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Abstract
Agricultural systems experience land-use changes that are driven by population growth and

intensification of technological inputs. This results in land-use and cover change (LUCC) dynamics
representing a complex landscape transformation process. In order to study the LUCC process we
developed a spatially explicit agent-based model in the form of a Cellular Automata implemented
with the Cell-DEVS formalism. The resulting model called AgroDEVS is used for predicting
LUCC dynamics along with their associated economic and environmental changes. AgroDEVS is
structured using behavioral rules and functions representing a) crop yields, b) weather conditions, c)
economic profit, d) farmer’s preferences, e) technology level adoption and f) natural resources
consumption based on embodied energy accounting. Using data from a typical location of the
Pampa region (Argentina) for the 1988-2015 period, simulation exercises showed that the economic
goals were achieved, on average, each 6 out of 10 years, but the environmental thresholds were only
achieved in 1.9 out of 10 years. In a set of 50-years simulations, LUCC patterns quickly converge
towards the most profitable crop sequences, with no noticeable tradeoff between the economic and
environmental conditions.
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Introduction
In agroecosystems, land-use and cover change (LUCC) is driven by simultaneous responses

to economic opportunities, institutional factors and environmental constraints (Lambin et al., 2001).
Different methodological approaches are useful for assessing LUCC by capturing the dynamic
process influenced by complex interactions between socio-economic drivers and biophysical
conditions. For example, the spatially explicit LUCC models assess location suitability for different
land uses and allocate changes to grid cells based on suitability maps (Verburg et al., 2004a).
Another modelling approach has been developed for capturing the behavior of the real actors of
land-use change: individuals and/or institutions (“agents”) become the objects of analysis,
modelling and simulation, paying explicit attention to interactions between these agents of change
(Castella and Verburg, 2007). In this modelling approach, farmer responses to environmental,
economic and sociological constraints for deciding on LUCC are crucial for assessing the
agricultural system sustainability. Such models are known as agent-based models (ABM)1

The ABM approach provides a flexible paradigm for studying emergent patterns in complex
systems (Cook, 2009). Particularly, in agricultural systems the ABMs are capable of capturing the
individual agent behavior in response to several constraints scenarios (e.g. climate,
socio-economical). In addition, it is possible to develop ABMs into spatially explicit frameworks
for exploring the LUCC process over time. Examples may include spatial interaction models,
cellular automata (CA) and dynamic system models (Evans and Kelley, 2004). However, when
ABM are used to cope with complex systems the development of models often trends to get forced
to the ABM paradigm even when certain dynamics are not necessarily well expressed in the ABM
realm. In this context, the Discrete Event Systems Specification (DEVS) modelling and simulation
framework (Zeigler et al., 2000, 2019) offers a universal paradigm for modelling hybrid models
(continuous, discrete time, discrete event) that are able to scale up by means of the seamless
interconnection of models of very different nature, including the ABM approach. In the case of
environmental systems there exist a considerable knowledge base and experience on modelling with
the DEVS formalism (Filippi et al., 2010). Notably, when ABM need to be combined with spatially
explicit dynamics, the cellular automata-oriented Cell-DEVS formalism provides means to attain
this goal within the DEVS framework (see (Wainer and Castro, 2010) for applications of
Cell-DEVS to varied natural and artificial systems, and (Wainer, 2006; Kazi et al., 2018) for
Cell-DEVS applied to environmental dynamics and ecosystems). DEVS enforces a formal
specification and strict separation between model specification, abstract simulation algorithm, and
experimental framework. This greatly facilitates the development efforts of modelling and
simulation software, as progress can be made in the modelling aspects, simulation aspects, or
experimentation aspects in an independent yet integrated fashion, preserving the composability of
said technologies. For instance, in the work of (Zapatero et al., 2011) the authors present a
Cell-DEVS based solution where GIS technology, Cell-DEVS models, distributed DEVS simulation
and Google Earth visualization are orchestrated to build a georeferenced fire spread simulation
platform relying on pre existing components.

Although the ABM approach is widely used to explain land use change and the impact of
potential future policies, the development of LUCC simulation models coupled with environment

1 We use ABM as an equivalent also for IBM (Individual-Based Models) or MAS (Multiagent
Systems) see Railsback, S.F., Grimm, V., 2011. Agent-based and individual-based modeling: a practical
introduction. Princeton university press.



impact assessment is still incipient in agricultural systems (Kremmydas et al., 2018). The first
generation of ABM was related to agricultural economics (Balmann, 1997), following by numbers
of studies for simulating the individual farm's performance and their spatial interactions (Berger,
2001; Happe et al., 2008; Schreinemachers et al., 2007). Lately, it is recognized that the
incorporation of material and energy flows during land-use conversion are increasingly needed to
explore socio-economic dynamics and land-use change (Lee et al., 2008). Thus, the ABM includes
other aspects such as policy implications (Happe et al., 2006), dynamic models of environmental
processes (Schreinemachers and Berger, 2011), or organizational simulation, market simulation
(Bonabeau, 2002). In the studied area (the Pampa region, Argentina) where climate, technological
innovations, and socio-economic contexts affect agricultural production, the ABM approach for
LUCC modelling has not been frequently addressed (Groeneveld et al., 2017). An exception to this
rule is the model of Bert et al. (2011) (the PAMPAS model) for gaining understanding about both
structural and land use changes in the Pampas. Although we use a similar modelling approach as the
PAMPAS model regarding the agent's behavior, PAMPAS does not include any modelling effort for
assessing the status level of the natural resources involved due to the LUCC simulation results.

In this work, we developed an ABM model called AgroDEVS, implemented with the
Cell-DEVS formalism that relies on the Discrete Event Systems Specification (DEVS) modelling
and simulation framework. The goal of AgroDEVS was to integrate into a single model, the main
driving forces (i.e. climate, agronomic management, and farmer decisions) for explaining LUCC as
well as the environmental and economic consequences of these changes. This integration is
developed into a decision-making tool that could be extended and improved to specific policy
contexts. AgroDEVS aims to simulate LUCC as well as economic profit and fossil energy use (as a
proxy of the environmental condition), both at the individual (agent) and collective (landscape)
scales. Thus, it is possible to test the hypothesis of a possible compromise between the increase in
the economic profit of the systems and their threat to environmental sustainability. The paper is
structured as follows: The first section describes the study area and the cropping system studied.
The second section includes the model description; an overview of the ABM design process and
concepts; and a full description of the AgroDEVS submodels. The third section describes the
initialization conditions for AgroDEVS using real data from the 1988-2015 period as well as
long-term simulation scenarios (50 years). Finally, results of AgroDEVS simulations were discussed
and the potential applications of the model are highlighted.

Region under study and cropping system description
AgroDEVS was applied to simulate LUCC dynamics in Pergamino, a typical location in the

Rolling Pampas (see Map 1), the most productive subregion of the Pampas where most of the
annual cropping is concentrated (Hall et al., 1992).



Map 1: Location of the study site (Pergamino, Buenos Aires) within the Pampa region. (1) rolling
pampas, (2) subhumid central pampas, (3) semiarid central pampas, (4) southern pampas, (5)
Mesopotamian pampas, and (6) flooding pampas. Thin isolines are isohyets (mm per year); thick
isolines are mean annual temperature (°C). Adapted from Viglizzo et al. (2004).

The Pampa is a fertile plain originally covered by grasslands, which during the 1900s and
2000s was transformed into an agricultural land mosaic by grazing and farming activities (Soriano
et al., 1991). The predominant soils are typical Arguidols and the annual rainfall averaged 950 mm
(Moscatelli et al., 1980). AgroDEVS simulates LUCC using the most frequent crop types in the
Pampa region (Manuel-Navarrete et al., 2009): (1) the wheat/soybean double-cropping (W/S); (2)
maize cropping (M), and spring soybean cropping (S). In this paper, the terms "crop"; “crop type”
and "land use" (i.e. cropping systems) were used interchangeably as well as “farmer” and “agent”.
The agronomic decisions (i.e. genotype selection, fertilizer management, pest control, sowing date,
and soil type) were representative of the most frequent situation for each of the cropping systems in
the study area.

Model description
The goal of AgroDEVS is to understand how environmental constraints, the technological

level and the farmer decisions affect a heterogeneous population of farm households in terms of 1)
LUCC and economic return and 2) the environmental resources these households manage. The
model description follows the standard protocol “ODD” (Overview, Design concepts, and Details)
to standardize the published descriptions of individual-based and agent-based models (Grimm et al.,
2010).

Model description: Modelling approach
For the modelling activity we started by following scenario-based analyses, exploring

agricultural mosaic dynamics. Then we adopted an agent–based modelling (ABM) approach, by



identifying both landscape and agent-specific descriptors as parameters (fixed) or attributes
(variable). We defined parameters as any fixed condition for describing the behavior or the
condition of a model element. On the other hand, the attributes represent the system changes during
the model run period. Lastly, we adopted a formal model-based simulation framework to specify
mathematically both the parameters and attributes due to different behaviors identified throughout
the ODD process.

For this purpose, we encoded AgroDEVS using the Cell-DEVS formalism. Cell-DEVS is
an extension for Cellular Automata of the more generic Discrete EVent System Specification
(DEVS) formal modelling and simulation framework. On the one hand, the DEVS formalism
permits to express and combine any kind of dynamical system (continuous, discrete event, discrete
time) in a mathematical form that is independent of any programming language. On the other hand,
Cell-DEVS provides the modeler with a meta-language tailored to facilitate expressing systems
where the spatial arrangement of “cells”, and their behavior, play a salient role. By undertaking the
DEVS-based approach, AgroDEVS becomes readily linkable with other DEVS models developed
in other disciplines (e.g. climate science, biology, sociology, and economy), potentially using
heterogeneous techniques (e.g. differential equations, equilibrium models, optimization models,
stochastic processes). Moreover, DEVS offers a sound foundation for facing open research
problems in interdisciplinary modeling and simulation of complex socio-ecological systems (Castro
and Zeigler, 2019) like e.g. formalism translation, multi-resolution models, automatic checking of
model composability, etc.

In Figure 1, we summarize these concepts. Atomic DEVS are the smallest units of behavior.
They can be interconnected modularly through input and output ports to compose hierarchies of
more complex systems called Coupled DEVS (Figure 1b). Cell-DEVS features an automatic
composition of Atomic DEVS models in the form of an N-dimensional lattice. Each cell gets
interconnected only to other cells belonging to a neighborhood shape defined by the modeler
(Figure 1a). Cell-DEVS features a rule-based compact language to model the behavior of each cell
in relation to its neighborhood, influencing each other.

Figure 1. Modular and hierarchical composition of systems with DEVS and Cell-DEVS. a) Cellular
Automata oriented Cell-DEVS with a Von Neumann neighborhood (cross-like greyed cells). b)
Composition of DEVS and Cell-DEVS models.



Behavioral rules are used in the Cell-DEVS language to define the change of attributes that
are local to each cell. These variables can express properties for that unit of space (e.g. in the
2-dimensional case it can be an agricultural plot). When the modeler uses such variables to express
also the attributes of “agents” located at cells, then the ABM approach can be merged into the
system. In the case of AgroDEVS each agent (namely, a farmer) remains fixed to his or her plot,
and rules are used to express changes both for the physical environment and the for farmer, which
eventually affect each other. In this work, we adopted the CD++ simulation software toolkit, which
is capable of interpreting Cell-DEVS and DEVS models and of simulating them. CD++ implements
a generic DEVS “abstract simulator”, consisting of a standardized algorithmic recipe that specifies
how to simulate any DEVS model independently of any programming language of choice.

We believe this generic, reusable and extensible DEVS-based approach provides
AgroDEVS with very desirable scalability and sustainability features. The full model represents the
collective (i.e. landscape-level) function that emerges from the aggregation of all farmers’
outcomes. It also depends on exogenous variables (e.g., climate, crop (output) prices, and
production costs) as well as endogenous variables (e.g. the farmer’s technological level, the
outcomes of neighboring farmers, and each farmer’s performance history). The model proved
particularly well suited to reproduce empirical situations where (a) there are changes in the relative
production/output prices between potential land uses, (b) there is a specific climate regime that
impacts on crop yields, or (c) there are varying aspiration levels for the farmers (see below for more
details).

Figure 2. Sample excerpt of an AgroDEVS.ma definition file (Left) Schematic of the AgroDEVS
system. The “climate” DEVS model is connected with the “landscape” Cell-DEVS model (Right).

Figures 2 and 3 provide an illustrative, non-exhaustive sample view of the Cell-DEVS



specification used for AgroDEVS. Most of the information declaring the structure, components and
behavior is found in a text file with .ma extension. In Figure 3 we provide an excerpt of the
agrodevs.ma file highlighting relevant lines (three dots “…” denote lines omitted for the sake of
brevity). In Figure 2 we can see the main statements defining structure, components and
interconnections through input-output ports. In Figure 3 we can see main statements defining
behavior for the landscape cellular automaton. Within each cell, a list of rules is evaluated
sequentially in a top-down fashion, using a Value, Delay, Condition structure: the first rule that
evaluates its Condition to true, will apply the Value to its attributes after a Delay amount of time.
Once a rule is applied, the simulator recommences the cycle evaluating the rules from the top. This
mechanism is applied asynchronously, simultaneously and in parallel to all cells in the model. The
global timing for the whole cellular space is an emergent property driven by the local timing applied
by each independent cell. The pairs (x,y) denote the positions for neighbors relative to each
currently evaluated cell denoted with (0,0).

Figure 3. A sample of two rules defining the behavior of each cell of the Landscape Cell-DEVS
model, showing the case for Step 2 in Figure 4.

Model description: System variables
AgroDEVS maps farmers onto a regular grid in order to initialize the simulations. The

model is composed of two entities: 1) the landscape and 2) the agents that operate on the
landscape. Each entity has its own set of fixed parameters and attributes that evolve throughout
simulation cycles. The landscape parameters are a) the number of agents and b) the Owner/Tenant
agent ratio and the landscape attributes are the overall outcome from the integration of all individual



agent attributes results within the simulated landscape. The agent parameters are a) the land rental
price (RP) for the tenants, and b) its location on the grid. The attributes for each agent are a) the
technological level (TL), b) the crop type allocation (or land use, LU), c) the economic profit (P), d)
the renewability level (RL) of the emergy consumption (see Renewability level calculations section
for a emergy concept explanation), e) the aspiration level (AL), f) the environmental threshold (ET),
and g) the weather growing condition (WGC).

Model description: Process overview
AgroDEVS simulations advance with an annual time step, representing a single cropping

cycle (CC). Figure 4 shows the AgroDEVS event flow diagram for an individual agent and for a
single cropping cycle. We use ovals and hexagons to show agent’s attributes and attributes
calculated during the CC, respectively. Square boxes denote calculations performed at each stage.
Rectangles represent goal fulfillments, diamonds are conditional rules, and parallelograms are an
agent’s decisions. We used solid and dotted lines to denote control flow and data flow, respectively.
Red borders highlight when the agent performs a neighborhood analysis, and grey background
indicate that the calculated value shall be used in the next cropping cycle. At the start of the process
(Figure 4, Stage 1), each initial agent’s configuration (LUt) is exposed to a weather growing
condition level.

Each WGC level is associated with climate phenomena (e.g. rain and radiation) that range
from very favorable to very unfavorable for the crop yield. Previously, crop yields are simulated
(using independent crop simulation models) for each crop type, using data such as the farmer´s
technological level (e.g. fertilization regime, genotype), the resource condition (i.e. soil condition
derived from the simulated location) and historical weather records for defining the different WGC
levels (Appendix, Table A3). Then, based on the simulated crop yields, the output prices (fixed), the
production cost of the respective TL, the land rental price (fixed), and the crop type allocation into
the farm household, AgroDEVS calculates the farmer’s Pt: the profit P for the current time t, or
similarly, for the current cropping cycle CC. Using the production cost inventory and the natural
resource consumption, AgroDEVS also calculates RL t (see below for RL calculation details).

At the next stage, the agent’s aspiration level calculated in the previous CC (ALt) is now
adjusted using the current WGCt level producing the new climate-adjusted aspiration level (CALt)
(Figure 4, Stage 2). Then, AgroDEVS uses Pt and RLt values calculated in Stage 1 for assessing the
fulfillment of both the environmental (ET) and economic (AL) goals (Figure 4, Stage 3) of each
agent. An agent will keep its crop type allocation once the Pt value is greater than or equal to its
CAL at each CC (CALt), while non-fulfillment of environmental threshold (ET) does not alter its
crop type allocation decision. AgroDEVS assesses whether the farmer can upgrade or downgrade its
TL for the next CC, according to their economic performance in the current CC (Figure 4, Stage 4).

For this adjustment, AgroDEVS imposes a set of different working capital thresholds
(WCT) in order to access different TL values. The WCT fulfillment is assessed using Pt. If Pt is
lower than the respective WCT, the farmer must reduce it or vice versa. In this model version,
agents can remain at the lowest TL, regardless of its Pt value (i.e. no agent is forced out of
business). Finally, if the economic goal is not fulfilled, the farmer uses the neighborhood for
inspecting the neighbors’ outcomes and then adopt a new crop type allocation looking for
improving its economic performance on the next CC (Figure 4, Stage 5). During this stage,
AgroDEVS also adjusts the farmer aspiration level (AL) for the next CC. This setting is based on a)



the farmer’s perception of the WGC level of the next CC, and b) the agent’s failure or success at
achieving the AL in the previous CC, respectively.

Figure 4. AgroDEVS event flow diagram for each cropping cycle for a single agent. The stages and
their actions are encoded in the form of Cell-DEVS rules. Abbreviations for each attribute are in the
text

Model description: Design concepts



Emergence
Four main landscape-level attributes emerge from individual farmer’s behavior and

interactions among agents: (a) land use (% of cropping area under each crop type), (b) economic
profit (the average landscape profit per hectare), (c) emergy renewability level (the average fraction
of renewable emergy consumption in the landscape), and (d) the average rate of fulfillment of two
thresholds: 1) a fixed environmental threshold, in terms of emergy renewability level (RL), and 2) a
dynamic aspiration level, in terms of economic profit (P).

Adaptation
Agents can adjust their crop type allocation if the economic profit (at farm level) does not

reach the AL at each CC. In addition, each agent has two different adaptation mechanisms: a)
adopting different TL based on the capital availability, and b) adjusting its AL based on both the
WGC of each CC and the outcome in the previous CC (see sub-model section for computational
details).

Objectives
Agents pursue to achieve a P level in each CC above their AL while satisfying (or not) a

fixed RL. If P is below agents’ AL, they will be unsatisfied and will seek a different crop type
allocation in the agents’ neighborhood. If an agent’s capital availability drops below the WCT for
each TL, they must adopt a lower-cost TL, but agents never quit farming. Both landscape and
individual RL emerge from the crop allocation decided for each agent, but it is not used as a
farmer´s goal. Rather, this is an emergent property due to local rules.

Prediction
Agents predict the future consequences of their decisions (i.e. they build expectations)

about P based on past outcomes and current weather information (WGC), following the theory of
adaptive expectations (Shell and Stiglitz, 1967). Agents revise their AL in each CC using adaptive
rules based on a) the dissimilarity -in the previous CC- between the predicted and the observed P,
and b) the seasonal climate forecasts (WGC) for the current CC (see sub-model section for
algorithms adjusting AL)

Sensing
Agents have information about their capital availability and consider this variable in their

decisions about the potential adoption of higher (or lower) TL. In addition, they are aware of the P
achieved by their eight neighbors (Moore neighborhood) during each CC. Finally, farmers are
informed about the expected status of external contextual factors (i.e. seasonal forecast) for the
current CC.

Agent–Agent interaction
Agent interaction is based on the imitation of the crop type allocation of the best

neighboring agent (i.e. the highest P achieved in the neighborhood) in the case of dissatisfaction
with its own P achieved (as compared to its AL). Otherwise, the agent repeats its current crop type
allocation in the next CC.



Agent–environment interaction
Crop yield simulations reflect the interaction between farm decisions and both climate and

soil conditions. These models capture the TL effect (through increasing fertilization and pesticide
use) as well as the WGC of each CC (mainly global radiation and precipitation) and land quality
factors (which are constant during the simulation). As crop simulation models represented
biotic-unconstrained yield potential, final yields are adjusted in each combination of crop type-TL
using potential weeds and pest infestation losses (see simulations input section for an example of
crop yield data). Agent decisions have no effect on resource dynamics, through crop type allocation,
and it is only on the current WGC that agents receive feedback about changes in resource
conditions.

Stochasticity
Stochasticity is used to assign the TL and the crop type allocation to each agent only at the

initialization procedure.

Collectives
Agents do not form or belong to aggregations that affect or are affected by other agents in

the model version described here. Further model refinements should include collectives.

Model description: Model details
This section contains a detailed description of the main sub-models and input variables.

More details about the initial values of some variables are provided in the simulations section,
where specific simulated scenarios are also described.

Submodelo
Profit calculations

Profit value (P) depends on crop yield, output prices and production costs at each
technological level (TL) (Figure 5). Crop yields are based on simulations using crop models in the
Decision Support System for Agrotechnology Transfer (DSSAT) package (Jones et al., 2003).
AgroDEVS reflects three incremental TL: low (L), average (A) and high (H) technological levels;
and three crop types (maize, soybean and wheat/soybean double-cropping, see region under study
and cropping system description section for production system description). Using DSSAT and
historical records of production costs, two of the look-up tables (Figure 4) are built: 1) a crop yield
matrix and 2) a cost matrix for representing the full crop type (3 levels), TL (3 levels) and WGC (5
levels) combination (see Appendix for the raw data used in simulations). P is calculated as the gross
income (yield times product price) minus direct costs. Direct production costs include fixed and
variable components. Fixed direct costs do not depend on crop yield (e.g., seed and agrochemicals).
Oppositely, variable direct costs are yield-dependent (e.g., harvest, marketing fees and grain
transportation). Finally, each farmer P is calculated using the individual crop profit affected by each
crop type allocation into the agent farm. Figure 5 is an excerpt of the rule that calculates P: an agent
has a defined LU and TL and is capable of sensing the WGC, and therefore it can calculate its P by
multiplying its crop type allocation, yields and prices, and subtracting costs.



Figure 5. Excerpt of the rule that performs agents’ profit calculations. In the cases of yield, price
and cost, #macro involves lookup tables.

Renewability level calculations
AgroDEVS calculates Renewability Level (RL) values by using the emergy synthesis

procedure (Odum, 1996). Briefly, the emergy accounting methodology tries to account for both the
natural and human-made capital storages. The emergy accounting method values these storages
using a common unit of reference, the solar equivalent joule (seJ). The method accounts for the
environmental support provided directly and indirectly by nature to resource generation and
processing; it focuses on valuation of the intrinsic properties of ecosystems (Mellino et al., 2015).
For further details on emergy synthesis methodology see (Brown et al., 2001) and (Ferraro and
Benzi, 2015). AgroDEVS uses the renewability level as a sustainability metric (Giannetti et al.,
2010). RL is then calculated as the ratio of renewable emergy to total emergy use, as it follows:

RL (%) = R / (R + N + F + S) (1)
where,
RL (%): renewability level value
R (sej / ha-1 year-1): renewable flows from nature
N (sej / ha-1 year-1): nonrenewable flows from nature
F (sej / ha-1 year-1): imported economic flows
S (sej / ha-1 year-1): services

Therefore, at each model time step (i.e. a CC) each individual farmer renewability level
(RL) is used as a measure of environmental impact. As for crop yields and production costs, the
emergy accounting method is used for building a third look-up table (Figure 4) for representing the
full combination of crop types (3 levels), TL (3 levels) and WGC (5 levels) (see Appendix 1 for the
raw data used in simulations). In the figure below (Figure 6), an agent uses its LU and TL along
with the sensed WGC to obtain the final farmer’s RL value (by affecting the individual crop



renewability level with the crop type allocation into the agent’s farm).

Figure 6. Excerpt of the rule that performs agents’ renewability calculations. In this case, #macro
(emergy) involves emergy lookup tables.

Agent decisions
Both P and RL values for each agent are related to the AL and ET thresholds, in order to

trigger the agent’s decisions. In AgroDEVS, the economic goal (AL) is dynamic and it is based on
the aspiration level adjustment. It represents the currently dominating economic paradigm, where
the receiver (the agent) is the market actor who decides the system outcome value (Grönlund et al.,
2015). Oppositely, the environmental threshold (ET) is fixed and it represents a strong sustainability
view, where the value approach is grounded in systems science rather than economic science, where
a value focused on the system level is accepted (Grönlund et al., 2015). During the model
simulation process, the fulfillment of the economic goal drives the crop type allocation. Thus, the
LUCC process is triggered when the economic threshold (i.e. aspiration level) is not accomplished.

a. Aspiration level adjustment
A first AL adjustment is based on the WGC, as it follows:

CALt = AL t + AL t * αAL(WGC) (2)
where
CALt = climate-adjusted aspiration level (U$S/ha)
ALt = aspiration level (U$S/ha) calculated at the end of the previous CC
αAL(WGC) = adjustment factor of AL due to WGC level for the current CC (see Appendix for
αAL(WGC) values used in the simulations).

A second AL adjustment defines the aspiration level for the next CC and it is based on the
learning and adaptation model (Bert et al., 2011). If Pt > CALt then the next aspiration level is
subjected to an incremental adjustment using a weighted average, as it follows (Figure 7; Appendix,
Table A5):

ALt+1 = 0.45 AL t + 0.55 Pt (3)
where
ALt+1 = aspiration level (U$S/ha) for the next CC
CALt = aspiration level (U$S/ha) after current CC adjustment
Pt = Profit (U$S/ha) calculated in profit calculations section



Figure 7. Excerpt of an agent’s aspiration level adjustment. In this example, the agents’ profit was
larger than its AL, so it proceeds to perform an incremental adjustment.

In the figure above we can see an excerpt of the rule for adjusting incrementally the
aspiration level using a weighted average when an agent’s Pt > CALt .When both the agent and its
neighbors finish with the calculation of their P, RL and the fulfillment of both economic and
environmental goals, the agent proceeds to adjust its AL for the next cropping cycle according to
the equation (3).

When the economic outcome is lower than the aspiration level (i.e. Pt < CALt), the agent's
perception is extended to include the influence of the physical (Moore) neighbors, and the ALt+1 is
adopted by inspecting the neighbors’ P outcomes. Thus, the farmer adopts ALt+1 using the
neighbors’ P data. If there is at least one neighbor under the condition of Pt > CALt then the farmer
selects its best neighbor (BN), in profit terms, and the ALt+1 is calculated using both the AL for the
best neighbor, CALt (BN), as well as an adjustment factor due to differences in TL between
farmers:

ALt+1 = CALt (BN) + CALt (BN) * αAL(BN) (4)
where:
ALt+1 = aspiration level (U$S/ha) for the next CC
BN = the agent with the highest P value in the Moore neighborhood (n = 8)
CALt (BN) = aspiration level (U$S/ha) for the BN in the current CC
αAL(BN) = adjustment factor of AL due to BN technological level (see Appendix for the raw values
used during the simulations)

In the case that PBN <= CALt (i.e. no neighbor meets the economic threshold) then the next
aspiration level is subjected to a detrimental adjustment using a weighted average, as it follows:

ALt+1 = 0.55 CALt + 0.45 Pt (5)
where:
ALt+1 = aspiration level (U$S/ha) for the next CC
CALt = aspiration level (U$S/ha) after current CC adjustment
Pt = Profit (U$S/ha) calculated in Profit calculations

Different values for incremental and detrimental adjustment (0.45 and 0.55 respectively)
were applied in order to simulate the farmer willing to tolerate higher payoffs more rapidly than
lower ones, thus showing greater resistance to downward changes (Gilboa and Schmeidler, 2001).



b. Technological level adjustment
Farmers are also able to upgrade or downgrade its technological level (TL) after inspecting

its own P outcome in the CC. The rules for adjusting the TL are based on the working capital
threshold (WCT) which represent the highest production cost within each TL (Figure 8). Rules for
TL adjustment are:

TLt+1 = H if Pt > WCT (H) (6)
TLt+1 = A if P t > WCT (A) and Pt < WCT (H) (7)
TLt+1 = L if Pt < WCT (A) (8)
where,
TLt+1 = Technological level for the next CC (H: high; A: average and L: low)
WCT (TLi): working capital threshold (average or high) for TLi (low, average and high)

Figure 8. Excerpt of an agent’s technological level adjustment. In this case, #macro (wc_max)
involves WCT lookup table (Appendix, Table A7).

In Figure 8 we can see an excerpt of the rule for adjusting an agent’s TL .When both the
agent and its set of neighbors are done with calculating their P, RL and evaluating the fulfillment of
both economic and environmental goals, the agent proceeds to adjust its TL for the next cropping
cycle by comparing its P with the WCT.
c. Land use and cover change (LUCC)

Final farmer decision defines the land use configuration. The LUCC process is triggered
when the economic threshold is below the economic outcome and also there is at least one neighbor
in the Moore neighborhood that meets the economic threshold (see Figure 9), as follows:

Pt < CALt and Pt (BN) > CALt (9)
where,
Pt = Profit (U$S/ha) calculated as in profit calculations section
Pt (BN): Best Neighbor Profit (U$S/ha)
CALt = Aspiration level (U$S/ha) after current CC adjustment
After inspecting this condition, the agent selects the crop type allocation of the best neighbor (BN)
as follows:

LU it + 1 = LU i t (BN) (10)
where,
LU it + 1: Percentage of agent’s farm area under crop type i for the next CC (i = corn, soybean or



wheat/soybean)
BN = the agent with the highest P value in the Moore neighborhood (n = 8)
LU it (BN): Percentage of BN farm area under crop type i for the next CC

Figure 9. Excerpt of the rule that copies an agent’s neighbor’s land use, aspiration level and
technological level. These attributes are not yet assigned to the agent.

In the figure above there is an excerpt of the rule that copies the best neighbor’s land use
allocation. If both an agent and its neighbors have already calculated their P and RL then the model
will proceed to select the neighbor with the highest P and copy its LU allocation, AL and TL to be
used later in the simulation and, if necessary, assigned to the agent.

Model description: Simulation framework and software environment for experimentation
As discussed in the modelling approach section AgroDEVS uses a DEVS-based formal

approach. One salient feature of the DEVS formalism is the strict and clear separation between
simulation algorithms and model specification. As a specialization of DEVS for Cellular Automata,
the Cell-DEVS formalism inherits this separation. Different Cell-DEVS-capable simulators should
be able to simulate a given Cell-DEVS model. In turn, different graphical user interfaces can be
used to help in the design and maintenance processes of model specifications, and the interactions
with the simulation exercises. Figure 10 shows a high-level component and deployment diagram of
AgroDEVS. The CD++ generic simulation engine for DEVS and Cell-DEVS models resides in a
Simulation Server. It can retrieve and simulate Cell-DEVS specifications of models that are stored
in a Database Server. Such models can be written directly by specialists in the Cell-DEVS
formalism or by experts in the agricultural domain using a friendly web-based interface. Once
models are defined, they can be reused to launch as many simulation experiments as required by
invoking the simulator from the web-based experiment interface. Figure 10 describes sequences of
steps for two typical use cases: Model Specification and Simulation, denoting the components



involved in each of them.

Figure 10. The AgroDEVS System. Left, top: High-level architecture and main components. Left,
bottom: Typical steps and use cases. Right: Web interface for model management and results
visualization

Model description: Model validation
The intrinsic complexities and uncertainties on both the magnitude and the nature of driving

forces and land use, lead to expand the scope of the straightforward evaluation between simulated
and observed patterns in the model validation phase (Bert et al., 2014; Le et al., 2012; Nguyen and
de Kok, 2007). Our model development process seeks to validate the ABM through a process of
continuous adaptation using feedback from the stakeholders (Ligtenberg et al., 2010). Specifically,
AgroDEVS development entailed a continual discussion process with stakeholders from the study



area in order to review both the rules and the assumptions of the model that initially came from the
literature review. This approach directly engages stakeholders in model development by embedding
it within the social process of policy development (Moss, 2008). This changes the validation
problem into an advantage: the agreement of participants or stakeholders may be an indicator of the
validity of a simulation model (Troitzsch, 2004). In AgroDEVS, the evaluation of the simulation is
guided by the expectations, anticipations, and experience of the community that uses it for practical
purposes (Ahrweiler and Gilbert, 2005), and this supports the view that the very meaning of validity
is dependent on the purpose of the simulation models under examination (Küppers and Lenhard,
2005). Moreover, it is possible to develop a model that fits the data perfectly with a model structure
that does not capture any real processes (Cooley and Solano, 2011). Beyond the validation process,
AgroDEVS was exposed to a verification process (Wilensky and Rand, 2007). Firstly, a code
walk-through (Stern, 2003) was performed to review the model formulation and to ensure that all
design concepts and specifications are correctly reflected in the code. In addition, AgroDEVS was
run with very few farmers in the grid (9–16) and results were examined closely (e.g., following
dynamics of specific farmers, inspecting the outliers).

Simulations
Simulations: Inputs
Output prices and production costs

Historical prices of maize, soybeans, and wheat, as well as production costs (i.e. fertilizers,
seeds, pesticides, and harvest and sale costs), were extracted from the Argentine trade magazine
“Márgenes Agropecuarios” (http://www.margenes.com). In all scenarios (i.e. the Pergamino
simulation and the long-term simulations) we assumed constant output prices equal to median for
2008–2015 (Appendix, Table A4).

Crop yield
Time series of crop yield (at each TL) were built using DSSAT simulations that have been

calibrated for the studied location (Mercau et al., 2007). Crop management of each TL (e.g.
genotype, sowing date, fertilizer rate, pesticide use, tillage operations, and production costs) was
used for running the DDSAT crop yield simulations, and was based on local management data. Crop
yield variability during the DSSAT simulated period (1971-2008) was used to obtain the crop yield
under contrasting WGC levels. The five WGC levels (very unfavorable, unfavorable, average,
favorable, and very favorable) correspond to different percentiles (i.e. 10, 30, 50, 70, and 90,
respectively) of yields simulated using historical weather records. DSSAT simulations do not
account for important factors such as weeds, diseases, and pests. Thus, we empirically adjusted the
attainable crop yield (van Ittersum and Rabbinge, 1997) resulting from DSSAT simulations in order
to model actual crop yield. Local data of simulated versus observed crop yield were used for
obtaining the adjusting coefficients (attainable to actual yield) at each TL for each crop species
(Mercau et al., 2001; Mercau et al., 2007; Satorre et al., 2005). Raw data of crop yield used during
the simulations can be found in the Appendix (Table A3).

Renewability level
Production costs data, as well as the natural resource consumption from the studied

location, provided the information for assessing the emergy consumption (and the renewability



value) for each one of the production systems from the full combination of Technological level (TL)
x crop type and weather growing conditions (WGC). Raw data of renewability level used during the
simulations is in the Appendix (Table A2).

Simulations: Pergamino 1988-2015 simulation
Input data from 1988-2015 were used for both the model initialization and to test the model

outcomes against the actual land use changes in the studied area. Table 1 presents a summary of
these initial conditions.

Condition
Numbe
r of
agents

Owner /
Tenant
ratio*

Crop type
allocation at
landscape level
(%) *

Technological
level agent
distribution al
landscape level
(%) *

Aspirational
level (U$S/ha)

Ecologica
l
threshold
(%)

Rental
price
(U$S)

Symbol #
agents

O/T LU TL AL ET RP

Value 625 63/37 20 (M)
36.2 (S)
35.8 (W/S)

30 (H)
36 (A)
32 (L)

0.6 WCT 50 443.2

Descriptor P P A A A P C
Table 1. Summary of the initialization conditions for the Pergamino 1988-2014 simulation. Land
use classes: M (Maize); S (Soybean); W/S (Wheat/Soybean). Technological level classes: H (High);
(A) Average; L (Low). WCT is the Working capital threshold for each technological level class.
Descriptor value represents the type of the model component: P (parameter: fixed); A (attribute:
variable during simulation due to ABM rules). Conditions marked with an asterisk represent the real
data extracted from the 1988 National agricultural census (INDEC 1991). Values of cropping
regime (cost, renewability, yield, prices) as well as AL adjustment factor and WCT are shown in the
Appendix. RP represents the value of 1.6 t of Soybean crop (see Appendix, Table A4)

The observed LUCC dynamics were obtained from agricultural surveys (SAGPyA, 2009),
and both the initial (1988) and final (2015) TL frequency distribution among farmers were obtained
from the national agricultural census (BOLCER, 2015; INDEC, 1991). In order to represent the
main tenure regimes in the studied area (owners and tenants), AgroDEVS was initialized using the
1988 Owner/Tenant relation (INDEC, 1991). The land rental price was set to historical values of 1.6
t of soybean per hectare (Margenes_Agropecuarios, 2015). Crop yield and renewability level values
under different weather conditions (WGC) and technological levels (TL) were calculated as it is
explained in the profit calculations section. In the initial landscape configuration, each farmer was
assigned an initial working capital (WC) according to his initial TL. Initial AL level were fixed for
each farmer in order to account for the 60% of the direct costs (i.e. 0.6 WCT) of the TL adopted in
the first CC of the simulation (AACREA, 2014). Oppositely, the ET value remains constant during
the simulations and is fixed in RL = 50% (Table 1). The accuracy of the simulations was assessed
using both 1) the squared distances between a simulation's outputs and a set of observations
(RMSE) and 2) the ordinal pattern analyses (OPA) (Thorngate and Edmonds, 2013). OPA indicates
the topological fit between observed and simulated outputs but does not consider their closeness.

Simulations: Long-term scenarios



AgroDEVS was also run over a 50-year period, under contrasting scenarios due both 1) five
WGC regimes (constant unfavorable, constant average, constant favorable, a see–saw pattern of
very unfavorable-average-very favorable, and a random regime), and 2) two tenure regimes based
on the landscape pattern of Owner/Tenant agent relationship (90/10 and 10/90). As tenants are more
focused on short-term income and are less likely to invest in longer-term management strategies
than owners (Soule et al., 2000), we used AgroDEVS for testing the hypothesis that tenant farmers
are less likely than owner-operators to adopt crop allocation decisions that lead to sustainable
LUCC trajectories. All crop types and TL were set to equal distribution in the landscape (i. 33% of
the total area for each crop and each TL) at the initialization. However, the internal assignment of
each crop type for each agent was set randomly. Model simulations were inspected in terms of the
dynamics of 1) crop type allocation of total area, 2) profit and 3) renewability level.

Results
Results: Simulation results for Pergamino 1988-2015
LUCC patterns

The simulated LUCC patterns replicated the overall trend towards soybean-dominated
landscapes observed in the region since the mid-1990s. The ordinal pattern analyses (OPA) showed
a similar, relatively high probability of a match (PM) for maize, wheat/soybean, and soybean,
evidencing the model’s capability to predict ordinal (higher/lower) values of crop type cover.
However, the accuracy in predicting the magnitude of these changes was lower (see Figure 11).
Based on the RMSE method, the goodness-of-fit of the wheat/soybean simulated cover was the
lowest among the three-crop types, resulting in a significant overestimation of this cropping area.
The model underestimated simulated soybean cover. In addition, the v values (i.e. the RMSE
relative to the observed mean) was remarkably higher for wheat/soybean than in both maize and
soybean.



Figure 11. Observed (O) and simulated (S) land use cover, expressed as % of Total Area, for the
Pergamino 1988-2014 simulation. The goodness-of-fit of each simulated LU change pattern are 1) v
= RMSE/Observed mean % Total area; 2) PM (probability of a match) = #matches / (#matches +
#mismatches); and 3) the index of observed fit (IOF) = (2 x PM) - 1. The number of matches
(#matches) is calculated by counting the set of ordered pairs of observations that match the
predicted ordered pairs of a simulation.
Profit, Renewability, and Technological Levels

Profit (P) and renewability level (RL) values for the Pergamino simulation covaried without
any significant trend throughout the study period (Figure 12). Remarkably, only two years of the



simulated period, the simulated landscape exhibited higher RL values than the ecological threshold
(ET > 50 % RL)

Figure 12. Landscape profit (P) and renewability (RL) for the Pergamino 1988-2014 simulation.
The figure shows the average profit (P) and renewability level (RL) for each year during the
Pergamino 1988-2014 simulation. Both P and RL have theoretical limits defined by the best or the
worst conditions for both economic return (Profit) or environmental conditions (renewability of
energy use). These limits are shown in solid and dotted lines for P and RL, respectively.

Inter-agent variability in the simulated landscape (Figure 13) depicted a range of decisions
(in terms of crop type allocation) that resulted in a great variability regarding the average P values
during the simulation (Figure 13). The interquartile P range (25–75% percentile) varied between 94
and 556 U$S / ha (Figure 13). However, the RL interquartile range was not as high as the observed
in P (Figure 13). The relative homogeneity between each cropping production system, in terms of
external inputs, generated a remarkably low variability in RL terms during the whole simulated
period. In this case, the interquartile RL range varied from 37.9% to 43.5 % with a median value of
41.2%, almost ten percentage points lower than the environmental threshold (ET) of 50% (Figure
13). While in terms of RL, the variability between agents was significantly lower than those
observed for P, it was possible to detect both maximum and minimum RL values showing the model
capability to simulate a wide area of decisions during the simulated period. Minimum average value
for an agent outcome in terms of RL was 29% and the maximum RL average value for an agent was
49.4% (Figure 13), a condition of very close agreement with the environmental threshold (ET).



Figure 13 Inter-agent variability for the Pergamino 1988-2014 simulation. The figure shows the
average profit (P) and renewability level (RL) of the agents in the Pergamino 1988-2014 simulation.
The horizontal solid line shows the overall average of P and RL (n=625). The extremes of the
whiskers represent the 25% and 75% quartiles, and the numbers show the minimum and maximum
P and RL average values for all agents.

Agent behavior in AgroDEVS was also assessed by inspecting the intra-agent variability,
using both P and RL during the simulation period (Figure 14). The coefficient of variation of annual
economic outcome (P) showed a median value of 57%, with an interquartile range between 49.8%
and 264.5 % (Figure 14). The RL interannual variation was significantly lower than P, exhibiting a
median coefficient of variation of 18.9% and an interquartile range between 16 and 22% (Figure
14).

Figure 14. Intra-agent variability of the Pergamino 1988-2014 simulation. The figure shows the
coefficient of variation of Profit (cv P) and Renewability Level (cv RL) for all 625 agents. The
horizontal solid line shows the overall average of cv P and cv RL (n=625), the extremes of the
whiskers represent the 25% and 75% quartiles, and the numbers denote the minimum and maximum
cv P and cv RL values.



A final assessment of the simulation results was carried for both the environmental (ET)
and economic (AL) goal agreements exhibited by agents throughout the simulation period (Figure
15). The Goal Agreement metric indicates the percentage of years during which an agent fulfills
each of the goals (environmental and economic). The agents exhibited an interquartile range of
economic (AL) goal agreement between 32% and 64% with a median of 60% and maximum and
minimum of 71.4% and 17.2%, respectively (Figure 15). These values are noticeably higher than
the RL goal agreement that showed a median of 17.9% with an interquartile range between 7% and
25% (Figure 15). The agent’s capability for adjusting the AL, based on both the current climate
condition (WGC) and the AL fulfillment in the previous agricultural cycle, could explain the better
goal agreement when compared against RL, which is a fixed parameter.

Figure 15. Ecological threshold (ET) and economic aspiration level (AL) goal agreements for the
Pergamino 1988-2014 simulation. The figure shows the average percentage of agreement (% goal
agreement) for all 625 agents of the Pergamino 1988-2014 simulation. The horizontal solid line
shoes the overall average of ET and AL goal agreement (n=625), the extremes of the whiskers
represent the 25% and 75% quartiles, and the numbers show the minimum and maximum ET and
AL goal agreement values.

When inspecting the extreme values for goal agreements, it was possible to identify a single
agent exhibiting a maximum value of 46.4%, which means that, under the same economic and
climate conditions, this agent was able to fulfill nearly 1 out of 2 years, the RL threshold (ET) by
means of its crop type allocation decisions. Finally, the model outcome was also assessed by
inspecting the final distribution of the three different technological levels (TL) across all 625 agents
of the Pergamino simulation (Figure 16). A particular model mechanism, as a function of the
minimum cost to access a technological level, entails agents with the ability to raise, lower or
maintain their technological level (TL). Figure 16 shows the observed distribution of TL at the
beginning the Pergamino 1988-2015 simulation (Figure 16, 1988), which was also used to initialize
the landscape simulated by the model, as well as the final observed (Figure 16, 2015 O) and
simulated (Figure 16, 2015, S) TL distribution.



Figure 16. Initial (i) 1988 and final simulated (S) and observed (O) frequency values of agent
technological level (Agent TL) among agents.

These results underline the model's ability to represent the process of agricultural
intensification evidenced by a higher proportion of farmers using a technological level with higher
levels of inputs. Both observed and simulated TL distribution patterns (Figure16, 2015 S and O)
exhibit a dominance of the high TL. However, the model retains a greater percentage of agents at
the lowest level (TL low) than in the observed data. It is possible that the model structure, which
allows agents to remain using the lowest TL despite not reaching the minimum wealth to face those
costs, is an explaining factor for the overestimation of Low TL at the end of the simulation.

Results: Long-term scenarios
LUCC patterns

The objective of the long-term simulations was to assess the magnitude of the effect of the
tenure condition (i.e. an owner or tenant-dominated landscape) and climate (i.e. five contrasting
climate regimes) on both LUCC (Figure 17), and P and RL outcomes (Figure 18).



Figure 17. Simulated land use cover, expressed as % of Total Area, for the long-term simulations.
The land uses are soybean (full line); double cropping wheat/soybean (dotted line) and maize
(dashed line). The panels show the ten scenarios composed by land tenure regime (10O/90T: 10 %
of owner agents and 90 % of tenant agents; and 90O/10T: 90 % of owner agents and 10% of tenant
agents) and climate regime (L: constant unfavorable; A: constant average; H: constant favorable, V:



a see–saw pattern of very unfavorable-average-very favorable; and R: a random regime.

Figure 18. Simulated profit P (U$S/ha) and renewability level RL (%) for the long-term
simulations. The panels show the ten scenarios composed by land tenure regime (10O/90T: 10% of
owner agents and 90% of tenant agents; and 90O/10T: 90% of owner agents and 10% of tenant



agents) and climate regime (L: constant unfavorable; A: constant average; H: constant favorable, V:
a see–saw pattern of very unfavorable-average-very favorable; and R: a random regime.)

AgroDEVS simulations showed that the variability in climate regimes altered the pattern of
crop type dominance at the end of the simulation cycles (Figure 17). Under constant climate
regimes (Figure 17: L, A and H panels) the simulated landscape is always stabilized, in terms of
LUCC, at higher values  of  soybean (S) cover, followed by the wheat/soybean double-cropping
(W/S) and maize (M). On the other hand, under variable climate scenarios (Figure 17: V and R
panels) the long-term simulations showed the highest crop type dominance represented by W/S
instead of S, although M remained at the lowest cover throughout the simulated period. Tenure
effect on LUCC dynamics was clearer under constant average climate regime (Figure 17: Panel A;
10O/90R). Under this scenario, the landscape dominated by tenants exhibited a much stronger S
dominance, compared to W/S or M. Instead, under the same climate scenario, but dominated by
owners (Figure 17: Panel A; 90O/90R), the model simulated a different LUCC dynamics, showing
an earlier stabilization point for LUCC (ca. year 2) and very similar final cover values for the three
analyzed crop types. Oppositely, the model showed similar LUCC dynamics in owners or
tenants-dominated landscapes, under a constant unfavorable (Figure 17: Panel L) and constant
favorable (Figure 17: Panel H) climate regimes. In variable climate scenarios, the regular see-saw
climate change pattern (Figure 17, panel V) showed less differences in LUCC pattern due to land
tenure regimes with respect to the random climate pattern (Figure 17, panel R). The inclusion in the
simulation scenario of climate dynamics without a definite pattern (i.e. random) resulted in the
increase of double cropping W/S dominance, and this effect was much stronger for the condition of
a landscape dominated by owners, achieving in this condition the highest crop type dominance
among the 10 long-term scenarios (Figure 17: Panel R; 90O/10R).

Profit and Renewability level
The variability between long-term scenarios was lower for both P and RL than for the

simulated LUCC (Figure 18). Regarding the variability induced by the climate regime, the
simulated landscapes were stabilized at increasing P-values, as climate scenarios were better (Figure
18 panels L, A, and H). This effect of profit improvement occurred in both tenant- and
owner-dominated landscapes. In this latter case, the stabilized P values   were due to the differential
income associated with non-payment of land rental. Although the simulated landscape
configurations were clearly different (Figure 18), the RL variability among long-term scenarios
under constant climate regimes (when stabilized)   showed very small changes (less than 10%)
between the maximum and minimum RL final values (Figure 18, panels L, A, V). When analyzing
the scenarios under variable climate regime (Figure 18, panels V; R) a regular pattern of both RL
and P variations was observed when climate evolved in a regular way (Figure 18, panel V).
Moreover, the random climate regime (Figure 18, panel R) showed the highest interannual
variability for both RL and P. Unlike what is observed in simulations under constant climate, in the
case of variable climate scenarios, the model showed its sensitivity to weather growing conditions
(WGC) in both RL and P, even after the LUCC stabilization. A clear evidence of this sensitivity is
the highly variable RL and P simulated patterns under the random climate scenarios (Figure 18,
panel R) even when the simulated landscape was stabilized in a configuration dominated by the
wheat/soybean double-cropping (Figure 17, panel R).



Discussion
Determining patterns of change in land use is undoubtedly a multifaceted challenge. When

relying on simulations, several factors come into play such as climate influence on crop yield, the
farmers’ decisions, economic prices and costs, and the cognitive description of farmer behaviors
(Hare and Deadman, 2004). Thus, the construction of a LUCC simulation model entails necessarily
the coupling of social and environmental models (Müller et al., 2013). In this paper, we developed
an ABM expressing several of these characteristics. AgroDEVS simulations were able to reproduce
observable LUCC trends of the most representative cropping systems in the region under study. An
ABM validation process has the peculiarity of being subjected to conflicts between achieving
accuracy in matching the outcome of a simulation or in the processes simulated (Brown et al.,
2005).

This trade-off is usually solved based on the research goals. In the case of LUCC simulation
models, both aspects are important. Predicting the LUCC trends is extremely important in decision
making by policy makers (Verburg et al., 2004b). However, this information should be
supplemented through an understanding of the underlying LUCC processes involved. This is
required to identify potentially unsustainable land use regimes and correct them. AgroDEVS’
results show that its structure is able to detect the overall trend on land use changes. This is done
through clear and explicit modelling that reflects key process dynamics such as the climate
influence on crop yields, farmer decisions and the landscape emergent properties due to farmer
interactions at smaller scales.

Moreover, there is always the chance to include other variables in the modelling exercise. In
the interest of better representing the heterogeneity amongst different farmer’s decision logics in
AgroDEVS, future efforts could be aimed at exploring the farmers’ decision-making process. This
exercise could expose new relevant variables that improve the representation of agents’ behavior.
However, this inclusion would require a new setting and a more complex numerical validation. The
cost-benefit balance of these additions should be analyzed carefully to avoid incurring in an
overfitting, conspiring against the understanding of the true underlying phenomena under study
(Brown et al., 2016).

The contribution of the model developed in this work can be assessed by analyzing
carefully the LUCC simulation results for Pergamino 1988-2015 (Figure 11), while considering the
trade-offs between output accuracy and processes understanding. Although the model was able to
simulate the land use change dynamics of the three crops analyzed (i.e. the ordinal fit is always
higher than 0.7), the adjustment based on the distance between observed and predicted (i.e. the v
value) could be improved by the inclusion of other variables or exploratory processes (e.g.
agricultural policy decisions not considered; the dynamics of prices and costs, etc.). However, the
current model structure maintains the relative profit between activities which is highly sensitive to
environmental conditions (WGC) (Figures 16 and 17). Thus, the distance between the observed and
predicted LUCC can be used as a predictor of the difference between what could have been a LUCC
trend (based solely on the response to the environment in order to maximize profit, i.e. LUCC
simulated) and another path that did not strictly follow the parameters of maximizing profit (i.e.
LUCC observed) (Figure 11). Notably, the region studied has been frequently subjected to decisions
in agricultural policy (e.g. difficult marketing of some crops, imposition of export taxes) that
strongly influence the changes in land use through mechanisms not directly related to profit activity
(Porto and Lodola, 2013).



From the formal modelling and simulation point of view, the DEVS approach (and its
related Cell-DEVS spatially specific flavor) offered several salient features, already discussed in the
model description section. Notably, in the context of socio-environmental systems, there is a feature
that stands out. Namely, the input-output port-based hierarchical modularity permits the design of
interdisciplinary models by composing complex systems through the interconnections of simpler
ones. For instance, in AgroDEVS, the DEVS Atomic Model representing climate dynamics (see
Appendix) can be replaced by other more accurate or sophisticated DEVS model developed by a
group of specialists in the climate domain, without requiring to alter the landscape (Cell-DEVS)
portion of the system. This approach fits in the context of a current trend towards Systems of
Systems-oriented modelling and simulation (Zeigler et al., 2012). This is particularly relevant for
socio-natural-economic systems, whose domain-specific submodels are constantly subjected to
revisions, improvements or replacements.

Incorporating environmental assessment in LUCC simulation models is a very desirable
feature that is beginning to be explored (Veldkamp and Verburg, 2004). The analysis of
environmental impacts on managed ecosystems has often been applied based reductionist
approaches, identifying changes very accurately, but reducing the relevance of the results by not
addressing an integrated or holistic approach for ecosystems modelling (Shanmuganathan et al.,
2006). The AgroDEVS structure acknowledges the need for a systemic modelling by including
emergy renewability level as a proxy for assessing ecosystem functioning of the cropping systems
studied, something that has already been tested with agricultural systems both in the studied region
and in other agricultural ecosystems (Agostinho et al., 2010; Dewulf et al., 2005; Ferraro and Benzi,
2013).

Concerning the use of environmental work, the simulated ecosystems did not show a clear
dynamic of increase or decrease in its reliance on energy from the economic system. Moreover, the
results from the simulations, both in the Pergamino 1988-2015 and the long-term runs, also failed to
show a clear trade-off between the environmental performance (assessed through renewability
level) and economic performance (assessed through economic profit) in the studied systems. The
simulated dynamics showed that the systems reduced their dependency on exogenous emergy (i.e.
fossil energy) to the extent that environmental conditions improved, and thus natural resources
became more important.

Clearly, this happens because at increasing levels of technology, increased use of external
emergy is roughly proportional to the increase in capturing endogenous emergy associated with
growth conditions (WGC) that improve crop yields. The high emergy return seems a characteristic
of the farming systems of the Pampas region at the field scale (Ferraro and Benzi, 2015; Ferraro and
Benzi, 2013); but the AgroDEVS simulations showed that this pattern is maintained at the
landscape scale due to the emergent properties that arise from the integration of individual farmers
behavior. However, in the context of changes in agricultural policy in the area under study, the
results of AgroDEVS seem to indicate the need for policy options that alter the relative prices of
crops, to avoid the predominance of monocultures or systems highly dependent on the soybean
crop. In this context, the AgroDEVS capability for identifying potential tradeoffs between different
agroecosystem domains (i.e. economic, environmental) is extremely important in the diagnosis of
agricultural sustainability (Tittonell, 2014). Policy options, which have direct effects on model
variables such as prices, can be readily tested into AgroDEVS for their repercussions on farm
incomes and LUCC emergent patterns.



Conclusions
The model presented in this work represents an effort to integrate, within a complex system

simulation, the effects of weather on crops, the farmer decision logic, and the cropping system profit
as main LUCC drivers. AgroDEVS simulations based on real landscape data showed that LUCC
direction was best represented than its magnitude, in terms of the land cover dynamics. The
long-term simulations showed a dominance of cropping systems that included soybeans, and this
dominance was stronger for monospecific soybean crops in scenarios under constant climate. The
double cropping W/S that dominated mainly in scenarios under a variable climate. When assessing
the farmer condition effect (i.e. tenure and climate) on LUCC, tenure resulted in much less effect on
LUCC than the weather conditions (WGC). Finally, simulations showed no trade-offs between
environmental and economic outcome both in simulation used to validate the model and long-term
scenarios. The results suggest that LUCC modelling and its environmental and economic
consequences is feasible and useful using an ABM approach. The AgroDEVS simulations allow not
only to speculate on the LUCC dynamics, but to gain a greater understanding of the underlying
processes involved. Future research should focus on improving the model structure to include
different agent behaviors (e.g. multiple agent’s profiles) as well as social and political factors both
for predicting the LUCC direction, and to assess their relative magnitudes more accurately.
Moreover, incorporating different productive regions of Argentina into AgroDEVS could expand
the conclusions achieved in this paper, revealing differences in LUCC dynamics at an ecorregional
level.
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Appendix. Raw data for AgroDEVS initialization.
Table A1: Crop production costs (expressed in U$S/ha). Land use (LU) classes: Maize; Soybean;
Wheat/Soybean double cropping. Technological level (TL) classes: H (High); (A) Average; L
(Low); Weather Growing Condition (WGC) classes: Very Unfavorable; Unfavorable; Average;
Favorable; Very Favorable.

WGC

LU TL Very Unfavorable Unfavorable Average Favorable Very Favorable

Maize
L 504 619 680 727 773
A 618 768 832 906 965
H 717 892 966 1055 1119

Soybean
L 262 302 326 356 378
A 329 374 401 435 460
H 395 446 476 514 541

Wheat/
Soybean

L 477 511 528 541 584
A 618 656 675 690 738
H 759 801 822 838 892



Table A2: Crop renewability level (expressed in %). Land use (LU) classes: Maize; Soybean;
Wheat/Soybean double cropping. Technological level (TL) classes: H (High); (A) Average; L
(Low); Weather Growing Condition (WGC) classes: Very Unfavorable; Unfavorable; Average;
Favorable; Very Favorable.

WGC t

LU TL Very Unfavorable Unfavorable Average Favorable Very Favorable

Maize
L 35,5 40,2 42,0 45,8 50,2
A 33,1 37,8 39,6 43,4 47,8
H 31,0 35,6 37,3 41,2 45,6

Soybean
L 43,7 48,4 50,1 53,6 57,6
A 42,2 46,9 48,7 52,3 56,3
H 40,8 45,5 47,3 50,9 55,1

Wheat/
Soybean

L 24,3 28,3 29,9 33,4 37,5
A 23,0 26,9 28,5 31,9 36,0
H 21,8 25,7 27,2 30,5 34,7



Table A3: Crop yields (expressed in t/ha). Land use (LU) classes: Maize; Soybean; Wheat/Soybean
double cropping. Technological level (TL) classes: H (High); (A) Average; L (Low); Weather
Growing Condition (WGC) classes: Very Unfavorable; Unfavorable; Average; Favorable; Very
Favorable.

WGC

LU TL Very Unfavorable Unfavorable Average Favorable Very Favorable

Maize
L 4,05 6,27 7,45 8,37 9,25
A 4,88 7,78 9,02 10,45 11,59
H 5,40 8,80 10,22 11,94 13,18

Soybean
L 1,89 2,67 3,13 3,72 4,15
A 2,13 3,00 3,53 4,18 4,67
H 2,37 3,34 3,92 4,65 5,19

Wheat/
Soybean

L 3,06 4,34 5,21 5,73 7,11
A 3,53 4,89 6,01 6,55 8,16
H 4,25 5,85 7,30 7,90 9,83



Table A4: Median output (crop) prices for the 2008–2015 period
Land uses (LU) Price (U$S/tn)
Maize 141
Soybean 277
Wheat/ Soybean 153



Table A5: Adjustment factor αAL(WGC) of the aspiration level (AL) due to weather growing
condition (WGC) level. WGC classes: Very Unfavorable; Unfavorable; Average; Favorable; Very
Favorable.
WGC
Very Unfavorable Unfavorable Average Favorable Very Favorable
-0.55 -0.28 0.00 0.22 0.45



Table A6: Adjustment factor αAL(BN) of the aspiration level (AL) due to agent technological level
(TL) and the best neighbor technological level TLt (BN). A positive (or negative) αAL(BN) value
indicates an increase (or decrease) in AL since the best neighbor exhibits a higher (or lower) TL
than that evaluated by the agent. For equal TL values, αAL(BN) = 0.TL classes: H (High); (A)
Average; L (Low)

TL t (BN)
TL t
L A H

L 0.00 0.20 0.45
A -0.25 0.00 0.20
H -0.55 -0.25 0.00



Table A7: Working capital threshold (WCT) for each technological level (TL) class (expressed in
U$S/ha.). WCT values equal to 60% of the highest production cost for each TL, considering and
average indebtedness rate of 40 % (AACREA 2014)
TL WCT (U$S/ha)
Low 252
Average 333
High 413


