].

MECSYCO is based on the AA4MM (Agents & Arti-
facts for Multi-Modeling) paradigm [39] (from an origi-
nal idea of Bonneaud[40]) that sees an heterogeneous co-
simulation as a multi-agent system. Within this scope, each
couple model/simulator corresponds to an agent, and the
data exchanges between the simulators correspond to the
interactions between the agents. Thus, the co-simulation
of the system corresponds to the dynamics of interaction
between agents. Agents autonomy enables encapsulating
legacy software by the use of wrappers[41]. Originality
with regard to other multi-agent multi-model approaches
is to consider the interactions in an indirect way thanks to
the concept of passive computational entities called artifacts
[42]. By following this multi-agent paradigm from the con-
cepts to their implementation, MECSYCO ensures a mod-
ular, extensible (i.e. features can be easily added such as
an observation system) decentralized and distributable par-
allel co-simulation. MECSYCO implements the AA4MM
concepts according to DEVS simulation protocol for coor-
dinating the executions of the simulators and managing in-
teractions between models. In the following, we describe
these concepts and their specifications.

4.2 MECSYCO Concepts

MECSYCO relies on four concepts to describe a co-
simulation.

A model mi is a partial representation of the target sys-
tem implemented in a simulation software si (symbol in
Figure 1a). A model possesses a set of input ports x1..ni and
output ports y1..mi .

An m-agent Ai (symbol in Figure 1b) manages a model
mi and is in charge of the interactions of this model with
the other ones. Thus the m-agent is equivalent to a parallel
abstract simulator for the models.

Each m-agent Ai sees its model mi as a DEVS atomic
model thanks to its model artifact Ii (symbol in Figure 1d).
Therefore, Ii acts as a DEVS wrapper formi - i.e. it imple-
ments the DEVS simulation protocol functions for control-
ling mi evolution through si.

1French IT research institute

(a) model (b) m-agent (c) coupling arti-
fact

(d) model arti-
fact

Figure 1: Symbols of the MECSYCO components.

Figure 2: Bloc diagram view of a DEVS coupled model.

Each interaction from an m-agent Ai to an m-agent Aj

is reified by a coupling artifact Cij (symbol in Figure 1c).
A coupling artifact Cij works like a mailbox: the artifact has
a buffer of events where the m-agents can post their exter-
nal output events and get their external input events. Thus,
a coupling artifact has two roles: for Ai, it is an output
coupling artifact, whereas for Aj it is an input coupling
artifact. The coupling artifacts can transform the data ex-
changed between the models using operations that can be
for instance, spatial and time scaling operations (convert-
ing kilometers to meters or hours to minutes), or aggrega-
tion/disaggregation operations [37].

According to the multi-agent paradigm, m-agents only
have a local knowledge of the coupled model’s interconnec-
tions. The coupled model’s internal coupling set IC is split
such as an m-agent Ai only knows which input coupling
artifacts correspond to its model’s input ports, and which
output coupling artifacts correspond to its model’s output
ports. We define the set of input links INi of Ai as being
composed of the couples (j, k) mapping the input coupling
artifact Cji with the input port xki . We define the set of out-
put links OUTi of Ai as being composed of the couples
(n, j) mapping the output port yni with the output coupling
artifact Cij .

The connection of the output ports of a model mi with
the input ports of a model mj is done by the coupling arti-
fact Cji . The link from a model mi to a model mj (noted as
Lij) corresponds to the tuple (n, k, oi,nj,k). It maps the output
port yni with the input port xkj and applies the onk operation
to transform the event between these two models represen-
tation. By default, an operation corresponds to the identity
operation id. The Table 2 and the Figure 3 illustrate how a
DEVS coupled model (showed in Figure 2) is described in a
decentralized and distributable way thanks to MECSYCO.

5



Figure 3: Graphical representation of the MECSYCO co-
simulation of Table 2.

Table 2: Decentralized MECSYCO co-simulation of the
DEVS coupled model of Figure 2

Descriptions Notations

Output links of m1 OUT1 = {(1, 2), (2, 3)}
Input links of m1 IN1 = {(2, 1)}
Output links of m2 OUT2 = {(1, 1)}
Input links of m2 IN2 = {(1, 2), (3, 1)}
Output links of m3 OUT3 = {(1, 2)}
Input links of m3 IN3 = {(1, 1)}

Links from m1 to m2 L12 = {(1, 2, o1,12,2)}
Links from m1 to m3 L13 = {(2, 1, o1,23,1)}
Links from m2 to m1 L21 = {(1, 1, o2,11,1)}
Links from m3 to m2 L32 = {(1, 1, o3,12,1)}

4.3 Operational Specifications
The behavior of each m-agent corresponds to the DEVS
conservative parallel abstract simulator which is based on
the Chandy-Misra-Bryant (CMB) algorithm [43, 44]. This
algorithm is proven to be deadlock free and to respect the
causality constraint [25] -i.e. to ensure that the ”execution
of the simulation program on a parallel computer will pro-
duce exactly the same results as an execution on a sequen-
tial computer” [45].

Within this behavior, each m-agent Ai shares in its en-
vironment its Earliest Output Time estimate noted EOTi.
EOTi corresponds to the date (in simulation time), below
which Ai guarantees it will not send new external output
event. Ai shares EOTi in the link time of each of its out-
put coupling artifact. The link time of a coupling artifact Cij
is noted LTi

j and correspond to the simulated time (initially
equals to 0) up to whichAi has simulated the links frommi

to mj [43].
Each m-agent Ai uses the link times of all of its input

coupling artifacts to compute its Earliest Input Time esti-
mate noted EITi. This EITi corresponds to the date (in sim-
ulated time) below which Ai will not receive any new ex-
ternal input event. EITi corresponds to the minimum link
time of all of Ai’s input coupling artifacts.

For each m-agent Ai, all the events (internal or external)
with a timestamp inferior or equal to EITi are said to be safe
to process. In order to fulfill the causality constraint, each
m-agent must process only safe events and in an increasing
timestamped order.

Each EOTi is given by the Lookaheadi function:

Lookaheadi() = min{nti,EITi +Di, tini+Di
} (3)

with nti the next internal event time of mi, tini
the time

of the earliest event waiting to be processed in Ai’s input
coupling artifact, and Di(Di > 0) the minimum propaga-
tion delay of mi. This minimum propagation delay cor-
responds to the minimum delay (in simulated time) below
which the processing of an external event can not schedule
a new internal event in a modelmi. Di has to be determined
for each model mi in the co-simulation.

This behavior which enables simulating a model until a
time Z is formalized within the MECSYCO paradigm by
the Algorithm 1 basing on the artifacts specifications de-
tailed below.

A coupling artifact Cij proposes six functions to Ai and
Aj :

• post(enout), n stores and transforms (according to
Cij’s operation) the external output event ekout of output
port yni , in the artifact’s buffer.

• getEarliestEvent(k) returns the earliest exter-
nal input event for the kth input port of mj , xkj .

6



• getEarliestEventTime(k) returns the time of
the earliest external event for xkj .

• removeEarliestEvent(k) removes from the ar-
tifact’s buffer the earliest external event for xkj .

• setLinkTime(ti) set LTi
j to ti.

• getLinkTime() returns LTi
j .

In order to manipulate mi, each model artifact Ii pro-
poses the following DEVS simulation protocol functions to
Ai. These functions, which are listed below, have to be de-
fined for each simulation software:

• init() initializes the model mi. It sets the parame-
ters and the initial state of the model,

• processExternalEvent(eini
,ti,xki ) pro-

cesses the external input event eini
at simulation time

ti in the kth input port of mi, xki ,

• processInternalEvent(ti) processes the in-
ternal event of the model mi scheduled at time ti,

• getOutputEvent(yni ) returns enouti , the external
output event at the nth output port of mi, yni ,

• getNextInternalEventTime() returns the
time of the earliest scheduled internal event of the
model mi.

4.4 Implementation
MECSYCO is currently implemented in Java (available at
http://mecsyco.com) and C++. In order to make
these two versions interoperable and to perform distributed
co-simulations, MECSYCO relies on the JSON format and
the OpenSplice implementation of the OMG standard DDS
(Data Distribution Service). Using Opensplice, the cou-
pling artifacts are divided in two parts, reader and writer,
in order to split the co-simulation. DDS being based on the
publish-subscribe communication pattern, writers coupling
artifacts play the role of publishers while reader coupling
artifacts act as subscribers. Each writer coupling artifact
send data to its reader coupling artifact using a specific DDS
topic (see Figure 4).

The UML diagram of Figure 5 shows how we imple-
ment the MECSYCO concepts following an object oriented
programming. This implementation is in keeping with our
multi-agent paradigm as each MECSYCO concept corre-
sponds to a class of object, and as each autonomous m-
agent corresponds to a thread. We retain then the advan-
tages of our paradigm: the software architecture is com-
posed of a set of modular software bricks which enables a
decentralized and parallel simulation.

Figure 4: Distribution of a MECSYCO co-simulation.

4.5 DEVS wrapping of simulation software
So far, we successfully define DEVS wrappers for discrete
modeling tools like the MAS simulator NetLogo [36], and
the telecommunication network simulators NS-3 and OM-
NeT++ [46]. Aside from several difficulties met when
wrapping NS-3 and OMNeT++ (mainly due to the high
level of modeling details offered by these platforms, as
well as to the complexity of the opening and the distribu-
tion of their telecommunication models), making these dis-
crete modeling tools compliant with the DEVS simulation
protocol was a straightforward process. This is due to the
fact that these platforms have a discrete modeling paradigm
which is very close to DEVS.

However, to our experience with MECSYCO several dif-
ficulties may arise when wrapping a simulation tools in
DEVS. These problems depend mainly on two criteria:

• the M&S formalism used by the tools may not be
explicitly defined by the software specification, and/or
may be very different from DEVS. The challenge is
then to answer the questions: what is the formalism
used by the tools? How to bridge the formal gap be-
tween this formalism and DEVS?

• the software interface with the middleware may be
difficult to produce as the tools API and the software
architecture are not always documented and fully com-
pliant with the DEVS simulation protocol. Moreover,
the software may not be conceived to be externally ma-
nipulated.

Things getting especially complex with equation-based
tools as their continuous modeling paradigm is very differ-
ent from the discrete DEVS one. Thus, we need to bridge
the gap between the discrete and the continuous paradigms,
and a more complex wrapping strategy based on the hy-
brid capacity of DEVS is required. Regarding this issue,
wrapping each of these equation-based tools (e.g. Open-
Modelica, Dymola, Matlab/Simulink) separately would be
very inefficient.

Hopefully, a more efficient solution exists: most of these
tools are compatible with the FMI standard which brings
a generic API to manipulate equation-based models and

7

http://mecsyco.com


Algorithm 1 Ai m-agent behavior.
INPUT: INi, OUTi, Dti
OUTPUT:
nti ← Ii.getNextEventTime()
tini
← +∞

EOTi ← 0
EITi ← 0

. while the end of simulation.
while (¬endOfSimulation) do

EITi ← +∞
tini
← +∞

for all (j, k) ∈ INi do
if Cji .getLinkTime() < EITi then . Compute EITi

EITi ← Cji .getLinkTime()
end if
if Cji .getEarliestEventTime(k) < tini

then . Take the next external event
tini
← Cji .getEarliestEventTime(k)

eini ← Cji .getEarliestEvent(k)
p← k . Save the corresponding input port
c← j . Save the corresponding coupling artifact.

end if
end for

. Compute EOTi and update output coupling artifact
if EOTi 6= Lookaheadi(nti,EITi,tini

) then
EOTi ← Lookaheadi(nti,EITi,tini

)
∀(k, j) ∈ OUTi : Cij.setLinkTime(EOTi)

end if
. Find the next secured (internalor exteral) event

if (nti ≤ tini
) and (nti ≤ EITi) and (nti ≤ Z) then . if the event is internal

Ii.processInternalEvent(nti) . process the event
for all (k, j) ∈ OUTi do . Send the resulting external output event

eoutki ← Ii.getOutputEvent(yki )
if eoutki 6= ∅ then
Cij.post(eoutki , nti)

end if
end for
nti ← Ii.getNextInternalEventTime()

else if (tini
< nti) and (tini

≤ EITi) and (tini
≤ Z) then . if the event is external

Ii.processExternalEvent(eini, tini , x
p
i ) . process the event

Cci .removeEarliestEvent(p)
nti ← Ii.getNextInternalEventTime()

end if
end while

8



Figure 5: UML description of the MECSYCO software architecture.

their solvers. Our proposition is then to apply our DEVS
wrapping strategy to FMI in order to define a generic
way of making continuous equations-based tools inter-
act with discrete-event one. In the following section, we
detail the FMI standard and how we wrap it in DEVS using
the hybrid M&S capacity of DEV&DESS and QSS.

5 DEVS wrapping of the FMI stan-
dard

5.1 The FMI standard

FMI [47] is a standard of the MODELISAR Consortium
and the Modelica Association which proposes a generic
software interface for manipulating equation-based models
and their solvers. These models may be composed of a mix-
ture of differential, algebraic and discrete-time equations,
for instance described with the Modelica language. FMI
aims at (1) defining a generic way of exchanging and using
models designed with different equation-based simulation
tools, and (2) protecting the intellectual property of these
models by ensuring that they are seen as black-boxes.

A model implementing the FMI standard is called a
Functional Mock-up Unit (FMU). The FMU interface dif-
ferentiates the output variables whose values are accessi-
ble from the outside (thus equivalent to the output ports of
the model), from the input variables whose value can be
set from the outside (thus equivalent to the input ports of
the model). From a software perspective, this interface is
composed of a set of C functions, and an XML file. The
C functions enable controlling the FMU, whereas the XML
file describes the FMU and its interface. More precisely, the
XML file describes the variables names, types (i.e. Real/In-

teger/Boolean/String), variability (constant/discrete/contin-
uous) and causality (input/output/parameter), as well as the
continuous states vector.

So far around 42 simulation tools (e.g. Dymola, MAT-
LAB/Simulink, OpenModelica) claim to be compliant with
FMI v2.0 (80 with FMI v1.0), including 23 tools officially
certified (29 with FMI v1.0)2. In order to support the stan-
dard, these tools need either (1) to export their models as
an FMU or (2) to import existing FMUs and use them as a
component in a model. FMI allows two ways of exporting
and importing a model: FMI for co-simulation and FMI for
model-exchange.

With FMI for model-exchange, the model is exported
without its solver. The FMU must be then associated with
an external solver in order to be simulated. For that purpose,
the solver can especially use the following C functions of
the FMU API:

• fmi2GetReal/Integer/Boolean/String
returns the current value of a given output variable.

• fmi2SetReal/Integer/Boolean/String
sets a specific input variable to a given value.

• fmi2SetTime sets the clock of the model to a given
simulated time.

• fmi2GetContinuousStates returns the contin-
uous state vector.

• fmi2SetContinuousStates sets a the continu-
ous state vector.

• fmi2GetDerivatives returns the derivative vec-
tor of the continuous state.

2according to https://www.fmi-standard.org/tools con-
sulted on 07/04/16

9

https://www.fmi-standard.org/tools


• fmi2CompletedIntegratorStep indicates that
the integration step is finished, and evaluates if internal
event has to be processed.

• fmi2GetEventIndicators returns indicators of
state-events occurrence.

• fmi2EnterEventMode enters into the discrete
event mode, i.e. makes the discrete-time equations ac-
tive. While the FMU is in this mode, the integration
of the continuous state is stopped but discrete-events
(time, state or external) can be processed.

• fmi2EnterContinuousTimeMode enters into
the continuous-time mode, i.e. disable the discrete-
time equations. In this mode, the continuous state of
the FMU can be solved, but the discrete state has to
remain constant (i.e. events can not be processed).

• fmi2NewDiscreteStates evaluates the discrete-
time equations (should therefore only be called in
event mode) -i.e. processes the potential time and state
events. Information returned by this function includes
(1) the date of the next time-event (if scheduled), (2)
indication if the processed event(s) has changed the
continuous state (thus creating a discontinuities in the
state trajectory), and (3) indication if the discrete state
has to be immediately re-evaluate (e.g. to solve an in-
ternal algebraic loop).

With FMI for co-simulation, a model is exported with
its solver. As this solver has a passive behavior, an FMU for
co-simulation is considered as a slave, and proposes in par-
ticular the following C functions in order to be controlled
by a master algorithm[48]:

• fmi2DoStep performs an integration for a given du-
ration.

• fmi2SetReal/Integer/Boolean/String
set a specific input variable to a given value.

• fmi2GetReal/Integer/Boolean/String
get the current value of a given output variable.

• fmi2GetFMUState and fmi2SetFMUState are
optional (but essential[49]) functions used to to ex-
port/import the model state. They enable therefore to
perform a rollback during the simulation of the model.

FMI gives generic guidelines on how a master must man-
age a set of interconnected FMUs in order to jointly solve
their equations: the FMUs executions are synchronized
thanks to communication points. These communication
points which are shared by all the FMUs, correspond to the
points in the simulated time where (1) the FMU simulation

must be stopped, and (2) exchanges of data has to be per-
formed between FMUs according to their output-to-input
links.

Aside from these guidelines, FMI does not give the
specification of the master algorithm. As a conse-
quence, different master algorithms are currently developed
like FIDE[50] (FMI Integrated Design Environment) and
DACCOSIM[51] (Distributed Architecture for Controlled
CO-SIMulation), and numerous issues related to the dis-
tributed numerical resolution of the system[49] are still un-
der investigation by the community (e.g. how to determine
the best communication points interval during the simula-
tion? how to manage algebraic loop between FMUs?).

Rather than focusing on these distributed numerical reso-
lutions aspects which arise when several FMUs are directly
interconnected, we focus in this paper on the hybrid sim-
ulation issues which arise when an FMU interact with a
discrete-event component (e.g. a NS-3 model). Indeed, in a
hybrid context, the communication points simulation strat-
egy of FMI faces the following issues:

• state events occurring between 2 points of communi-
cation are localized at the upper communication point,
pending improvements of the hybrid co-simulation in
the FMI standard.

• new inputs are only taken into account at the next com-
munication point no matter when they are received (the
abort orders are only applied at the communication
points).

An effort is thus required to integrate the operational soft-
ware in such a way as to respond to events. For that purpose,
we present in the following our DEVS wrapping strategy
for FMU. As FMUs for co-simulation and FMUs for model
exchange do not have the same API and do not convey the
same constraints, we specify a different wrapper for each of
them in order to be fully compliant with the standard.

5.2 Wrapping strategies

As any model in MECSYCO, an FMU to integrate will be
connected to the co-simulation by a model artifact. This ar-
tifact exposes a DEVS view of the FMU, and must allow it
to deal with events. To define such a model artifact we can
rely on the DEV&DESS formalism as it can be embedded
into DEVS, and as it offers a sound framework for describ-
ing hybrid systems.

As defined by Zeigler [29], the DEVS version of a
DEV&DESS model is composed of three components, each
of them being formalized as a DEVS atomic model. With
this structure, a DEV&DESS model can be incorporated
into a larger DEVS schema as a coupled model. Thus
the DEV&DESS model can be simulated using the DEVS

10



simulation protocol. The three components composing the
model are:

• A continuous component describing the evolution of
the continuous part of the system according to contin-
uous inputs, and producing continuous outputs.

• An event-detection function determining when state-
events occur based on the continuous states of the
model (i.e. the FMU state in our case).

• A discrete-event component describing the evolution
of the discrete part of the system. This component de-
scribes the behavior of the model in the discrete-world,
that is to say how it schedules internal events, how
it produces and reacts to discrete inputs (i.e. exter-
nal events), and what are the impacts of state-events.
Potentially, for each of these events, the event-based
component can change the whole DEV&DESS states,
that is to say (1) its own state, (2) the continuous com-
ponent state (thus creating a discontinuity in the state
trajectory) and (3) the event detection function.

The two strategies we propose to wrap FMUs in DEVS
using DEV&DESS are the following:

• FMI for model-exchange proposes primitives that
can handle an hybrid model. However, as stated in
Section 5.1, in order to be simulated an FMU for
model-exchange needs to be associated with a solver.
We need then to implement such an hybrid solver in
our DEV&DESS wrapper. In order to manage the
continuous state simulation, the original DEVS ver-
sion of DEV&DESS relies on a quantized integrator
approach. The rationale behind this choice is that,
quantized integrators have a discrete-event behavior as
they quantize the states space instead of discretizing
the time dimension. Thus, a quantized integrator nat-
urally bridge the gap between the continuous and the
discrete-event worlds [33]: its working principle is al-
ready based on the integration of inputs events and on
the detection of state-events[30] (i.e. localizing when
the state trajectory cross a given threshold). It makes
then perfectly sense to keep this choice and to imple-
ment a quantized integrator in our wrapper. More pre-
cisely, we choose the QSS approach[30] (developed
mainly by Kofman) as it offers some of the most ad-
vanced mathematical solutions for solving equation-
based system, while exhibiting striking simulation per-
formances. We have currently implemented QSS1 [52]
(i.e. first order numerical method) and QSS2 [32] (i.e.
second order numerical method) solvers for FMU.

• FMI for co-simulation embeds a solver but does not
include yet the primitives required for managing a
discrete-event behavior[53, 49, 50] (e.g. the date of

the next scheduled time-event can not be obtained
from the FMU). Therefore, we consider that FMI for
co-simulation only specifies the continuous behavior
of the system. We need then to specifies its dis-
crete behavior (i.e. the equivalent of the DEV&DESS
event-detection function and the discrete-event com-
ponent) within our wrapper. Additionally, specifying
the discrete-event behavior outside the FMU enables
a more flexible wrapping: different discrete-event be-
haviors can be associated with a single FMU depend-
ing on the co-simulation context (e.g. the discrete-
event component can produce a discrete output sig-
nal by regularly sampling the continuous output of
an FMU, or send events when the continuous output
signal of the same FMU reaches a given threshold).
Moreover, when wrapping an FMU for co-simulation
in DEVS, we have to take account of an additional
constraint: the FMU is exported with its time-stepped
solver as a black box onto which we have a limited
control. By its time-stepped nature, an FMU can not
be considered as a QSS model, and therefore we need
to adapt the original DEVS version of DEV&DESS in
our model artifact.

The two next sections detail our wrappers and their vali-
dations.

6 Wrapping of FMU for model-
exchange

Figure 6a shows the architecture of our QSS2 solver for
FMU. This architecture follows mainly the one defined by
Kofman, but also has slight differences because two crite-
ria where not handled by the original QSS specifications:
(1) due to the FMU nature, the model is clearly separated
from its solver, and (2) the discrete-events may cause dis-
continuities in the continuous state trajectory. In order to
highlight these differences, we now describe how our QSS
solver works (Section 6.1) and how it interacts with the
other components of DEV&DESS: the state-event detec-
tor (Section 6.2) and the discrete-event behavior compo-
nent (Section 6.3). This whole structure of the wrapper is
detailed in Figure 6b and corresponds to a DEVS coupled
model which is managed by a classic DEVS coordinator
not detailed here for sake of concision. This coordinator is
directly controlled by the API of the MECSYCO wrapper.
Section 6.4 details the validation of the wrapper.

6.1 Continuous behavior simulation with
QSS

In the original QSS specifications, the solver interacts with
two clearly separated function blocks which respectively

11



(a) QSS2 solver for FMU model-exchange (b) global view

Figure 6: bloc diagram view of the DEVS wrapper for FMU model-exchange

define the output and the input behaviors of the model. In
our wrapper, these blocks are directly embedded inside the
FMU. Therefore the outputs (both discrete and continuous)
of the solver correspond to the FMU ones. The output ports
of our wrapper coupled model are directly linked to the
FMU ones. However, according to the standard, the FMU
discrete output ports produce piecewise-continuous signals
-i.e. these signals are always present no matter the time
instant[50]. In order to generate discrete-event output sig-
nals (i.e. signals that are present only at some instants in
time) for these discrete ports, we propose an optional mode
in our wrapper which filters the output of the FMU in order
to generate signals (i.e. external events) only at the mo-
ments of the time and/or state-events.

In accordance with the QSS approach, each variable xi of
the FMU continuous state vector is associated with a DEVS
quantized integrator

∫
i
. Each integrator

∫
i

takes in input the
first and second derivatives of xi respectively noted ui and
mui, and produces in output the new values and slopes of
xi noted respectively qi and mqi. These integrators numer-
ically solve the equation in an asynchronous way. A DEVS
atomic model f is in charge of computing the derivatives
slopes, handling the inputs of the equation-based system -
therefore the model has a set {in1..inm} of input ports cor-
responding to the FMU ones- and interacting with the in-
tegrators. In the original QSS specifications, the equation-
based system is directly embedded into f . This is not feasi-
ble in our case cause the system is already embedded in an

FMU. As a consequence, in our solver f also manages the
interaction with the FMU in the following way:

• when it has to update the FMU continuous state
(e.g. when it receives from an integrator a new
value and slope for a continuous state variable), f
first switches the FMU into the continuous mode
(using fmi2EnterContinuousTimeMode)
if it was not already, and call the
fmi2SetContinuousStates function.

• when it has to update the value of an input variable
of the FMU (i.e. when it receives an input event
through a ini ports), f first checks the variability
of the variable into the XML description file. De-
pending if this variability is continuous or discrete,
f calls the fmi2EnterContinuousTimeMode
or fmi2EnterEventMode function in order to
set the FMU in the appropriate mode (if it was not
already). f checks then the input variable type in the
XML file, and updates its value in the FMU using
fmi2SetReal/Integer/Boolean/String
function. If the updated variable is discrete,
f asks (several times if needed by the FMU)
the FMU to re-evaluate its discrete state using
fmi2NewDiscreteStates.

• when it receives any events at its input ports (e.g. from
the integrators or at a ini port), f updates the clock

12



of the FMU to the timestamp of the events using the
fmi2SetTime function.

• when it has to get the derivative ui (e.g. in order to
compute its slopemui and to forward these two values
to
∫
i
), f uses the fmi2GetDerivatives function

of the FMU.

As shown in Figure 6b the solver interacts with two
atomic models in order to simulate the discrete behavior of
the FMU. These models correspond to the ones defined by
Zeigler in the DEVS version of DEV&DESS.

6.2 State-event detector
The state-event detector atomic model is in charge of the
accurate localization of state-events during the simulation
of the continuous equations. In order to take advantages of
the QSS approach for detecting state-events, we make the
hypothesis that the state-event thresholds of the FMU are
a priori known (either because this information can be ob-
tained from the model designer or from the XML descrip-
tion file). In the original hybrid QSS specifications[33],
Kofman suggests two ways of feeding the state-event de-
tector from the QSS solver:

1. It can receive the variables values q and derivatives u
and mu. This way, as stated by Kofman, the detector
only ”have to find the roots of a second degree poly-
nomial”[33] in order to find the time of the next state-
event (in the absence of new state and derivatives up-
date received from the solver). The detector schedules
then an internal event at the time of this state-event in
order to produce an output notifying the occurrence of
the event.

2. Or it can only receive the derivatives u and their slopes
mu directly from the output ports of f . In this case, in
addition to find the time of the next state-event and
schedule the resulting internal event, the detector has
to integrate (in parallel of the system resolution) the
variables concerned with the thresholds.

Kofman opts for the second option as it does not implies
any modification of the QSS solver. However, the drawback
of this option is that the detector can not be aware of the
discontinuities in the continuous state trajectory caused by
discrete-events processing (time, state or external). That is
why we choose the first option in our wrapper: the model
f forward immediately to the detector all the updates of
the continuous states vector q and its derivatives u and mu
through a dedicated output port.

6.3 Discrete-event behavior simulator
The DEVS’ atomic model is in charge of managing the oc-
currences of discrete events (state, time and external). After

each modification of the discrete state of the FMU -i.e. after
each external/time/state-event processing in the FMU-, this
component (1) retrieves the time tn of the next time-event
scheduled in the FMU, and (2) checks if the event process-
ing has created a discontinuity in the continuous state trajec-
tory (by checking the information returned by the last called
of the FMU fmi2NewDiscreteStates function). The
DEVS’ component schedules an internal event at each tn. It
also receives notifications of state-events occurrences from
the detector. Moreover, all the discrete inputs of the FMU
are first sent to the DEVS’ component before being immedi-
ately forwarded to the QSS solver. This enables the DEVS’
component to be aware of discrete-input occurrences, and
thus to interact with the FMU (i.e. update tn and check dis-
continuities) after the discrete input was processed by the
solver. Therefore as shown in Figure 6b, we distinguish in
the QSS solver interface between:

• the set {inc1, ..., inc
k} of input ports which correspond

to the continuous inputs of the FMU. These ports are
directly connected to the input ports of the wrapper.
This way, the solver can directly receive continuous
inputs of the FMU from the other simulation tools of
the co-simulation.

• the set {ind1, ..., ind
l } of input ports which correspond

to the discrete inputs of the FMU. These ports are du-
plicated in the DEVS’ component interface.

As soon as it computes a time event or it receives a state-
event notification, the DEVS’ component sends an inter-
nal event notification to the QSS solver through a dedicated
port. The solver processes this notification in the same way
it does with discrete inputs: it sets the FMU to the discrete
mode and asks the FMU to re-evaluate its discrete state,
thus causing the time/state-event to be processed. The only
difference is that, as no discrete input of the FMU corre-
sponds to this internal event notification port, the solver
does not change any input variable of the FMU. Finally,
as soon as the DEVS’ component detects a discontinuity in
the continuous state trajectory, it sends immediately a reset
event to the QSS solver through a dedicated port. In accor-
dance with Zeigler’s DEV&DESS specifications, this event
resets both the quantized integrators and the f model state,
thus enabling the QSS solver to handle the discontinuity.

6.4 Implementation and validation

We have implemented this wrapper in the Java version of
MECSYCO. In order to interact with the FMU, we rely
on JavaFMI[54]. As this library only covers FMU for co-
simulation, we proposed an extension to interact with FMU
for model-exchange. We have verified the behavior of our
wrapper by reproducing two QSS2 use-cases proposed by

13



Kofman[33]. The first one corresponds to an DC-AC in-
verter circuit equipped with switches controlled by discrete-
inputs which are sent according to a Pulse Width Modula-
tion (PWM) strategy. The second one corresponds to a ball
bouncing downstairs with state-events occurring twice each
bounce (one when the ball hits the ground and one when
it leaves it). We translated the Kofman’s models into the
Modelica language (Figures 7a and 8a) and export them in
FMUs for model-exchange using OpenModelica. We found
similar simulation results (Figures 7b and 8b) and perfor-
mances with our solver and with the Kofman one.

As these two models do not include discontinuities in
the continuous state trajectory, we also propose another use
case to test this aspect with our solver (Figure 9a). This use
case correspond to the simulation of a a barrel-filler factory
inspired by the one proposed by Praehofer[14]. In this fac-
tory, we consider a queue of barrels waiting on a conveyor
to be filled. The factory fills only one barrel at a time. As
soon as the water reaches a given level in the barrel, the
barrel is carried away by the conveyor, and the filling pro-
cess starts again for the next empty barrel. A tank stores
the water to fill the barrels. The flow rate of water filling
the barrel decreases with the level of water in the tank. A
valve controls the flow of water between the tank and the
barrel. The valve can only be in two states ”open” (water
goes from the tank to the barrel) or ”close” (the filling pro-
cess is stopped). The continuous dynamics of the model
correspond to the levels of water in the current barrel and
in the tank. The model receives discrete inputs controlling
the valve. State-events correspond to the moment where the
current barrel is full. At this point, the level of water in the
current barrel is reset to represent the change of barrel. The
model produces a discrete output signal corresponding to
a regular sampling of the level of water in the barrel. This
signal can be for instance sent to a controller for monitoring
the filling process. We found similar results when simulat-
ing this model with our QSS2 solver (Figure 9b) and with
the OpenModelica solvers.

7 Wrapping of FMU for co-
simulation

As stated in Section 5.2, we need the three components
of DEV&DESS to integrate a FMU into DEVS. An FMU
for co-simulation provides the continuous behavior and we
need to define the two remaining components (i.e. the state-
events detector and the discrete-behavior component) in the
wrapper. These components are dependent of the wrapping
context:

• the discrete-behavior component has to specify the be-
havior of the FMU in the discrete world. This com-
ponent corresponds to a DEVS atomic model which

can interact with the FMU component. For example,
this component can sample a continuous output of the
FMU by regularly scheduling internal event, and pro-
ducing external output event according to the current
value of the FMU variable using fmi2GetReal.

• the state-events detector has to specify the condition of
occurrence of state-events according to the FMU state.
This detector corresponds to a boolean function S →
{true, false} with S the set of the FMU states. For
example, this function can return true (i.e. a state-event
occurs) only if a variable of the FMU is superior or
equals to a given value.

In the following we detail how we implement the main
DEVS primitives into the wrapper.

7.1 Time of the next internal event
In our DEVS wrapper for FMU for co-simulation[55], we
rely on the FMI specifications to simulate the continuous
output of the component: we consider that the FMU pro-
duces outputs at a sequence of pre-defined communication
points. From our DEVS point of view, these communica-
tion points are seen as internal events producing external
output events. In the same way, from our DEVS point of
view we see updates of the continuous input values received
by the FMU as input events.

According to the DEVS semantic, the
getNextInternalEventTime() function must
return the date of the earliest scheduled internal event in the
model. In the DEV&DESS context, this date corresponds
to the minimum between:

• the date of the next internal event scheduled in the
discrete-event component,

• the date of the next communication point of the FMU,

• the date of the next state-event.

Getting the first two dates is trivial as they are a priori
known. Things get more complex for the state-events: be-
cause of the numerical resolution of the equational model,
state-events can only be detected after each integration step
of the FMU, and their localization in time can only be ap-
proximated.

In order to get the date of the next state-event, we need
to perform an exploration with the FMU to see if a state-
event will occur before its next communication point. Thus,
the component will always be ”in the future” compared to
the current simulation time. As according to the DEVS se-
mantic the getNextInternalEventTime() function
must not change the state of the model, it is imperative to be
able to come back to the previous state of the FMU which is
the only legitimate state from the simulation point of view.

14



model BouncingBall
output Real x(start = 0.575); "horizontal position (m)"
output Real y(start = 10.5); "vertical position (m)"
output Real vx (start = 0.5); "horizontal speed (m/s)"
output Real vy(start = 0); "vertical speed (m/s)"
discrete Integer sw(start=0); "discrete position"
parameter Real k = 100000;
parameter Real m = 1;
parameter Real b = 30;
parameter Real ba = 0.1;
parameter Real g = 9.80665; "gravity (m/sˆ2)"
parameter Real h = 10; "first step height (m)"
equation

der(x) = vx;
der(y) = vy;
der(vy)=-g-ba*vy/m-sw*(b*vy/m+k/m*(y-floor(h+1-x)));
der(vx)=-ba/m*vx;
when y<=floor(h+1-x) and pre(sw)==0 then
sw= 1;

elsewhen y>=floor(h+1-x) then
sw= 0;

end when;
end BouncingBall;

(a) Modelica code of the model (b) MECSYCO simulation results

Figure 7: Simulation of the bouncing ball system

model inverter-circuit
parameter Real R = 0.6 "resistance (ohm)";
parameter Real L = 0.1 "inductance (H)";
parameter Real Vin = 300; "input voltage (V)"
Real iL(start = 0) "current (A)";
discrete input Integer sw(start = -1) "switch";
equation

der(iL) = (-R / L) * iL + sw * Vin;
end inverter-circuit;

(a) Modelica code of the model (b) MECSYCO simulation results

Figure 8: Simulation of the DC-AC inverter circuit

model barrel
discrete input Boolean valve(start = true);
parameter Real qmax = 7 "initial tank water (L)";
Real q(start = qmax) "water in the tank (L)";
Real flow(start = 0) "flow of water";
parameter Real gain = 0.3;
parameter Real value = 0.025;
output Real x(start = 0) "water in the barrel";
parameter Real xmax = 1 "wanted barrel water(L)";
parameter Real f = 10 "sampling frequency";
discrete output Real y(start = 0) "output sampling";
equation

flow = if valve and q > 0 then q*gain+value else 0;
der(q) = -flow;
der(x) = flow;
when x >= xmax then
reinit(x, 0);

end when;
when sample(0, 1 / f) then
y = x;

end when;
end barrel;

(a) Modelica code of the model (b) MECSYCO simulation results

Figure 9: Simulation of the barrel-filler factory

15



The rollback capability of the FMU assures this feature as
long as no new integration step is performed.

When a state event is detected during an exploration, we
perform a bisectional search [17, 56] in order to localize the
state-event as precisely as possible in the time. This search
is formalized by the Algorithm 2 which, given the initial
integration step ∆T and a number of iterations m (formal-
izing the search precision), positions the FMU as close as
possible to the state-event occurrence. The algorithm basi-
cally progresses by a succession of integration steps whose
duration δt is adapted according to state-event occurrences,
and following a dichotomous strategy. As, again, the orig-
inal state must always be accessible, and as only one inte-
gration step can be canceled at a time, the algorithm always
goes back to the legitimate state before performing a new
integration step.

Algorithm 2 Bisectional search for state-event localization.
INPUT: ∆T ∈ R+

0 ,m ∈ N+
0

δt← 0
∆t← ∆T
for 1 to m do

fmu.rollBack()
∆t← ∆t/2
fmu.doStep(δt+ ∆t)
if ¬stateEventOccurence() then

δt← δt+ ∆t
end if

end for

7.2 Events processing
According to the DEV&DESS semantics, when an event
(internal, external or state-event) occurs at simulated time
t, the equational component describes the continuous evo-
lution of the system until t, and the event is processed by
the discrete-event component. This behavior is translated
in our model artifact as follows.

When the processExternalEvent(eini
,t,xki )

function is called to report the occurrence of an external
input event eini into the xki input port, the first step consists
in rolling back the FMU to its previous state, which is, as
stated in the previous section, the only legitimate state from
the simulation point of view. Then the FMU performs an
integration step until t in order to reach the point where the
event occurs. Finally, if xki is a continuous port, the FMU
is parametrized accordingly. If xki is a discrete port, the ex-
ternal transition function of the discrete-event component is
triggered in order to process eini

.
In a similar way, when the

processInternalEvent(t) function is called to
process the next internal event, the FMU is rolled back to

its previous state and an integration step is performed until
t. If the next internal event corresponds to a communication
point of the FMU, then the model artifact retrieves the
continuous output ports values, and produces the external
output events accordingly. On the other hand, if the next
internal event corresponds to a state-event or the next
internal event of the discrete-event component, then the
internal transition function of this latter is called, which
could produce external output events.

8 Discussion and related works
We have presented in Section 4 the whole specification of
the MECSYCO middleware which enables the rigorous co-
simulation of complex systems. On the contrary to the mo-
saik co-simulation platforms [57] which is based on discrete
time-step framework, MECSYCO enables the rigorous in-
tegration of models written in heterogeneous formalisms.
Indeed, on this point MECSYCO relies on the formal guar-
antees offered by DEVS, and on the practical guidelines of-
fered by the numerous integrative works around DEVS in
the literature.

The High Level Architecture (HLA) standard [58] gives
generic guidelines and rules for building a co-simulation
middleware. It as been shown that an HLA-compliant mid-
dleware, can also used a DEVS framework [59, 60]. How-
ever, on the contrary to HLA, we gives here the whole
specification of our platform. These specifications range
from the decentralized synchronization algorithm to the
distributed agent-based architecture and its object oriented
implementation. Thus, we clearly define our middleware
working principle, making our co-simulations more repro-
ducible and our middleware more flexible: different imple-
mentations of MECSYCO are interoperable and therefore
can be simultaneously used in a co-simulation, as shown
with our Java and C++ versions.

Finally on the contrary of the DACCOSIM [51] plat-
form dedicated to the co-simulation of FMU components,
MECSYCO is not limited to a specific simulation software
or norm.

Using our MECSYCO platform, we have shown how
FMU components can be wrapped into a DEVS model us-
ing DEV&DESS and QSS. We propose then a generic way
of making continuous models exported in the FMI standard
interacting with discrete models. It is important to note that,
as we base this wrapping directly on the DEVS protocol,
this work is not limited to the MECSYCO platform, but can
be implemented in any DEVS-based platform. With our
DEVS wrapping of FMU for model-exchange, we define a
hybrid QSS solver tailored to the FMI standard. Like other
existing QSS versions of the litterature [61, 62], our solver
can simulate Modelica models. However, the originality is
that our QSS solver can also solves models written in any

16



of the numerous software compliant with FMI for model-
exchange (e.g. MATLAB/Simulink).

We also want to underline the fact that, whereas our
wrapping of FMU for model exchange is adapted both for
FMI 1.0 and 2.0 versions, our wrapping of FMU for co-
simulation is only adapted for FMI 2.0. This is due to the
fact that we rely on the roll-back capacity of the FMU which
is only available in the latest version of the standard.

In the following section, we show the features of our so-
lutions through a proof of concept of a smart heating M&S.

9 Use Case
Our use case is inspired by different works around smart-
heating [62][63]. We want to simulate the evolution of
the temperature inside a system composed of two buildings
equipped with electric heaters, and the power consumption
of these latter. Using this simulation, we are interesting
in the design of a controller for limiting the consumption
peaks duration in the building. To do so, this controller
temporarily disables some heaters according to the infor-
mation it receives on the buildings temperatures and power
consumption. This controller interacts with the buildings
system through an IP telecommunication network. Such a
goal could lead to an typical iterative M&S process driven
by the following series of questions:

1. What are the power consumption and the temperatures
evolution in the buildings without the controller?

2. Does the controller actually achieve its goal without
the delays and the interference induced by the telecom-
munication network?

3. What are the influences of the telecommunication net-
work on the controller performances?

This leads to three major steps in the M&S process.
In order to answer to the first question, we need to sim-

ulate the thermic system. We use three models. One de-
scribes the outside temperature evolution. One model de-
scribes the power consumption and temperature evolution
of one building according to the outside temperature evo-
lution. We perform the co-simulation of these three models
by feeding the building models with the outside temperature
trajectory.

In order to answer the second question, we build the
model of the controller. We use this model twice (one for
each building) in the co-simulation. Each controller model
is fed with the outputs of its building model (i.e. rooms
temperatures and power consumption). When needed, it
produces as output the heaters switch off/on orders which
are sent to the building models as inputs.

In order to answer the last question, we add a model of
the telecommunication network between the buildings and

their controller. The outputs of the buildings models now
first pass through the network model before arriving to the
controller models. Reciprocally, the controller orders tran-
sit through the network model before delivery. The network
model adds then delays and perturbation (i.e. packet loss
and noise) to the system.

This ”toy” use case does not claim to be realistic. We
keep the individual models of the use case simple since
we are here more focused on demonstrating the following
MECSYCO properties rather than on presenting a credible
use case:

• Modularity: the use case development follows an it-
erative M&S process. We first begin the co-simulation
with the thermic model of the building. Then, we
add step by step the models of the controller and the
telecommunication network. We show that passing
from one of these steps to another does not require to
rebuild the co-simulation from scratch.

• Software interoperability management: each model
of the co-simulation is implemented in a different
simulation software. The thermic model is defined
in Modelica and exported into FMUs for model-
exchange and co-simulation, the telecommunication
model is defined using the NS-3 simulator, and the
controller model is implemented in an ad-hoc way us-
ing the Java language. We show that MECSYCO prop-
erly manages the exchange of data between these het-
erogeneous software.

• Multi-formalism integration: the models of the co-
simulation are defined in different formalisms. The
thermic model is an hybrid model composed of differ-
ential and discrete equations. The telecommunication
model is a discrete event model whereas the controller
model is a discrete time-stepped model. We show that
MECSYCO enables the rigorous integration of these
heterogeneous models.

• Multi-representation integration: the models evolve
at different temporal scales, namely the seconds for
the controller and the thermic models and the nanosec-
onds for the telecommunication network. We show
that MECSYCO rigorously synchronizes these mod-
els executions during the co-simulation.

• Distributed multi-platform execution: we execute
the co-simulation on two computers connected on
a LAN. These two computers uses different op-
erating systems, and different implementations of
MECSYCO. The telecommunication network model
is executed on GNU/Linux Debian with the C++ ver-
sion of MECSYCO, whereas the other models are exe-
cuted on Microsoft Windows 10 with the Java version
of MECSYCO.

17



Figure 10: Architecture of the building

In order to make this use case reproducible and de-
scribe in a transparent way all its heterogeneity, we de-
tail in the following sections, each model and its imple-
mentation. Finally, in Section 9.4 we describe the dif-
ferent co-simulations made with these models, we discuss
the simulation results, and highlight the benefits offered by
MECSYCO.

9.1 The thermic system models
We create two kinds of models for the thermic system. One
corresponds to the outside temperature trajectory. For sake
of simplicity, this model generates a simple sinusoidal sig-
nal representing day/night temperature cycles.

The second model corresponds to the temperature and
power consumption evolution of one building. Recall that,
as the two buildings are identical, we use this model twice.
Each building of the thermic system is composed of ten of-
fices linked by a corridor following the Figure 10. Each
room is influenced by the outdoor temperature, by the adja-
cent rooms, and contains an electric heater with an internal
thermostat which turns on when the temperature inside the
room falls under a minimal value and turns off when this
temperature reaches a maximum value. Then we need to
build models for rooms to get the temperature, for walls to
get the heat flow between two rooms (or between a room
and the outside temperature) and for electric heaters to get
the instantaneous power consumed to heat. For sake of sim-
plicity, we assume here that all the heaters have the same
features (i.e. setpoint temperature, power and tolerance).

For these models, we choose to use Modelica [64]
which is an object oriented language adapted to the
modeling and simulation of hybrid systems. We
use the standard library of Modelica to build our
models. The thermal part of the building is built
using the Modelica.Thermal.HeatTransfer li-
brary and the electric heater model is built with the
Modelica.Electrical.Analog library.

The following list presents the interface of the building
model used to interact with the other models of our use case.

Inputs:

• blackouti is a discrete boolean input. When set to true,
the electric heater of the room i is shut down.

• Tout is the continuous outside temperature in K.

Outputs:

• RiTemp is a discrete signal sampling the temperature
of the room i. This signal is updated every period of
time, and represents the information sent regularly by
a thermometer to the controller.

• RiPow is the instantaneous power consumption inside
the room i. It is a discrete variable updated each time
the heater starts and stops.

Rooms are modeled as heat capacitors. Each room is
seen as a volume of air with a temperature. The different
influences (from the walls and from its heater) are modeled
as heat flow exchanges. The behavior of the model of a
room i is characterized by the equation:

Ci ∗
dTi
dt

= Qini
+Qheateri

Where:

• Ci is the constant thermal capacity of the room in J/K.

• Ti is the temperature of the room in K.

• Qini is the sum of the heat flows received from the
walls connected to the room.

• Qheateri is the heat flow received from the electric
heater. We consider here that it is equal to the in-
stantaneous power consumption of the room in W -i.e.
RiPow = Qheateri .

The heat flows are computed in the following way. The
model of the wall determines the heat flows between the
two air volumes k and l it is connected with. Note that
in our case, an air volume can be a room or the outside
environment. The heat flows depends on the temperatures
of k and l as well as on the thermal conductance of the wall.
This is represented by the following equations:

Qkl = Gi ∗ (Tk − Tl)
Qlk = −Qkl

Where:

• Gkl is the constant thermal conductance of the wall in
J/K.

• Qkl (resp. Qlk) is the heat flow from the volume k
(resp. l) to the volume l (resp. k) in J.

Qheateri is determined by the behavior of the electric
heater which is modeled as a basic electrical circuit with a

18



Figure 11: Heated room model “Ri”

constant voltage, an electrical resistance and a switch. This
is represented by the following equation:

if orderi and not blackouti

then Qheateri =
U2

R
else Qheateri = 0

Where:

• U is the constant voltage in V.

• R in Ω is the constant electrical resistance of each
heater in the building.

• orderi is a boolean representing the command of the
internal controller of the heater. When it is equals to
true, the heater is on.

orderi is set to true when the temperature inside the room
is below a minimal value, and to false when this temperature
reaches a maximal value. This behavior corresponds to the
conditional statement:

when Ti ≤ Twanted −
bandwidth

2
then orderi = true

else when Ti ≥ Twanted +
bandwidth

2
then orderi = false

Where:

• Twanted is the desired temperature in every room of
the building.

• bandwidthi is the temperature tolerance of every
heater in the building.

Each discrete port RiTemp samples the continuous tem-
perature evolution of the room i according to the following
Modelica code:

when sample(0 , period) then

RiTemp = Ti

end when;

Where period is a constant interval of time in s. The Model-
ica function sample(0 , period) is used to update RiTemp
each period of time in order to represent the discrete signal
regularly sent by the thermometers to the controller.

The model of a room with its heater and controller can be
described in bloc diagram by Figure 11. Using this model,
the whole building can be described by the bloc diagram of
Figure 12. According to OpenModelica, this model is com-
posed of 1622 equations including 11 differential equations.

The building model is an hybrid system which combines
continuous and discrete behavior. The simulation of this
model requires to solve the differential equations system
describing the temperatures evolution while taking account
of discrete time and state-events. These discrete events cor-
respond to the Modelica “when” statements. Each update
of the discrete output ports RiTemp corresponds to a time-
event scheduled in advance by the model for regularly sam-
pling the continuous temperature evolution. At the oppo-
site, a state-event occurs each time the temperature of a
room reaches one of the two heaters thresholds -i.e. each
time Ti = Twanted ± bandwidth

2 . Considering the 11 rooms
of the building, 22 state-event thresholds have then to be
simultaneously monitored. Moreover, the continuous in-
puts of the outside temperature and the discrete inputs cor-
responding to the blackout orders of the controller have to
be integrated during the simulation.

9.2 The controller model

As the two buildings do not interact together (i.e. no tem-
perature exchange occurs between the buildings), the con-
troller can manage each building separately. Then, we de-
fine here the model of the controller for managing only one
building. This model can be duplicated in order to control
both buildings.

Recall that the goal of the controller is to limit power
consumption peaks duration in the building. To do so, the
controller temporary disables some heaters when the to-
tal power consumption of the buildings is equal or higher
than a given threshold Powmax. Hence we accept to lower
the temperatures of some rooms beneath the setpoint for
a specific period of time. Nevertheless, in order to main-
tain a minimum of comfort in every room, the controller
makes sure that the temperature is above a given threshold
Tempmin in K (assumed to be lower than the temperature
setpoint of the heaters).

The controller maintains a set of variables Tempi and
Powi for saving respectively the last temperature and the
last instantaneous power consumption values received from
the sensors of each room i of the building. Basing on these
variables, the controller regularly evaluates at a given fre-
quency if some heaters need to be disabled or enabled. If
so, it sends the corresponding orders to the heaters.

19



Figure 12: Building model

The policy used to determine these orders at each evalu-
ation point is the following:

1. The controller checks for each room i if Tempi ≤
Tempmin. If so, the controller immediately enables
the corresponding heaters.

2. In order to check if some heaters have to be shut
down, the controller computes the building total in-
stantaneous power consumption Powtot according to
the following equation:

Powtot =

(
11∑
i=1

Powi

)
+
U2

R
∗Non

With:

• Non the number of heaters that have just been
enabled by the controller in step 1.

• U the constant voltage of the heaters in V.

• R the constant electrical resistance of the heaters
in Ω.

If Powtot ≥ Powmax, then the controller computes
the numberNoff ∈ N of heaters which have to be shut
down in order to lower Powtot below Powmax. The
controller disables then the heaters of the Noff rooms
having the highest temperatures. Noff is computed
according to the following equation:

Noff = int

(
Powtot − Powmax

U2/R

)
+ 1

With int : R → N the integer typecasting function
which truncates a decimal number to zero digits.

This controller is described by a discrete time-stepped
model where each time-step corresponds to an evaluation

point. Each Powi and Tempi variable can be updated by
specific input ports of the model. The controller order to the
heater of each room i corresponds to a boolean sent through
a specific output port blackouti. From our DEVS wrapping
perspective, we consider each time-step as an internal event
and each input/output as an external event.

9.3 The telecommunication network model

The IP network is modeled with NS-3 [22], a popular
discrete-event IP network simulator. NS-3 models can be
wrapped into DEVS as a coupled model composed of net-
work components [46].

From the perspective of the IP network, each room corre-
sponds to two network devices. A heater sends information
about its power consumption to the controller, and receive
commands from this latter, asking them to stop heating for
a moment. A thermometer regularly sends the current tem-
perature of the room, to the controller too.

The IP network topology is shown on Figure 13 (with
only three rooms a building instead of eleven). We consider
that there is one switch (S) a building, connecting all heaters
and thermometers in a same local area network. Then, each
building is connected to the Internet with its own router (R).
The Internet is just modeled with one big central router, and
the controller is itself connected to it. Network devices are
connected to external models through input and output ports
(marked on the sides of the figure), for receiving and trans-
mitting data. In this case, external models correspond to the
application layer of the devices.

Heaters and thermometers can exchange measures and
commands with the controller over the fake Internet, thanks
to TCP or UDP connections, depending on the choice of
the experimenter. Choosing TCP (reliable protocol) or UDP
(unreliable protocol) is important due to the error model in-
stalled on the links between the building routers and the

20



Figure 13: IP network topology, with three rooms a build-
ing, and with DEVS ports on the sides.

Internet, used for modeling some noise on the network. Ex-
perimenters can configure this error model, choosing a bit
error rate (e.g. one incorrect bit for every thousand bits
sent). The network model is build using the standard NS-3
component library.

9.4 Co-simulations

This section details the co-simulations and their results. The
parameters used in the different co-simulations are provided
in Table 3.

In order to answer to the first question, we export the
thermic building model into an FMU for model-exchange
to handle discrete-events. As said previously, we use two
instances of this model, one for each building we want to
simulate. We export the outside temperature model as an
FMU for co-simulation called Out.

According to our wrapping strategy, each building FMU
is associated with an instance of our QSS solver. Each of
these QSS solves the 11 differential equations of its mod-
els and monitors its 22 state-event thresholds. We set the
quantization of all the integrators of the solvers to 0.0001.
As shown in Figure 14b, we interconnected the wrapped
models in MECSYCO in order to form the DEVS coupled
model of Figure 14a.

The co-simulation is executed on a single computer using
Windows 10 and the Java implementation of MECSYCO.
We simulate one day of the system evolution.

The co-simulation results are shown in Figure 17a. For
the sake of concision, these results solely show the state tra-
jectory of the first building. These results are similar to the
ones obtained with OpenModelica, and match perfectly the
expectation: state-events are handled at the right times (i.e.
the heaters start and stop just when the temperatures evo-
lution reach one of the two thresholds), and we can see the
influences of the building symmetry with room 1 to 10 in
the state trajectory (e.g. the rooms 1 and 10, or the rooms 5

and 6 which receive similar thermal influences have similar
trajectories).

In order to answer the second question, we add the
two controller models (one for each building) to the co-
simulation. According to the co-simulation parameters, the
controller considers that consumption peaks occurs when
the total power consumption of the building is higher than
the power consumption of one active heater (i.e. when at
least two heaters are active at the same time). We config-
ure the models in order the controller to evaluate the build-
ing states every minutes. 30 seconds after each evaluation
point (and its potential orders sent to the heaters) the con-
trollers will receive new information from the buildings sen-
sors, and wait another 30 seconds until the next evaluation
points. We connect the wrapped model in order to form the
coupled model of Figure 15a.

The Figure 17b shows the simulation results for the first
building. In this graph, grey areas represent the periods of
time during which the heaters should be shut down accord-
ing to the controller model outputs. Again, the simulation
results are in accordance with the model. Indeed, we can
see that the controller model outputs are well integrated
into the building model: when the controller sends the shut
down orders, the heaters immediately stop working and the
corresponding rooms temperatures start decreasing accord-
ing to the walls heat transfers. On the contrary, as soon as
the controller sends starting orders to the heaters, the cor-
responding rooms temperatures immediately start increas-
ing and oscillate as expected between the two state-event
thresholds.

In order to answer the last question, we add the telecom-
munication model to the co-simulation as indicated by the
Figure 16. As NS-3 works at a nanosecond timescale
whereas the FMUs use a second time scale, we use trans-
formation operations in the coupling artifacts between NS-3
and the FMUs in order to convert the timestamps of the ex-
changed events.

It is important to note that the models are compliant with
different OS: the FMUs components we have generated are
only compliant with Microsoft Windows, whereas the NS-3
model requires a GNU/Linux. Moreover, we used differ-
ent implementation of MECSYCO to wrap our models: the
FMU components and the controller model are wrapped in
the Java version whereas the NS-3 model is wrapped using
the C++ version. As a consequence, we have to distribute
the co-simulation on two computers:

• The first computer runs on Windows 10 and uses the
Java version of MECSYCO to simulate the FMUs and
the controller model.

• The second computer runs on GNU/Linux Debian and

21



uses the C++ version of MECSYCO to simulate the
NS-3 model.

When we configure NS-3 in order to simulate a TCP pro-
tocol on the network without any error model, the simu-
lation results are similar to the previous ones (shown on
Figure 17b) -i.e. the network does not impact the system
behavior. This is due to the fact that, in this case, the net-
work only introduces very small delays (on a second time
scale) in the communications between the buildings and the
controller. However, when we configure NS-3 for the net-
work model to introduce perturbations in the communica-
tions (i.e. packets losses or corruptions), the simulation re-
sults are changed as shown by Figures 17c and 17d. To
do this, we use in NS-3 an UDP protocol without check-
sum and an error model of 1 bit altered respectively every
10000 ones and every 1000 ones. We can see that, as one
can expect, the more noise we add in the network, the more
different the system trajectory becomes. It is interesting to
note that in the results shown by Figure 17d the noise is so
high that some controllers orders (for instance the shutdown
order for the heater of room 1 at time 8370) do not even ar-
rive to the buildings. Note that the Figures 17c and 17d only
display an example of simulation results as the NS-3 error
model introduces a stochastic process.

9.5 Synthesis
With this use case, we have shown that MECSYCO can rig-
orously integrate different kinds of heterogeneity. At each
step of this use case we introduced a new heterogeneity at
the software, formalism and representation levels.

• The first step shows that MECSYCO handles the FMI
standard (both co-simulation and model exchange),
and hybrid dynamics (i.e. continuous evolution with
state and time events).

• The second step shows that MECSYCO enables the in-
teraction of continuous and time-stepped models, and
properly manages the data exchange between FMUs
and ad-hoc simulators.

• The last step shows that the NS-3 discrete-event sim-
ulator can rigorously interact with FMUs and ad-hoc
models in a distributed multi-platform architecture
within MECSYCO.

Through this iterative proof of concept, we have shown
that MECSYCO enables the modular M&S of a complex
system. Indeed, it is important to note that, at each next co-
simulation step, we only add and connect the new models to
the previous co-simulation. Hence, we do not have to mod-
ify neither the models nor their MECSYCO wrappers: we
only have to change the co-simulation structure (i.e. models
interconnections and co-simulation distribution).

10 Conclusion

In this work, we presented the MECSYCO middleware
specifications enabling the rigorous modeling and simula-
tion of complex systems through a co-simulation approach.
MECSYCO relies on the universal property of the DEVS
formalism in order to integrate models written in different
formalisms. This integration is made thanks to a wrap-
ping strategy in order to make models implemented in dif-
ferent simulation software interoperable. The middleware
performs then the co-simulation in a parallel, decentralized
and distributable fashion thanks to its modular multi-agent
architecture.

We also stated that although the wrapping of models re-
lies on the formal guaranties offered by DEVS, it can be not
trivial to perform. That is why we have detailed how contin-
uous equation-based models -which are amongst the most
difficult to integrate- can be integrated in a generic way
thanks to the FMI standard in order to perform hybrid co-
simulations. We based this wrapping on the DEV&DESS
formalism and on the QSS solver strategy. Thus we have
illustrated that the wrapping of models in MECSYCO has
not necessarily to be done from scratch, but can benefit from
the numerous rigorous works around DEVS integration ex-
isting in the literature. We also underlined the fact that
our DEVS wrapping of the FMI standard is not restricted
to MECSYCO but can be performed in any DEVS-based
platform.

Compared to other works in the literature, our middle-
ware is generic and modular thanks to the strong founda-
tion of DEVS: there is no need to change the specifica-
tions when a model is changed/added/removed in the co-
simulation. Yet our solution is evolutionary as one can still
keep the framework and change some of the specification,
for instance other DEVS co-simulation algorithms can be
implemented. Moreover, our middleware is fully specified
from the concepts, to their implementations making differ-
ent implementations of MECSYCO interoperable, and the
co-simulations reproducible.

In future works, we plan to extend the application do-
main of MECSYCO by interfacing more simulation soft-
ware. We also want to integrate real-time simulation ca-
pacity into MECSYCO in order to perform interactive co-
simulations. We also want to propose extension of our ap-
proach in order MECSYCO to support the whole M&S pro-
cess from the definition of the experimental plan to the sim-
ulation results analysis. We plan to introduce hierarchical
modeling like in DEVS, in order to reuse a model prede-
fined with MECSYCO into a wider co-simulation. Finally,
we want to develop a Domain Specific Language approach
within MECSYCO in order to define co-simulations using
directly the experts language. Such an approach could in-
deed make MECSYCO accessible outside the M&S experts

22



(a) Bloc diagram view of the DEVS model (b) MECSYCO view of the co-simulation

Figure 14: Co-simulation of the building system without controller.

(a) Bloc diagram view of the DEVS model (b) MECSYCO view of the co-simulation

Figure 15: Co-simulation of the building system with a controller but no network

(a) Bloc diagram view of the DEVS model (b) MECSYCO view of the co-simulation

Figure 16: Co-simulation of the building system with a controller and a network

23



(a) Simulation results without controller (b) Simulation results with a controller but no network

(c) Example of simulation results with UDP and 1 bits altered
every 10000 ones

(d) Example of simulation results with UDP and 1 bits altered
every 1000 ones

Figure 17: MECSYCO co-simulation results of the building-controller system.24



Table 3: Parameters used in the smart heating co-simulation use case.

Models Parameters Descriptions Values

thermic building

temperature setpoints of the heaters, Twanted 293.15 K
tolerance of the heaters, bandwidth 5 K
electrical resistance of the heaters, R 2 Ω
power supply voltage, U 230 V
thermal capacities of rooms 1 to 10 112.5 kJ/K
thermal capacities of rooms 11 600 kJ/K
thermal conductances of the outside walls of rooms 1 and 10 2 J/K
thermal conductances of the outside walls of rooms 2 to 9 1.25 J/K
thermal conductance of the outside wall of room 11 7.5 J/K
thermal conductances of the inside walls between rooms 1 to 10 3.75 J/K
thermal conductances of the inside walls between rooms 11 and room 1 to 10 2.25 J/K
rooms initial temperature (NB: identical for all the rooms) 293.15 K
temperature evolution sampling period 60 s

outside temperature evolution

amplitude 5K
offset 278.15 K
period 1 day
phase −π/2

controller

consumption peaks occurrence threshold, Powmax 735 W
minimum temperature threshold, Tempmin 288.15 K
evaluation points period (i.e. model time step) 60 s
initial evaluation point time (i.e. evaluation points offset) 30 s

circle.

Acknowledgement
This work is partially funded by EDF R&D through the
strategic project MS4SG.

References
[1] Chavalarias D, Bourgine P and E Perrier, F Amblard,

F Arlabosse, et al. French Roadmap for complex Sys-
tems 2008-2009, 2009.

[2] Camazine S, Deneubourg JL, Franks NR et al. Self-
Organization in Biological Systems. Princeton Uni-
versity Press, 2001.

[3] Batty M. Urban modeling. International Encyclope-
dia of Human Geography, Elsevier, Oxford 2009; .

[4] Bretagnolle A, Daudet E and Pumain D. From the-
ory to modelling : urban systems as complex sys-
tems. CyberGeo: European Journal of Geography
2006; (335): 1–17.

[5] Gil-Quijano J, Louail T and Hutzler G. From bio-
logical to urban cells: Lessons from three multilevel
agent-based models. In Desai N, Liu A and Winikoff

M (eds.) Principles and Practice of Multi-Agent Sys-
tems, Lecture Notes in Computer Science, volume
7057. Springer Berlin Heidelberg, 2012. pp. 620–635.

[6] El Hmam M, Abouaissa, Hassane; Jolly D et al.
Macro-micro simulation of traffic flow. In Proceed-
ing of the 12th IFAC Symposium on Information Con-
trol Problems in Manufacturing, INCOM, volume 12-
1. pp. 351–356.

[7] Duboz R, Ramat É and Preux P. Scale transfer mod-
elling: Using emergent computation for coupling an
ordinary differential equation system with areactive
agent model. Systems Analysis Modelling Simulation
2003; 43(6): 793–814.

[8] Gaud N, Galland S, Gechter F et al. Holonic multi-
level simulation of complex systems: Application to
real-time pedestrians simulation in virtual urban envi-
ronment. Simulation Modelling Practice and Theory
2008; 16(10): 1659 – 1676. The Analysis of Complex
Systems.

[9] Vo DA, Drogoul A and Zucker JD. An operational
meta-model for handling multiple scales in agent-
based simulations. In Computing and Communica-
tion Technologies, Research, Innovation, and Vision
for the Future (RIVF), 2012 IEEE RIVF International
Conference on. pp. 1–6.

25



[10] Xiong M, Cai W, Zhou S et al. A case study of multi-
resolution modeling for crowd simulation. In Wainer
GA, Shaffer CA, McGraw RM et al. (eds.) SpringSim.
SCS/ACM.

[11] Vangheluwe H, De Lara J and Mosterman PJ. An in-
troduction to multi-paradigm modelling and simula-
tion. In Proc. AIS2002. pp. 9–20.

[12] Cellier FE. Combined continuous/discrete system
simulation languages–usefulness, experiences and fu-
ture development. Methodology in systems modelling
and simulation 1979; : 201–220.

[13] Lara J and Vangheluwe H. AToM3: A tool for multi-
formalism and meta-modelling. In Kutsche RD and
Weber H (eds.) Fundamental Approaches to Software
Engineering, Lecture Notes in Computer Science, vol-
ume 2306. Springer Berlin Heidelberg, 2002. pp. 174–
188.

[14] Praehofer H. System theoretic formalisms for com-
bined discrete-continuous system simulation. Inter-
national Journal of General System 1991; 19(3): 226–
240.

[15] Barros FJ. Dynamic structure multiparadigm model-
ing and simulation. ACM Trans Model Comput Simul
2003; 13(3).

[16] Esquembre F and Christian W. Ordinary differential
equations. In Fishwick PA (ed.) Handbook of dynamic
system modeling. CRC Press, 2007.

[17] Mosterman P. Hybrid dynamic systems: Modeling
and execution. In Fishwick PA (ed.) Handbook of dy-
namic system modeling, chapter 15. CRC Press, 2007.
pp. 1–26.

[18] Dahmann JS, Fujimoto RM and Weatherly RM. The
department of defense high level architecture. In Pro-
ceedings of the 29th conference on Winter simulation.
IEEE Computer Society, pp. 142–149.

[19] Diallo SY, Herencia-Zapana H, Padilla JJ et al. Un-
derstanding interoperability. In Proceedings of the
2011 Emerging M&S Applications in Industry and
Academia Symposium. EAIA ’11, San Diego, CA,
USA: Society for Computer Simulation International,
pp. 84–91.

[20] Wilensky U. Netlogo.
http://ccl.northwestern.edu/netlogo/. Center for
Connected Learning and Computer-Based Model-
ing, Northwestern University, Evanston, IL., 1999.
URL http://ccl.northwestern.edu/
netlogo/.

[21] Taillandier P, Vo DA, Amouroux E et al. GAMA:
a simulation platform that integrates geographical in-
formation data, agent-based modeling and multi-scale
control. In Principles and Practice of Multi-Agent
Systems. Springer, 2012.

[22] Henderson TR, Roy S, Floyd S et al. NS-3 project
goals. In Proceeding of WNS2 ’06. ACM, p. 13.

[23] Varga A and Hornig R. An overview of the OM-
NeT++ simulation environment. In Proceedings of
ICST. p. 60.

[24] Argent RM. An overview of model integration for
environmental applications-components, frameworks
and semantics. Environmental Modelling and Soft-
ware 2004; .

[25] Zeigler B, Praehofer H and Kim T. Theory of Model-
ing and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems. Academic
Press, 2000.

[26] Vangheluwe H. DEVS as a common denominator for
multi-formalism hybrid systems modelling. In Proc.
of CACSD ’00.

[27] Barros FJ and Zeigler BP. Model interoperability in
the discrete event paradigm: Representation of con-
tinuous models. In Modeling and Simulation: Theory
and Practice. Springer US, 2003. pp. 103–126.

[28] Quesnel G, Duboz R, Versmisse D et al. DEVS cou-
pling of spatial and ordinary differential equations:
VLE framework. In Proc. OICMS ’05.

[29] Zeigler BP. Embedding DEV&DESS in DEVS. In
Proc. DEVS Integrative M&S Symp, volume 7.

[30] Cellier FE, Kofman E, Migoni G et al. Quantized
state system simulation. Proc GCMS’08, Grand Chal-
lenges in Modeling and Simulation 2008; : 504–510.

[31] Bergero F, Fernandez J, Kofman E et al. Time
discretization versus state quantization in the sim-
ulation of a one-dimensional advection-diffusion-
reaction equation. Simulation 2016; 92(1): 47–61.

[32] Kofman E. A second-order approximation for devs
simulation of continuous systems. Simulation 2002;
78(2): 76–89.

[33] Kofman E. Discrete event simulation of hybrid sys-
tems. SIAM Journal on Scientific Computing 2004;
25(5).

[34] Kim YJ and Kim TG. A heterogeneous simulation
framework based on the DEVS BUS and the high level
architecture. In Proc. of WSC ’98, volume 1. IEEE.

26

http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/


[35] Mittal S, Ruth M, Pratt A et al. A system-of-systems
approach for integrated energy systems modeling and
simulation. In Proc. of SummerSim’ 15. SCS/ACM,
pp. 1–10.

[36] Camus B, Bourjot C and Chevrier V. Combining
DEVS with multi-agent concepts to design and simu-
late multi-models of complex systems (WIP). In Proc.
of TMS/DEVS 15. SCS.

[37] Camus B, Bourjot C and Chevrier V. Considering a
multi-level model as a society of interacting models:
Application to a collective motion example. JASSS
2015; 18(3): 7.

[38] Vaubourg J, Presse Y, Camus B et al. Multi-agent
multi-model simulation of smart grids in the MS4SG
project. In Proc. PAAMS 15. Springer, 2015. pp. 240–
251.

[39] Siebert J, Ciarletta L and Chevrier V. Agents and arte-
facts for multiple models co-evolution: building com-
plex system simulation as a set of interacting models.
In Proc. of AAMAS ’10. AAMAS/ACM.

[40] Bonneaud S. Des agents-modèles pour la
modélisation et la simulation de systèmes com-
plexes - Application à l’écosystémique des pêches.
PhD Thesis, 2008.

[41] Jennings NR. An agent-based approach for build-
ing complex software systems. Commun ACM 2001;
44(4): 35–41.

[42] Ricci A, Viroli M and Omicini A. Give agents their
artifacts: the A&A approach for engineering working
environments in MAS. In AAMAS ’07. ACM.

[43] Chandy KM and Misra J. Distributed simulation: A
case study in design and verification of distributed
programs. IEEE Trans Software Engineering 1979;
.

[44] Bryant RE. Simulation on a distributed system. In
Proc. of the 16th Design Automation Conf.

[45] Fujimoto RM. Parallel simulation: parallel and dis-
tributed simulation systems. In Proceedings of the
33nd conference on Winter simulation. WSC ’01,
IEEE Computer Society.

[46] Vaubourg J, Chevrier V, Ciarletta L et al. Co-
simulation of ip network models in the cyber-physical
systems context, using a devs-based platform. In SC-
S/ACM (ed.) Communications and Networking Simu-
lation Symposium (CNS’16).

[47] Blochwitz T, Otter M, Åkesson J et al. Functional
mockup interface 2.0: The standard for tool indepen-
dent exchange of simulation models. In Proc. 9th In-
ternational Modelica Conference. pp. 173–184.

[48] MODELISAR Consortium and Modelica Associa-
tion. Functional mock-up interface for model ex-
change and co-simulation – version 2.0, july 25, 2014.
retrieved from https://www.fmi-standard.
org.

[49] Broman D, Brooks C, Greenberg L et al. Determinate
composition of FMUs for co-simulation. In Proceed-
ings of the Eleventh ACM International Conference on
Embedded Software. EMSOFT ’13, Piscataway, NJ,
USA: IEEE Press.

[50] Cremona F, Lohstroh M, Tipakis S et al. FIDE – an
FMI integrated development environment. In ACM
(ed.) SAC’16.

[51] Galtier V, Vialle S, Dad C et al. FMI-based distributed
multi-simulation with DACCOSIM. In Proc. of TM-
S/DEVS 15. SCS, pp. 39–46.

[52] Kofman E and Junco S. Quantized-state systems:
a devs approach for continuous system simulation.
Transactions of The Society for Modeling and Simu-
lation International 2001; 18(3): 123–132.

[53] Tavella JP, Caujolle M, Tan C et al. Toward an Hy-
brid Co-simulation with the FMI-CS Standard, 2016.
Research Report.

[54] Hernández-Cabrera JJ, Évora Gómez J and Cortès-
Montenegro J. JavaFMI. SIANI. University of Las
Palmas, Spain.

[55] Camus B, Galtier V, Caujolle M et al. Hy-
brid Co-simulation of FMUs using DEV&DESS in
MECSYCO. In Proceedings of the Symposium on
Theory of Modeling & Simulation - DEVS Integrative
M&S Symposium.

[56] Moler C. Are we there yet? Zero crossing and event
handling for differential equations, Matlab News &
Notes 1997; .

[57] Schütte S. Simulation model composition for the
large-scale analysis of smart grid control mecha-
nisms. PhD Thesis, BIS der Universität Oldenburg,
2013.

[58] Dahmann J and Morse K. High level architecture for
simulation: an update. In Distributed Interactive Sim-
ulation and Real-Time Applications, 1998. Proceed-
ings. 2nd International Workshop on. pp. 32–40.

27

https://www.fmi-standard.org
https://www.fmi-standard.org


[59] Kim TG and Kim JH. DEVS framework and toolkits
for simulators interoperation using HLA/RTI. In Pro-
ceedings of Asia Simulation Conference/the 6th Inter-
national Conference on System Simulation and Scien-
tific Computing. pp. 16–21.

[60] Zeigler BP, Cho H, Lee J et al. The DEVS/HLA dis-
tributed simulation environment and its support for
predictive filtering. DARPA Contract N6133997K-
0007: ECE Dept, UA, Tucson, AZ 1998; .

[61] Bergero F, Floros X, Fernandez J et al. Simulating
modelica models with a stand-alone quantized state
systems solver. In Proc. 9th International MOD-
ELICA Conference. 076, Linköping University Elec-
tronic Press, pp. 237–246.

[62] Floros X, Bergero F, Ceriani N et al. Simulation
of smart-grid models using quantization-based inte-
gration methods. In Proceedings of the 10 th Inter-
national Modelica Conference; March 10-12; 2014;
Lund; Sweden. 096, Linköping University Electronic
Press, pp. 787–797.

[63] Gilpin L, Ciarletta L, Presse Y et al. Co-simulation
Solution using AA4MM-FMI applied to Smart Space
Heating Models. In 7th International ICST Confer-
ence on Simulation Tools and Techniques. Lisbon,
Portugal, pp. 153–159.

[64] Fritzson P and Engelson V. Modelica—a unified
object-oriented language for system modeling and
simulation. In European Conference on Object-
Oriented Programming. Springer, pp. 67–90.

28


	1 Introduction
	2 Co-simulation Challenges
	2.1 Multi-representation integration
	2.2 Multi-formalism integration
	2.3 Simulation software interoperability
	2.4 Synthesis

	3 DEVS as a pivotal formalism for heterogeneity integration
	3.1 The DEVS formalism
	3.2 Positioning

	4 The MECSYCO platform
	4.1 A Multi-agent Environment for M&S
	4.2 MECSYCO Concepts
	4.3 Operational Specifications
	4.4 Implementation
	4.5 DEVS wrapping of simulation software

	5 DEVS wrapping of the FMI standard
	5.1 The FMI standard
	5.2 Wrapping strategies

	6 Wrapping of FMU for model-exchange
	6.1 Continuous behavior simulation with QSS
	6.2 State-event detector
	6.3 Discrete-event behavior simulator
	6.4 Implementation and validation

	7 Wrapping of FMU for co-simulation
	7.1 Time of the next internal event
	7.2 Events processing

	8 Discussion and related works
	9 Use Case
	9.1 The thermic system models
	9.2 The controller model
	9.3 The telecommunication network model
	9.4 Co-simulations
	9.5 Synthesis

	10 Conclusion

