
RETROSPECTIVE APPROXIMATION ALGORITHMS FOR

MULTI-OBJECTIVE SIMULATION OPTIMIZATION ON INTEGER LATTICES

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Kyle Cooper

In Partial Ful�llment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Susan R. Hunter, Chair

School of Industrial Engineering, Purdue University

Dr. Andrew Liu

School of Industrial Engineering, Purdue University

Dr. Hong Wan

School of Industrial Engineering, Purdue University

Dr. Je�rey Tew

Tata Consultancy Services

Dr. Raghu Pasupathy

Department of Statistics, Purdue University

Approved by:

Dr. Steven J. Landry

Head of the School Graduate Program

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

ABSTRACT . viii

1 INTRODUCTION . 1
1.1 Overview and Contributions . 5
1.2 Preliminaries . 6

1.2.1 Terminology and Notation 6
1.2.2 Optimality Concepts . 7
1.2.3 Problem Statement . 9

2 OVERVIEW OF RELATED LITERATURE AND CONCEPTS 10
2.1 Retrospective Approximation . 10
2.2 MOSO . 12

2.2.1 Deterministic MOO . 12
2.2.2 SOSO . 14
2.2.3 MOSO on Finite Sets . 14
2.2.4 MOSO on Integer-Ordered Sets 16
2.2.5 MOSO on Continuous Sets 16

3 AN EPSILON-CONSTRAINT METHOD FOR INTEGER-ORDERED BI-
OBJECTIVE SIMULATION OPTIMIZATION 18
3.1 Contributions . 19
3.2 Problem Context: Preliminaries for MOSO on Integer Lattices . . . 21

3.2.1 Optimality Concepts . 22
3.2.2 Problem Statement . 24

3.3 Solution Context: Retrospective Approximation 25
3.3.1 The Sample-Path Problem and Solution 26
3.3.2 An Approximate Sample-Path Solution 26

3.4 The Main Algorithm: R-PεRLE for Two Objectives 28
3.5 The Pε Algorithm for Two Objectives 30

3.5.1 Pε Algorithm Listing . 31
3.5.2 The GetMin Algorithm for Many Objectives 33
3.5.3 The SPLINE Algorithm for One Objective 34

3.6 The RLE Algorithm for Many Objectives 35
3.6.1 The Sample-Path Non-Conforming Neighborhood 35

iv

Page
3.6.2 RLE Algorithm Listing . 37

3.7 Other Algorithms: R-Pε and R-MinRLE 38
3.8 Asymptotic Behavior . 40

3.8.1 Preliminaries and Assumptions 40
3.8.2 Convergence of R-PεRLE and R-MinRLE 45
3.8.3 Convergence of R-Pε . 48
3.8.4 Sampling E�ciency . 52

3.9 Algorithm Parameters and Implementation 54
3.10 Numerical Experiments . 55

3.10.1 Algorithm Performance with Default Parameter Values . . . 55
3.10.2 R-PεRLE Performance Across a Range of β Values 62

4 PYMOSO: SOFTWARE FOR MULTI-OBJECTIVE SIMULATION OPTI-
MIZATION WITH R-PεRLE AND R-MINRLE 65
4.1 Contributions . 66
4.2 Practitioners: Using PyMOSO to Solve a Problem 68

4.2.1 Structuring an Oracle for Use in PyMOSO 68
4.2.2 Solving a MOSO Problem in PyMOSO 75

4.3 Researchers: Testing and Comparing MOSO Algorithms with PyMOSO 79
4.3.1 Structuring a Test Problem for Use in PyMOSO 79
4.3.2 Testing a MOSO Algorithm in PyMOSO 82
4.3.3 Creating New Algorithms in PyMOSO 86

4.4 PyMOSO Technical Details . 91
4.4.1 Installation . 91
4.4.2 Command Line Interface (CLI) 92
4.4.3 PyMOSO Programming Object List 94

5 CONCLUDING REMARKS . 99

REFERENCES . 101

v

LIST OF TABLES

Table Page

1.1 The table categorizes example MOSO applications by application area
(Hunter et al., 2019). 4

3.1 The table lists acronyms used throughout the chapter (Cooper et al.,
2018). 25

4.1 The table contains the current list of algorithm-speci�c parameters. . . 78

vi

LIST OF FIGURES

Figure Page

3.1 The �gure shows an example feasible space (left) and the image of the
feasible space (right). N1-local minimizers are denoted by the super-
script min. The set L1 = {xmin

1,a ,x
∗
b,x

∗
c,x

min
2,d } is an N1-LES. The set

E = {xmin
1,a ,x

∗
b,x

∗
c,x

min
2,d ,x

min
2,e } is the GES. The set Ew = E ∪ {xmin

2,h } is the
GWES. The point x∗g is an N1-LEP that does not belong to an N1-LES
or an N1-LWES. 23

3.2 Let S = {x̃} with two objectives, and let x ∈ N ′a(S)∩X be in the deleted
neighborhood of S. Def. 12(a) adds x to the NCN if x ∈ Na(x̃) and Ḡn(x)
is in the light gray area. If x does not satisfy Def. 12(a), Def. 12(b) adds
x to the NCN if its δ box, de�ned by corners Ḡn(x)± δ(x), is contained
in the dark gray area. 36

3.3 Problem TA: Black circles represent points in the only N1-LES which is
also the GES (left) and their image (right). 56

3.4 Problem TA: Sample quantiles (0.25, 0.50, 0.75) of the coverage error
across 1,000 independent runs. 57

3.5 Problem TB: The black circles and gray stars represent points in the GES
and the N1-LES, respectively (left) and their images (right). 58

3.6 Problem TB: Sample quantiles (0.25, 0.50, 0.75) of the local coverage error
across 1,000 independent runs. 59

3.7 Problem TC : Black circles and gray stars represent points in the GWES
and the N1-LWES members, respectively (left) and their images (right). 61

3.8 Problem TC : Sample quantiles (0.25, 0.50, 0.75) of the local weakly cov-
erage error across 1,000 independent runs. 61

3.9 Problem TA: Sample quantiles (0.25, 0.50, 0.75) of the coverage error at
t = 0.4 × 106 across 1,000 independent runs of R-Pε (left), R-PεRLE,
βδ = 0.5 (center), R-PεRLE, βε = 0.5 (right). 63

3.10 Problem TB: Sample quantiles (0.25, 0.50, 0.75) of the local coverage error
at t = 0.4× 106 across 1,000 independent runs of R-Pε (left), R-PεRLE,
βδ = 0.5 (center), R-PεRLE, βε = 0.5 (right). 63

vii

Figure Page

3.11 Problem TC : Sample quantiles (0.25, 0.50, 0.75) of the local weakly cov-
erage error at t = 0.4× 106 across 1,000 independent runs of R-Pε (left),
R-PεRLE, βδ = 0.5 (center), R-PεRLE, βε = 0.5 (right). 64

4.1 The Python �le myproblem.py is a template PyMOSO oracle. As shown,
g(self, x, rng) is incomplete. 68

4.2 The g function wraps an external simulation written in C. 72

4.3 The g function wraps an external simulation written in C, and maintains
compatibility with common random numbers and taking simulation repli-
cations in parallel. 73

4.4 This �gure provides an example g function, which we use in MyProblem. 74

4.5 The �le mytester.py implements MyTester, a tester for MyProblem. . 80

4.6 We provide a potentially useful metric for testing MOSO algorithms that
converge to a LES on problems with more than one LES, such that none
of the LES's have members in common. 83

4.7 We provide a potentially useful metric for testing single objective algo-
rithms. 83

4.8 The �le myaccel.py implements a provably convergent MOSO algorithm
by relying on RLE in a RA framework. We encourage MOSO researchers
to improve it. 86

4.9 We provide a template for implementing RA algorithms. 88

4.10 We provide a template to implement a simulation optimization algorithm. 89

4.11 PyMOSO displays help when users enter the pymoso --help invocation. 93

4.12 The pymoso listitems invocation shows the lists of built-in solvers, testers,
and oracles. 94

viii

ABSTRACT

Cooper, Kyle PhD, Purdue University, May 2019. Retrospective Approximation Al-
gorithms for Multi-Objective Simulation Optimization on Integer Lattices. Major
Professor: Susan R. Hunter.

We consider multi-objective simulation optimization (MOSO) problems, that is,

nonlinear optimization problems in which multiple simultaneous objective functions

can only be observed with stochastic error, e.g., as output from a Monte Carlo sim-

ulation model. In this context, the solution to a MOSO problem is the e�cient set,

which is the set of all feasible decision points for which no other feasible decision

point is at least as good on all objectives and strictly better on at least one objective.

We are concerned primarily with MOSO problems on integer lattices, that is, MOSO

problems where the feasible set is a subset of an integer lattice.

In the �rst study, we propose the Retrospective Partitioned Epsilon-constraint

with Relaxed Local Enumeration (R-PεRLE) algorithm to solve the bi-objective sim-

ulation optimization problem on integer lattices. R-PεRLE is designed for sampling

e�ciency. It uses a retrospective approximation (RA) framework to repeatedly call

the PεRLE sample-path solver at a sequence of increasing sample sizes, using the

solution from the previous RA iteration as a warm start for the current RA iteration.

The PεRLE sample-path solver is designed to solve the sample-path problem only

to within a tolerance commensurate with the sampling error. It comprises a call to

each of the Pε and RLE algorithms, in sequence. First, Pε searches for new points

to add to the sample-path local e�cient set by solving multiple constrained single-

objective optimization problems. Pε places constraints to locate new sample-path

local e�cient points that are a function of the standard error away, in the objec-

tive space, from those already obtained. Then, the set of sample-path local e�cient

ix

points found by Pε is sent to RLE, which is a local crawling algorithm that ensures the

set is a sample-path approximate local e�cient set. As the number of RA iterations

increases, R-PεRLE provably converges to a local e�cient set with probability one un-

der appropriate regularity conditions. We also propose a naive, provably-convergent

benchmark algorithm for problems with two or more objectives, called R-MinRLE.

R-MinRLE is identical to R-PεRLE except that it replaces the Pε algorithm with an

algorithm that updates one local minimum on each objective before invoking RLE.

R-PεRLE performs favorably relative to R-MinRLE and the current state of the

art, MO-COMPASS, in our numerical experiments. Our work points to a family of

RA algorithms for MOSO on integer lattices that employ RLE for certi�cation of a

sample-path approximate local e�cient set, and for which the convergence guarantees

are provided in this study.

In the second study, we present the PyMOSO software package for solving multi-

objective simulation optimization problems on integer lattices, and for implementing

and testing new simulation optimization (SO) algorithms. First, for solving MOSO

problems on integer lattices, PyMOSO implements R-PεRLE and R-MinRLE, which

are developed in the �rst study. Both algorithms employ pseudo-gradients, are de-

signed for sampling e�ciency, and return solutions that, under appropriate regularity

conditions, provably converge to a local e�cient set with probability one as the simu-

lation budget increases. PyMOSO can interface with existing simulation software and

can obtain simulation replications in parallel. Second, for implementing and testing

new SO algorithms, PyMOSO includes pseudo-random number stream management,

implements algorithm testing with independent pseudo-random number streams run

in parallel, and computes the performance of algorithms with user-de�ned metrics.

For convenience, we also include an implementation of R-SPLINE for problems with

one objective. The PyMOSO source code is available under a permissive open source

license.

1

1. INTRODUCTION

We consider of multi-objective simulation optimization (MOSO) problems, which are

nonlinear optimization problems where each objective function can only be observed

with stochastic error. MOSO problems emerge, for example, when decision-makers

use a Monte Carlo simulation model to design and optimize a complex stochastic

system in the presence of multiple simultaneous and con�icting objectives. MOSO

problems with one objective function are single-objective simulation optimization

(SOSO) problems. The solution is a feasible point which optimizes the expected

value of the objective function. Except in the trivial case where there is no con�ict

between the objectives, no single feasible point can simultaneously optimize every

objective function of a MOSO problem. Thus, in the case of con�icting objectives,

the solution is the set of optimal feasible points called the e�cient set, the set of

feasible decision points for which no other feasible decision point is at least as good

on all objectives and strictly better on at least one objective. Under a neighborhood

structure, feasible sets may contain local e�cient sets. Members of e�cient sets and

members of local e�cient sets are called e�cient points and local e�cient points,

respectively. We formally de�ne e�cient sets, local e�cient sets, e�cient points, and

local e�cient points in �1.2.2.

Although no feasible decision point will simultaneously optimize every perfor-

mance measure, a decision-maker must decide which point to implement in practice.

The desired solution to a MOSO problem can depend on many factors including the

nature of the feasible points, the number of objectives, and the stage in the decision-

making process in which a decision-maker expresses preferences. In the context of de-

terministic multi-objective optimization (MOO), Miettinen (1999) classi�es solution

methods based on when in the decision-making process the decision-maker's prefer-

2

ences are revealed within a multi-criteria decision-making (MCDM) framework. No-

preference methods generate a single e�cient point regardless of the decision-maker's

preferences. A-posteriori methods generate the entire e�cient set, or a characteriza-

tion of the e�cient set, without preferences and then allows the decision-maker to

choose which point to implement as part of the MCDM process. A-priori methods

consider the decision-maker's preferences before optimization. Finally, interactive

methods query the decision-maker throughout the optimization process. Unless oth-

erwise noted, we henceforth consider MOSO in the a-posteriori context, where the

solution to a MOSO problem is the entire e�cient set.

Formally, we de�ne the MOSO problem as

Problem M : minimize g(x) = (g1(x), . . . , gd(x)) = (E[G1(x, ξ)], . . . ,E[Gd(x, ξ)])

s.t. x ∈ X ,

where (E[G1(x, ξ)], . . . ,E[Gd(x, ξ)]) is a vector of d ≥ 2 objective functions, the

feasible set X is nonempty and known, and ξ is a random vector with support Ξ,

such that P{ξ ∈ Ξ} = 1. In the minimization context, e�cient points are such that

no other feasible point maps to an objective vector which is at least as small on all

objectives, and strictly smaller on at least one objective. The solution to Problem M

is the e�cient set, de�ned in �1.2.2.

MOSO problems are important because they exist in many application domains,

especially in those domains that tend to employ Monte Carlo simulation models. We

discuss three examples of MOSO problems.

Example 1 Zhou et al. (2018) solve a bi-objective scheduling problem to reduce

congestion in a lighterage terminal. They model the lighterage terminal in a Monte

Carlo simulation with objectives to minimize both expected truck time and expected

barge time on the port.

Example 2 Seeking both to reduce the manual intervention required in scheduling

and to choose an optimal schedule for a camshaft machining line, Andersson et al.

3

(2007) model two objectives: (1) a penalty function for expected shortage of the safety

stock to be minimized and, (2) a representation of the expected process throughput

to be maximized.

Example 3 Chen and Wang (2016) consider a medical resource allocation problem

for a Taiwan hospital's emergency department. Hospital visitors continue to rise even

as hospital resources, including doctors, funds, and administrators, remain constant.

Chen and Wang (2016) represent the emergency department in a Monte Carlo simu-

lation model which outputs two performance objectives: a function representing the

expected average patient's length of stay to minimize, and and function representing

the expected wasted medical resources (e.g. an idle doctor) to minimize.

We adapt Table 1.1 from Hunter et al. (2019), which classi�es application pa-

pers based on their �t within 2017 Winter Simulation Conference application tracks

(Chan et al., 2017). As shown in Table 1.1, e�cient MOSO solution methods can sub-

stantially improve problem-solving capabilities in many application areas. Although

MOSO problems are common, solution methods are relatively sparse when compared

to those in MOO or in SOSO (Hunter et al., 2019). We discuss MOSO categories and

existing methods in Chapter 2.

4

Table 1.1.
The table categorizes example MOSO applications by application area
(Hunter et al., 2019).

Area MOSO Application Papers

agriculture plant breeding (Hunter and McClosky, 2016)

irrigation design (Crespo et al., 2010)

land management under climate change (Klein et al., 2013)

architecture earthmoving operations (Zhang, 2008)

& construction review: building performance analysis, usually d ∈ {2, 3} (Nguyen et al.,

2014)

aviation aircraft spare part management (Li et al., 2015c,a)

aircraft �ight scheduling (Lee et al., 2007)

aircraft spare part management (Lee et al., 2008)

energy oil drilling (Kim, 2014)

design of burners in the combustion chamber of a gas turbine (Büche

et al., 2002)

power plant design (Subramanyan et al., 2011)

energy pricing in an electricity market as a stochastic collaborative game

between d players (Fliege and Xu, 2011, p. 158)

environment groundwater remediation design (Singh and Minsker, 2008)

& sustainability dynamic �ood control operation in a river-reservoir system with up to

d = 5 (Prakash et al., 2015)

healthcare capacity allocation in an emergency department or obstetrics ward (Chen

and Wang, 2016; Lucidi et al., 2016)

portable ultrasound machine allocation (Huang, 2016, p. 90)

patient �ow between healthcare centers and hospital with d = 8 reduced

to d = 2 (Song et al., 2016)

patient �ow and capacity in a cancer treatment center (Baesler and Sepul-

veda, 2001)

hospital inpatient �ow process, solved as three sets of paired objectives

(Wang et al., 2015)

cadaveric liver allocation policies (Feng et al., 2013)

logistics, supply

chain &

transportation

supply chain management (Ding et al., 2006)

reduce congestion in a lighterage terminal (Zhou et al., 2018)

di�erentiated service inventory management (Chew et al., 2009)

supply chain management (Joines et al., 2002; Amodeo et al., 2009; Li

et al., 2017)

train traction system design (Dullinger et al., 2017)

manufacturing production line scheduling (Andersson et al., 2007)

injection molding (Villarreal-Marroquín et al., 2013)

military �ghter aircraft maintenance (Mattila and Virtanen, 2014)

military ground vehicle design for safety (Ho�enson et al., 2014)

5

1.1 Overview and Contributions

In the remainder of Chapter 1, we formally de�ne the solution to a MOSO problem,

both in the global and local sense. In Chapter 2, we provide an introduction to

retrospective approximation (RA), the framework we use for our algorithms; we brie�y

introduce MOO and SOSO concepts; and we categorize existing MOSO literature by

the nature of the feasible sets for which the methods were designed.

In Chapter 3, we present a family of algorithms which converge almost surely to

a local e�cient set. In particular, we present the Retrospective Partitioned Epsilon-

constraint with Relaxed Local Enumeration (R-PεRLE) algorithm, a new state-of-

the-art algorithm for solving a bi-objective MOSO problems on integer lattices. Chap-

ter 3 also includes R-MinRLE, a competitive algorithm for solving MOSO problems

on integer lattices. For simulation sampling e�ciency, the algorithms employ a RA

framework (see �2.1). Within the RA framework, we scalarize the MOO problem to

a sequence of single-objective optimization problems using the ε-constraint method.

We solve each single-objective optimization problem using the pseudo-gradient-based

SPLINE algorithm, introduced in Wang et al. (2013) in the SOSO context.

To aid MOSO practitioners (such as the authors of papers listed in Table 1.1)

and MOSO researchers (such as the authors of methods covered in Hunter et al.

2019), we present PyMOSO in Chapter 4, a software framework for solving MOSO

problems and creating MOSO algorithms. Primarily, PyMOSO provides an o�-the-

shelf implementation of R-PεRLE for solving real MOSO problems, and a framework

for quickly creating and testing new MOSO algorithms. The source code and user

manual are found at https://github.com/HunterResearch/PyMOSO.

The work presented in this thesis has resulted in several publications. The work

in Chapter 3 has resulted in the papers Cooper et al. (2017), which appeared in

the Proceedings of the 2017 Winter Simulation Conference, and the journal article

Cooper et al. (2018), which is currently under �rst revision. The work in Chapter

4 resulted in the journal article Cooper and Hunter (2018), which is currently under

6

review. Finally, the literature review information related to MOSO in Chapters 1

and 2 was inspired by Hunter et al. (2019), which is an accepted journal article that

provides an introduction to MOSO and began as a collaborative course project for

IE 690 at Purdue University in Fall 2016.

1.2 Preliminaries

In this section, we discuss the following: terminology and notation, optimality

concepts for MOSO, and a formal problem statement.

1.2.1 Terminology and Notation

We adopt the terminology of Hunter et al. (2019) in that e�cient points are in

the decision space and their image, the Pareto optimal points or Pareto points, are

in the objective function space. The set of all d-dimensional integer-valued vectors is

Zd ⊂ Rd. Usually, capital letters denote random variables (X), script capital letters

denote sets (A), vectors appear in bold (x), and random vectors appear in capital

bold (X). The d-dimensional vector of zeros is 0d. If g : X ⊆ Rq → Rd is a vector-

valued function, then for some set S ⊆ X , the set g(S) is the image of the set

S, g(S) := {g(x) : x ∈ S}. The sum of two sets A and B is the Minkowski sum,

A + B := {a + b : a ∈ A, b ∈ B}. We say that a sequence of random variables

X1, X2, . . . converges with probability 1 (w.p.1) to a random variableX if for all ε > 0,

P{limn→∞ |Xn −X| < ε} = 1 (Casella and Berger, 2002, p. 234). For a sequence of

events {En} de�ned in a probability space, we say En in�nitely often (i.o.) if in�nitely

many of En occur, where En i.o. = lim supnEn = ∩∞n=1 ∪∞j=n Ej (Billingsley, 1995, p.
52�53). We require notions of distance. Let A ⊂ Rq and B ⊂ Rq be two nonempty,

bounded sets. Then (a) d(x,x′) = ||x − x′|| is the Euclidean distance between two

points x,x′ ∈ Rq; (b) d(x,B) = infx′∈B ||x−x′|| is the distance from the point x ∈ Rq

to the set B; (c) D(A,B) = supx∈A d(x,B) is the distance from set A to set B; and

7

(d) H(A,B) := max{D(A,B),D(B,A)} is the Hausdor� distance between sets A
and B.

1.2.2 Optimality Concepts

In this section, we de�ne global and local solutions to ProblemM , as in Miettinen

(1999). First, to de�ne concepts of global optimality in Problem M , we must de�ne

dominance.

De�nition 1. Let x1,x2 ∈ X and d ≥ 2. For vectors g(x1) and g(x2), we say that

1. g(x1) weakly dominates g(x2), written as g(x1) 5 g(x2), if gk(x1) ≤ gk(x2) for

all k = 1, . . . , d.

2. g(x1) dominates g(x2), written as g(x1) ≤ g(x2), if g(x1) 5 g(x2) and g(x1) 6=
g(x2).

3. g(x1) strictly dominates g(x2), written as g(x1) < g(x2), if gk(x1) < gk(x2) for

all k = 1, . . . , d.

Using the concept of dominance, we now de�ne e�cient and weakly e�cient points.

De�nition 2. A decision point x∗ ∈ X is

1. an e�cient point if there does not exist another point x ∈ X such that g(x) ≤ g(x∗).

2. a weakly e�cient point if there does not exist another point x ∈ X such that

g(x) < g(x∗).

Notice that all e�cient points are also weakly e�cient points. We de�ne a Pareto

point and a weakly Pareto point as the image of an e�cient point and a weakly

e�cient point, respectively.

8

We collect the non-dominated points into sets as follows.

De�nition 3. We de�ne the following sets:

1. The e�cient set, E ⊆ X , is the set of all e�cient points.

2. The weakly e�cient set, Ew, where E ⊆ Ew ⊆ X , is the set of all weakly e�cient

points.

The Pareto set is the image of the e�cient set P := g(E), and the weakly Pareto set

is the image of the weakly e�cient set Pw := g(Ew), where P ⊆ Pw.

If a neighborhood structure can be de�ned on the feasible set, then there may

exist local solutions to Problem M . First, points may be locally e�cient if they are

e�cient within a neighborhood.

De�nition 4. Let x∗ ∈ X . Given an appropriate neighborhood N (x∗), we say x∗ is

1. a local e�cient point on N if there does not exist x ∈ N (x∗) ∩ X such that

g(x) ≤ g(x∗).

2. a local weakly e�cient point on N if there does not exist x ∈ N (x∗) ∩ X such

that g(x) < g(x∗).

Locally e�cient points may form local e�cient sets. To de�ne these concepts

formally, we require de�nitions for the neighborhood of a set and the deleted neigh-

borhood of a set. Given the previous notion of an appropriate neighborhood of a

point N (x), we de�ne the neighborhood of a set S as N (S) := ∪x∈SN (x). The

deleted neighborhood of a set S is N ′(S) := N (S) \ S. Then we have the following

de�nitions (see Deb, 1999; Kim and Ryu, 2011a; Li et al., 2015a; Cooper et al., 2017,

2018).

De�nition 5. Given an appropriate neighborhood N (x) for each x ∈ X ,

1. A set L is a local e�cient set on N if (a) for all x∗ ∈ L, x∗ is a local e�cient

point on N (x∗), (b) no points in g(L) dominate other points in g(L), and (c)

for each x ∈ N ′(L) ∩ X , there exists x∗ ∈ L such that g(x∗) ≤ g(x).

9

2. A set Lw is a local weakly e�cient set on N if (a) for all x∗ ∈ Lw, x∗ is a local

weakly e�cient point on N (x∗), (b) no points in g(Lw) strictly dominate other

points in g(Lw), and (c) for each x ∈ N ′(Lw) ∩ X , there exists x∗ ∈ Lw such

that g(x∗) 5 g(x).

Thus each point in a local e�cient set must be a local e�cient point on N , the image

of each point in the set should not be dominated by the images of any other points

in the set, and each point in the deleted neighborhood of the local e�cient set must

be dominated by a point in the local e�cient set. Further, the local Pareto set is

L := g(EN) and the local weakly Pareto set is Pw
N := g(Lw).

1.2.3 Problem Statement

We now introduce the broad problem statement considered in this thesis. For

each objective function in Problem M we assume the existence of an oracle capable

of producing consistent estimators for each x ∈ X . That is, we assume the oracle

produces estimators Ĝk(x, n) where Ĝk(x, n) → gk(x) w.p.1 as the simulation e�ort

n → ∞ for all k = 1, . . . , d and all x ∈ X ; let Ĝ(x, n) := (Ĝ1(x, n), . . . , Ĝd(x, n)).

Then the MOSO problem statement is, given an oracle that produces the consistent

estimator Ĝ(x, n) of g(x) for each x ∈ X , �nd the solution to Problem M , which is

the e�cient set E .
In Chapter 3 we propose a similar but narrower problem statement.

10

2. OVERVIEW OF RELATED LITERATURE AND

CONCEPTS

In this chapter, we provide context for the MOSO problems and solution strategies

considered in this thesis. First, in �2.1, we introduce the RA framework by formalizing

the sample-path MOSO problem and providing an example, generic RA algorithm to

solve MOSO problems. Second, as MOSO exists at the intersection of deterministic

MOO and SOSO, we brie�y discuss both along with their solution strategies in �2.2.1

and �2.2.2. MOSO solution methods tend to target problems based on the nature of

the feasible set: �nite, countable, or uncountable. Thus, we categorize MOSO prob-

lems as in Hunter et al. (2019), where we discuss MOSO on �nite sets in �2.2.3; MOSO

on countable, integer-ordered sets in �2.2.4; and MOSO on uncountable, continuous

sets in �2.2.5.

2.1 Retrospective Approximation

Sample average approximation (SAA) is an algorithm framework in which the

sample-path version of a MOSO problem is solved at some sample size. SAA is not

an algorithm, since it does not specify a routine to solve the sample-path problem

itself. The sample-path MOSO problem for a simulation budget m is

Problem M̂m: minimize
x∈X

Ḡm(x) := (Ḡ1,m(x), ..., Ḡd,m(x)),

where Ḡk,m(x) = 1
m

m∑
i=1

Gk(x, ξi) for every k ∈ {1, ..., d} and Gk(x, ξi) is an observation

retrieved from the simulation oracle, and Ḡk,m(x) → gk(x) w.p.1 for all k. The

sample-path solution to the Problem M̂m is the estimated e�cient set Ê de�ned

similarly to the e�cient set as Ê := {x ∈ X : @x′ ∈ X 3 Ḡm(x′) ≤ Ḡm(x)}.

11

The RA algorithm framework is a version of SAA in which an algorithm solves a

sequence of independently realized sample-path problems, each with increasing sample

sizes. The generic algorithm below illustrates the common structure of RA algorithms

in the MOSO context. The algorithm uses the sample-path solver SPMOSOSolver

to solve a deterministic, multi-objective optimization in each retrospective iteration ν.

The sample-path problem is deterministic since the objective values of every visited

feasible point within a RA iteration are estimated with a sample size ofmν . Note that

SPMOSOSolver needs to be speci�ed for the algorithm to work. Such algorithms

tend to converge as the simulation budget approaches in�nity (Pasupathy and Ghosh,

2013) and the convergence rate can be �ne-tuned as in Pasupathy (2010).

Algorithm 1: Generic RA framework to solve the MOSO problem
Require:

initial solutions for each objective x0; a schedule of sample sizes {mν} to expend

on each visited solution at iteration ν

Ensure: collection of sample-path e�cient points Êν
1: Initialize Ê0 = x0

2: for ν = 1, 2, . . . do

3: Êν = SPMOSOSolver(Êν−1,mν)

4: end for

Although the ideas for RA appear much earlier, RA frameworks have appeared

in the context of stochastic root-�nding (Chen and Schmeiser, 2001; Pasupathy and

Schmeiser, 2009; Pasupathy, 2010; Pasupathy and Kim, 2011) and have been used in

both continuous (Pasupathy, 2010) and integer-ordered contexts (Wang et al., 2013;

Nagaraj and Pasupathy, 2016). See Pasupathy and Ghosh (2013) for a complete

retrospective on RA.

RA algorithms are designed to be e�cient. They �cheaply� obtain solutions in

early iterations due the low sample sizes at each visited point. These cheaply acquired

solutions are used as the �warm start� to the subsequent RA iteration, which reduces

the required sampling e�ort to acquire another sample-path solution. Since we use

12

the same sample-size at every visited point, simulation replications can be taken both

in parallel and using common random numbers (Law, 2015).

2.2 MOSO

MOSO problems can be thought of as a generalized version of both MOO prob-

lems and SOSO problems. First, in generalizing from MOO, MOSO allows objective

functions that can only be observed with stochastic error. To adapt MOO solution

methods to operate on MOSO problems, the methods require a sampling strategy to

account for the error in the objective functions, which increases the computational

complexity of the solution method. Second, in generalizing from SOSO, MOSO allows

any number of objective functions. To adapt SOSO solution methods to operate on

MOSO problems, the methods require a scalarization strategy to convert the multi-

objective problem into a sequence of single-objective problems, which increases the

computational complexity of the solution method. Thus, MOSO problems tend to

be more di�cult than MOO or SOSO problems, due to being more computationaly

intensive. In constructing a MOSO solution method, we desire to choose e�cient

components from both the MOO and SOSO literature that can alleviate this compu-

tational burden. In the remainder of this section, we discuss solution strategies for

both MOO and SOSO, and then existing strategies for MOSO.

2.2.1 Deterministic MOO

MOO solution methods are either scalarization methods or non-scalarization meth-

ods. According to Miettinen (1999), scalarization methods are most common and we

primarily focus on scalarization methods since we employ the ε-constraint method in

Chapter 3. For a discussion of non-scalarization methods, we refer to Wiecek et al.

(2016).

Scalarization methods reduce multi-objective problems to a sequence of single-

objective problems. The well-known linear weighted sum method is an example of

13

a scalarization method. In the linear weighted sum method, each objective function

k ∈ {1, ..., d} is assigned a weight wk ∈ R. Then, each weighted objective function

is added to the others to form a single objective function such that the MOO prob-

lem minimizex∈X (g1(x), ..., gd(x)) becomes the single-objective optimization problem

minimizex∈X
∑d

k=1 wkgk(x). Solving the latter problem with di�erent weights may

yield di�erent e�cient points.

The ε-constraint method is another scalarization method that reduces the MOO

problem into constrained, single-objective objective problems with constraints (ε1, ..., εd).

We formulate an individual ε-constraint problem as

Problem S(k∗, ε): minimizex∈X Ḡk∗,n(x)

s.t. gkcon(x) ≤ ε for kcon ∈ {1, ..., d}, kcon 6= k∗.

When Problem S(k∗, ε) is feasible, its solution is a weakly e�cient point (Miettinen,

1999, p.85, Theorem 3.2.1). If a weakly e�cient solution is also a solution to a

Problem S(k∗, ε) for every k 6= k∗ then the the point is an e�cient point (Miettinen,

1999, p.85 Theorem 3.2.2). We must solve d ε-constraint problems to certify that a

solution is e�cient, and we can generate every e�cient point if ε's are chosen carefully.

To aid in choosing ε's, it is useful to know the bounds of the e�cient set. The ideal

vector is constructed by minimizing each objective function. The resulting vector

gideal is de�ned as

gideal := (min
x∈X

g1(x),min
x∈X

g2(x), ...,min
x∈X

gd(x)).

The ideal vector represents a lower bound for each objective function. It is the solution

to a MOO problem only if none of the objectives are con�icting. To obtain an upper

bound on the e�cient set, we can attempt to generate the nadir vector, de�ned as

gnadir := (max
x∈E

g1(x),max
x∈E

g2(x), ...,max
x∈E

gd(x)).

In bi-objective problems, the nadir is trivially generated from the ideal (Ehrgott and

Tenfelde-Podehl, 2003). However, in the presence of more than two objectives it

14

is di�cult, if not impossible, to generate the nadir exactly. Thus, an ε-constraint

method for MOO problems with more than two objective functions must rely on

approximations of the nadir when attempting to locate the entire e�cient set.

2.2.2 SOSO

Like MOSO methods, SOSO methods can be categorized by their feasible sets as

in Hong and Nelson (2009) and in Pasupathy and Ghosh (2013). Solution methods

for �nite feasible sets are called ranking and selection methods. Ranking and selection

methods acquire simulation replications from every feasible point. Goldsman (2015)

provide an introduction to SOSO ranking and selection methods. Nelson (2010)

introduces methods for SOSO problems with integer-ordered feasible sets. For SOSO

problems with continuous decision variables, we refer to �5 of Pasupathy and Ghosh

(2013).

2.2.3 MOSO on Finite Sets

As in the SOSO context, MOSO problems with �nite sets are ranking and selection

problems, called multi-objective ranking and selection (MORS) problems. The deci-

sion variables in MORS problems may be categorical, and are usually called systems.

Methods typically fall into one of two categories, as in Pasupathy and Ghosh (2013):

those that guarantee sampling e�ciency given a constraint on the simulation budget,

called �xed-budget procedures; and those that provide a probabilistic guarantee on

the optimality gap of the solution, called �xed-precision procedures. MORS proce-

dures are the most well-developed MOSO solution methods (Hunter et al., 2019). In

what follows, we discuss three recent �xed-budget procedures and one �xed-precision

procedure.

Arguably, the most popular MORS method is Multi-objective Optimal Computing

Budget Allocation (MOCBA; Lee et al., 2010a). MOCBA is a multi-objective exten-

sion of OCBA (Chen et al., 2000) and is among the �rst MOSO methods to retrieve

15

the entire e�cient set. MOCBA provides a simulation allocation rule that attempts

to minimize the probability of misclassi�cation, that is, the probability that 1) a sys-

tem is classi�ed as Pareto despite being dominated or that 2) a system is classi�ed

as dominated despite being non-dominated. Due to the di�culty of simultaneously

minimizing both types of misclassi�cation, MOCBA uses a heuristic to minimize the

largest estimated bound of the two misclassi�cation types.

Sampling Criteria for Optimization using Rate Estimators (SCORE) exactly for-

mulates the simulation allocation of each system that maximizes the decay rate of the

probability of misclassi�cation (Applegate et al., 2018; Feldman and Hunter, 2018).

The formulation, which accounts for correlation between objectives, is posed as a

concave maximization problem where decision variables are the percent of the total

simulation budget allocated to each system. Due to the computational di�culty of

solving the problem formulation, Applegate et al. (2018) present two approximately

optimal allocation schemes: one for �small� problems, perhaps with few objectives;

and one for �large� problems. The scheme for large problems assumes independence

between objective functions to reduce the computational burden. Applegate et al.

(2018) provide a sequential procedure to compute the allocations.

The Myopic Multi-Objective Budget Allocation (M-MOBA, M-MOBA-HV) algo-

rithms uses a Bayesian procedure to repeatedly choose the �best� system from which

to obtain additional samples (Branke and Zhang, 2015; Branke et al., 2016). In M-

MOBA, the best system is that with the highest probability of changing the e�cient

set. In M-MOBA-HV, the best system is that which causes the largest change in the

expected hypervolume of the Pareto set.

The Generalized Sequential Probability Ratio Test (GSPRT) framework is pre-

liminary work of a �xed-budget procedure that guarantees a Probability of Correct

Selection (PCS) of the e�cient set (Wang and Wan, 2017). GSPRT uses the gener-

alized likelihood to compute the probability that a system is misclassi�ed.

16

2.2.4 MOSO on Integer-Ordered Sets

Few methods exist for MOSO on integer-ordered sets where the feasible set is

a subset of the integer lattice, X ⊆ Zq. Since methods may seek local optimality,

we de�ne an integer-ordered, Euclidean neighborhood structure, as in Wang et al.

(2013), on which our local optimality holds (see �1.2.2). For x ∈ D ⊆ Zq and

neighborhood size parameter a ∈ R, a ≥ 1, de�ne the Na-neighborhood of a point x

as Na(x) := {x′ ∈ Zq : d(x,x′) ≤ a}.
The most notable existing algorithm is the Multi-objective Convergent Optimiza-

tion via Most Promising Area Stochastic Search (MO-COMPASS) algorithm (Li et al.,

2015b), a multi-objective extension of the COMPASS algorithm (Hong and Nelson,

2006). MO-COMPASS converges to a local e�cient set given an integer-ordered

MOSO problem utilizing the most promising area concept of the COMPASS algo-

rithm family. The most promising area is a set containing points closer to a point in

the estimated e�cient set than to any estimated dominated point. MO-COMPASS

requires that no two points take the same value on the same objective and takes as

input a simulation allocation rule that samples at least once from every �new� point

in an iteration. MO-COMPASS operates on any number of objectives.

Multi-objective Probabilistic Branch and Bound (MOPBnB), an extension of

PBnB, operates on bounded and ordered feasible sets which may be integer-ordered,

continuous, or mixed (Huang and Zabinsky, 2014). In MOPBnB, the �good�, not-

discarded, subregions contain points with estimated values that are either in the

estimated e�cient set or near the estimated e�cient set. The discarded subregions

contain only points estimated to be dominated. The good subregions converge to the

global e�cient set.

2.2.5 MOSO on Continuous Sets

MOSO problems on continuous sets are MOSO problems with continuous decision

variables. Because the e�cient set may be uncountable, the goal of continuous MOSO

17

methods is to generate a characterization of the e�cient set. In this context, the few

existing algorithms tend to incorporate sample average approximation (SAA, see �2.1)

frameworks. Bonnel and Collonge (2014) provide conditions and convergence results

for MOSO algorithms in SAA frameworks.

Kim and Ryu (2011b) provide a trust-region algorithm in a SAA framework for

bi-objective MOSO. The algorithm seeks a characterization of a local e�cient set

by repeatedly identifying the most �isolated� estimated e�cient point, formulating

and solving single-objective problems within a trust region around the isolated point,

and incorporating the single-objective solutions into the estimated local e�cient set

if appropriate.

18

3. AN EPSILON-CONSTRAINT METHOD FOR

INTEGER-ORDERED BI-OBJECTIVE SIMULATION

OPTIMIZATION

Recall that we consider the context of multi-objective simulation optimization (MOSO)

on integer lattices, that is, nonlinear optimization in which two or more simultaneous

objectives can only be observed with error, and each decision variable can only take

on integer values. The solution to a MOSO problem is the set of feasible decision

points for which no other feasible decision point is at least as good on all objectives

and strictly better on at least one objective. Recall that we refer to this set, and the

decision points therein, as e�cient ; the image of this set and the points therein are

Pareto.

We propose a new e�cient and provably-convergent algorithm called Retrospective

Partitioned Epsilon-constraint with Relaxed Local Enumeration (R-PεRLE, written

as R-PERLE when special characters are not allowed) to solve bi-objective SO prob-

lems on integer lattices. Our algorithm is a competitor to MO-COMPASS for MOSO

with exactly two objectives. R-PεRLE employs three key concepts: a version of SAA

called retrospective approximation (RA) for overall algorithmic e�ciency (see, e.g.,

Pasupathy and Ghosh, 2013), the ε-constraint method (see, e.g., Miettinen, 1999)

which enables us to �nd sample-path local e�cient points using a pseudo-gradient-

based single-objective solver, and relaxed local enumeration (RLE) to certify the

solution returned in each RA iteration is, in some sense, sample-path optimal.

To explore each of these key concepts in turn, �rst, consider RA. Recall from

�2.1 that RA is an algorithmic framework that requires solving a sequence of sample-

path problems (formulated in �3.3.1) at increasing sample sizes. One RA iteration

comprises solving a sample-path problem at one sample size. To ensure sampling

19

e�ciency, the solution from the previous RA iteration is used as a warm start in the

next RA iteration, which has a higher sample size. Thus large sample sizes are not

wasted on suboptimal points in early RA iterations. Instead, they are saved for later

RA iterations in which the warm start likely is close to the true solution.

Within each RA iteration, we propose the (deterministic) PεRLE algorithm to

solve the sample-path bi-objective problem on an integer lattice. PεRLE comprises

two sub-algorithms with the primary goals of pseudogradient-based search and certi-

�cation, respectively: Pε (`P epsilon') and RLE. First, the Pε algorithm partitions

the objective space and solves a set of sample-path ε-constraint problems (de�ned

in �3.5) at carefully-chosen constraint values, denoted by ε. This technique is the

ε-constraint method discussed in �2.2.1, is a standard scalarization method for solv-

ing multi-objective optimization problems (Miettinen, 1999); we choose the values

of ε to make infeasible all regions of the decision space that map to objective vec-

tors closer than a function of the standard error away from known sample-path local

Pareto points. We use the single-objective, pseudo-gradient-based SPLINE algorithm

(Wang et al., 2013, listed in �3.5.3) to solve each ε-constraint problem. Then, the set

of local e�cient points found by Pε is sent to the RLE algorithm, which enumerates

the neighborhood of the set and crawls to new local e�cient points as required, up

until it can certify that the set is a sample-path approximate local e�cient set (de-

�ned in �3.3.2). For sampling e�ciency in our RA framework, �completeness� of the

local e�cient set in RLE also depends on the standard errors of the objective values

of the points in the set.

3.1 Contributions

We view the speci�c contributions of this work as follows:

1. R-PεRLE can solve a wide class of bi-objective SO problems having integer-

valued decision variables and deterministic constraints. The importance of de-

veloping algorithms for this class of problems is demonstrated by the abundance

20

of so-called integer-ordered problems on the simopt.org website (Henderson

and Pasupathy, 2018), and by the wide variety of application areas in which

bi-objective SO problems arise (Hunter et al., 2019).

2. R-PεRLE, which shows promising numerical performance, adapts the ε-constraint

method for use with bi-objective SO problems in an algorithmically e�cient way.

First, since an RA framework prescribes obtaining the same number of simula-

tion replications at every point within an RA iteration, the required simulation

replications can be obtained in parallel with common random numbers (CRN,

see, e.g., Law, 2015). Solving sample-path ε-constraint problems inside Pε can

also be completed in parallel, and in the limit, the number of ε-constraint prob-

lems solved in each RA iteration corresponds to the cardinality of the local

e�cient set, which we assume is �nite. Further, the Pε algorithm employs the

pseudo-gradient-based SPLINE algorithm to quickly locate local e�cient points

as the solution to each ε-constraint problem. Finally, both Pε and RLE employ

relaxations to ensure we only solve each sample-path problem to an error toler-

ance commensurate with our sampling error. The relaxations inside Pε ensure

that at the end of each RA iteration, we return an �even� approximation of the

local Pareto set, where the granularity is a function of the standard errors of

the sample-path local Pareto points found.

3. While we propose R-PεRLE for mainstream use, we also propose and discuss

the convergence properties of two other RA algorithms, R-Pε and R-MinRLE.

(a) The R-Pε algorithm is identical to R-PεRLE, except that RLE is never

invoked. To show that Pε usually provides good starting points to RLE,

we demonstrate that R-Pε converges under regularity conditions that are

more restrictive than those required for the convergence of R-PεRLE.

(b) The R-MinRLE algorithm is identical to R-PεRLE, except that the Pε

algorithm is replaced by the GetMin algorithm. The GetMin algorithm

brings up the sample sizes of all estimated e�cient points from the last

21

RA iteration, updates the sample-path local minimizers on each objec-

tive, and removes sample-path dominated points. Then, it invokes RLE.

The R-MinRLE algorithm can solve problems with two or more objec-

tives. We view R-MinRLE as a somewhat naïve, provably convergent,

pseudogradient-based benchmark algorithm for MOSO problems on inte-

ger lattices with two or more objectives. Since the proofs of convergence for

R-PεRLE and R-MinRLE rely only on having invoked RLE, Pε can be

considered an �accelerator� for RLE in two objectives that out-performs

the naïve accelerator, the GetMin algorithm. In the future, other ac-

celerators can be developed for RLE, where the convergence guarantee is

provided by this paper.

3.2 Problem Context: Preliminaries for MOSO on Integer Lattices

Recall that we formulate the MOSO problem on integer lattices with d simulta-

neous objectives as

Problem Md:

minimizex∈X {g(x) = (g1(x), . . . , gd(x)) := (E[G1(x, ξ)], . . . ,E[Gd(x, ξ)])},

where g : X → Rd is an unknown vector-valued function and the nonempty feasible

set X ⊆ Zq is a subset of an integer lattice. Any deterministic constraints present in

Problem Md are de�ned through the feasible set X . In what follows, we de�ne opti-

mality concepts for Problem Md and provide a formal problem statement. Although

the focus of R-PεRLE is the bi-objective case of d = 2, we retain the generality

of d objectives whenever possible because our benchmark algorithm, R-MinRLE, is

de�ned for d ≥ 2 objectives.

22

3.2.1 Optimality Concepts

Since our focus is on local optimality, we de�ne a �exible neighborhood structure

on which our local optimality holds. For x ∈ D ⊆ Zq and neighborhood size pa-

rameter a ∈ R, a ≥ 1, de�ne the Na-neighborhood of a point x as Na(x) := {x′ ∈
Zq : d(x,x′) ≤ a}. Further de�ne the Na-neighborhood of a set as the union of the

Na-neighborhoods of all the points belonging to the set. That is, for S ⊂ D ⊆ Zq,
the Na-neighborhood of set S is Na(S) := ∪x∈S Na(x). Then for any set A, de�ne
N ′a(A) := Na(A) \ A as the deleted neighborhood of A.

Minimizers and E�cient Points

Following Wang et al. (2013), for each objective k ∈ {1, . . . , d}, we de�ne local

minimizers of the kth objective function as follows.

De�nition 6 (Wang et al., 2013). Given an objective function gk : X → R, a point

xmin
k ∈ X is an Na-local minimizer of gk if gk(x

min
k) ≤ gk(x) for all x ∈ Na(xmin

k)∩X .

Given our de�nition of an Na-neighborhood, for consistency with our notation in

this chapter, we re-de�ne and expand upon our previous de�nitions of local e�cient

and local weakly e�cient points that appear in �1.2.2.

De�nition 7. A point xw ∈ X is an Na-local weakly e�cient point (LWEP) if

1. @x ∈ Na(xw) ∩ X such that g(x) < g(xw); or equivalently, if

2. ∀x ∈ Na(xw) ∩ X , g(x) 6< g(xw), that is, ∃k ∈ {1, . . . , d} such that gk(x
w) ≤

gk(x).

De�nition 8. A point x∗ ∈ X is an Na-local e�cient point (LEP) if

1. @x ∈ Na(x∗) ∩ X such that g(x) ≤ g(x∗); or, equivalently, if

2. ∀x ∈ Na(x∗) ∩ X , g(x) � g(x∗), that is, one of the following holds: (a) ∃k ∈
{1, . . . , d} such that gk(x

∗) < gk(x), or (b) g(x) = g(x∗).

23

1 2 3 4x1

1

2

3

4

x
2 xmin

1,ax∗b

x∗cxmin
2,d

xmin
2,e

xmin
1,f

x∗g

xmin
2,h

GEP

GWEP
N1-LEP

g1

g 2

g(xmin
1,a)

g(x∗b)

g(x∗c)

g(xmin
2,d)

g(xmin
2,e)

g(xmin
1,f)

g(x∗g)

g(xmin
2,h)

Figure 3.1. The �gure shows an example feasible space (left) and the
image of the feasible space (right). N1-local minimizers are denoted
by the superscript min. The set L1 = {xmin

1,a ,x
∗
b,x

∗
c,x

min
2,d } is an N1-

LES. The set E = {xmin
1,a ,x

∗
b,x

∗
c,x

min
2,d ,x

min
2,e } is the GES. The set Ew =

E ∪ {xmin
2,h } is the GWES. The point x∗g is an N1-LEP that does not

belong to an N1-LES or an N1-LWES.

Notice that every Na-local minimizer of some objective gk, k ∈ {1, . . . , d}, is an
Na-LWEP, and if the Na-local minimizer is the unique minimum in its neighborhood,

then it is also an Na-LEP. Further, all Na-LEP's are Na-LWEP's. We de�ne a global

minimizer, a global weakly e�cient point (GWEP), and a global e�cient point (GEP)

as an Na-local minimizer, Na-LWEP, and Na-LEP, respectively, in which we set the

neighborhood size parameter a =∞.

E�cient and Pareto Sets

We collect the various types of e�cient points de�ned in the previous section into

various types of e�cient sets, updated from �1.2.2 using our notation in this chapter..

De�nition 9. A set Lw ⊆ X , |Lw| ≥ 1, is an Na-local weakly e�cient set (LWES)

if (a) ∀xw ∈ Lw, xw is an Na-LWEP, and (b) no points in g(Lw) strictly dominate

other points in g(Lw), and (c) ∀x ∈ N ′a(Lw)∩X , ∃xw ∈ Lw such that g(xw) 5 g(x).

De�nition 10. A set L ⊆ X , |L| ≥ 1, is an Na-local e�cient set (LES) if (a) ∀x∗ ∈
L, x∗ is an Na-LEP, (b) no points in g(L) dominate other points in g(L), and

(c) ∀x ∈ N ′a(L) ∩ X , ∃x∗ ∈ L such that g(x∗) ≤ g(x).

24

Notice that every Na-LES is also an Na-LWES. Finally, we de�ne the global weakly

e�cient set (GWES), denoted Ew, and the global e�cient set (GES), denoted E , as
an Na-LWES and Na-LES, respectively, in which the neighborhood size is a = ∞.

Although our de�nitions exist primarily in the decision space so far, we also de�ne a

Na-local Pareto set (LPS) as the image of an Na-LES, g(L).

We remark here that under our de�nitions, there may exist Na-LWEP's that do

not belong to an Na-LWES. To see an example of such a case, consider Figure 3.1, and

notice that g(x∗g) is not dominated by the image of any points in the N1-neighborhood

of x∗g, which are the points g(xmin
1,a),g(xmin

2,e), and g(xmin
1,f). Therefore, x∗g is an N1-

LWEP. (It is also an N1-LEP.) However, {x∗g} is not an N1-LWES because g(x∗g)

does not dominate g(xmin
1,a),g(xmin

2,e), or g(xmin
1,f). In this example, it is not possible to

construct an N1-LWES using only the points xmin
1,f ,x

∗
g, and xmin

2,h because the images

of these points do not dominate the images of any other feasible points, and therefore

cannot dominate the images of the points in their deleted N1-neighborhood. Thus

any N1-LWES including x∗g must also include a member of the GES whose image does

not dominate its image, such as xmin
1,a ,x

∗
b, or xmin

2,e . But, including any of these points

in the candidate N1-LWES with x∗g implies that there exist neighborhood points that

violate the de�nition of an N1-LWES. Thus x∗g does not belong to an N1-LWES.

Also, to help the reader, we provide acronyms in Table 3.2.1.

3.2.2 Problem Statement

Using the optimality concepts de�ned in the previous section, we consider the

following problem statement: Given a neighborhood size a and an oracle capable of

producing estimators Ḡn(x) of g(x) such that Ḡn(x) → g(x) w.p.1 as the sampling

e�ort n→∞ for each x ∈ X ⊆ Zq, �nd a local solution to Problem Md, which is an

Na-LES.

25

Table 3.1.
The table lists acronyms used throughout the chapter (Cooper et al., 2018).

Acronym Description De�ned in Chapter

SO Simulation Optimization 1

MOSO Multi-Objective Simulation Optimization 1

SAA Sample Average Approximation 2.1, 3.3

RA Retrospective Approximation 2.1, 3.3

CRN Common Random Numbers 3.1

Pε Partitioned Epsilon (algorithm) 3.5

RLE Relaxed Local Enumeration (algorithm) 3.6

LWEP / LEP Local Weakly E�cient Point / Local E�cient Point 3.2.1

GWEP / GEP Global Weakly E�cient Point / Global E�cient Point 3.2.1

LWES / LES Local Weakly E�cient Set / Local E�cient Set 3.2.1

GWES / GES Global Weakly E�cient Set / Global E�cient Set 3.2.1

LPS Local Pareto Set 3.2.1

ALES sample-path Approximate Na-Local E�cient Set 3.3.2

NCN sample-path Non-Conforming Neighborhood 3.6.1

3.3 Solution Context: Retrospective Approximation

To address our problem statement, we employ an RA framework, which is a version

of SAA. First, we discuss the sample-path problem and solution in the context of SAA,

as well as its use inside an RA framework. Then, we discuss an approximate sample-

path solution designed to enhance the e�ciency of our RA framework for MOSO on

integer lattices.

26

3.3.1 The Sample-Path Problem and Solution

Recall from �2.1 SAA is a solution framework for Problem Md de�ned by the

sample-path problem

Problem Md,n :

minimizex∈X
{
Ḡn(x) = (Ḡ1,n(x), . . . , Ḡd,n(x)) :=

(
1
n

∑n
i=1G1(x, ξi), . . . ,

1
n

∑n
i=1 Gd(x, ξi)

)}
,

where Ḡn(x) is an estimator of g(x), and at each feasible point x ∈ X the oracle gen-

erates n copies of the random objective vector G(x, ξi) := (G1(x, ξi), . . . , Gd(x, ξi))

for all i = 1, . . . , n. For �xed values of the random variables ξi, i = 1, . . . , n, solv-

ing the sample-path Problem Md,n is a deterministic optimization problem. Thus

we de�ne sample-path versions of all optimality concepts in �3.2.1 by replacing the

objective function values g(x) and gk(x) with Ḡn(x) and Ḡk,n(x), respectively, for

all k ∈ {1, . . . , d}. We denote sample-path Na-local minimizers, sample-path Na-
LWEP's, and sample-path Na-LEP's as Xmin

k,n ,X
w
n , and X

∗
n, respectively. A local

solution to Problem Md,n is a sample-path Na-LES.
Recall that in RA, instead of solving Problem Md,n at a static sample size n, we

solve a sequence of sample-path problems. These sample-path problems are denoted

ProblemMd,mν at sample sizemν , where {mν , ν = 1, 2, . . .} is a sequence of increasing
sample sizes and ν is the RA iteration number. The solution to Problem Md,mν−1 is

used as a warm start to �nd the solution to Problem Md,mν . (Henceforth, within an

RA iteration ν, we usually denote the sample size as n = mν to reduce our use of

double subscripts.)

3.3.2 An Approximate Sample-Path Solution

Assuming the sample-path Problem Md,n solved within an RA iteration is well-

behaved, one can solve it to optimality by locating a complete sample-path Na-LES.
However, when sample sizes are small, there may be a relatively large error in esti-

mating the objective vectors. Thus it may be ine�cient to chase down all members

27

of a sample-path Na-LES if the points are unlikely to be true Na-LES members �

for a convergent algorithm, non-Na-LES members eventually will be eliminated from

consideration in a future RA iteration. Instead, imagine that we solve the sample-

path problem only to within a certain error tolerance that is commensurate with the

amount of error we have in estimating the objective function values (see, e.g., Pasu-

pathy, 2010, for similar concepts in the stochastic root-�nding context). To employ

such a concept, we would like a relaxed de�nition of a sample-path Na-LES that will

enable us to stop our search for a sample-path Na-LES within an RA iteration early.

To this end, we de�ne an approximate version of local optimality for Problem Md,n,

as follows.

De�nition 11. A set A ⊆ X is a sample-path approximate Na-LES (ALES) for the

sample-path Problem Md,n if no points in Ḡn(A) dominate other points in Ḡn(A)

and, given a vector-valued completeness function δ : X → R
d
such that 0d 5 δ(x) for

all x ∈ X ,
(a) ∀xw ∈ A, xw is a sample-path Na-LWEP (∀x ∈ Na(xw)∩X , Ḡn(x) 6< Ḡn(xw)),

and

(b) for each x ∈ N ′a(A)∩X , (i) ∃xw ∈ A such that Ḡn(xw) 5 Ḡn(x), or (ii) ∃xw ∈
A such that (Ḡn(x) ≤ Ḡn(xw) and Ḡn(xw) − δ(xw) 5 Ḡn(x) + δ(x)), or

(iii) ∀xw ∈ A, Ḡn(x) � Ḡn(xw), and ∃x̃w ∈ A such that Ḡn(x̃w)− δ(x̃w) 5

Ḡn(x) + δ(x) or Ḡn(x)− δ(x) 5 Ḡn(x̃w) + δ(x̃w).

De�nition 11 is similar to the de�nition of a sample-path Na-LWES, except for

Part (b). De�nition 11(b) requires that all feasible points in the deleted neighborhood

of the ALES are either (i) weakly dominated by a point in the set, or (ii) dominate

a point in the set by less than a certain amount, or (iii) do not weakly dominate any

points in the set, and would either weakly dominate or be weakly dominated by a

point in the set if both were moved by a certain amount. The �certain amount� is

speci�ed by the function δ. We call δ(·) = (δ1(·), . . . , δd(·)) the completeness function

because it allows the ALES to have neighborhood points that violate the de�nition

of a sample-path Na-LWES, and bigger values of δ result in a �less-complete� ALES.

28

If δk(x) = ∞ for all x ∈ X , k ∈ {1, . . . , d}, the ALES is a collection of sample-path

Na-LWEP's that may or may not belong to a sample-path Na-LWES. If δ(x) = 0d

for all x ∈ X , the ALES is a sample-path Na-LWES.

We set the completeness function using the estimated standard errors of the

objective function values Ḡk,n(x) for all k ∈ {1, . . . , d}, x ∈ X . Thus we re-

quire the following de�nitions. For all x ∈ X , k ∈ {1, . . . , d}, de�ne the variance

σ2
k(x) := V(Gk(x, ξ)) < ∞. (The assumption of �nite variances is made formal

in �3.8.) Then, let the estimated standard deviation of the kth objective value

at x ∈ X be σ̂k,n(x) :=
√

(n− 1)−1
∑n

i=1(Gk(x, ξi)− Ḡk,n(x))2, and let the stan-

dard error of the kth estimated objective value be ŝ.e.(Ḡk,n(x)) := σ̂k,n(x)/n1/2.

Further, for each objective k ∈ {1, . . . , d} and for all x ∈ X , β ∈ (0,∞], de�ne

the function f̂k(x, β) := ŝ.e.(Ḡk,n(x))(n1/2−β) if β ∈ (0,∞) and f̂k(x,∞) := 0. Let

f̂(x, β) := (f̂1(x, β), . . . , f̂d(x, β)).

For the remainder of this thesis, we consider the ALES completeness function

speci�ed by f̂ . Since the value of this function is random for each x ∈ X , henceforth,
we denote the completeness function as δ̂(x) := f̂(x, βδ) for all x ∈ X , where βδ ∈
(0,∞] is the completeness parameter. Smaller values of βδ correspond to larger values

of δ̂(x), thus specifying a less-complete ALES. The value βδ = ∞ implies that the

ALES is a sample-path Na-LWES. Since the completeness function is a function of

the standard error, assuming the variances are �nite, the value δ̂(x) → 0 w.p.1 for

each x ∈ X as the sampling e�ort increases.

3.4 The Main Algorithm: R-PεRLE for Two Objectives

We are now ready to provide an overview of our main RA algorithm, R-PεRLE,

which is listed in Algorithm 2. As previously discussed, R-PεRLE employs an RA

framework that solves the sequence of sample-path Problems M2,mν at increasing

sample sizes {mν , ν = 1, 2, . . .}, where ν is the RA iteration number. Within an RA

iteration, we propose the deterministic PεRLE algorithm as the sample-path solver.

29

For compactness, we implicitly de�ne the PεRLE algorithm as calling Pε followed by

RLE within one RA iteration ν (Algorithm 2 Steps 3 and 4). The solution to Prob-

lem M2,mν found by PεRLE on the νth RA iteration, denoted Âν in Algorithm 2, is

guaranteed by RLE to be an ALES. For e�ciency, R-PεRLE uses the sample-path so-

lution from the preceding RA iteration, Âν−1 which is an ALES for ProblemM2,mν−1 ,

as an initial set of points for �nding an ALES that solves Problem M2,mν . Given the

amount of detail inherent in the algorithms Pε and RLE, we address these algorithms

separately in �3.5 and �3.6, respectively.

Algorithm 2: The R-PεRLE Algorithm for d = 2
Input: initial point x0 ∈ X ; sequence of sample sizes to expend at each visited point, {mν}; sequence of

limits on oracle calls during search, {bν}; ε-placement and ALES parameters, β = (βε, βδ)
1 Initialize: Â0 = {x0} and set x0 as a global variable
2 for ν = 1, 2, . . . with CRN do

3 Âν = Pε(Âν−1,mν , bν , βε) /partition and solve ε-constraint problems

4 Âν = RLE(Âν ,mν , bν , βδ) /guarantee the returned set is an ALES

R-PεRLE requires a few input parameters, in addition to an initial feasible point

x0 ∈ X and a sequence of sample sizes {mν , ν = 1, 2, . . .}. First, R-PεRLE requires

a sequence of limits on oracle calls during search, {bν , ν = 1, 2, . . .}, that prevents
chase-o�s in the case of �bad� sample-path realizations of ProblemM2,mν .We set this

sequence so that for large enough RA iteration numbers ν, search �time outs� due

to binding bν do not occur w.p.1. (Such a sequence is also required by SPLINE in

�3.5.3.) R-PεRLE also requires parameters β = (βε, βδ), which essentially control

the completeness of the ALES and are discussed in the sections that follow. We

suppress the choice of neighborhood size, which is a = 1 by default. The convergence

properties of R-PεRLE under di�erent parameter values is discussed in �3.8, and we

specify default settings for these parameters in �3.9. Under the default settings, the

initial feasible point x0 ∈ X is the only required user-speci�ed input parameter for

R-PεRLE.

30

3.5 The Pε Algorithm for Two Objectives

The Pε algorithm is the �rst algorithm in our proposed two-part sample-path

solver, PεRLE. In RA iteration ν, the Pε algorithm uses the ε-constraint method to

�nd a collection of points that are sample-path Na-LWEP's for ProblemM2,mν ; recall

that n = mν is the current sample size inside RA iteration ν. Using the ε-constraint

method, we re-formulate the sample-path Problem M2,n into a set of constrained

single-objective problems. Given an objective to minimize k∗ ∈ {1, 2} and an ε value,

the sample-path ε-constraint problem is

Problem S̄2,n(k∗, ε):

minimizex∈X Ḡk∗,n(x) s.t. Ḡkcon,n(x) ≤ ε for kcon ∈ {1, 2}, kcon 6= k∗.

On an integer lattice, the sample-path Na-local minimizer for Problem S̄2,n(k∗, ε) is

guaranteed to be an Na-LWEP for the original sample-path Problem M2,n (see, e.g.,

Miettinen, 1999, for the continuous context). Except in pathological cases, varying

the ε values and solving each resulting sample-path ε-constraint problem results in

locating multiple sample-path Na-LWEP's for Problem M2,n.

The Pε algorithm operates as follows. First, it �nds sample-path Na-local mini-

mizers on each objective to bound the space where ε values are placed. Then it selects

an objective k∗ to minimize and solves a collection of Problems S̄2,n(k∗, ε) at a set

of carefully-placed ε values. We use the f̂ function de�ned in �3.3.2 to place the ε

values a function of the standard error away from the images of known sample-path

Na-LWEP's. Such known sample-path Na-LWEP's may have been carried forward

from the previous RA iteration, or may have been found during the current RA iter-

ation. Thus Pε yields a collection of sample-path Na-LWEP's that includes a local

minimizer on each objective and the sample-path Na-LWEP's that result from solving

Problem S̄2,n(k∗, ε) for each chosen ε.

31

Algorithm 3: Ânew = Pε(Âold, n, b, βε)

Input: estimated e�cient set from the last RA iteration, Âold ⊆ X ; sample size, n; limit on oracle calls
during search, b; epsilon placement parameter, βε

Output: Ânew ⊆ X , a collection of sample-path Na-LWEP's
1 Â0

n = GetMin(Âold ∪ {x0}, n, b) /search: update sample-path Na-local minimizers

2 [∼, Âwn ,∼] = RemoveNonLWEP(Â0
n) /get the set of sample-path Na-LWEP's in Â0

n

3 if Âwn = ∅ then Âwn ← Â0
n /GetMin update timed out, no other sample-path Na-LWEP's exist

4 Initialize: c0 ← |Âwn | /set ε's using sample-path Na-LWEP's
5 for k∗ = 1, 2 do /determine objective to minimize, k∗

6 Initialize: kcon ← k for k ∈ {1, 2} such that k 6= k∗

7 Sort Ḡn(Âwn) on kcon to get (Xw
(1)
, . . . ,Xw

(c0)
) where Ḡkcon,n(Xw

(1)
) ≤ . . . ≤ Ḡkcon,n(Xw

(c0)
)

8 Set constraint lower bound Lk∗ ← Ḡkcon,n(Xw
(1)

) + f̂kcon (Xw
(1)
, βε)

9 for i = 2, . . . , c0 do

10 εLk∗ (i)← Ḡkcon,n(Xw
(i)

)− f̂kcon (Xw
(i)
, βε) and εUk∗ (i)← Ḡkcon,n(Xw

(i)
) + f̂kcon (Xw

(i)
, βε)

11 Ξk∗ ← {εLk∗ (i) : i ∈ {2, . . . , c0}, Lk∗ < εLk∗ (i), εLk∗ (i) /∈ (εLk∗ (i′), εUk∗ (i′)] for all i′ ∈ {2, . . . , c0}}
12 Ck∗ ← |Ξk∗ |

13 K∗ ← argmin{Ck∗ : k∗ ∈ {1, 2}} /choose least ε-constraints; break ties randomly

14 C ← CK∗ and Kcon ← k for k ∈ {1, 2} such that k 6= K∗

15 if C > 0 then

16 Sort ΞK∗ in ascending order to get the ordered list (ε1, . . . , εC)
17 for j = 1, 2, . . . , C do /partition space

18 εLj ← max(LK∗ ,max{εUK∗ (i) : εUK∗ (i) < εj , i ∈ {2, . . . , c0}}) /get traceback lower bound

19 Initialize: εnew ← εj , Âj ← ∅, T ← ∅
20 while εLj < εnew do /find new sample-path Na-LWEP's
21 X0 ← argmin{ḠK∗,n(X) : X ∈ T ∪ Â0

n, ḠKcon,n(X) ≤ εnew}
22 [Xw

n , T ′,N (Xw
n)] = SPLINE(K∗,X0,XK∗ (εnew), n, b) /search: solve ε-constrained

23 Âj ← Âj ∪ {Xw
n } and T ← T ∪ T ′

24 εnew ← ḠKcon,n(Xw
n)− fKcon (Xw

n , βε) /traceback: set new ε to disqualify

25 ÂLWEP = ∪Cj=1Âj /collect new sample-path Na-LWEP's

26 Ânew = RemoveDominated(Ḡn(Âwn ∪ ÂLWEP ∪ {x0})) /remove dominated, do no harm

3.5.1 Pε Algorithm Listing

We now discuss the Pε algorithm (Algorithm 3) in more detail. First, to ensure

that all sample-path ε-constraint problems have a non-empty feasible set, in Step 1,

Pε obtains bounds on the objective values of a sample-path Na-LWES by obtaining a

set, Â0
n, containing updated sample-path Na-local minimizers on each objective. The

GetMin algorithm called in Step 1 is listed in Algorithm 4 and discussed further

in �3.5.2. The sample-path Na-local minimizers at current sample size n ensure

that for the constrained objective kcon, no ε values are placed outside of the interval

(Ḡkcon,n(Xmin
kcon,n), Ḡkcon,n(Xmin

k∗,n)] for kcon 6= k∗. Thus for every ε-constraint problem

posed, there exists a sample-path feasible point in the set Â0
n.

32

To select an objective k∗ ∈ {1, 2} to minimize, in Steps 2 through 14, Pε places

constraints a function of the standard error away from the images of known sample-

path Na-LWEP's on both objectives, and ultimately selects the objective that results

in solving the least number of ε-constraint problems. This strategy ensures that

we do not constrain an objective with relatively small standard errors, thus wasting

simulation e�ort attempting to order many points on a high standard error objective.

To determine the set of ε-constraint values for each objective, �rst, in Step 2, Pε

creates an initial set of known sample-path Na-LWEP's, Âw
n , from the points in Â0

n

using the RemoveNonLWEP function (discussed in �3.6.2). If there are no such

points in Â0
n, the search budget value b must have been binding in the GetMin

algorithm. Then in Step 3, we set ε values based on Â0
n. Since b is non-binding in

the limit, for large enough RA iteration number ν, all ε values will be set based on

known sample-pathNa-LWEP's. In Steps 5 through 12, Pε sorts the initial points and

partitions the objective space by placing ε values in each part of the objective space

where the standard error intervals of the initial points do not overlap. The standard

error intervals in Steps 5 through 12 are de�ned using the function f̂ from �3.3.2. For

all known sample-pathNa-LWEP's, denotedXw
n , the Pε algorithm does not place any

new ε values in the interval (Ḡkcon,n(Xw
n)−f̂kcon(Xw

n , βε), Ḡkcon,n(Xw
n)+f̂kcon(X

w
n , βε)),

where βε ∈ (0,∞) is a parameter setting. The βε parameter controls how large the

standard error intervals are; notice that larger standard error values and smaller βε

values both result in wider intervals. Once both sets of ε-constraint values have been

determined, Steps 13 and 14 select the objective to minimize, where ties are broken

randomly.

If the chosen objective to minimize results in solving one or more ε-constraint

problems, these problems are solved in Steps 15 through 25. First, Pε partitions the

objective space based on the ε values. Then, each ε-constraint problem is solved using

the single-objective pseudo-gradient-based SPLINE algorithm, further discussed in

�3.5.3. Within a partition of the objective space, once a new sample-path Na-LWEP

is found as the solution to the initial ε-constraint problem, Pε performs what we call

33

a traceback in Step 24 by attempting to place a new ε value that is both within the

current partition and that sets as infeasible the newly-found sample-path Na-LWEP.

If the new ε value is outside the partition, the search ends; otherwise, the new ε-

constraint problem is solved, and this process repeats until no more ε values can

be placed in the current partition. The new sample-path Na-LWEP's found across

all partitions are collected into a set of sample-path non-dominated Na-LWEP's for

Problem M2,n and returned by Pε in Step 26. We remark here that as the RA

iteration number ν →∞ in R-PεRLE, under appropriate regularity conditions, the

Pε algorithm solves as many ε-constraint problems as there are points in the Na-LES
to which the algorithm converges (see �3.8).

3.5.2 The GetMin Algorithm for Many Objectives

The GetMin algorithm for d ≥ 2 objectives, called in Pε Step 1 and listed

in Algorithm 4, is a relatively simple algorithm that takes in any set of feasible

points, brings up the sample sizes, updates the sample-path Na-local minimizers on

each objective, and removes any points whose images are sample-path dominated.

The resulting set of sample-path non-dominated points and sample-path Na-local
minimizers are returned as the set Â∗n.

Algorithm 4: Â∗n = GetMin(Âold, n, b)

Input: a set of feasible points Âold ⊂ X ; sample size, n; limit on SPLINE calls, b
Output: Â∗n, a candidate EALES with updated sample-path local minimizers at sample size n

1 for k = 1, 2, . . . , d do

2 Xmin
k,old

← argmin{Ḡk,n(X) : X ∈ Âold}
3 [Xmin

k,n ,∼] = SPLINE(k,Xmin
k,old

,X , n, b) /search: sample-path Na-local minimizer

4 M̄n ← ∪dk=1{X
min
k,n } /points in Ḡn(M̄n) may dominate other points in Ḡn(M̄n)

5 Â∗n = RemoveDominated(Ḡn(Âold ∪ M̄n ∪ {x0}))

34

3.5.3 The SPLINE Algorithm for One Objective

The SPLINE algorithm of Wang et al. (2013) is the engine that underlies all of

our deterministic single-objective searches, that is, solving the ε-constraint problems

in the Pε algorithm, Step 22, and �nding the sample-path Na-local minimizers in the

GetMin algorithm, Step 3. The SPLINE algorithm (Algorithm 5) �nds a sample-

path Na-local minimizer of objective k on a feasible set X using sample size n. Our

version of the SPLINE algorithm contains minor modi�cations that allow us to input

an objective to minimize, input the feasible space, and output the search trajectory

for later use in our algorithms.

The SPLINE algorithm consists of two primary steps: SPLI and NE, which are

called iteratively until a sample-path Na-local minimizer is found, or the search times

out. The SPLI algorithm conducts a pseudogradient-based line search with piecewise

linear interpolation. The NE algorithm performs neighborhood enumeration to either

move to a better neighborhood point, or to certify a local minimum has been found.

We refer the reader to Wang et al. (2013) for detailed listings and further explanations

of SPLI and NE.

Algorithm 5: [X∗, T ,N (X∗)] = SPLINE(k,X0,X , n, b)
Input: objective k; initial point X0 ∈ X ; feasible set X ; sample size n; limit on search oracle calls, b
Output: local solution X∗ on X ; sample-path search set, T ; neighborhood points, N (X∗)

1 Initialize: search oracle calls spent so far b∗ ← 0, XNE ←X0, and T ← {X0}
2 repeat

3 [b′,XSPLI, Ḡn(XSPLI)] = SPLI(k,XNE,X , n, b) /search: line search with interpolation

4 if Ḡk,n(XSPLI) > Ḡk,n(XNE) then XSPLI ←XNE /SPLI cannot cause harm

5 [b′′,XNE, Ḡn(XNE),N (XNE)] = NE(k,XSPLI,X , n) /neighborhood enumeration

6 T ← T ∪ {XSPLI,XNE} /update trajectory

7 b∗ ← b∗ + b′ + b′′ /update oracle calls expended

8 until Ḡk,n(XNE) = Ḡk,n(XSPLI) or b∗ > b /find a local solution or time out

We remark here that (Liuzzi et al., 2018) also provide a line search algorithm

for integer lattices. Certainly, other algorithms could be used in place of SPLINE

such as those contained in Audet and Hare (2017) and Conn et al. (2009); we select

SPLINE because of its impressive performance on single-objective SO problems in

(Wang et al., 2013).

35

3.6 The RLE Algorithm for Many Objectives

The RLE algorithm is the second algorithm in our proposed two-part sample-

path solver, PεRLE. The collection of sample-path Na-LWEP's found by the Pε

algorithm is sent to RLE to certify that this collection of points is indeed an ALES,

or to create an ALES using this collection of points as an initial set. Without RLE

to certify an ALES, an algorithm like Pε that relies only on collecting sample-path

Na-LWEP's may �get stuck� by returning points that do not belong to the same, or

to any, sample-path Na-LWES. For example, in Figure 3.1, the Pε algorithm may

return S = {xmin
1,f ,x

∗
g,x

min
2,e }, which is a set of Na-LWEP's containing a minimum on

each objective but that is not an Na-LWES. The RLE algorithm is designed to crawl

out of the sample-path version of this scenario when the completeness function is

small enough. In what follows, we �rst de�ne a key concept used in RLE called the

sample-path non-conforming neighborhood. Then, we discuss the RLE algorithm in

detail.

3.6.1 The Sample-Path Non-Conforming Neighborhood

Suppose we are given a set of feasible points S such that none of the estimated

images of points in S dominate the estimated images of other points in S. The non-
conforming neighborhood of S, de�ned in De�nition 12, is the set of points in the

deleted neighborhood of S that prevent it from being an ALES.

De�nition 12. Let S ⊆ X be a collection of feasible points such that no points

in Ḡn(S) dominate other points in Ḡn(S). Then given a completeness function

δ : X → R
d
such that 0d 5 δ(x) for all x ∈ X , de�ne the sample-path non-conforming

neighborhood (NCN) of S, N nc
a (S), as all feasible points in the deleted neighborhood

of S, x ∈ N ′a(S) ∩ X , such that

(a) ∃x̃ ∈ S such that x ∈ Na(x̃) and Ḡn(x) < Ḡn(x̃), or

(b) (i) @x̃ ∈ S such that Ḡn(x̃) 5 Ḡn(x), and (ii) @x̃ ∈ S such that (Ḡn(x) ≤
Ḡn(x̃) and Ḡn(x̃)−δ(x̃) 5 Ḡn(x)+δ(x)), and (iii) ∃x̃ ∈ S such that Ḡn(x) 5

36

Ḡ1,n

Ḡ
2,
n Ḡn(x̃)

Ḡn(x̃)+δ(x̃)

Ḡn(x̃)−δ(x̃)

δ2(x̃)

δ1(x̃)

Figure 3.2. Let S = {x̃} with two objectives, and let x ∈ N ′a(S) ∩ X
be in the deleted neighborhood of S. Def. 12(a) adds x to the NCN
if x ∈ Na(x̃) and Ḡn(x) is in the light gray area. If x does not satisfy
Def. 12(a), Def. 12(b) adds x to the NCN if its δ box, de�ned by
corners Ḡn(x)± δ(x), is contained in the dark gray area.

Ḡn(x̃), or @x̃ ∈ S such that Ḡn(x̃)− δ(x̃) 5 Ḡn(x) + δ(x) or Ḡn(x)− δ(x) 5

Ḡn(x̃) + δ(x̃).

First, De�nition 12(a) adds x ∈ N ′a(S) ∩ X to the NCN if it prevents a point in

S from being a sample-path Na-LWEP. De�nition 12(b) also adds a feasible deleted-

neighborhood point to the NCN if it violates the conditions of De�nition 11(b), that

is, the point (i) is not weakly dominated by any points in S, and (ii) does not dominate

any points in S by less than a certain amount, and (iii) weakly dominates a point in

S, or would not either weakly dominate or be weakly dominated by a point in S if

both were moved by a certain amount.

Given a singleton feasible set S = {x̃}, Figure 3.2 shows regions of the objective

space that correspond to a feasible point in the deleted neighborhood of S, x ∈
N ′a(S)∩X , being declared a member of the NCN. De�nition 12(a) implies x is in the

NCN if it is an Na-neighbor of x̃ and Ḡn(x) is in the light gray region of Figure 3.2.

Excluding points that meet the requirements of De�nition 12(a), De�nition 12(b)

implies that x is in the NCN if its entire �δ box,� de�ned by the corners Ḡn(x)±δ(x),

is completely contained in the dark gray shaded region of Figure 3.2. Thus there is

37

Algorithm 6: ÂALES = RLE(S, n, b, βδ)
Input: set of points S ⊂ X ; limit on search oracle calls, b; ALES completeness parameter βδ
Output: ÂALES, which is an ALES for the sample-path problem with sample size n

1 S = RemoveDominated(Ḡn(S ∪ {x0}))
2 Nnc =GetNCN(S, βδ) /get non-conforming neighborhood

3 Initialize: outer search oracle calls spent so far b∗ ← 0
4 while b∗ ≤ b and Nnc 6= ∅ do /search: traverse sample-path Na-LWEP chains

5 [b′,Nw,N ∗2] = RemoveNonLWEP(Nnc)
6 S ← S ∪Nw /add neighborhood sample-path Na-LWEP's to S
7 if Nw = ∅ then /the neighbors are dominated by their neighbors: N ∗2 6= ∅
8 Initialize: Xnew ← N ∗2 , Xw ← ∅, and inner search oracle calls spent so far b∗∗ ← 0
9 while b∗∗ ≤ b and Xw = ∅ do /search: traverse dominating chains

10 [b′′′,Xw,N ∗2] =RemoveNonLWEP(Xnew)
11 Xnew ← N ∗2 and b∗∗ ← b∗∗ + b′′′

12 S ← S ∪ Xw
13 if Xw = ∅ then S ← S ∪ Xnew /keep progress if search times out

14 S = RemoveDominated(Ḡn(S ∪ {x0}))
15 [b′′,Nnc] =GetNCN(S, βδ) /get non-conforming neighborhood

16 b∗ ← b∗ + b′ + b′′

17 return ÂALES ← S

no overlap between the δ boxes of x and x̃ on any objective. Henceforth, we use

δ̂(x) = f̂(x, βδ) for all x ∈ X (see �3.3.2) as the NCN completeness function.

3.6.2 RLE Algorithm Listing

We now discuss the RLE algorithm (Algorithm 6) in detail. To guarantee an

ALES, in Step 1, RLE �rst removes any points in S whose estimated objective vectors

are dominated by the estimated objective vectors of other points in S, since these

points cannot be members of an ALES. Then, in Step 2, RLE calculates the NCN of

the remaining points using the function GetNCN. If the NCN is empty in Step 2,

then RLE certi�es it has found an ALES and the algorithm terminates; otherwise,

RLE enters a search phase.

The �outer� RLE search phase, which begins in Step 4, checks to see if any mem-

bers of the NCN are also sample-path Na-LWEP's using RemoveNonLWEP. The

RemoveNonLWEP function takes an input set of feasible points and outputs three

quantities: (a) the number of simulation replications expended, (b) the set of sample-

path Na-LWEP's in the input set, and (c) a set of points in the neighborhood of the

38

input set whose images sample-path dominate the images of the members of the in-

put set. Thus when RemoveNonLWEP is passed a non-empty NCN, it enumerates

the neighborhood of the NCN; these points are neighbors of neighbors of the original

set. If the NCN contains sample-path Na-LWEP's in Step 5, RLE adds them to S
in Step 6. If no members of the NCN are sample-path Na-LWEP's in Step 7, there

must exist neighbors of the NCN that dominate points in the NCN, denoted as N ∗2
in Steps 5 and 8. If this is the case, RLE enters an �inner� search phase.

The �inner� RLE search phase, which begins in Step 9, allows the algorithm to

�nd new sample-path Na-LWEP's by traversing points whose estimated images are

sample-path dominated. Once a sample-path Na-LWEP is found or the inner search

times out, the new points are added to S in Steps 12 and 13. After removing points

whose images are sample-path dominated by the images of other points in S, in
Step 15, RLE checks the new set S to see if it is an ALES. If not, this process repeats

until a complete ALES is found, or a total outer search budget has been exhausted.

Since the search budget sequence is non-binding in the limit, for large enough RA

iteration number ν, RLE guarantees an ALES.

3.7 Other Algorithms: R-Pε and R-MinRLE

To assess and understand the performance ofR-PεRLE, we �nd it helpful to de�ne

and analyze two other RA algorithms: R-Pε and R-MinRLE, which we discuss in

this section. We discuss R-Pε for two objectives �rst, followed by R-MinRLE for

many objectives.

First, we de�ne the R-Pε algorithm for two objectives as identical to R-PεRLE

(Algorithm 2), except without the call to RLE in Step 4. To show that the Pε

algorithm delivers �good points� to the RLE algorithm, in �3.8, we prove convergence

of the R-Pε algorithm under a set of fairly restrictive assumptions; we remark that

these assumptions are violated in the example in Figure 3.1. We also �nd the R-Pε

algorithm useful for numerically analyzing the settings of the βε parameter in �3.10.2.

39

Algorithm 7: The R-MinRLE Algorithm for d ≥ 2
Input: initial point x0 ∈ X ; sequence of sample sizes to expend at each visited point, {mν}; sequence of

limits on oracle calls during search, {bν}; ALES completeness parameter, βδ
1 Initialize: Â0 = {x0} and set x0 as a global variable
2 for ν = 1, 2, . . . with CRN do

3 Âmin = GetMin(Âν−1,mν , bν) /update the sample-path Na-local minimizers

4 Âν = RLE(Âmin,mν , bν , βδ) /guarantee the returned set is an ALES

We emphasize here that we do not recommend R-Pε for implementation. Unless

the decision-maker has knowledge of special structure in the objective functions, one

should always choose R-PεRLE over R-Pε for bi-objective SO.

The R-MinRLE algorithm, listed in Algorithm 7, is arguably the most general

algorithm we propose, since it is de�ned for d ≥ 2 objectives. R-MinRLE is like R-

PεRLE except that instead of obtaining a set of sample-path Na-LWEP's from Pε on

each RA iteration, R-MinRLE uses the GetMin algorithm (Algorithm 4) to update

the sample-pathNa-local minimizer on each objective before invoking RLE. We de�ne

the sample-path solver MinRLE as calling GetMin followed by RLE within an RA

iteration; the MinRLE algorithm locates an ALES for sample-path Problem Md,mν

for d ≥ 2 and each ν = 1, 2,

We view the R-MinRLE algorithm as a naïve pseudo-gradient-based benchmark

algorithm for many objectives. Loosely speaking, for two objectives, notice that R-

MinRLE is likely to exhibit �outside-in� convergence behavior. That is, because R-

MinRLE only guarantees locating the sample-path Na-local minimizers on each RA

iteration, if the completeness parameter βδ is �small� so that RLE crawls less, Min-

RLE locates the sample-path Na-local minimizers and perhaps a few points nearby

to complete an ALES. All externalities being equal, this ALES is less likely to con-

tain points that map to the �center� of a sample-path Na-LPS than a corresponding

ALES located by PεRLE. Therefore in our numerical experiments, comparisons with

R-MinRLE demonstrate the usefulness of using the Pε algorithm as a precursor to

RLE within an RA iteration, as opposed to the naïve GetMin algorithm.

40

3.8 Asymptotic Behavior

We now study the asymptotic behavior of our RA algorithms and show that, under

appropriate regularity conditions, R-PεRLE, R-Pε, and R-MinRLE converge to an

Na-LES w.p.1. In the sections that follow, �rst, we discuss the assumptions required

for our results to hold. Then, we prove the convergence of algorithms that rely on

RLE, that is, R-PεRLE and R-MinRLE. The proof of convergence for algorithms

that rely on RLE is general in the sense that, under our regularity conditions, the proof

provides a convergence result for any RA algorithm designed to solve Problem Md

whose sample-path solver invokes RLE last with the completeness function δ̂ and βδ ∈
(0,∞]. We also prove the convergence of R-Pε under fairly restrictive assumptions.

Finally, in �3.8.4, we provide sampling e�ciency results. Throughout this section,

we assume the search budget sequence {bν , ν = 1, 2, . . .} is non-binding w.p.1 for all

ν large enough, under our regularity conditions. Therefore we ignore issues related

to binding budget sequences for small ν. We specify the default budget sequence in

�3.9.

3.8.1 Preliminaries and Assumptions

We require several regularity conditions on both the true, unknown objective

functions and the sample-path objective functions. We require Assumptions 1�3 in

all of our results.

Assumption 1. (Wang et al., 2013, p. 12) For each x ∈ X and k ∈ {1, . . . , d}, there
exists αk > 0, dependent on x, such that Sk(x, αk) := {x′ ∈ X : gk(x

′) ≤ gk(x) + αk}
is �nite.

Assumption 2. (Wang et al., 2013, p. 12) For each k ∈ {1, . . . , d}, we assume the

following. Let Sk(x, αk) be as in Assumption 1, and de�ne

Ŝk,ν(x) := {x′ ∈ X : Ḡk,mν (x
′) ≤ Ḡk,mν (x)} for all ν = 1, 2, Given x ∈ X , there

41

exists a sequence {pν}∞ν=1 such that P{x̃ ∈ Ŝk,ν(x)} ≤ pν and
∑∞

ν=1 pν < ∞ for all

x̃ ∈ X \ Sk(x, αk).

Assumption 3. All variances are �nite, that is, maxk∈{1,...,d} σ
2
k(x) < ∞ for all

x ∈ X .

First, Assumption 1 implies that at each feasible point x ∈ X and for every

objective k, there exists a constant such that the level set created by adding the

constant to gk(x) is �nite. Since this property holds for every objective k, then

under Assumption 1, the union of the level sets over the objectives k is also �nite.

That is, for each x ∈ X , de�ne α := (α1, . . . , αd), where α also depends on x.

De�ne the set S(x,α) := ∪dk=1Sk(x, αk) as the set of all feasible points that map to

objective values that are not strictly dominated by the point g(x) + α; notice that

g(Sc(x,α)) = {g(x) + α} + {y ∈ Rd : 0d < y} is the set of points that g(x) + α

strictly dominates for all x ∈ X . Then under Assumption 1, S(x,α) is �nite for all

x ∈ X .
Assumption 1 further implies the nonempty GWES exists and all Na-LWES's are

�nite. This result is presented without proof in Lemma 1, where we �rst de�ne the

following notation. Given a neighborhood size parameter a ∈ (0,∞], let Lw and L be

the collection of all possible Na-LWES's and Na-LES's for Problem Md, respectively,

where L ⊆ Lw. Since the GWES is also an Na-LWES for a ≥ 1, notice that |Lw| ≥ 1

if the GWES exists.

Lemma 1. Under Assumption 1, given a ≥ 1, the following hold:

(a) The GWES, Ew ⊆ X , exists and is nonempty.

(b) All Na-LWES's are �nite; that is, 1 ≤ |Lw| <∞ for all Lw ∈ Lw.

Proof. Proof of Lemma 1 Part (a). Under Assumption 1, global minimizers exist

for each objective. Since each global minimizer is a GWEP that must belong to the

GWES, the GWES exists and is nonempty.

Proof. Proof of Lemma 1 Part (b).For a contradiction, suppose there exists Lw ∈ Lw

such that |Lw| = ∞. Let xw ∈ Lw, which is an Na-LWEP by de�nition. Under

42

Assumption 1, there existsα > 0d such that S(xw,α) is �nite. But under De�nition 9,

no points in Sc(xw,α) are eligible to belong to Lw, because they map to points that

are strictly dominated by g(xw). Thus all points in Lw must belong to S(xw,α),

which is �nite.

Now, let us turn our attention to Assumption 2, which is a condition de�ned by

(Wang et al., 2013) ensuring that the probability of incorrectly estimating a level

set decays su�ciently fast. (Wang et al., 2013) provide a detailed discussion of the

conditions under which Assumption 2 holds. For completeness, we include the con-

ditions below as Lemma 2; recall that the variance σ2
k(x) is V(Gk(x, ξ)) for each

x ∈ X and objective k ∈ {1, . . . , d}. Essentially, Lemma 2 implies that Assumption 2

holds under a large-deviations regime or under the conditions of the Central Limit

Theorem, whenever the sample size sequence increases at a su�ciently fast rate. For

compactness, we refer the reader to (Wang et al., 2013) for additional explanation of

Assumption 2 and Lemma 2.

Lemma 2. (see Wang et al., 2013, p. 13�14) Assumption 2 holds if one of the

following two sets of conditions holds:

C1. (a) for all k ∈ {1, . . . , d}, the sequence of random variables {Ḡk,mν (x)− gk(x)}
is governed by a large-deviation principle with rate function Ik,x(s) (Dembo and

Zeitouni, 1998);

(b) each Ik,x(s) is such that for any

ε > 0, infx∈X , k∈{1,...,d}min(Ik,x(ε), Ik,x(−ε)) = η > 0; and

(c) the sequence of sample sizes {mν} increases faster than logarithmically, that

is, lim supν→∞(mν)
−1(log ν)1+∆1 = 0 for some ∆1 > 0.

C2. (a) for all k ∈ {1, . . . , d}, a central limit theorem holds on the sequence of

random variables {Ḡk,mν (x)} for each x ∈ X , that is, √mν(σk(x))−1(Ḡk,mν (x)−
gk(x))⇒ Z, where σk(x) > 0 satis�es supx∈X σ

2
k(x) <∞, and

(b) as ν → ∞, supy |Fk,x,mν (y) − Φ(y)| = O(1/
√
mν) for all x ∈ X , where

Fk,x,mν (·) denotes the cumulative distribution function of the random variable

43

√
mν(σk(x))−1(Ḡk,mν (x)− gk(x)), and

(c) the sequences of sample sizes {mν} satis�es lim supν→∞(mν)
−1ν2+∆2 = 0

for some ∆2 > 0.

The primary implication of Assumptions 1 and 2 is the convergence of the es-

timated level sets into the true level sets, as described in the following Lemma 3.

Before we present the lemma, recall that S(x,α) = ∪dk=1Sk(x, αk) is �nite, and de�ne

Ŝν(x) := ∪dk=1Ŝk,ν(x) as the set of all decision points estimated as being at least as

good as x on at least one objective.

Lemma 3. Under Assumptions 1 and 2,

(a) (see Wang et al., 2013, p. 15) for each k ∈ {1, . . . , d} and any x ∈ X , the
sets Ŝk,ν(x) converge almost surely into the set Sk(x, αk), that is, P{Ŝk,ν(x) 6⊆
Sk(x, αk) i.o.} = 0;

(b) the sets Ŝν(x) converge almost surely into the sets S(x,α) for any x ∈ X , that
is, P{Ŝν(x) 6⊆ S(x,α) i.o.} = 0.

Proof Sketch. The proof of Lemma 3 Part (a) is provided in (Wang et al., 2013,

p. 15) and follows from the �rst Borel-Cantelli lemma (Billingsley, 1995, p. 59). By

Lemma 3 Part (a), for each objective k ∈ {1, . . . , d}, there exists ν̃k, dependent on

α, x, and the random realization, such that for all ν ≥ ν̃k, Ŝk,ν(x) ⊆ Sk(x, αk) w.p.1.
Let ν̃ := maxk{ν̃k}, so that for all ν ≥ ν̃, Ŝν(x) ⊆ S(x,α) w.p.1.

Finally, we need our last required assumption, Assumption 3, because our ε-

placement and ALES completeness parameters rely on the estimated standard errors

of the objective function values. Notice that Assumption 3 is implied under the

conditions of Lemma 2.

In addition to Assumptions 1�3 discussed above, some of our results require addi-

tional structure on the true, unknown objective functions in ProblemMd. We present

these assumptions as Assumptions 4�6, and then we discuss their implications.

Assumption 4. For all x,x′ ∈ X , if g(x) = g(x′), then x = x′.

44

Assumption 5. There exists κ > 0 such that

mink∈{1,...,d} inf{|gk(x)− gk(x′)| : x,x′ ∈ X ,x 6= x′} > κ.

Assumption 6. Given a ∈ [1,∞), all Na-LWEP's are GEP's and there exists exactly

one Na-LES that solves Problem Md which is also the GES, E.

Assumption 4 ensures that two or more decision points in the feasible space do not

map to the same point in the objective space. Under this assumption, the following

Lemma 4 holds regarding the existence of an Na-LES within each Na-LWES. We

present the result without proof; intuitively, it follows because Assumption 4 prevents

the points in the Na-LWES from having identical objective vector values. Thus the

set must contain Na-LEP's, from which the Na-LES can be constructed.

Lemma 4. Under Assumptions 1 and 4, given a ∈ (0,∞], all Na-LWES's contain

an Na-LES; that is, for all Lw ∈ Lw, there exists L∗ ∈ L such that Lw ⊇ L∗.

Proof. Let Lw ∈ Lw be an Na-LWES; by de�nition, |Lw| ≥ 1. First, we show that

there must exist at least one Na-LEP in Lw. For a contradiction, suppose that all

points in Lw are Na-LWEP's and not Na-LEP's. Let xw ∈ Lw and de�ne Ñ (xw) :=

{x̃ ∈ Na(Lw) ∩ X : g(x̃) ≤ g(xw)}, which is nonempty and �nite since xw is not

an Na-LEP. Thus the set Ñ ∗(xw) := {x∗ ∈ Ñ (xw) : @x̃ ∈ Ñ (xw) 3 g(x̃) ≤ g(x∗)}
is also nonempty, where Ñ ∗(xw) ⊆ Ñ (xw) ⊆ Na(Lw) ∩ X . Now consider x∗ ∈
Ñ ∗(xw). Then by De�nition 9, ∃x′ ∈ Lw such that g(x′) 5 g(x∗) ≤ g(xw), which

implies x′ ∈ Lw ∩ Ñ (xw). If g(x′) 6= g(x∗), then we have a contradiction. Thus

g(x′) = g(x∗), which implies x′ = x∗ under Assumption 4. Then x∗ ∈ Lw ∩ Ñ ∗(xw),

which contradicts the fact that x∗ is not an Na-LEP. Now consider the nonempty set

A = {x ∈ Lw : x is an Na-LEP}; from this set, create the nonempty set L∗ := {x∗ ∈
A : @x ∈ A 3 g(x) ≤ g(x∗)}, where L∗ ⊆ Lw. By construction and Assumption 4,

De�nition 10 holds for L∗.

Finally, we remark on Assumptions 5 and 6. Assumption 5, which subsumes

Assumption 4, ensures that each feasible point is distinguishable on each objective.

45

Under this assumption, every Na-LWEP is an Na-LEP, and every Na-LWES is an

Na-LES. Assumption 6 is required for the convergence of R-Pε, and stipulates that

every Na-LWEP is a GEP, and there exists exactly one Na-LES, which is also the

GES. Under this assumption, the R-Pε algorithm cannot �get stuck� by returning

parts of di�erent Na-LES's.

3.8.2 Convergence of R-PεRLE and R-MinRLE

We now consider the convergence of the algorithms R-PεRLE and R-MinRLE

under the regularity conditions discussed in the previous section. These algorithms

invoke RLE to guarantee that the set of points returned at the end of each RA

iteration is an ALES. Theorem 1 and its proof are presented for d ≥ 2 since R-

MinRLE converges for two or more objectives. Indeed, given appropriate parameter

values, the proof of convergence of Theorem 1 holds for any RA algorithm that invokes

RLE as the last step in the sample-path solver.

Theorem 1. Let Assumptions 1�3 hold. For any neighborhood size a ∈ [1,∞), initial

point x0 ∈ X , ε-placement rule, and completeness parameter βδ ∈ (0,∞], R-PεRLE

(d = 2) and R-MinRLE (d ≥ 2) generate a sequence of estimated solutions {Âν}
such that

(a) {Âν} converges into an Na-LWES almost surely, that is, ∃Lw ∈ Lw such that

P{Âν 6⊆ Lw i.o.} = 0;

(b) under Assumption 4, {Âν} contains an Na-LES in�nitely often almost surely,

that is, ∃L ∈ L such that P{L 6⊆ Âν i.o.} = 0;

(c) under Assumption 5, {Âν} converges to an Na-LES almost surely, that is, ∃L ∈
L such that P{Âν 6= L i.o.} = 0.

(d) under Assumptions 5 and 6, {Âν} converges to the GES almost surely, that is,

P{Âν 6= E i.o.} = 0.

Theorem 1 presents a series of convergence results that require increasingly strin-

gent assumptions on the underlying Problem Md. At a minimum, under our required

46

Assumptions 1�3, R-PεRLE and R-MinRLE converge into an Na-LWES almost

surely. If more restrictive assumptions hold, our algorithms converge to an Na-LES
almost surely.

Proof. Proof of Theorem 1 Part (a). For every ν, R-PεRLE and R-MinRLE re-

turn a set Âν in �nite time. Thus both algorithms produce an in�nite sequence of

solutions {Âν}. Further, notice that R-PεRLE and R-MinRLE never return a set

Âν containing a point whose estimated objective vector is dominated by Ḡmν (x0)

(see Algorithm 6, RLE Steps 1 and 14). Now consider the union of the level sets

corresponding to the starting point x0, S(x0,α). By Lemma 3, there exists ν̃ such

that for all ν ≥ ν̃, Âν ⊆ Ŝν(x0) ⊆ S(x0,α) w.p.1. Since S(x0,α) is �nite, then any

sequence of estimated e�cient points {X∗ν : X∗ν ∈ Âν for all ν = 1, 2, . . .} is bounded
w.p.1. Using an argument similar to that in (Wang et al., 2013, Theorem 5.4, p. 15),

we now prove that {Âν} converges into an Na-LWES w.p.1.

Since S(x0,α) is �nite and a ∈ (0,∞), then Na(S(x0,α)) ∩ X is also �nite.

Thus for all k ∈ {1, . . . , d}, Ḡk,mν (·) uniformly converges to gk(·) w.p.1 as ν → ∞
on the set Na(S(x0,α)) ∩ X . Let the set Dk := {(x,x′) : x,x′ ∈ Na(S(x0,α)) ∩
X , gk(x′) 6= gk(x)} be the set of all pairs of feasible points in the level set neigh-

borhood that have di�erent true objective function values on objective k, and let

κ1 = mink∈{1,...,d} infDk |gk(x) − gk(x
′)| > 0 be the smallest di�erence in objective

values across these pairs; Assumption 1 implies κ1 > 0. Then w.p.1, there exists

ν ′ (dependent on neighborhood size a, initial point x0, the constants κ1 and α, and

the random realization) such that for all ν ≥ ν ′, maxk∈{1,...,d} |Ḡk,mν (x) − gk(x)| <
κ1/4 for all x ∈ Na(S(x0,α)) ∩ X . Since βδ ∈ (0,∞], the ALES completeness func-

tion δ̂k(·) = f̂k(·, βδ) = σ̂k,mν (·)/mβδ
ν uniformly converges to zero w.p.1 on the �nite

set Na(S(x0,α)) ∩ X as ν → ∞ for all k ∈ {1, . . . , d}. Then w.p.1, there exists

ν ′′ (dependent on the same quantities as ν ′ and dependent on βδ) such that for all

ν ≥ ν ′′, maxk∈{1,...,d} δ̂k(x) < κ1/4 for all x ∈ Na(S(x0,α)) ∩ X .

47

Henceforth, let ν ≥ max{ν ′, ν ′′}. Combining the above results, for all x ∈
Na(S(x0,α)) ∩ X , maxk∈{1,...,d}

∣∣|Ḡk,mν (x) − δ̂k(x)| − gk(x)
∣∣ < κ1/2 w.p.1. Thus for

all k ∈ {1, . . . , d} and for all x,x′ ∈ Na(S(x0,α)) ∩ X , the following hold:

R1. if gk(x) < gk(x
′), then Ḡk,mν (x) + δ̂k(x) < Ḡk,mν (x

′)− δ̂k(x′) w.p.1;
R2. if Ḡk,mν (x) + δ̂k(x) ≤ Ḡk,mν (x

′)− δ̂k(x′), then gk(x) ≤ gk(x
′) w.p.1.

Further, for all x,x′ ∈ Na(S(x0,α))∩X , if Ḡmν (x) � Ḡmν (x
′), then ∃k ∈ {1, . . . , d}

such that Ḡk,mν (x
′) < Ḡk,mν (x), implying that gk(x

′) ≤ gk(x) w.p.1. This result,

along with results R1 and R2 above, imply that for all x,x′ ∈ Na(S(x0,α)) ∩ X ,
R3. if Ḡmν (x) � Ḡmν (x

′), then g(x) 6< g(x′) w.p.1;

R4. if Ḡmν (x) + δ̂(x) 5 Ḡmν (x
′)− δ̂(x′), then g(x) 5 g(x′) w.p.1.

Now let ν ≥ max{ν̃, ν ′, ν ′′}. Then by Lemma 3, the set of decision points Âν
returned by each algorithm lie in S(x0,α) w.p.1. We now consider all parts of the

de�nition of an ALES (De�nition 11). First, Algorithm 6 ensures no points in Ḡn(Âν)
dominate other points in Ḡn(Âν) (RLE Steps 1 and 14). Thus result R3 above implies

that no points in g(Âν) strictly dominate other points in g(Âν). Second, Algorithm 6

ensures each point in Xw
ν ∈ Âν is a sample-path Na-LWEP (e.g., RLE Steps 2, 5,

10, and 15). Thus result R3 above implies that all points in Âν are Na-LWEP's.

Third, Algorithm 6 ensures that the NCN of Âν is empty (RLE Steps 2 and 15).

Then applying results R3 and R4 above, for all X ∈ N ′a(Âν) ∩ X , (i) ∃Xw
ν ∈ Â

such that g(Xw
ν) 5 g(X) w.p.1, or (ii) ∃Xw

ν ∈ Â such that (g(X) 5 g(Xw
ν)

and Ḡmν (X
w
ν) − δ̂(Xw

ν) 5 Ḡmν (X) + δ̂(X)) w.p.1, which happens with probabil-

ity zero unless g(X) = g(Xw
ν), or (iii) employing the complements of the previous

two conditions, ∀Xw
ν ∈ Â, g(Xw

ν) � g(X) � g(Xw
ν), and ∃X̃w

ν ∈ Â such that

Ḡmν (X̃
w
ν)− δ̂(X̃w

ν) 5 Ḡmν (X) + δ̂(X) or Ḡmν (X)− δ̂(X) 5 Ḡmν (X̃
w
ν) + δ̂(X̃w

ν)

w.p.1, which happens with probability zero. To see this, let X ∈ N ′a(Âν) ∩ X and

notice that the condition ∀Xw
ν ∈ Â, g(Xw

ν) � g(X) � g(Xw
ν) w.p.1 implies that

∀Xw
ν ∈ Â, ∃k1, k2 ∈ {1, . . . , d} such that gk1(X

w
ν) > gk1(X) and gk2(X

w
ν) < gk2(X)

w.p.1, and hence by result R1 above, Ḡk1,mν (X
w
ν)− δ̂k1(Xw

ν) > Ḡk1,mν (X) + δ̂k1(X)

and Ḡk2,mν (X)− δ̂k2(X) > Ḡk2,mν (X
w
ν) + δ̂k2(X

w
ν) w.p.1.

48

Therefore when ν ≥ max{ν̃, ν ′, ν ′′}, R-PεRLE and R-MinRLE certify that w.p.1,

all points in Âν are Na-LWEP's, no points in g(Âν) strictly dominate other points

in g(Âν), and for all X ∈ N ′a(Âν) ∩ X , ∃Xw
ν ∈ Â such that g(Xw

ν) 5 g(X). Thus

by De�nition 9, Âν is an Na-LWES w.p.1. Further, each Âν is such that there does

not exist a pair of points X∗ν−1 ∈ Âν−1 and X∗ν ∈ Âν such that g(X∗ν−1) < g(X∗ν)

w.p.1. (The second part follows because we carry forward the points from Âν−1 into

the νth iteration, and we ensure that no points in Ḡn(Âν) dominate other points in

Ḡn(Âν) in Algorithm 6, RLE Steps 1 and 14.) Therefore if ν ≥ max{ν̃, ν ′, ν ′′}, there
exists Lw ∈ Lw such that R-PεRLE and R-MinRLE returns Âν ⊆ Lw ⊆ S(x0,α)

w.p.1.

Proof. Proof of Theorem 1 Part (b). Let ν ≥ max{ν̃, ν ′, ν ′′}. By the proof of Theo-

rem 1 Part (a), Âν is an Na-LWES w.p.1. Under Assumption 4, by Lemma 4, there

exists L ∈ L such that Âν ⊇ L w.p.1, and the result holds.

Proof. Proof of Theorem 1 Part (c). Assumption 5 implies that all Na-LWES's are

Na-LES's. Thus Lw = L, and the result follows from Theorem 1 Parts (a) and (b).

Proof. Proof of Theorem 1 Part (d). Assumptions 5 and 6 imply that the Na-LES in

Theorem 1 Part (c) is the GES, and the result follows.

3.8.3 Convergence of R-Pε

We now consider the convergence of R-Pε, which does not rely on RLE to certify

that each RA iteration returns an ALES. Since R-Pε is an algorithm designed for

exactly two objectives, henceforth in this section, we let d = 2.

To show the convergence of R-Pε in Theorem 2, �rst, we notice that for each

objective k ∈ {1, 2}, the sequence of sample-path Na-local minimizers produced

by Pε in Step 1 across RA iterations, de�ned as {M̄ν , ν = 1, 2, . . .} where M̄ν =

{Xmin
1,mν ,X

min
2,mν} for all ν = 1, 2, . . ., converges into the set of all true Na-local mini-

mizers of objective gk over the feasible set X ,M∗
a ⊆ X , almost surely as ν →∞. Since

49

this result, presented in Lemma 5, follows almost directly from (Wang et al., 2013)

under Assumptions 1 and 2, we do not provide a proof. The proof of convergence of

R-Pε requires our most restrictive assumptions on the underlying Problem M2.

Lemma 5. Under Assumptions 1 and 2, for d = 2, any neighborhood size a ∈ [1,∞),

initial point x0 ∈ X , and ε-placement rule, across RA iterations, Pε Step 1 generates

a sequence of sample-path Na-local minimizers {M̄ν} that converges intoM∗
a almost

surely, that is, P{M̄ν 6⊆ M∗
a i.o.} = 0.

Proof. In each iteration ν, R-PεRLE returns a solution Âν in �nite time. Conse-

quently, R-PεRLE generates an in�nite sequence of local solutions {X*min
k,ν } for each

objective k ∈ {1, 2}. We now prove that for each k ∈ {1, 2}, {X*min
k,ν } converges into

M∗
k(N) w.p.1., using a proof similar to that in (Wang et al., 2013, Theorem 5.4, p.

15).

Let k ∈ {1, 2}, and notice that R-PεRLE guarantees to return an EALES con-

taining local minima no worse than the given starting point x0 for every ν. Now

consider the level sets corresponding to the initial starting point x0. Then under

Assumptions 1 and 2, by Lemma 3, there exists a value ν̃k, dependent on x0, α, and

the random realization, such that for all ν ≥ ν̃k, Ŝk,ν(x0) ⊆ Sk(x0, αk) w.p.1. Then

for all ν ≥ ν̃k, X
*min
k,ν ∈ Ŝk,ν(x0) ⊆ Sk(x0, αk) w.p.1. Since the level set Sk(x0, αk) is

�nite by Assumption 1, the sequence of minima {X*min
k,ν } is bounded.

We now show that {X*min
k,ν } is non-increasing and is contained in Sk(x0, αk) w.p.1

as in (Wang et al., 2013, Theorem 5.4, p. 15). Let ν̃ = max(ν̃1, ν̃2) and let κ1 =

mink∈{1,2} infDk |gk(x) − gk(x
′)|, where Dk := {(x,x′) : x,x′ ∈ S(x0,α), gk(x

′) 6=
gk(x)} is the set of all pairs of points in the level set that have di�erent true objective

function values on objective k. Since S(x0,α) is �nite, then N (S(x0,α)) ∩ X is

also �nite. Thus for all k ∈ {1, 2}, Ḡk,mν uniformly converges to gk w.p.1 on the

set N (S(x0,α)) ∩ X as ν → ∞. Let κ1 = mink∈{1,2} infDk |gk(x) − gk(x
′)|, where

Dk := {(x,x′) : x,x′ ∈ N (S(x0,α)) ∩ X , gk(x′) 6= gk(x)} is the set of all pairs of

feasible points in the level set neighborhood that have di�erent true objective function

values on objective k. Then w.p.1, there exists ν ′ (dependent on a, κ1,x0,α, and the

50

random realization) such that for all ν ≥ ν ′, maxk∈{1,2} |Ḡk,mν (x) − gk(x)| < κ1/2

for all x ∈ N (S(x0,α)) ∩ X . Therefore for all k ∈ {1, 2}, if gk(x) < gk(x
′), then

w.p.1 for all ν ≥ ν ′, we have Ḡk,mν (x) < Ḡk,mν (x
′) for all x′,x ∈ N (S(x0,α)) ∩ X .

Then it also follows that for all k ∈ {1, 2}, if ν ≥ ν ′ and Ḡk,mν (x) ≤ Ḡk,mν (x
′), we

have gk(x) ≤ gk(x
′) for all x′,x ∈ N (S(x0,α)) ∩ X w.p.1. Combining these results

across objectives k, if ν ≥ ν ′ and Ḡmν (x) ≤ Ḡmν (x
′), we have g(x) ≤ g(x′) for all

x,′ x ∈ N (S(x0,α))∩X w.p.1. Since SPLINE returns a sample-path local minimum,

then X*min
k,ν ∈ M∗

k(N) if ν is su�ciently large and N ′(X*min
k,ν) ⊆ S(x0,α). Thus, for

ν ≥ max(ν̃, ν ′) every X*min
k,ν ∈M∗

k(N) w.p.1.

Theorem 2. Under Assumptions 1�6, for d = 2, any neighborhood size a ∈ [1,∞),

initial point x0 ∈ X , and ε-placement rule speci�ed by βε ∈ (0,∞), R-Pε generates

a sequence of estimated solutions {Âν} that converges almost surely to the global

e�cient set E, in the sense that P{Âν 6= E i.o.} = 0.

Proof. For every ν, R-Pε returns a set Âν in �nite time, thus producing an in�nite

sequence of solutions {Âν}. Further, R-Pε never returns a set Âν containing a point
whose estimated objective vector is dominated by Ḡmν (x0) (see Algorithm 3, Pε

Step 26). Recall that for all ν ≥ ν̃, Âν ⊆ Ŝν(x0) ⊆ S(x0,α) w.p.1, and since S(x0,α)

is �nite, then any sequence of estimated e�cient points {X∗ν : X∗ν ∈ Âν for all ν =

1, 2, . . .} is bounded w.p.1.

As in the proof of Theorem 1 Part (a), for all k ∈ {1, 2}, Ḡk,mν (·) uniformly

converges to gk(·) w.p.1 as ν → ∞ on the �nite set Na(S(x0,α)) ∩ X . Since

there are only two objectives and βε ∈ (0,∞), the maximum ε-placement distance

maxkcon∈{1,2} f̂kcon(·, βε) = maxkcon∈{1,2} σ̂kcon,mν (·)/mβε
ν also uniformly converges to

zero w.p.1 as ν →∞ on Na(S(x0,α)) ∩ X . Let κ > 0 be as in Assumption 5. Then

w.p.1, there exists ν ′
Pε (dependent on a,x0, κ,α, and the random realization) such that

for all ν ≥ ν ′
Pε and all x ∈ Na(S(x0,α))∩X , we have maxk∈{1,2} |Ḡk,mν (x)− gk(x)| <

κ/4 w.p.1. Also w.p.1, there exists ν ′′
Pε (dependent on the same quantities as ν ′

Pε and

dependent on βε) such that for all ν ≥ ν ′′
Pε, maxkcon∈{1,2} f̂kcon(x, βε) < κ/4 for all

x ∈ Na(S(x0,α)) ∩ X . Combining the above results, if ν ≥ max{ν ′
Pε, ν

′′
Pε}, then for

51

all x ∈ Na(S(x0,α)) ∩ X , maxkcon∈{1,2}
∣∣|Ḡkcon,mν (x) − f̂kcon(x, βε)| − gkcon(x)

∣∣ < κ/2

w.p.1. Henceforth, let ν ≥ max{ν ′
Pε, ν

′′
Pε}. Then for all x,x′ ∈ N (S(x0,α)) ∩ X , the

following hold w.p.1:

R5. ∀k ∈ {1, 2},
gk(x) < gk(x

′) if and only if Ḡk,mν (x) + f̂k(x, βε) < Ḡk,mν (x
′)− f̂k(x′, βε);

R6. if Ḡmν (x) � Ḡmν (x
′), then

g(x) � g(x′), that is, ∃k ∈ {1, 2} such that gk(x
′) < gk(x).

Under Assumption 1, for any x0 ∈ X , E ⊆ S(x0,α). Therefore results R5, R6 and

Assumptions 5�6 imply that all points in E are both sample-path Na-LWEP's and

sample-path global e�cient points w.p.1. Further, all points in N ′a(E) are not sample-

path Na-LWEP's w.p.1. Let cε := |E| ≥ 1, and for any objective k ∈ {1, 2}, sort the
elements of E on objective k so that gk(x

∗
k(1)) < . . . < gk(x

∗
k(cε)

), where x∗k(i) denotes

the ith ordered element of E on objective k, i = 1, . . . , cε. If cε ≥ 2, then result R5

implies that w.p.1 for all i = 1, . . . , cε − 1,

Ḡkcon,mν (x
∗
k(i)) + f̂kcon(x

∗
k(i), βε) < Ḡk,mν (x

∗
(i+1))− f̂kcon(x∗(i+1)). (3.1)

By Lemma 5, w.p.1 there exists ν ′′′ (dependent on the same quantities as ν ′
Pε) such

that for all ν ≥ ν ′′′, the updated sample-path Na-local minimizers returned as part

of Pε Step 1, which we call M̄ν , are such that M̄ν ⊆M∗
a. Under Assumptions 5�6,

the set M∗
a = {xmin

1 ,xmin
2 } contains the unique global minimizers for each objective

k ∈ {1, 2}.
Henceforth, let ν > max{ν̃, ν ′

Pε, ν
′′
Pε, ν

′′′}, and let {k∗ν , ν = 1, 2, . . .} be any se-

quence of objectives minimized, where kconν 6= k∗ν for each ν. Then by Lemma 3, the

set of decision points Âν returned by R-Pε lie in S(x0,α) w.p.1, as does the set of

points used to set the ε values in Algorithm 3, Pε Step 2, which is a set of sample-path

Na-LWEP's we call Âw
ν . Since all points in Âw

ν are sample-path Na-LWEP's, then

results R5, R6 and Assumptions 5�6 ensure that Âw
ν ⊆ E w.p.1; further, M̄ν ⊆ Âw

ν ,

where M̄ν = {xmin
1 ,xmin

2 } w.p.1. If cε ∈ {1, 2}, the proof is complete, since Âw
ν is

returned as Âν in Algorithm 3, Pε Step 26, and no other points have entered the set

w.p.1. Now suppose cε ≥ 3. All points in Âw
ν ∪ E can be ordered on kcon as in line

52

(3.1). Points in E \ Âw
ν are retrieved by Algorithm 3, Pε Steps 15�25, and carried

forward to Âν+1; no other points enter the set w.p.1. Then it follows that for all

ν∗ > ν + 1, Âν∗ = E w.p.1, and the result holds.

3.8.4 Sampling E�ciency

Finally, we provide a result on the sampling e�ciency of our algorithms. This

result provides insight into how to set the algorithm parameter values in �3.9 to

achieve exponential convergence. In Theorem 3, let Xw denote the set of all N1-

LWEP's for Problem Md, and let X̄w
ν denote the set of all sample-path N1-LWEP's

on the νth RA iteration. Further, let Âν denote the solution returned on the νth RA

iteration of R-PεRLE (d = 2), R-Pε (d = 2), or R-MinRLE (d ≥ 2) for any x0 ∈ X ,
ε-placement rule βε ∈ (0,∞), and completeness parameter βδ ∈ (0,∞].

Theorem 3. Let the neighborhood size a = 1 and suppose the feasible set X ⊂ Zq

is �nite with maxk∈{1,...,d} supx∈X σ
2
k(x) < ∞. For all objectives k ∈ {1, . . . , d}, let

the sequence of random variables {Ḡk,mν (x)− gk(x)} be governed by a large-deviation

principle with rate function Ik,x(s), as stipulated in Lemma 2. Then the following

hold:

(a) P{X̄w
ν 6⊆ Xw} = O(e−γmν) for some γ > 0.

(b) If the sequence of sample sizes increases to in�nity at least linearly in R-PεRLE,

R-Pε, and R-MinRLE, that is, if lim supν→∞m
−1
ν ν <∞, then

(i) P{Âν 6⊆ Xw} = O(e−γmν) for some γ > 0,

(ii) under Assumption 5 and 6, P{Âν 6= E} = O(e−γmν) for some γ > 0.

Proof. Proof of Theorem 3 Part (a). Let D ⊆ X be any subset of the feasible

set. Since X is �nite, D is �nite. Let B̄∗k,ν(D) denote the set of sample-path global

minimizers of objective gk, k ∈ {1, . . . , d} on the set D, and let B∗k(D) denote the

corresponding set of true global minimizers on D. Then under our assumptions, by

53

(Wang et al., 2013, p. 16), for all k ∈ {1, . . . , d} and all D ⊆ X , there exists η > 0

such that for large enough ν,

P{B̄∗k,ν(D) 6⊆ B∗k(D)} ≤ |D|e−mνη. (3.2)

Recall that X ⊂ Zq and let x ∈ X be a feasible point. Letting ei denote a

q-dimensional vector of zeros with one in the ith place, divide N1(x) into 2q sub-

neighborhoods that include x and exactly one other neighborhood point in each di-

rection, N1,+i(x) := {x,x + ei} and N1,−i(x) := {x,x− ei} for all i ∈ {1, . . . , q}.
For every non-N1-LWEP x ∈ X \ Xw, there must exist x′ ∈ N1(x) ∩ X such

that g(x′) strictly dominates g(x). Then for every x ∈ X \ Xw, there exists j ∈
{−q, . . . ,−1, 1, . . . , q} and x′ ∈ N1(x) ∩ X such that N1,j(x) = {x,x′} and g(x′)

strictly dominates g(x). Thus x is not a global minimizer on N1,j(x) on any objective.

If x ∈ X \ Xw is nonetheless estimated as an N1-LWEP, that is, x ∈ X̄w
ν on its N1-

neighborhood, there must exist an objective k ∈ {1, . . . , d} such that B̄∗k,ν(N1,j(x)) 6⊆
B∗k(N1,j(x)). Then for large enough ν,

P{X̄w
ν 6⊆ Xw} ≤ ∑

x∈X\Xw
P{x ∈ X̄w

ν }

≤ ∑
x∈X\Xw

∑
j∈{−q,...,−1,1,...,q}

∑
k∈{1,...,d}

P{B̄∗k,ν(N1,j(x)) 6⊆ B∗k(N1,j(x))}

≤ ∑
x∈X\Xw

∑
j∈{−q,...,−1,1,...,q}

∑
k∈{1,...,d}

2e−mνη ≤ |X |4qde−mνη,

where η > 0 denotes the relevant constant from line (3.2).

Proof. Proof of Theorem 3 Part (b). We begin by noticing that item (i) follows from

Theorem 3 Part (a), along with the assumption that sample sizes increase at least

linearly and the fact that our algorithms guarantee Âν contains only sample-path

N1-LWEP's.

To prove item (ii), notice that under our assumptions, all N1-LWEP's are global

e�cient points. Therefore by item (i), P{Âν 6⊆ E} = O(e−γmν) for some γ > 0. We

now consider P{E 6⊆ Âν}, where P{E 6⊆ Âν} ≤
∑

x∈E P{x 6∈ Âν}. Notice that if x ∈ E
is not in Âν , then it must have been incorrectly estimated as dominated by at least

54

one point in its neighborhood. Then by a proof similar to that of Theorem 3 Part (a),

it follows that P{E 6⊆ Âν} = O(e−γmν) for some γ > 0, which implies the result.

3.9 Algorithm Parameters and Implementation

We now discuss the details of algorithm implementation and the choice of four

algorithm parameters. First, for algorithmic e�ciency, everywhere the oracle is called

at a point x with sample size n = mν within an RA iteration, we assume the triple

(x, Ḡn(x), ŝ.e.(Ḡn(x))) is stored and is made available to all relevant subroutines

within an RA iteration. Thus everywhere a candidate ALES is passed between

functions, we assume the estimated objective function values of the neighborhood

points are made available to all relevant subroutines, especially to RLE. This prac-

tice enhances e�ciency by removing the need to re-sample neighborhood points when

checking whether a candidate ALES is truly an ALES. All stored points visited and

simulation replications obtained is cleared between RA iterations.

While all of our de�nitions and algorithms allow for a �exible neighborhood spec-

i�ed by the parameter a, as noted by Wang et al. (2013), there exists a tension

between the relatively faster convergence enabled by a = 1 and the certi�cation of

the local solution as optimal in a larger neighborhood. By default, we set a = 1. For

larger a and for high-dimensional feasible spaces, Wang et al. (2013) remark that the

neighborhood enumeration NE routine inside SPLINE may be modi�ed to return

only a better point, rather than the best point in the neighborhood. Further, the al-

gorithms GetNCN and RemoveNonLWEP inside RLE can be modi�ed to return

only a subset of the non-conforming points encountered in the neighborhood or the

�rst sample-path Na-LWEP encountered, respectively, rather than all such points.

These modi�cations do not a�ect the convergence properties of the algorithm.

We now discuss the default sample size sequences and relaxation parameters. By

default, we set the monotone-increasing sample size sequence as mν = d2× 1.1νe for
all ν ≥ 1. This sequence satis�es the requirements of Lemma 2 and Theorem 3 in

55

�3.8. To ensure every search terminates in �nite time, but that for large enough ν,

the sample size limit bν will not be reached, we set the sequence bν = d8×1.2νe for all
ν ≥ 1. Notice that each search we conduct inside Pε and RLE gets a fresh limiting

sample size.

We control the placement of the ε values in Pε and the completeness of the ALES

returned by RLE using the parameters βε and βδ. Since our algorithm converges

for a wide variety of βε and βδ values, there is signi�cant �exibility in setting these

parameters. By default, we set βε = βδ = 0.5 in all of our algorithms. Thus we

search for new sample-path N1-LEP's that are more than one standard error away

from the ones we have in every objective. We numerically explore the e�ect of these

parameters on our algorithm performance in �3.10.

3.10 Numerical Experiments

First, we conduct numerical experiments that compare our main algorithm, R-

PεRLE, to the benchmark algorithm R-MinRLE and the current state-of-the-art,

MO-COMPASS. Then, we explore the performance of R-PεRLE across a variety of

β = (βε, βδ) values.

3.10.1 Algorithm Performance with Default Parameter Values

We compare the performances of R-PεRLE, R-MinRLE, and MO-COMPASS on

three increasingly complicated test problems. We con�gure our numerical experiments

as follows. In each independent run of an algorithm, we use an initial point x0 that

is generated uniformly from the feasible set X , which is �nite in our test problems.

Within an algorithm run, we use CRN across points visited. R-PεRLE and R-

MinRLE use the default parameter values described in the previous section. We

con�gure MO-COMPASS, including the simulation allocation rule (SAR), as close as

possible to the settings used in (Li et al., 2015b, p. 10). In the quantile plots that

56

follow, the algorithm performance at each value of the total simulation budget t is

dependent on its previous performance.

Test Problem A

Our �rst test problem is a modi�ed version of a problem that appears in Kim and

Ryu (2011a). We de�ne Problem TA as

Problem TA: minimizex∈X

g1(x) = E[(x1/10− 2ξ1)2 + (x2/10− ξ2)2]

g2(x) = E[x2
1/100 + (x2/10− 2ξ3)2]

where X = X̃A1 × X̃A2 and X̃A1 = X̃A2 = {0, 1, 2, . . . , 50}, |X | = 2601, and ξi are

independent chi-squared random variables with one degree of freedom so that E [ξi] =

1 and V(ξi) = 2 for all i ∈ {1, 2, 3}. Thus the random objective values returned by

the simulation oracle are independent for all x ∈ X . A picture of Problem TA appears

in Figure 3.3.

0 10 20 30 40 50
x1

0

10

20

30

40

50

x
2

Feasible points
GES members

0 8 16 25
g1

0

11

22

34

g 2

Figure 3.3. Problem TA: Black circles represent points in the only
N1-LES which is also the GES (left) and their image (right).

Problem TA satis�es Assumptions 1�6; it has one N1-LES which equals the GES.

Therefore for this problem, by Theorem 1 Part (d), our algorithms converge to the

GES as the total simulation work done, denoted by t, goes to in�nity. Let Â(t) denote

the set returned by an algorithm after expending a total of t simulation replications.

57

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
Total simulation effort, t x 106

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

d
H

(g
(Â

(t
))
,g

(E
))

MO-COMPASS
R-MinRLE
R-PεRLE

Figure 3.4. Problem TA: Sample quantiles (0.25, 0.50, 0.75) of the
coverage error across 1,000 independent runs.

We measure the solution quality returned by each algorithm using sample quantiles

of the coverage error. The coverage error is de�ned by (Hunter et al., 2019) as

the Hausdor� distance between the image of the set returned by the algorithm and

the image of the true e�cient set as a function of t, dH(g(Â(t)),g(E)). Figure 3.4

shows the sample quantiles of the coverage error for 1,000 independent runs each of

R-PεRLE, R-MinRLE, and MO-COMPASS on Problem TA.

Figure 3.4 shows that R-PεRLE and R-MinRLE out-perform MO-COMPASS

on Problem TA. The performances of R-PεRLE and R-MinRLE are similar, with

R-PεRLE performing slightly better for lower simulation budgets t.

58

0 20 40 60 80 100
x1

0

20

40

60

80

100

x
2

Feasible points
N1-LES members
GES members

0 1 2 4
g1

0

1

2

4

g 2

Figure 3.5. Problem TB: The black circles and gray stars represent
points in the GES and theN1-LES, respectively (left) and their images
(right).

Test Problem B

Our second test problem is a modi�ed version of a test problem that appears in

Ryu and Kim (2014). We de�ne Problem TB as

Problem TB: minimizex∈X

g1(x) = E [ξ1h1(x1)]

g2(x) = E [ξ1ξ2f(x2)h2(h1(x1), f(x2))]

where X = X̃B1 × X̃B2 and X̃B1 = X̃B2 = {0, 1, . . . , 100}, |X | = 10, 201, h1(x1) =

4x1/100, and h2(h1, f) and f(x2) are de�ned as

h2(h1, f) =

1− (h1/f)α if h1 ≤ f,

0 otherwise;

f(x2) =

4− 3 exp
{
−
(
x2−20

2

)2
}

if 0 ≤ x2 ≤ 40,

4− 2 exp
{
−
(
x2−70

20

)2
}

if 40 < x2 ≤ 100;

and α = 0.25+3.75(f(x2)−1). As in the previous test problem, ξ1 and ξ2 are indepen-

dent chi-squared random variables with one degree of freedom. Unlike in Problem TA,

Problem TB has dependence between the random objective function values returned

by the simulation oracle. A picture of Problem TB appears in Figure 3.5.

59

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
Total simulation effort, t x 106

0.0

0.5

1.0

1.5

2.0

2.5

m
in
L 1
∈L

1
d
H

(g
(Â

(t
))
,g

(L
1)

) MO-COMPASS
R-MinRLE
R-PεRLE

Figure 3.6. Problem TB: Sample quantiles (0.25, 0.50, 0.75) of the
local coverage error across 1,000 independent runs.

Problem TB has twoN1-LWES's, one of which is the GWES. Since Problem TB has

GWEP's that are not also GEP's, it satis�es only Assumptions 1�4. By Theorem 1

Parts (a) and (b), our algorithms converge into an N1-LWES almost surely, and

contain an N1-LES almost surely. Nevertheless, for this problem, we use the local

coverage error as our solution quality metric (Hunter et al., 2019). In our context,

the local coverage error is the Hausdor� distance from the set g(Â(t)) to the nearest

N1-LPS as a function of the total simulation work done, minL1∈L1 dH(g(Â(t)),g(L1)).

This metric penalizes all algorithms for returning the points that are GWES members

but not GES members, which may not be distinguishable with �nite sample size.

Figure 3.6 shows the sample quantiles of the local coverage error for 1,000 independent

runs each of R-PεRLE, R-MinRLE, and MO-COMPASS on Problem TB.

Figure 3.6 shows thatR-PεRLE out-performs bothR-MinRLE and MO-COMPASS

on Problem TB. R-MinRLE eventually out-performs MO-COMPASS, but initially

su�ers from high variance in its performance. We believe this behavior occurs because

R-MinRLE crawls from the �outside in,� and the guaranteed sample path N1-local

minimizers on each objective may be members of the GWES and not the GES. Also,

60

R-MinRLE may not retrieve the �middle� of the N1-LPS until the sample sizes be-

come large enough that the completeness function values are small enough for RLE to

crawl there. Thus R-PεRLE's ability to retrieve the middle of the N1-LPS is likely

a crucial aspect of its speedy convergence in Problem TB.

Test Problem C

Our last test problem, Problem TC , is also a modi�ed version of a test problem

that appears in Ryu and Kim (2014). We de�ne Problem TC as

Problem TC : minimizex∈X

g1(x) = E

[∑2
i=1−10ξiexp

{
−0.2

√
x2
i + x2

i+1

}]

g2(x) = E
[∑3

i=1 ξi(|xi|0.8 + 5 sin3(xi))
]

where X = X̃C1×X̃C2×X̃C3, X̃Ci = {−5,−4.5,−4.0,−3.5, . . . , 5} for all i ∈ {1, 2, 3},
|X | = 9, 261, and ξ1, ξ2, and ξ3 are independent chi-squared random variables with

one degree of freedom so that E [ξi] = 1 and V(ξi) = 2 for all i ∈ {1, 2, 3}. Like

Problem TB, Problem TC has dependence between the random objective function

values returned by the simulation oracle. Problem TC appears in Figure 3.7. We map

Problem TC to an integer lattice so that the N1-neighborhood corresponds to points

within distance 0.5 in the original feasible space.

Problem TC has multiple feasible points that map to the same objective vector

value. Therefore Problem TC only satis�es Assumptions 1�3. By Theorem 1 Part (a),

our algorithm returns a solution that converges into an N1-LWES w.p.1., with no

guarantees on completeness. Nevertheless, we use the local weakly coverage error as

our solution quality metric, which we de�ne as minW1∈W1 dH(g(Â(t)),g(W1)). Since

all N1-LES's are also N1-LWES's, this metric is less stringent than local coverage

error. Algorithm performances based on the local weakly coverage error, calculated

across a collection of 516 unique N1-LWES's, appear in Figure 3.8.

Figure 3.8 shows that bothR-PεRLE andR-MinRLE out-performMO-COMPASS

on Problem TC . In many of the N1-LWES's, the N1-LWES members are not neigh-

bors. Thus the N1-LWES members may be far away from each other in the feasible

61

x1

−5
0

5

x 2

−5

0

5
x

3
−5

0

5

Feasible points
N1-LWES members

GWES members

−20 −15 −10 −5g1

−11

0

12

24

g 2

Figure 3.7. Problem TC : Black circles and gray stars represent points
in the GWES and the N1-LWES members, respectively (left) and
their images (right).

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
Total simulation effort, t x 106

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

m
in
W

1
∈W

1
d
H

(g
(Â

(t
))
,g

(W
1)

) MO-COMPASS
R-MinRLE
R-PεRLE

Figure 3.8. Problem TC : Sample quantiles (0.25, 0.50, 0.75) of the
local weakly coverage error across 1,000 independent runs.

space, and often are isolated, as seen in Figure 3.7. We believe the relative e�ciency

of R-PεRLE and R-MinRLE occurs because RLE crawls to �nd a sample-path N1-

LWEP that completes the sample-path N1-LWES, even if the required sample-path

N1-LWEP is far away in the feasible space. MO-COMPASS operates by updating a

region of the feasible space called the most promising region. We suspect that the

62

isolated, scattered nature of the N1-LWES members results in a low probability that

these far-away N1-LWEP's are contained in the most promising region.

To calculate the collection of all possible N1-LWES's in Problem TC , we �rst

locate all N1-LWEP's; we �nd 512. Then, starting from each N1-LWEP, we run a

program similar to RLE with no relaxation to �nd the smallest complete N1-LWES

that contains the N1-LWEP. We refer to these N1-LWES's as level-1 N1-LWES's ;

after removing duplicate sets, we �nd 39. Then, we take all possible unions of two

level-1 N1-LWES's, remove any dominated points, and check if this set is a new,

unique N1-LWES. We refer to all new, unique N1-LWES's that are found by taking

the union of two level-1 N1-LWES's as level-2 N1-LWES's. We repeat this process

for level-3 and so on, up to level-8. We found one level-7 N1-LWES and no level-8

N1-LWES's. The total number of unique N1-LWES's found in this manner, up to

level-8, was 516. All together, these 516 N1-LWES's contain just 73 points; we call

these points N1-LWES members in Figure 3.7. Recall that there are 512 N1-LWEP's,

so not all N1-LWEP's are members of an N1-LWES.

3.10.2 R-PεRLE Performance Across a Range of β Values

We explore R-PεRLE's performance on our test problems across a variety of

β = (βε, βδ) parameter values. Recall that for Pε, smaller βε values result in solving

fewer sample-path ε-constraint problems, and larger βε values correspond to solving

more sample-path ε-constraint problems. For the RLE algorithm, smaller βδ implies

less crawling and a less-complete ALES, and larger βδ corresponds to more crawling

and a more-complete ALES. Across 1,000 independent runs of R-Pε or R-PεRLE

on Problems TA, TB, and TC , Figures 3.9, 3.10, and 3.11 show the sample quantiles

of the respective coverage errors at the total simulation budget of t = 0.4 × 106

(corresponding to the �rst t-axis tick mark in Figures 3.4, 3.6, and 3.8) across a

variety of parameter settings. Each independent run uses CRN across the β values.

63

0.1 0.5 1 1.5βε
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

d
H

(g
(Â

(t
))
,g

(E
))

R-Pε

0.1 0.5 1 1.5βε
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

d
H

(g
(Â

(t
))
,g

(E
))

R-PεRLE, βδ = 0.5

0.1 0.5 1 1.5βδ
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

d
H

(g
(Â

(t
))
,g

(E
))

R-PεRLE, βε = 0.5

Figure 3.9. Problem TA: Sample quantiles (0.25, 0.50, 0.75) of the
coverage error at t = 0.4×106 across 1,000 independent runs of R-Pε
(left), R-PεRLE, βδ = 0.5 (center), R-PεRLE, βε = 0.5 (right).

At total simulation budget t = 0.4×106 on Problem TA, there seems to be a �sweet

spot� for setting βε in the interval (0.2, 0.4), as seen in the left and center panels of

Figure 3.9. Relative to our sampling error, βε < 0.2 causes the algorithm to �nd too

few sample-path N1-LWEP's, while βε > 0.4 cause the algorithm to �nd too many.

Given that βε = 0.5, the R-PεRLE performance in the right panel of Figure 3.9 is

fairly robust to di�erent values of βδ. Notice that with βε = 0.5, for small values of

βδ, R-Pε and R-PεRLE return similar sets.

On Problem TB, however, solving more ε-constraint problems and crawling more

in RLE seems to improve algorithm performance. We suspect that in this problem,

correlation between the objectives and using CRN implies each sample-path problem

0.1 0.5 1 1.5βε
0

0.5

1.0

1.5

2.0

2.5

m
in
L 1
∈L

1
d
H

(g
(Â

(t
))
,g

(L
1)

)

R-Pε

0.1 0.5 1 1.5βε
0

0.5

1.0

1.5

2.0

2.5

m
in
L 1
∈L

1
d
H

(g
(Â

(t
))
,g

(L
1)

)

R-PεRLE, βδ = 0.5

0.1 0.5 1 1.5βδ
0

0.5

1.0

1.5

2.0

2.5

m
in
L 1
∈L

1
d
H

(g
(Â

(t
))
,g

(L
1)

)

R-PεRLE, βε = 0.5

Figure 3.10. Problem TB: Sample quantiles (0.25, 0.50, 0.75) of the
local coverage error at t = 0.4 × 106 across 1,000 independent runs
of R-Pε (left), R-PεRLE, βδ = 0.5 (center), R-PεRLE, βε = 0.5
(right).

64

0.1 0.5 1 1.5βε
0

0.5

1.0

1.5

2.0

2.5

m
in
W

1
∈W

1
d
H

(g
(Â

(t
))
,g

(W
1)

)

R-Pε

0.1 0.5 1 1.5βε
0

0.5

1.0

1.5

2.0

2.5

m
in
W

1
∈W

1
d
H

(g
(Â

(t
))
,g

(W
1)

)

R-PεRLE, βδ = 0.5

0.1 0.5 1 1.5βδ
0

0.5

1.0

1.5

2.0

2.5

m
in
W

1
∈W

1
d
H

(g
(Â

(t
))
,g

(W
1)

)

R-PεRLE, βε = 0.5

Figure 3.11. Problem TC : Sample quantiles (0.25, 0.50, 0.75) of the
local weakly coverage error at t = 0.4× 106 across 1,000 independent
runs of R-Pε (left), R-PεRLE, βδ = 0.5 (center), R-PεRLE, βε = 0.5
(right).

is similar to the true problem. In this scenario, the ordering of the points in the

sample-path problem is similar to the ordering of the points in the true problem with

high probability, except among the GWEP's. Thus �nding more N1-LWEP's in Pε

and crawling more in RLE is usually better.

Problem TC is a di�cult problem for which R-Pε is not guaranteed to converge. In

the left panel of Figure 3.11, like in the left panel of Figure 3.9, R-Pε exhibits u-shaped

behavior as a function of βε. However, the center and right panels of Figure 3.11

tell an interesting story for R-PεRLE. It seems that in Problem TC , it is best to

solve few ε-constraint problems (smaller βε) and let RLE do the work of �nding the

disconnected N1-LWES members, with the sweet spot for βδ shown in the right panel

of Figure 3.11. Interestingly, that more e�ort should be expended in RLE and less

e�ort in Pε explains the good performance of R-MinRLE in Figure 3.8. Finally,

we remark that across all the problems, without prior knowledge of the problem

structure, our default βε and βδ values seem reasonable.

65

4. PYMOSO: SOFTWARE FOR MULTI-OBJECTIVE

SIMULATION OPTIMIZATION WITH R-PεRLE AND

R-MINRLE

:

We present the PyMOSO software package, written in Python, for using, imple-

menting, and testing multi-objective simulation optimization (MOSO) algorithms.

PyMOSO currently implements a state-of-the-art algorithm, R-PεRLE, for solving

MOSO problems on integer lattices with two objectives, and a competitive bench-

mark algorithm, R-MinRLE, for solving MOSO problems on integer lattices with

many objectives. Since R-PεRLE and R-MinRLE are both pseudo-gradient-based

algorithms that rely on the single-objective SPLINE solver by Wang et al. (2013), for

convenience, we also include an implementation of R-SPLINE (Wang et al., 2013) for

solving single-objective simulation optimization problems on integer lattices.

By the nature of the algorithms currently included in PyMOSO, our focus is on

MOSO problems in which the feasible set is a subset of an integer lattice. Recall

that MOSO problems on integer lattices arise in many application domains includ-

ing aviation, healthcare, transportation, and manufacturing (Hunter et al., 2019).

For example, in aviation, Li et al. (2015c) solve a bi-objective aircraft spare parts

management problem, and Lee et al. (2008) solve a tri-objective inventory control

problem for a network of airports. In healthcare, Chen and Wang (2016) solve a

bi-objective capacity allocation problem for a hospital's emergency department. In

transportation, Zhou et al. (2018) solve a bi-objective problem to reduce congestion

in a lighterage terminal. Finally, in manufacturing, Andersson et al. (2007) solve

a bi-objective problem to increase the throughput and maintain safety stocks for a

camshaft production line. In these applications, the feasible space is an integer lattice,

66

the objective functions can only be observed with stochastic error though a Monte

Carlo simulation, and the goal is to retrieve the entire e�cient set as input to the

multi-criteria decision-making process.

Though MOSO problems arise in many application areas, few software packages

exist to solve Problem Md for d ≥ 2 objectives. The software packages that do exist,

such as OptQuest (OptTek Systems, Inc., 2018; Thengvall et al., 2016) and PaG-

MO/PyGMO (Biscani and Izzo, 2018), tend to implement metaheuristics to solve

MOSO problems, which do not provide performance guarantees (Hong et al., 2015).

We are not aware of any available MOSO software that provides the sampling e�-

ciency and convergence guarantees of R-PεRLE and R-MinRLE, moreover, no soft-

ware implementing these two algorithms currently exists. Finally, we remark here that

an implementation of an as-yet-unpublished algorithm, Multi-objective Partitioned

Random Search, is available in a source code repository (Weizhi, 2017).

As in Schmeiser (2008), we adopt the terms `practitioners' and `researchers' to

describe those who seek a solution to Problem Md to aid in decision-making, and

those who intend to create and compare MOSO algorithms, respectively. We discuss

our contributions to each group.

4.1 Contributions

PyMOSO provides practitioners with o�-the-shelf access to the state-of-the-art,

provably convergent, bi-objective solver R-PεRLE, and to the competitive, prov-

ably convergent, multi-objective solver R-MinRLE. PyMOSO can accommodate any

Monte Carlo simulation oracle that can be called from Python, including oracles im-

plemented as C, C#, or Java programs. The popular commercial simulation packages

AutoMod (Applied Materials, Inc., 2018), Simio (Simio LLC, 2018), and AnyLogic

(The AnyLogic Company, 2018) can be interfaced with Python, and thus with Py-

MOSO, through C, C#, and Java programs, respectively. Further, after the oracle

has been implemented, PyMOSO can obtain simulation replications in parallel, which

67

may reduce runtime. Finally, PyMOSO provides o�-the-shelf access to R-SPLINE in

the same software framework.

For researchers who intend to create and compare MOSO algorithms, PyMOSO

o�ers two primary bene�ts, as follows.

1. Researchers designing new algorithms to solve MOSO problems on integer lat-

tices should compare their algorithms with R-PεRLE and R-MinRLE on a

variety of test problems. PyMOSO enables researchers to compare algorithms

by providing an interface for implementing test problems and calculating user-

de�ned metrics. Then, researchers may use PyMOSO to run many independent

sample paths of the algorithms in parallel. PyMOSO provides pseudo-random

numbers using mrg32k3a (L'Ecuyer, 1999) and random number stream man-

agement consistent with L'Ecuyer et al. (2002).

2. PyMOSO provides a framework that enables researchers to create and imple-

ment new algorithms. Although any new MOSO algorithm can be implemented

in PyMOSO, it is especially easy to implement algorithms that rely on a version

of sample average approximation called retrospective approximation (RA); see,

e.g., Pasupathy and Ghosh (2013) for an explanation. In particular, researchers

can create new RA algorithms for MOSO by writing �accelerator� functions that

provide starting points to the naïve search algorithm Relaxed Local Enumera-

tion (RLE) in each RA iteration, as we describe in �4.3.3. Under appropriate

regularity conditions, Cooper et al. (2018) prove that such algorithms converge

to a local e�cient set as the sample size increases.

In what follows, we provide introductions to the current version of PyMOSO

for practitioners in �4.2 and for researchers in �4.3. Since all information provided

for practitioners is relevant to researchers, we encourage researchers to read both sec-

tions. In addition to the online supplement, PyMOSO installation instructions, source

code, and the user manual can be found at https://github.com/HunterResearch/

PyMOSO.

68

4.2 Practitioners: Using PyMOSO to Solve a Problem

In this section, we discuss using PyMOSO in the practitioner context. Practition-

ers use PyMOSO in two steps: �rst, implement the simulation oracle in PyMOSO,

which we discuss in �4.2.1, and second, use PyMOSO to solve the problem, which we

discuss in �4.2.2.

4.2.1 Structuring an Oracle for Use in PyMOSO

To structure an oracle for use in PyMOSO, a practitioner should modify the

Python source code template provided in Figure 4.1. Figure 4.1 implements an oracle

named MyProblem in a Python �le named myproblem.py. PyMOSO requires that

the problem name matches the �le name, although the capitalization does not need

to match.

A practitioner implements a MOSO problem by �rst modifying the number of

objectives and the dimension of the feasible points in Lines 8 and 9 of Figure 4.1, re-

1 # import the Oracle base c l a s s

2 from pymoso . chnbase import Oracle

3

4 class MyProblem(Oracle) :

5 ' ' ' Example implementation o f a user−de f ined MOSO problem . ' ' '

6 def __init__(s e l f , rng) :

7 ' ' ' Spec i f y the number o f o b j e c t i v e s and d imens iona l i t y o f po in t s . ' ' '

8 s e l f . num_obj = 2

9 s e l f . dim = 1

10 super () . __init__(rng)

11

12 def g (s e l f , x , rng) :

13 ' ' ' Check f e a s i b i l i t y and s imu la te o b j e c t i v e va lue s . ' ' '

14 #ob j e c t i v e_va lue s = (obj1 , ob j2) , i s_ f e a s i b l e = True

15 return i s_ f e a s i b l e , ob j e c t i ve_va lue s

Figure 4.1. The Python �le myproblem.py is a template PyMOSO
oracle. As shown, g(self, x, rng) is incomplete.

69

spectively. Setting the correct values for the practitioner's ProblemMd, and changing

nothing else, is su�cient to correctly implement the __init__(self, rng) method.

Then, the practitioner should replace the comment in Line 14 of Figure 4.1 with valid

Python code that, given a Python tuple x representing a point x ∈ Rq, generates the

following to return in Line 15: (a) a boolean indicator denoting whether x is feasible,

and (b) a Python tuple, containing one observation of every objective function at x

if x is feasible, and a Python tuple containing None for every objective if x is not

feasible. In our notation, one observation of every objective function at x is repre-

sented by (G1(x, ξ), . . . , Gd(x, ξ)); alternatively, the practitioner may think of this

quantity as one observation of Ḡn(x) where n = 1. The function g(self, x, rng)

may contain any number of lines and may be a wrapper for an external simulation

oracle. Returning the feasibility indicator followed by a Python tuple of the objective

values is su�cient to correctly implement the g(self, x, rng) method.

Optionally, a practitioner may use the PyMOSO object rng to generate pseudo-

random numbers with mrg32k3a, or may use the mrg32k3a seed from rng as the

seed in an external mrg32k3a generator. If MyProblem implements either approach,

PyMOSO ensures that simulation replications obtained in parallel are independent

by exploiting the stream and substream capabilities of mrg32k3a (L'Ecuyer et al.,

2002). Further, the implemented PyMOSO oracle is compatible with PyMOSO's

common random number (CRN) framework. Practitioners who ignore rng should take

care when using PyMOSO's parallel computing and CRN capabilities. To determine

when using CRN is appropriate, we refer the reader to Law (2015). More detailed

information about rng is available in the PyMOSO user manual.

We now list the basic requirements of every g implementation.

1. The function g must be an instance method of an Oracle sub-class, and thus

take self as its �rst parameter.

70

2. The function g must take an arbitrarily-named second parameter which is a

tuple of length self.dim and represents a point. Stylistically, PyMOSO con-

sistently names this parameter x.

3. The function g must take an arbitrarily-named third parameter which is a mod-

i�ed Python random.Random object. Stylistically, PyMOSO consistently names

this parameter rng.

4. The function g must return a boolean �rst and a tuple of length self.num_obj

second.

• The boolean is True if x is feasible, and False otherwise.

• If x is feasible, the tuple contains a single observation of every objective.

If x is not feasible, each element in the tuple is None.

If users already have an implemented simulation oracle, they may �nd it convenient

to implement g as wrapper which calls that simulation from Python. As an example,

suppose a user has implemented a simulation in C which is compiled to a C library

called mysim.so and placed in the working directory. Suppose further that the simu-

lation function takes the following as parameters: an array of integers representing a

point x ∈ R and an unsigned integer representing the number of observations to take

at x. The function output is de�ned as struct Simout with members feas set to 0 or

1, obj a double array set to the mean of the observed objective values, and var a dou-

ble array set to the sample variance of the observed objective values. Then users can

modify the template to wrap the C function struct Simout c_func(int x, int n)

as in Figure 4.2.

Figure 4.2 is a valid PyMOSO oracle which wraps a C function. However, Py-

MOSO algorithms cannot enable common random numbers on this oracle. Further-

more, PyMOSO cannot guarantee that observations are independent when taken in

parallel. To enable these properties, the external simulation must use mrg32k3a as

the generator and must accept a user-speci�ed seed.

71

Suppose the library mysim.so also implements the function set_simseed which

accepts a long array representing an mrg32k3a seed. We modify the wrapper in

Figure 4.3 for compatibility with common random numbers and to guarantee inde-

pendence of parallel observations. Figure 4.3 demonstrates using rng.get_seed() to

return the current mrg32k3a seed.

Alternatively, if the number of required pseudo-random numbers is known, users

can use rng.random() to generate pseudo-random numbers and then pass them to

an external simulation if such functionality is supported.

The rng object is implemented as a sub-class of Python's random.Random class,

thus the o�cial Python documentation for random applies to rng and is found at

https://docs.python.org/3/library/random.html. In addition to rng using

mrg32k3a as its generator, we also implement rng.normalvariate such that it uses

the Beasley-Springer-Moro algorithm (Law 2015, p. 458) to approximate the inverse

of the standard normal cumulative distribution function.

When using rng, to ensure independent sampling of observations, PyMOSO �jumps�

forward in the pseudo-random number stream after obtaining every simulation repli-

cation. Each jump is of �xed size 276 pseudo-random numbers. Thus, we require that

every simulation replication use fewer than 276 pseudo-random numbers. We ensure

independence among parallel replications by �giving� each processor a stream (an

rng), each of which is 2127 pseudo-random numbers apart. When using the current

PyMOSO algorithms that rely on RA, each RA iteration begins the next available

independent stream 2127, where PyMOSO accounts for the possibility of parallel com-

putation within an RA iteration. Thus, in a given RA iteration, a user may simulate

100 million points at a sample size of 1 million, without common random numbers,

and easily not reach the limit.

In the remainder of the paper, we assume the practitioner has implemented a

PyMOSO oracle called MyProblem. So the reader can run our examples, we provide

a simple example of MyProblem in Figure 4.4, where Problem M2 is g1(x) = x2 + z0

and g2(x) = (x − 2)2 + z1, x ∈ {−100,−99, ..., 100}, and z0, z1 are standard normal

72

random variables. The solution is {0, 1, 2}. We remark here that Figure 4.4 contains

an example of using rng.

1 from ctypes import CDLL, c_double , c_uint , c_int , S t ruc ture

2 import os . path

3 libname = 'mysim . so '

4 l ibabspath = os . path . dirname (os . path . abspath (__file__)) + os . path . sep + dll_name

5 l i b o b j = CDLL(l ibabspath)

6

7 class Simout (St ruc ture) :

8 _f ie lds_ = [(" f e a s " , c_int) , (" obj " , c_double ∗2) , (" var " , c_double ∗2)]

9 csimout = l i b o b j . c_func

10 csimout . r e s type = Simout

11

12 from pymoso . chnbase import Oracle

13

14 class MyProblem(Oracle) :

15 ' ' ' Example implementation o f a user−de f ined MOSO problem . ' ' '

16 def __init__(s e l f , rng) :

17 ' ' ' Spec i f y the number o f o b j e c t i v e s and d imens iona l i t y o f po in t s . ' ' '

18 s e l f . num_obj = 2

19 s e l f . dim = 1

20 super () . __init__(rng)

21

22 def g (s e l f , x , rng) :

23 ' ' ' Check f e a s i b i l i t y and s imu la te o b j e c t i v e va lue s . ' ' '

24 i s_ f e a s i b l e = True

25 ob j ec t i ve_va lue s = (None , None)

26 # g take s only one obse rva t i on so s e t the c_func parameter to 1

27 c_n = c_uint (1)

28 # c_func r e qu i r e s i s an in t e g e r so conver t i t −− t h i s i s a 1D example

29 c_x = c_int (x [0])

30 # c a l l the C func t ion

31 mysimout = csimout (c_x , c_n)

32 i f not mysimout . f e a s :

33 i s_ f e a s i b l e = False

34 else :

35 i s_ f e a s i b l e = True

36 i f i s_ f e a s i b l e :

37 ob j e c t ive_va lue s = tuple (mysimout . obj)

38 return i s_ f e a s i b l e , ob j e c t i ve_va lue s

Figure 4.2. The g function wraps an external simulation written in C.

73

1 from ctypes import CDLL, c_double , c_uint , c_int , Structure , c_long

2 import os . path

3 libname = 'mysim . so '

4 l ibabspath = os . path . dirname (os . path . abspath (__file__)) + os . path . sep + dll_name

5 l i b o b j = CDLL(l ibabspath)

6

7 class Simout (St ruc ture) :

8 _f ie lds_ = [(" f e a s " , c_int) , (" obj " , c_double ∗2) , (" var " , c_double ∗2)]

9 csimout = l i b o b j . c_func

10 c s e t s e ed = l i b o b j . set_simseed

11 csimout . r e s type = Simout

12

13 from pymoso . chnbase import Oracle

14

15 class MyProblem(Oracle) :

16 ' ' ' Example implementation o f a user−de f ined MOSO problem . ' ' '

17 def __init__(s e l f , rng) :

18 ' ' ' Spec i f y the number o f o b j e c t i v e s and d imens iona l i t y o f po in t s . ' ' '

19 s e l f . num_obj = 2

20 s e l f . dim = 1

21 super () . __init__(rng)

22

23 def g (s e l f , x , rng) :

24 ' ' ' Check f e a s i b i l i t y and s imu la te o b j e c t i v e va lue s . ' ' '

25 i s_ f e a s i b l e = True

26 ob j ec t i ve_va lue s = (None , None)

27 # ge t the PyMOSO seed from rng

28 seed = rng . get_seed ()

29 # conver t the seed to c_long array

30 c_longarr = c_long∗6

31 c_seed = c_longarr (seed [0] , seed [1] , seed [2] , seed [3] , seed [4] , seed [5])

32 # use the l i b r a r y func t i on to s e t the sim seed

33 c s e t s e ed (c_seed)

34 # g take s only one obse rva t i on so s e t the c_func parameter to 1

35 c_n = c_uint (1)

36 # c_func r e qu i r e s i s an in t e g e r so conver t i t −− t h i s i s a 1D example

37 c_x = c_int (x [0])

38 # c a l l the C func t ion

39 mysimout = csimout (c_x , c_n)

40 i f not mysimout . f e a s :

41 i s_ f e a s i b l e = False

42 else :

43 i s_ f e a s i b l e = True

44 i f i s_ f e a s i b l e :

45 ob j e c t ive_va lue s = tuple (mysimout . obj)

46 return i s_ f e a s i b l e , ob j e c t i ve_va lue s

Figure 4.3. The g function wraps an external simulation written in
C, and maintains compatibility with common random numbers and
taking simulation replications in parallel.

74

1 def g (s e l f , x , rng) :

2 ' ' ' Check f e a s i b i l i t y and s imu la te o b j e c t i v e va lue s f o r MyProblem . ' ' '

3 feas_range = range(−100 , 101)

4 obj = []

5 i s_ f ea s = False

6 # check t ha t dimensions o f x match s e l f . dim

7 i f len (x) == s e l f . dim :

8 i s_ f ea s = True

9 for i in x :

10 i f not i in feas_range :

11 i s_ f ea s = False

12 i f i s_ f ea s :

13 z_vec = [rng . normalvar iate (0 , 1) for i in [0 , 1]]

14 obj1 = x [0]∗∗2 + z_vec [0]

15 obj2 = (x [0] − 2)∗∗2 + z_vec [1]

16 return i s_feas , (obj1 , obj2)

Figure 4.4. This �gure provides an example g function, which we use in MyProblem.

75

4.2.2 Solving a MOSO Problem in PyMOSO

Having implemented a PyMOSO oracle called MyProblem in �4.2.1, we now discuss

using PyMOSO to solve MyProblem. Practitioners may use PyMOSO in two modes:

as a stand-alone solver invoked from the command line, or as a subroutine in a Python

program. The former creates a �le containing the output of one run of the selected

algorithm, which is an estimated LES. The latter returns the estimated LES as a

Python set. In either case, PyMOSO requires the practitioner to specify, using a

method we describe, at least the following information: the problem, the algorithm,

and an initial feasible point. The method is slightly di�erent depending on the chosen

mode. In this section, we only consider the command line mode to solve MyProblem.

See the user manual for the subroutine mode.

The simplest viable command to solve a problem in command line mode follows the

structure program command problem solver x0, where x0 denotes the initial feasi-

ble point. The solve command takes options, including the total simulation budget

and the number of parallel processors. Practitioners may view the full set of avail-

able options by entering pymoso --help and the full list of PyMOSO solver names

by entering pymoso listitems. As an example, the command to solve MyProblem

using R-PεRLE, starting from the feasible point 97, with a total simulation budget

of 10,000 and 4 processors, is below.

pymoso solve --budget=10000 --simpar=4 myproblem.py RPERLE 97

This invocation requires that myproblem.py is in the working directory. Since the

feasible points of MyProblem are one-dimensional, x0 is one number. For feasible

points in higher dimensions, separate each component with a space, e.g., a three-

dimensional point (97, 23, 18) is written as 97 23 18. After issuing the above com-

mand, PyMOSO creates a new subdirectory named testrun in the working directory.

This subdirectory typically contains two �les: one �le containing the metadata and

one �le containing the estimated LES. If PyMOSO detects an error, it may also write

an error �le.

76

Similarly, PyMOSO can solve built-in problems, such as ProbTPA which has two-

dimensional feasible points.

pymoso solve ProbTPA RPERLE 40 40

Henceforth, we present solve examples only for solving MyProblem. Since MyProblem

is bi-objective, we recommend using the R-PεRLE solver. However, for two or more

objectives, PyMOSO implements R-MinRLE.

pymoso solve myproblem.py RMINRLE 97

For a single objective problem, PyMOSO has R-SPLINE. We remark that if given a

multi-objective problem, R-SPLINE will simply minimize the �rst objective. We do

not necessarily prohibit such use, but urge that users take care when using R-SPLINE

to minimize one objective of a many-objective problem.

pymoso solve myproblem.py RSPLNE 97

Regardless of the chosen solver, PyMOSO creates a new sub-directory of the

working directory containing output. There will be a metadata �le, indicating the

date, time, solver, problem, and any other speci�ed options. In addition, PyMOSO

creates a �le containing the solver-generated solution. PyMOSO provides additional

options for users solving MOSO problems. We present examples of each option below.

First, users can specify the name of the output directory.

pymoso solve --odir=OutDirectory myproblem.py RPERLE 45

Users can specify the simulation budget, which is currently set to a default of 200.

pymoso solve --budget=100000 myproblem.py RPERLE 12

Users may specify to take simulation replications in parallel. We only recommend

doing so if the user has thought through appropriate pseudo-random number stream

control issues (see �4.2.1). Furthermore, due to the overhead of parallelization, we

only recommend using the parallel simulation replications feature if observations are

su�ciently �expensive� to compute, e.g. the simulation takes a half second or more to

generate a single observation. We remark that the run-time complexity of the simu-

lation oracle may not perfectly indicate when it is appropriate to use parallelization;

other factors include, e.g., the total simulation budget.

77

pymoso solve --simpar=4 myproblem.py RPERLE 44

Currently, all PyMOSO solvers support using common random numbers. Users may

enable the functionality using the crn option.

pymoso solve --crn myproblem.py RMINRLE 62

We do not recommend this option unless the oracle is implemented to be compatible,

that is, the oracle uses PyMOSO's pseudo-random number generator to generate

pseudo-random numbers or to provide a seed to an external mrg32k3a generator (see

�4.2.1).

Users may specify an initial seed to PyMOSO's mrg32k3a pseudo-random number

generator. Seeds must be 6 positive integers with spaces. The default is 12345 for

each of the 6 components.

pymoso solve --seed 11 22 33 44 55 66 myproblem.py RPERLE 23

Users may specify algorithm-speci�c parameters (see the papers in which the algo-

rithms were introduced for detailed explanations of the parameters.) All parameters

are speci�ed in the form --param name value. For example, the RLE relaxation

parameter can be speci�ed and set as betadel to a real number. We refer the reader

to Table 4.1 for the full list of currently available algorithm-speci�c parameters.

pymoso solve --param betadel 0.2 myproblem.py RPERLE 34

Finally, users may specify any number of options in one invocation. However, all

options must be speci�ed in after the solve command and before the myproblem.py

argument. Furthermore, any --param options must be last. (Note that the \ at the

end of the �rst line continues the command to the second line.)

pymoso solve --crn --simpar=4 --budget=10000 --seed 1 2 3 4 5 6 \

--odir=Exp1 --param mconst 4 --param betadel 0.7 \

myproblem.py RPERLE 97

Users may invoke the solve function within a Python program. We provide simple

examples below.

78

Table 4.1.
The table contains the current list of algorithm-speci�c parameters.

Parameter

Name

Default

Value

A�ected Solvers Description

mconst 2 R-PεRLE, R-MinRLE,

R-Pε, R-SPLINE

Initialize the sample size and subse-

quent schedule of sample sizes.

bconst 8 R-PεRLE, R-MinRLE,

R-Pε, R-SPLINE

Initialize the search sampling limit

and subsequent schedule of limits.

radius 1 R-PεRLE, R-MinRLE,

R-Pε, R-SPLINE

Set the radius a that determines

a point's neighborhood, Na (Wang

et al., 2013).

betadel 0.5 R-PεRLE, R-MinRLE Roughly, set how likely RLE is to

keep a point in the input set. See

Cooper et al. (2018).

betaeps 0.5 R-PεRLE, R-Pε Roughly, set how likely Pε is to

search from a point. See Cooper

et al. (2018).

Using solve in a Python program is similar to using the CLI solve We provide

the minimal example here.

1 # import the s o l v e func t i on

2 from pymoso . c hnu t i l s import s o l v e

3 # import the module conta in ing the RPERLE implementation

4 import pymoso . s o l v e r s . r p e r l e as rp

5 # import MyProblem − myproblem . py shou ld u sua l l y be in the s c r i p t d i r e c t o r y

6 import myproblem as mp

7

8 # spe c i f y an x0 . In MyProblem , i t i s a t up l e o f l en g t h 1

9 x0 = (97 ,)

10 so ln = so l v e (mp.MyProblem , rp .RPERLE, x0)

11 print (s o ln)

79

Users can specify options, including algorithm-speci�c parameters, as shown

below.

1 # example f o r s p e c i f y i n g budget and seed

2 budget=10000

3 seed = (111 , 222 , 333 , 444 , 555 , 666)

4 so ln1 = so l v e (mp.MyProblem , rp .RPERLE, x0 , budget=budget , seed=seed)

5

6 # spe c i f y crn and simpar

7 so ln2 = so l v e (mp.MyProblem , rp .RPERLE, x0 , crn=True , simpar=4)

8

9 # spe c i f y a lgor i thm s p e c i f i c parameters

10 so ln3 = so l v e (mp.MyProblem , rp .RPERLE, x0 , rad iu s =2, betaeps =0.3 , be tade l =0.4)

11

12 # mix them

13 so ln4 = so l v e (mp.MyProblem , rp .RPERLE, x0 , crn=True , seed=seed , rad iu s=5)

4.3 Researchers: Testing and Comparing MOSO Algorithms with Py-

MOSO

In this section, we discuss using PyMOSO in the researcher context. Researchers

can use PyMOSO to compare algorithms and to create new algorithms. To compare

algorithms, researchers �rst implement a PyMOSO oracle as in �4.2.1. Then, they

create a PyMOSO tester, which we discuss in �4.3.1, and run the tester, which we

discuss in �4.3.2. We brie�y discuss creating new algorithms in �4.3.3.

4.3.1 Structuring a Test Problem for Use in PyMOSO

After implementing a PyMOSO oracle called MyProblem in �4.2.1, researchers

must implement a PyMOSO tester for MyProblem. We provide an example tester

called MyTester in Figure 4.5, where the oracle to be tested in Line 27 is speci�ed as

MyProblem.

Technically, a valid PyMOSO tester may consist of only Lines 24�27 in Figure 4.5.

However, Figure 4.5 illustrates two optional features that researchers may �nd useful.

First, researchers can implement a PyMOSO function that generates feasible starting

80

1 import sys , os

2 sys . path . i n s e r t (0 , os . path . dirname (__file__))

3 # use hausdor f f d i s t ance (dh) as an example metric

4 from pymoso . c hnu t i l s import dh

5 # import the MyProblem orac l e

6 from myproblem import MyProblem

7

8 # op t i ona l l y , d e f i ne a func t i on to randomly choose a MyProblem f e a s i b l e x0

9 def get_ranx0 (rng) :

10 va l = rng . cho i c e (range(−100 , 101))

11 x0 = (val ,)

12 return x0

13

14 # compute the t rue va lue s o f x , f o r computing the metric

15 def true_g (x) :

16 ' ' ' Compute the o b j e c t i v e va lue s . ' ' '

17 obj1 = x [0]∗∗2

18 obj2 = (x [0] − 2)∗∗2

19 return obj1 , obj2

20

21 # de f ine an answer as appropr ia te f o r the metric

22 myanswer = {(0 , 4) , (4 , 0) , (1 , 1)}

23

24 class MyTester (object) :

25 ' ' ' Example t e s t e r implementation fo r MyProblem . ' ' '

26 def __init__(s e l f) :

27 s e l f . ranorc = MyProblem

28 s e l f . answer = myanswer

29 s e l f . true_g = true_g

30 s e l f . get_ranx0 = get_ranx0

31

32 def metr ic (s e l f , e l e s) :

33 ' ' ' Metric to be computed per r e t r o s p e c t i v e i t e r a t i o n . ' ' '

34 epareto = [s e l f . true_g (po int) for point in e l e s]

35 haus = dh(epareto , s e l f . answer)

36 return haus

Figure 4.5. The �le mytester.py implements MyTester, a tester for MyProblem.

points by setting self.get_ranx0 to an appropriate function in Line 30. We provide

an example function, called get_ranx0, that randomly generates a feasible point for

81

MyProblem in Lines 9�12 of Figure 4.5. The function must take rng as a parameter

and return a Python tuple representing a feasible point. The second feature enables

researchers to implement a metric for comparing an estimated solution to the known,

true solution. We provide an example metric that calculates the Hausdor� distance

from the expected objective values of the points in the estimated LES, eles, to the

image of the known solution, self.answer, in Lines 32�36. To calculate the expected

objective values of the points in eles, we implement the function true_g in Lines 15-

19. We also specify myanswer in Line 22 and set self.answer and self.true_g as

members of MyTester in Lines 28�29. Researchers may replace Lines 34�36 with a

metric of their choosing.

As a minimal valid PyMOSO tester, users may do nothing but assign the MyTester

member self.ranorc to a PyMOSO oracle, such as MyProblem, in Line 27. How-

ever, we expect most users to leverage PyMOSO features by implementing metrics

and feasible point generators. The function get_ranx0 allows the tester to generate

feasible points to MyProblem and metric allows the tester to compute a metric on

sets returned by a solver. Researchers may implement any number of additional sup-

porting functions, including members and methods of the tester class. The true_g

function is an example of such a supporting function, which is used to compute the

example metric.

Here, we list the rules for implementing a feasible point generator.

1. The function is arbitrarily named but must be set to the self.get_ranx0 mem-

ber of a tester.

2. The function must take a single parameter, an arbitrarily named random.Random

object we suggest naming rng.

3. The function must return a tuple with length corresponding to the self.dim

member of the self.ranorc member of the tester.

82

Since a researcher's desired metric depends on the algorithm capabilities and prob-

lem complexity, PyMOSO allows researchers to implement any metric they choose.

We provide three example metrics, but �rst, we list the implementation rules of the

metric function.

1. The metric function must be an instance method of a tester, and thus take

self as its �rst parameter.

2. The second parameter of metric is arbitrarily named and is a Python set of

tuples.

3. PyMOSO does not enforce the return value of metric, but we recommend a

scalar real number.

The metric implemented in Figure 4.3.1 is the Hausdor� distance from (a) the true

image of an estimated solution returned by an algorithm, to (b) the true solution

hard-coded as myanswer.

For an example of a di�erent metric, consider a MOSO problem that has more

than one local e�cient set (LES) and such that each LES contains no members of

another LES. Since an algorithm that converges to a LES is may �nd only one LES,

we may de�ne the metric to compute the Hausdor� distance between the true image

of the estimated solution and the �closest� true LES, as follows. Let self.answer

be implemented as a list of sets, and assume a self.true_g implementation. Then

Figure 4.6 implements the described metric.

For single-objective problems with one correct solution x∗, a simple metric that

takes an estimated solution X is |g(X) − g(x∗)|, which we implement in Figure 4.7

assuming an appropriate implementation of self.answer and self.true_g.

4.3.2 Testing a MOSO Algorithm in PyMOSO

Having implemented both MyProblem, in �4.2.1, and its tester, MyTester in �4.3.1,

in PyMOSO, we now discuss using PyMOSO to test algorithms on MyProblem. As

83

1 def metr ic (s e l f , e l e s) :

2 # use the d i s t ance to the c l o s e s t s e t .

3 epareto = [s e l f . true_g (po int) for point in e l e s]

4 # s e l f . so ln i s a l i s t o f s e t s

5 d i s t_ l i s t = [dh(epareto , l e s) for l e s in s e l f . answer]

6 return min(d i s t_ l i s t)

Figure 4.6. We provide a potentially useful metric for testing MOSO
algorithms that converge to a LES on problems with more than one
LES, such that none of the LES's have members in common.

1 def metr ic (s e l f , s i ng l e t on_se t) :

2 # s i n g l e o b j e c t i v e a l gor i thms s t i l l re turn a s e t

3 point , = s ing l e t on_se t

4 # l e t s e l f . so ln be a r e a l number

5 d i s t = abs (s e l f . true_g (po int) − s e l f . answer)

6 return d i s t

Figure 4.7. We provide a potentially useful metric for testing single
objective algorithms.

with practitioners solving MOSO problems, researchers can use PyMOSO in two

modes for testing algorithms on problems: as a stand-alone solver invoked from the

command line, or as a subroutine in a Python program. In this section, we only

consider the command line mode to test PyMOSO algorithms. See the user manual

for the subroutine mode.

The simplest viable command to test an algorithm in command line mode fol-

lows the structure program command tester solver. (Researchers may also specify

a feasible starting point if the tester is not programmed to generate them.) The

testsolve command takes options, including the number of independent sample

paths of the test problem, the number of processors to use, and whether to compute

a metric. As an example, the command to test R-PεRLE by running 16 independent

sample paths of MyProblem using MyTester, on 4 processors and computing a metric,

is below.

pymoso --isp=16 --proc=4 --metric testsolve mytester.py RPERLE

84

This invocation requires that myproblem.py and mytester.py are in the working

directory. After issuing the above command, PyMOSO creates a new subdirectory

named testrun in the working directory. This subdirectory contains (a) one metadata

�le; (b) 16 data �les, each containing list of estimated LES's, one for every algorithm

iteration; and (c) 16 �les containing metric calculations, which are included only when

using the --metric option. The �les containing metric calculations each have data

of the form (ν, wν , hν), where ν is the RA algorithm iteration number; wν is the

cumulative work done, measured as the total number of simulations used at the end

of iteration ν; and hν is the metric computed on the estimated LES at iteration ν. If

PyMOSO detects an error, it may also write an error �le.

As the �rst of additional examples, we test R-PεRLE on MyProblem using MyTester.

Since some options are compatible with both solve and testsolve, we include those

options in this example.

pymoso testsolve --budget=999 --odir=exp1 \

--crn --seed 1 2 3 4 5 6 mytester.py RPERLE

Users may want to compute some metric on the algorithm-generated solutions.

If a metric is de�ned as part of the tester, such as in MyTester, the testsolve

command can compute the metric on every algorithm iteration using the --metric

option. pymoso testsolve --metric mytester.py RPERLE

The testsolve command cannot perform simulation replications in parallel. How-

ever, testers can apply the solvers to independent sample paths of the problems. For

example, to test R-PεRLE on 100 independent sample paths of MyProblem, compute

the metrics for each sample path, and use common random numbers in each sample

path, use the following command.

pymoso testsolve --crn --metric --isp=100 mytester.py RPERLE

PyMOSO can perform independent algorithm runs in parallel. Use the proc option

to specify the number of processes available to PyMOSO.

pymoso testsolve --crn --metric --isp=100 \

--proc=20 mytester.py RPERLE

85

We remark here that, to ensure the algorithm runs remain independent using Py-

MOSO's pseudo-random number generator (see �4.2.1), researchers should set the

total simulation budget so that the included algorithms do not surpass 200 retro-

spective approximation (RA) iterations. For reference, using the default settings, the

sample size at every point in the 200th RA iteration is almost 380 million.

The testsolve command creates a results �le for each independent sample path.

The �le contains the solutions generated at every algorithm iteration, such that the

solution of iteration 2 is on line 2, iteration 10 on line 10, and so forth. If --metric is

speci�ed, PyMOSO generates a second �le for each independent sample path contain-

ing the collection of triples (iteration number, simulations used at end of iteration,

metric).

Below, we give examples of how users may invoke the testsolve function within

a Python program.

Using testsolve in a Python program is also similar to using the CLI

testsolve. Here, we provide an example with options.

1 # import the t e s t s o l v e f unc t i ons

2 from pymoso . c hnu t i l s import t e s t s o l v e

3 # import the module conta in ing RPERLE

4 import pymoso . s o l v e r s . r p e r l e as rp

5 # import the MyTester c l a s s

6 from mytester import MyTester

7

8 # t e s t s o l v e needs a "dummy" x0 even i f MyTester w i l l generate them

9 x0 = (1 ,)

10 run_data = t e s t s o l v e (MyTester , rp .RPERLE, x0 , i s p =100 , crn=True , rad iu s=2)

When using testsolve in a Python program, users must compute their

metric. Here, run_data is a dictionary of the form described in �4.3.3, in the

description of Figure 4.10. In the snippet below, we compute the metric on the

5th algorithm iteration of the 12th independent sample path.

1 i t e r 5_so ln = run_data [1 1] [' i t e r s o l n '] [4]

2 i sp12_iter5_metr ic = MyTester . metr ic (i t e r 5_so ln)

86

4.3.3 Creating New Algorithms in PyMOSO

Researchers can implement simulation optimization algorithms in the PyMOSO

framework. PyMOSO provides support for algorithms in three categories:

1. PyMOSO provides strong support for implementing new MOSO algorithms that

rely on RLE in an RA framework.

2. PyMOSO provides strong support for implementing general RA algorithms.

3. PyMOSO provides basic support, such as pseudo-random number control, for

implementing other simulation optimization algorithms.

We provide templates of algorithms implemented in each of these three categories,

along with example code snippets.

In the �rst category, we discuss how to implement RA algorithms that invoke

an �accelerator� followed by RLE in every RA iteration (see Cooper et al., 2018).

For example, in R-PεRLE, �Pε� is the accelerator, and in R-MinRLE, �Min� is the

accelerator. Programmers can create new accelerators. We provide an accelerator

template in Figure 4.8 so that programmers can use PyMOSO to create new RA

algorithms that use RLE for convergence.

1 from pymoso . chnbase import RLESolver

2

3 # crea te a su b c l a s s o f RLESolver

4 class MyAccel (RLESolver) :

5 ' ' ' Example implementation o f an RLE acc e l e r a t o r . ' ' '

6

7 def a c c e l (s e l f , warm_start) :

8 ' ' ' Return a c o l l e c t i o n o f po in t s to send to RLE. ' ' '

9 # implement a lgor i thm l o g i c here and return a s e t

10 return warm_start

Figure 4.8. The �le myaccel.py implements a provably convergent
MOSO algorithm by relying on RLE in a RA framework. We encour-
age MOSO researchers to improve it.

87

The novel part of these algorithms, created by the user, will be the accel function

which should collect points to send to RLE for certi�cation. Here, we list the rules

for accel.

1. The accel function must be an instance method of an RLESolver object, and

thus its �rst parameter must be self.

2. The second parameter is arbitrarily named and is a set of tuples. We recommend

naming the parameter warm_start, as it represents the sample-path solution of

the previous RA iteration.

3. The return value must be a set of tuples representing feasible points; we do not

recommend any particular name.

In every RA iteration, PyMOSO will �rst call accel(self, warm_start) and send

the returned set to rle(self, candidate_les). The return value must be a set of

tuples. The implementer does not need to implement or call RLE, as in Figure 4.8.

Researchers should replace the comment in Line 9 of Figure 4.8 with their own

code. The function signature must be accel(self, warm_start) and the function

must return a Python set. After implementing a PyMOSO algorithm, researchers can

test it as in �4.3.2.

pymoso --isp=20 --proc=4 --metric testsolve mytester.py myaccel.py

In the second category, algorithm designers can quickly implement any RA algo-

rithm by sub-classing RASolver and implementing the spsolve function, as shown

in Figure 4.9. The algorithm can be a single-objective algorithm. PyMOSO can-

not guarantee the convergence of such algorithms. Figure 4.9 is technically valid in

PyMOSO but is probably not e�ective.

Though analogous to those of an RLESolver.accel method, for completeness, we list

the requirements for an RASolver.spsolve method.

1. The spsolve function must be an instance method of an RASolver object, and

thus its �rst parameter must be self.

88

2. The second parameter is arbitrarily named and is a set of tuples. We recommend

naming the parameter warm_start as it represents the sample-path solution of

the previous RA iteration.

3. The return value must be a set of tuples representing feasible points; we do not

recommend any particular name.

In the third category, PyMOSO can accommodate any simulation optimization

algorithm by implementing the solve function of a MOSOSolver sub-class as shown

in Figure 4.10. It does not have to be a multi-objective algorithm. PyMOSO will

require users to send an initial feasible point x0 whether or not the algorithm needs

it. The initial feasible point x0 is accessed through self.x0 which is a tuple. We

now list the rules for implementing any MOSOSolver.solve function.

1. The solve function must be an instance method of MOSOSolver, and thus take

self as its �rst parameter.

2. The second parameter is the simulation budget, a natural number.

3. The solve function must return a dictionary (we name it results in our exam-

ple) with at least 3 keys: 'itersoln', 'simcalls', 'endseed'. Researchers

may track additional data and add it to results as desired.

1 from pymoso . chnbase import RASolver

2

3 class MyRAAlg(RASolver) :

4 ' ' ' Template implementation o f an RA so l v e r . ' ' '

5

6 def sp so l v e (s e l f , warm_start) :

7 ' ' ' Return the sample path s o l u t i on . ' ' '

8 # implement a lgor i thm l o g i c here and return a s e t

9 return warm_start

Figure 4.9. We provide a template for implementing RA algorithms.

89

• The 'itersoln' key itself corresponds to a dictionary with a key for each

algorithm iteration labeled {0, 1, . . .}. The value at each iteration is a set

containing the estimated solution at the end of the iteration.

• The 'simcalls' key itself corresponds to a dictionary with a key for each

algorithm iteration labeled {0, 1, . . .}. The value at each iteration is a nat-

ural number containing the cumulative number of simulation replications

taken at the end of the iteration.

• The 'endseed' key corresponds to a tuple of length 6, representing an

mrg32k3a seed. The algorithm programmer should ensure the stream gen-

erated by results['endseed'] is independent of all streams used by the

algorithm.

Researchers may use Figure 4.10 to implement new simulation optimization algo-

rithms.

1 from pymoso . chnbase import MOSOSolver

2

3 class MyMOSOAlg(MOSOSolver) :

4 ' ' ' Template implementation o f a MOSO so l v e r . ' ' '

5

6 def s o l v e (s e l f , budget) :

7 while s e l f . num_calls <= budget :

8 # implement a lgor i thm l o g i c and return the r e s u l t s

9 return r e s u l t s

Figure 4.10. We provide a template to implement a simulation opti-
mization algorithm.

For implementing algorithm logic, PyMOSO also provides support for, e.g., ob-

taining simulation replications from the oracle, computing all points in a set that are

non-dominated, and generating neighborhoods of points and sets. For convenience,

in the list below, we also provide some example code snippets that we �nd useful

when implementing algorithms in PyMOSO. For reference, �4.4.3 contains a list of

most objects accessible to PyMOSO programmers.

90

• Example code to take simulation replications of a point at some sample size:

1 # pretend x has not ye t been v i s i t e d in t h i s RA i t e r a t i o n and i s f e a s i b l e

2 x = (1 , 1 , 1)

3

4 # s e l f .m i s the sample s i z e o f the current RA i t e r a t i o n

5 m = s e l f .m

6 # s e l f . num_calls i s the cumulat ive number o f s imu la t i ons used t i l l now

7 start_num_calls = s e l f . num_calls

8 # use es t imate to sample x and put r e s u l t s in s e l f . gbar and s e l f . s eha t

9 i s f e a s , fx , se = s e l f . e s t imate (x)

10 ca l l s_used = s e l f . num_calls − start_num_calls

11 print (m == ca l l s_used) # True

12 print (fx == s e l f . gbar [x]) # True

13 print (se == s e l f . sehat [x]) # True

14

15 # est imate w i l l not s imu la te again in subsequent v i s i t s to a po in t

16 start_num_calls = s e l f . num_calls

17 i s f e a s , fx , se = s e l f . e s t imate (x)

18 ca l l s_used = s e l f . num_calls − start_num_calls

19 print (ca l l s_used == 0) # True

• Example code to retrieve a point's neighbors and take simulation replications:

1 from pymoso . c hnu t i l s import get_nbors

2 r = s e l f . nbor_rad

3 nbors = get_nbors (x0 , r)

4 s e l f . upsample (nbors)

5 for n in nbors :

6 print (n in s e l f . gbar) # True i f n f e a s i b l e e l s e False

7 # upsample a l s o re turns the f e a s i b l e sub s e t

8 nbors = s e l f . upsample (nbors)

• Example code to sort points by their observed objective values:

1 # 0 index fo r f i r s t o b j e c t i v e

2 sor ted_feas = sorted (nbors | {x} , key=lambda t : s e l f . gbar [t] [0])

3 xmin = sorted_feas [0]

4 fxmin = s e l f . gbar [x]

• Example code to use the built-in SPLINE implementation:

1 # unconstrained minimize the 2nd o b j e c t i v e

2 x0 = (2 , 2 , 2)

3 i s f e a s , fx , sex = s e l f . e s t imate (x0)

4 # the suppressed va lue i s the s e t v i s i t e d a long SPLINE ' s t r a j e c t o r y

5 _, xmin , fxmin , sexmin = s e l f . s p l i n e (x0 , f loat (' i n f ') , 1 , 0)

6 print (s e l f . gbar [xmin] == fxmin) # True

• Example code to �nd the non-dominated points in a dictionary:

1 from pymoso . c hnu t i l s import get_nondom

2 nondom = get_nondom(s e l f . gbar)

• Example code to randomly choose points from a set:

1 so lver_rng = s e l f . sprn

2 # pick 5 po in t s −− re turns a l i s t , not a s e t .

3 ran_pts = solver_rng . sample (l i s t (nondom) , 5)

4 one_in_five = solver_rng . cho i c e (ran_pts)

91

4.4 PyMOSO Technical Details

4.4.1 Installation

Since PyMOSO is programmed in Python, every PyMOSO user must �rst install

Python, which can be downloaded from https://www.python.org/downloads/. Py-

MOSO is compatible with Python versions 3.6 and higher. In the remainder of this

section, we assume an appropriate Python version is installed. We discuss three dif-

ferent methods to install PyMOSO: �rst, from the Python Packaging Index; second,

directly from our source code using git; and third, manually installing PyMOSO from

our source code.

Install PyMOSO from the Python Packaging Index using pip

For ease of distribution, we keep stable, recent releases of PyMOSO on the Python

Packaging Index (PyPI). Since the program pip is included in Python versions 3.6

and higher, we recommend using pip to install PyMOSO. To do so, open a terminal,

type the following command, and press enter.

pip install pymoso

Depending on how users con�gure their Python installation and how many version

of Python they install, they may need to replace pip with pip3, or other variants of

pip.

Install PyMOSO from git using pip

Users with git installed can use pip to install the most current version of Py-

MOSO directly from our source code:

pip install git+https://github.com/HunterResearch/PyMOSO.git

We consider the latest source to be less stable than the �xed releases we upload to

PyPI, and thus we recommend most users install PyMOSO as in �4.4.1.

92

Install PyMOSO Manually from Source Code

Users may follow the steps below to manually install PyMOSO from any version

of the source code.

1. Acquire the PyMOSO source code, for example, by downloading it from the

repository https://github.com/HunterResearch/PyMOSO.

2. Install the wheel package, e.g. using the pip install wheel command.

3. Open a terminal and navigate into the main project directory which contains

the �le setup.py

4. Build the installable PyMOSO package, called a wheel, using the command

python setup.py bdist_wheel. As with pip, some users may need to replace

python with python3 or something similar. The command should create a

directory named dist containing the PyMOSO wheel.

5. Install the PyMOSO wheel using

pip install dist/pymoso-x.x.x-py3-none-any.whl, where users replace

x.x.x with the appropriate PyMOSO version.

4.4.2 Command Line Interface (CLI)

PyMOSO users solving MOSO problems and testing MOSO algorithms may do

so using the command line interface. First, we show how to access the included help

�le. Then, we show how to view the lists of solvers, testers, and oracles installed by

default with PyMOSO. Finally, we discuss the solve and testsolve commands.

CLI Help

PyMOSO includes a command line help �le. The help �le shows syntax templates

for every PyMOSO command, the available options, and a selection of example in-

93

Usage :

pymoso l i s t i t em s

pymoso s o l v e [−−budget=B] [−−od i r=D] [−−crn] [−−simpar=P]

[(−− seed <s> <s> <s> <s> <s> <s >)] [(−−param <param> <val >)] . . .

<problem> <so lve r> <x> . . .

pymoso t e s t s o l v e [−−budget=B] [−−od i r=D] [−−crn] [−− i s p=T] [−−proc=Q]

[−−metr ic] [(−− seed <s> <s> <s> <s> <s> <s >)] [(−−param <param> <val >)] . . .

<t e s t e r > <so lve r> [<x > . . .]

pymoso −h | −−help

pymoso −v | −−ve r s i on

Options :

−−budget=B Set the s imu la t i on budget [d e f au l t : 200]

−−od i r=D Set the output f i l e d i r e c t o r y name . [d e f au l t : t e s t run]

−−crn Set i f common random numbers are d e s i r ed .

−−simpar=P Set number o f p a r a l l e l p r o c e s s e s f o r s imu la t i on r e p l i c a t i o n s .

−−i s p=T Set number o f a lgor i thm in s t an c e s to s o l v e . [d e f au l t : 1]

−−proc=Q Set number o f p a r a l l e l p r o c e s s e s f o r the a lgor i thm in s t an c e s .

−−metr ic Set i f metr ic computation i s d e s i r ed .

−−seed Set the random number seed with 6 spaced i n t e g e r s .

−−param Spec i f y a so lve r−s p e c i f i c parameter <param> <val >.

−h −−help Show th i s s c r e en .

−v −−ve r s i on Show ve r s i on .

Examples :

pymoso l i s t i t em s

pymoso s o l v e ProbTPA RPERLE 4 14

pymoso s o l v e −−budget=100000 −−od i r=t e s t 1 ProbTPB RMINRLE 3 12

pymoso s o l v e −−seed 12345 32123 5322 2 9543 666666666 ProbTPC RPERLE 31 21 11

pymoso s o l v e −−simpar=4 −−param betaeps 0 .4 ProbTPA RPERLE 30 30

pymoso s o l v e −−param rad iu s 3 ProbTPA RPERLE 45 45

pymoso t e s t s o l v e −−i s p=16 −−proc=4 TPATester RPERLE

pymoso t e s t s o l v e −−i s p=20 −−proc=10 −−metr ic −−crn TPBTester RMINRLE 9 9

Figure 4.11. PyMOSO displays help when users enter the
pymoso --help invocation.

vocations. The pymoso --help invocation prints the �le to the terminal. The �le

is also printed when PyMOSO cannot parse an invocation that begins with pymoso.

We show the current help �le in Figure 4.11.

94

The listitems Command for Viewing Solvers, Testers, and Oracles In-

cluded in PyMOSO

The default installation of PyMOSO includes a selection of solvers, testers, and

oracles. Users can view the complete lists of included solvers, testers, and oracles

using the pymoso listitems command. We show the current listing in Figure 4.12.

Test problems A, B, and C refer to those in Cooper et al. (2018).

So lve r Desc r ip t i on

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

RMINRLE So lve r us ing R−MinRLE f o r in t ege r−ordered MOSO.

RPE So lve r us ing R−Pe f o r in t ege r−ordered bi−ob j e c t i v e MOSO.

RPERLE So lve r us ing R−PERLE f o r in t ege r−ordered bi−ob j e c t i v e MOSO.

RSPLINE So lve r us ing R−SPLINE f o r s i n g l e ob j e c t i v e SO.

Problems Desc r ip t i on Test Name (i f a v a i l a b l e)

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

ProbSimpleSO x^2 + no i s e . SimpleSOTester

ProbTPA Test Problem A TPATester

ProbTPB Test Problem B TPBTester

ProbTPC Test Problem C TPCTester

Figure 4.12. The pymoso listitems invocation shows the lists of
built-in solvers, testers, and oracles.

4.4.3 PyMOSO Programming Object List

We describe the object names inside each of the following pymoso modules.

prng.mrg32k3a The module exposes the pseudo-random number generator and func-

tions to manipulate it.

MRG32k3a Sub-class of random.Random, de�nes all rng objects.

get_next_prnstream(seed) Return an rng object seeded 2127 steps from the

input seed.

95

jump_substream(rng) Seed the input rng object 276 steps forward.

chnbase The module implements the base classes for programming oracles and solvers.

Oracle Base class for implementing oracles.

RLESolver Base class for implementing solvers using RLE.

RASolver Base class for implementing RA solvers.

MOSOSolver Base class for all solvers.

chnutils The module contains generally useful functions for programming or testing

algorithms.

solve(oracle, solver, x0, **kwargs) See �4.2.2.

testsolve(tester, solver, x0, **kwargs) See �4.3.2.

does_weak_dominate(g, h, relg, relh) All inputs are tuples of equal length.

Returns True if g weakly dominates h with relaxations.

does_dominate(g, h, relg, relh) Returns True if g dominates h with re-

laxations.

does_strict_dominate(g, h, relg, relh) Returns True if g strictly domi-

nates h with relaxations.

get_nondom(obj_dict) Input: a dictionary with tuples for keys and values.

The keys are feasible points; the values are their objective values. Return:

a set of tuples representing non-dominated points.

get_nbors(x, r) Input: a tuple x, a positive real scalar r indicating the neigh-

borhood radius. Return: Set of tuples, the neighbors.

get_setnbors(S, r) Input: a set of tuples, and the neighborhood radius. Re-

turn: ∪x∈S get_nbors(x, r).

dh(A, B) Returns the Hausdor� distance between set A and set B.

edist(x1, x2) Returns the Euclidean distance between x1 and x2.

96

gen_metric(results, tester) Input: results is a dictionary, the output of

each sample path of testsolve. testermust implement metric. Returns:

The set of triples (iteration, simulation count, metric) for an algorithm run.

Oracle When implementing RAsolver algorithms, programmers may not need to ac-

cess Oracle objects directly at all. When implementing MOSOSolver algorithms,

programmers will use (or wrap) hit and crn_advance().

Oracle.num_obj A positive integer, the number of objectives.

Oracle.dim A positive integer, the dimensionality of feasible points.

Oracle.rng An instance of MRG32k3a internal to the oracle.

Oracle.hit(x, n) Take n observations of x. Return: True, and a tuple con-

taining the mean of the observations for each objective se, and a tuple

containing the standard error for each objective if x is feasible. The func-

tion handles CRN internally.

Oracle.set_crnflag(bool) Turn CRN on (True) or o�.

Oracle.set_crnold(state) Save the rng state as the CRN baseline, e.g. for

an algorithm iteration.

Oracle.crn_reset() Back the oracle rng to the CRN baseline.

Oracle.crn_advance() If CRN is on, reset, and then jump to the next in-

dependent pseudo-random stream and save the new baseline, e.g. before

starting a new algorithm iteration.

Oracle.crn_setobs() Set an intermediate CRN for individual oracle observa-

tions.

Oracle.crn_nextobs() Jump the rng forward, e.g. after taking an observa-

tion, and set_obs the seed.

Oracle.crn_check() If CRN is on, return to the baseline. Otherwise, use

nextobs before taking the next observation.

97

MOSOSolver The base class provides a basic structure for implementing new MOSO

algorithms in PyMOSO.

MOSOSolver.orc The oracle object for the solver to solve.

MOSOSolver.dim Number of dimensions of points in the self.orc's feasible

points.

MOSOSolver.num_obj Similarly, the number of objectives in self.orc.

MOSOSolver.num_calls A running count of the number of observations taken

of self.orc.

MOSOSolver.x0 A feasible starting point. This point is additionally supplied

to algorithms that don't need one.

RASolver Implements a common structure for all RA algorithms, including: caching

of simulation replications, scheduling and updating of sample sizes and limits,

and a wrapper to Oracle.hit.

RASolver.sprn An instance of MRG32k3a for the solver to use.

RASolver.nbor_rad The neighborhood radius used by solvers seeking local op-

timality.

RASolver.gbar A dictionary where every key and value is a tuple. The keys

are feasible points, values are their objective values. gbar is �wiped� every

retrospective iteration.

RASolver.sehat Exactly like gbar except the values are standard errors.

RASolver.m The sample size of the current iteration.

RASolver.calc_m(nu) Compute the sample size of the current iteration. RA

algorithms automatically do this every iteration and assign the value to

self.m.

RASolver.b The searching sample limit of the current iteration.

RASolver.calc_b(nu) Exactly as calc_m but for the searching sample limit.

98

RASolver.estimate(x, c, obj) The estimate function is essentially a smart

wrapper for self.orc.hit. Inputs: tuple x to sample, c a feasibility

constraint, obj the objective to constrain. Return: same as Oracle.hit.

Retrieves or saves the results from/to gbar and sehat as appropriate.

Returns not feasible if the otherwise feasible result is not less than the

constraint.

RASolver.upsample(mcS) A version of estimate for sets. Returns the feasible

subset of mcS.

RASolver.spline(x, c, obmin, obcon) Return a sample path local minimizer.

Input: a feasible start, constraint, objective to minimize, objective to con-

strain. Return: a set of tuples of the trajectory, the minimizer tuple, the

minimum tuple, the standard error tuple.

RLESolver Builds on RASolver to add RLE and its relaxation.

RLESolver.betadel A�ects the relaxation values computed in RLE.

RLESolver.calc_delta(se) Computes the RLE relaxation given a standard

error, using self.m and self.betadel

RLESolver.rle(candidate_les) Input: set of tuples, Returns: set of tuples.

Finds the LES at sample size self.m.

99

5. CONCLUDING REMARKS

First, we propose a family of algorithms in an RA framework that rely on RLE to

converge to a local e�cient set. Family members are de�ned by their accelerator

routines, which seek to provide high quality candidate local e�cient set members to

RLE. We introduce two members: R-PεRLE, a new, provably-convergent algorithm

for bi-objective MOSO on integer lattices; and R-MinRLE as a benchmark algorithm

for MOSO on integer lattices with two or more objectives. R-PεRLE out-performs

both R-MinRLE and the current state- of-the-art algorithm, MO-COMPASS, on

our test problems. This work points to a family of RA algorithms for MOSO on

integer lattices that employ RLE for sample-path certi�cation of an approximate

local e�cient set, where the convergence guarantees are provided by Theorem 1.

Second, we propose the PyMOSO software package provides open-source, o�-the-

shelf access to R-PεRLE and R-MinRLE in an accessible and popular programming

language. PyMOSO also provides a framework and useful tools for researchers who

wish to compare and create new algorithms, including those that employ RLE for

sample-path certi�cation of an approximate local e�cient set.

We now discuss several topics of future research.

Random restarts for convergence to the global e�cient set Wang et al.

(2013) propose R-SPLINE, a RA algorithm which converges to a local minimizer. Na-

garaj and Pasupathy (2016) extend R-SPLINE to cgR-SPLINE, an algorithm which

performs random restarts of R-SPLINE and, perhaps with stochastic constraints,

retrieves a global minimizer. By using a similar scheme for random restarts, we con-

jecture that a hypothetical gR-PERLE or gR-MinRLE algorithm can retrieve the

GES in a MOSO problem.

100

PyMOSO Algorithms for MOSO on �nite sets As with MOSO on continuous

sets, PyMOSO is capable of supporting algorithms that solve MOSO problems on

�nite sets. Candidate algorithms include MOCBA (Lee et al., 2010b) and SCORE

(Applegate et al., 2018).

PyMOSO Algorithms for MOSO on continuous sets Though it currently im-

plements no such problems nor algorithms, PyMOSO is capable of supporting prob-

lems and algorithms on continuous sets. Implementing problems and algorithms, if

only as examples, could encourage PyMOSO use among practitioners and researchers

of MOSO on continuous sets. Candidate algorithms include ASTRO-DF (Shashaani

et al., 2016) for single objective simulation optimization on continuous sets, and the

algorithm of Kim and Ryu (2011b) for bi-objective MOSO on continuous sets.

PyMOSO Testbeds for MOSO on �nite, integer-ordered, and continuous

sets Though PyMOSO implements some example problems, it does not contain a

complete testbed for any class of MOSO problems. Testbeds would allow researchers

to easily test their algorithms on a broad class of problems and edge cases to ensure

correct algorithm design and implementation.

101

REFERENCES

Amodeo, L., Prins, C., and Sánchez, D. R. (2009). Comparison of metaheuristic ap-

proaches for multi-objective simulation-based optimization in supply chain inven-

tory management. In Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G. A.,

Ekárt, A., Esparcia-Alcázar, A. I., Farooq, M., Fink, A., Machado, P., McCormack,

J., Neri, F., O'Neill, M., Preuss, M., Rothlauf, F., Tarantino, E., and Yang, S., edi-

tors, Applications of Evolutionary Computing, Lecture Notes in Computer Science,

pages 798�807. Springer, Berlin, Germany.

Andersson, M., Grimm, H., Persson, A., and Ng, A. (2007). A web-based simulation

optimization system for industrial scheduling. In Henderson, S. G., Biller, B., Hsieh,

M.-H., Shortle, J., Tew, J. D., and Barton, R. R., editors, Proceedings of the 2007

Winter Simulation Conference, pages 1844�1852, Piscataway, NJ. IEEE.

Applegate, E. A., Feldman, G., Hunter, S. R., and Pasupathy, R. (2018). Multi-

objective ranking and selection: Optimal sampling laws and tractable approxima-

tions via SCORE. Optimization Online.

Applied Materials, Inc. (2018). AutoMod.

Audet, C. and Hare, W. (2017). Derivative-Free and Blackbox Optimization. Springer

Series in Operations Research and Financial Engineering. Springer, Switzerland.

Baesler, F. F. and Sepulveda, J. A. (2001). Multi-objective simulation optimization

for a cancer treatment center. In Peters, B. A., Smith, J. S., Medeiros, D. J., and

Rohrer, M. W., editors, Proceedings of the 2001 Winter Simulation Conference,

pages 1405�1411, Piscataway, NJ. IEEE.

102

Billingsley, P. (1995). Probability and Measure. John Wiley and Sons, New York, 3

edition.

Biscani, F. and Izzo, D. (2018). esa/pagmo2: pagmo 2.9.

Bonnel, H. and Collonge, C. (2014). Stochastic optimization over a Pareto set associ-

ated with a stochastic multi-objective optimization problem. Journal of Optimiza-

tion Theory and Applications, 162:405�427.

Branke, J. and Zhang, W. (2015). A new myopic sequential sampling algorithm for

multi-objective problems. In Yilmaz, L., Chan, W. K. V., Moon, I., Roeder, T.

M. K., Macal, C., and Rossetti, M. D., editors, Proceedings of the 2015 Winter

Simulation Conference, pages 3589�3598, Piscataway, NJ. IEEE.

Branke, J., Zhang, W., and Tao, Y. (2016). Multiobjective ranking and selection

based on hypervolume. In Roeder, T. M. K., Frazier, P. I., Szechtman, R., Zhou, E.,

Huschka, T., and Chick, S. E., editors, Proceedings of the 2016 Winter Simulation

Conference, pages 859�870, Piscataway, NJ. IEEE.

Büche, D., Stoll, P., Dornberger, R., and Koumoutsakos, P. (2002). Multiobjective

evolutionary algorithm for the optimization of noisy combustion processes. IEEE

Transactions on Systems, Man, and Cybernetics � Part C: Applications and Re-

views, 32(4):460�473.

Casella, G. and Berger, R. L. (2002). Statistical Inference. Duxbury, Paci�c Grove,

CA, 2nd edition.

Chan, W. K. V., D'Ambrogio, A., Zacharewicz, G., Mustafee, N., Wainer, G., and

Page, E., editors (2017). Proceedings of the 2017 Winter Simulation Conference.

IEEE, Piscataway, NJ.

Chen, C.-H., Lin, J., Yücesan, E., and Chick, S. E. (2000). Simulation budget allo-

cation for further enhancing the e�ciency of ordinal optimization. Discrete Event

Dynamic Systems, 10(3):251�270.

103

Chen, H. and Schmeiser, B. W. (2001). Stochastic root �nding via retrospective

approximation. IIE Transactions, 33:259�275.

Chen, T. and Wang, C. (2016). Multi-objective simulation optimization for medical

capacity allocation in emergency department. Journal of Simulation, 10(1):50�68.

Chew, E. P., Lee, L. H., Teng, S., and Koh, C. H. (2009). Di�erentiated service inven-

tory optimization using nested partitions and MOCBA. Computers & Operations

Research, 36(5):1703�1710.

Conn, A. R., Scheinberg, K., and Vicente, L. N. (2009). Introduction to Derivative-

free optimization. MOS-SIAM Series on Optimization. Society for Industrial and

Applied Mathematics and Mathetical Programming Society, Philadelphia, PA.

Cooper, K., Hunter, S. R., and Nagaraj, K. (2017). An epsilon-constraint method

for integer-ordered bi-objective simulation optimization. In Chan, W. K. V.,

D'Ambrogio, A., Zacharewicz, G., Mustafee, N., Wainer, G., and Page, E., ed-

itors, Proceedings of the 2017 Winter Simulation Conference, pages 2303�2314,

Piscataway, NJ. IEEE.

Cooper, K., Hunter, S. R., and Nagaraj, K. (2018). Bi-objective simulation opti-

mization on integer lattices using the epsilon-constraint method in a retrospective

approximation framework. Optimization Online.

Crespo, O., Bergez, J. E., and Garcia, F. (2010). Multiobjective optimization subject

to uncertainty: Application to irrigation strategy management. Computers and

Electronics in Agriculture, 74:145�154.

Deb, K. (1999). Multi-objective genetic algorithms: Problem di�culties and con-

struction of test problems. Evolutionary Computation, 7(3):205�230.

Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications.

Springer, New York, 2nd edition.

104

Ding, H., Benyoucef, L., and Xie, X. (2006). A simulation-based multi-objective

genetic algorithm approach for networked enterprises optimization. Engineering

Applications of Arti�cial Intelligence, 19:609�623.

Dullinger, C., Struckl, W., and Kozek, M. (2017). Simulation-based multi-objective

system optimization of train traction systems. Simulation Modelling Practice and

Theory, 72:104�117.

Ehrgott, M. and Tenfelde-Podehl, D. (2003). Computation of ideal and nadir values

and implications for their use in MCDM methods. European Journal of Operational

Research, 151:119�139.

Feldman, G. and Hunter, S. R. (2018). SCORE allocations for bi-objective rank-

ing and selection. ACM Transactions on Modeling and Computer Simulation,

28(1):7:1�7:28.

Feng, W. H., Kong, N., and Wan, H. (2013). A simulation study of cadaveric liver

allocation with a single-score patient prioritization formula. Journal of Simulation,

7(2):109�125.

Fliege, J. and Xu, H. (2011). Stochastic multiobjective optimization: sample average

approximation and applications. Journal of Optimization Theory and Applications,

151:135�162.

Goldsman, D. (2015). A practical guide to ranking and selection methods. In Aleman,

D. M. and Thiele, A. C., editors, TutORials in Operations Research, chapter 6,

pages 89�110. INFORMS, Catonsville, MD.

Henderson, S. G. and Pasupathy, R. (2018). Simulation optimization library.

Ho�enson, S., Arepally, S., and Papalambros, P. Y. (2014). A multi-objective opti-

mization framework for assessing military ground vehicle design for safety. Jour-

nal of Defense Modeling and Simulation: Applications, Methodology, Technology,

11(1):33�46.

105

Hong, L. J. and Nelson, B. L. (2006). Discrete optimization via simulation using

COMPASS. Operations Research, 54(1):115�129.

Hong, L. J. and Nelson, B. L. (2009). A brief introduction to optimization via sim-

ulation. In Rossetti, M. D., Hill, R. R., Johansson, B., Dunkin, A., and Ingalls,

R. G., editors, Proceedings of the 2009 Winter Simulation Conference, pages 75�85,

Piscataway, NJ. IEEE.

Hong, L. J., Nelson, B. L., and Xu, J. (2015). Discrete optimization via simulation.

In Fu, M. C., editor, Handbook of Simulation Optimization, volume 216 of Interna-

tional Series in Operations Research & Management Science, pages 9�44. Springer,

New York.

Huang, H. (2016). Discrete-event simulation and optimization to improve the perfor-

mance of a healthcare system. PhD thesis, University of Washington.

Huang, H. and Zabinsky, Z. B. (2014). Multiple objective probabilistic branch and

bound for Pareto optimal approximation. In Tolk, A., Diallo, S. Y., Ryzhov, I. O.,

Yilmaz, L., Buckley, S., and Miller, J. A., editors, Proceedings of the 2014 Winter

Simulation Conference, pages 3916�3927, Piscataway, NJ. IEEE.

Hunter, S. R., Applegate, E. A., Arora, V., Chong, B., Cooper, K., Rincón-Guevara,

O., and Vivas-Valencia, C. (2019). An introduction to multi-objective simulation

optimization. ACM Transactions on Modeling and Computer Simulation, 29(1).

Hunter, S. R. and McClosky, B. (2016). Maximizing quantitative traits in the mat-

ing design problem via simulation-based Pareto estimation. IIE Transactions,

48(6):565�578.

Joines, J. A., Gupta, D., Gokce, M. A., King, R. E., and Kay, M. G. (2002). Supply

chain multi-objective simulation optimization. In Yücesan, E., Chen, C. H., Snow-

don, J. L., and Charnes, J. M., editors, Proceedings of the 2002 Winter Simulation

Conference, pages 1306�1314, Piscataway, NJ. IEEE.

106

Kim, S. (2014). A derivative-free trust-region method for biobjective optimization.

Kim, S. and Ryu, J. (2011a). The sample average approximation method for multi-

objective stochastic optimization. In Jain, S., Creasey, R. R., Himmelspach, J.,

White, K. P., and Fu, M., editors, Proceedings of the 2011 Winter Simulation

Conference, pages 4026�4037, Piscataway, NJ. IEEE.

Kim, S. and Ryu, J. (2011b). A trust-region algorithm for bi-objective stochastic

optimization. Procedia Computer Science, 4:1422�1430.

Klein, T., Holzkämper, A., Calanca, P., Seppelt, R., and Fuhrer, J. (2013). Adapt-

ing agricultural land management to climate change: a regional multi-objective

optimization approach. Landscape Ecology, 28:2029�2047.

Law, A. M. (2015). Simulation Modeling and Analysis. McGraw Hill Education, New

York, 5 edition.

L'Ecuyer, P. (1999). Good parameters and implementations for combined multiple

recursive random number generators. Operations Research, 47(1):159 � 164.

L'Ecuyer, P., Simard, R., Chen, E. J., and Kelton, W. D. (2002). An object-oriented

random-number package with many long streams and substreams. Operations Re-

search, 50(6):1073�1075.

Lee, L. H., Chew, E. P., Teng, S., and Chen, Y. (2008). Multi-objective simulation-

based evolutionary algorithm for an aircraft spare parts allocation problem. Euro-

pean Journal of Operational Research, 189(2):476�491.

Lee, L. H., Chew, E. P., Teng, S., and Goldsman, D. (2010a). Finding the non-

dominated Pareto set for multi-objective simulation models. IIE Transactions,

42:656�674.

Lee, L. H., Chew, E. P., Teng, S., and Goldsman, D. (2010b). Finding the non-

dominated Pareto set for multi-objective simulation models. IIE Transactions,

42:656�674.

107

Lee, L. H., Lee, C. U., and Tan, Y. P. (2007). A multi-objective genetic algorithm

for robust �ight scheduling using simulation. European Journal of Operational

Research, 177(3):1948�1968.

Li, H., Lee, L. H., Chew, E. P., and Lendermann, P. (2015a). MO-COMPASS:

A fast convergent search algorithm for multi-objective discrete optimization via

simulation. IIE Transactions, 47(11):1153�1169.

Li, H., Lee, L. H., Chew, E. P., and Lendermann, P. (2015b). MO-COMPASS:

A fast convergent search algorithm for multi-objective discrete optimization via

simulation. IIE Transactions, 47(11):1153�1169.

Li, H., Pedrielli, G., Lee, L. H., and Chew, E. P. (2017). Enhancement of supply

chain resilience through inter-echelon information sharing. Flexible Services and

Manufacturing Journal, 29:260�285.

Li, H., Zhu, Y., Chen, Y., Pedrielli, G., Pujowidianto, N. A., and Chen, Y. (2015c).

The object-oriented discrete event simulation modeling: a case study on aircraft

spare part management. In Yilmaz, L., Chan, W. K. V., Roeder, T. M. K., Macal,

C., and Rosetti, M., editors, Proceedings of the 2015 Winter Simulation Conference,

pages 3514�3525, Piscataway, NJ. IEEE.

Liuzzi, G., Lucidi, S., and Rinaldi, F. (2018). An algorithmic framework based on

primitive directions and nonmonotone line searches for black box problems with

integer variables. Optimization Online.

Lucidi, S., Maurici, M., Paulon, L., Rinaldi, F., and Roma, M. (2016). A simulation-

based multi-objective optimization approach for health care service management.

IEEE Transactions on Automation Science and Engineering, 13(4):1480�1491.

Mattila, V. and Virtanen, K. (2014). Maintenance scheduling of a �eet of �ghter

aircraft through multi-objective simulation-optimization. Simulation: Transactions

of the Society for Modeling and Simulation International, 90(9):1023�1040.

108

Miettinen, K. (1999). Nonlinear Multiobjective Optimization. Kluwer Academic Pub-

lishers, Boston.

Nagaraj, K. and Pasupathy, R. (2016). Stochastically constrained simulation opti-

mization on integer-ordered spaces: The cgR-SPLINE algorithm. http://www.

optimization-online.org/DB_HTML/2015/10/5139.html.

Nelson, B. L. (2010). Optimization via simulation over discrete decision variables. In

Hasenbein, J. J., Gray, P., and Greenberg, H. J., editors, TutORials in Operations

Research, chapter 9, pages 193 � 207. INFORMS, Catonsville, MD.

Nguyen, A., Reiter, S., and Rigo, P. (2014). A review on simulation-based optimiza-

tion methods applied to building performance analysis. Applied Energy, 113:1043�

1058.

OptTek Systems, Inc. (2018). OptQuest.

Pasupathy, R. (2010). On choosing parameters in retrospective-approximation algo-

rithms for stochastic root �nding and simulation optimization. Operations Research,

58(4):889�901.

Pasupathy, R. and Ghosh, S. (2013). Simulation optimization: a concise overview and

implementation guide. In Topaloglu, H., editor, TutORials in Operations Research,

chapter 7, pages 122�150. INFORMS, Catonsville, MD.

Pasupathy, R. and Kim, S. (2011). The stochastic root-�nding problem: overview,

solutions, and open questions. ACM Transactions on Modeling and Computer

Simulation, 21(3).

Pasupathy, R. and Schmeiser, B. W. (2009). Retrospective-approximation algorithms

for multidimensional stochastic root-�nding problems. ACM Transactions on Mod-

eling and Computer Simulation, 19(2):5:1�5:36.

109

Prakash, O., Srinivasan, K., and Sudheer, K. P. (2015). Adaptive multi-objective

simulation-optimization framework for dynamic �ood control operation in a river-

reservoir system. Hydrology Research, 46(6):893�911.

Ryu, J. and Kim, S. (2014). A derivative-free trust-region method for biobjective

optimization. SIAM J. Optim., 24(1):334�362.

Schmeiser, B. (2008). A practitioner, a vender, and a researcher walk into a bar:

trying to explain what researchers do. In Mason, S. J., Hill, R. R., Mönch, L.,

Rose, O., Je�erson, T., and Fowler, J. W., editors, Proceedings of the 2008 Winter

Simulation Conference, pages 2�9, Piscataway, NJ. IEEE.

Shashaani, S., Hunter, S. R., and Pasupathy, R. (2016). ASTRO-DF: Adaptive sam-

pling trust-region optimization algorithms, heuristics, and numerical experience. In

Roeder, T. M. K., Frazier, P. I., Szechtman, R., and Zhou, E., editors, Proceedings

of the 2016 Winter Simulation Conference, pages 554�565, Piscataway, NJ. IEEE.

Simio LLC (2018). Simio.

Singh, A. and Minsker, B. S. (2008). Uncertainty-based multiobjective optimization

of groundwater remediation design. Water Resources Research, 44.

Song, J., Qiu, Y., and Liu, Z. (2016). Integrating optimal simulation budget allocation

and genetic algorithm to �nd the approximate Pareto patient �ow distribution.

IEEE Transactions on Automation Science and Engineering, 13(1):149�159.

Subramanyan, K., Diwekar, U., and Zitney, S. E. (2011). Stochastic modeling and

multi-objective optimization for the APECS system. Computers and Chemical

Engineering, 35:2667�2679.

The AnyLogic Company (2018). AnyLogic.

110

Thengvall, B., Glover, F., and Davino, D. (2016). Coupling optimization and statisti-

cal analysis with simulation models. In Roeder, T. M. K., Frazier, P. I., Szechtman,

R., Zhou, E., Huschka, T., and Chick, S. E., editors, Proceedings of the 2016 Winter

Simulation Conference, Piscataway, NJ. IEEE.

Villarreal-Marroquín, M. G., Svenson, J. D., Sun, F., Santner, T. J., Dean, A., and

Castro, J. M. (2013). A comparison of two metamodel-based methodologies for

multiple criteria simulation optimization using an injection molding case study.

Journal of Polymer Engineering, 33(3):193�209.

Wang, H., Pasupathy, R., and Schmeiser, B. W. (2013). Integer-ordered simulation

optimization using R-SPLINE: Retrospective Search using Piecewise-Linear Inter-

polation and Neighborhood Enumeration. ACM Transactions on Modeling and

Computer Simulation, 23(3).

Wang, W. and Wan, H. (2017). Sequential probability ratio test for multiple-objective

ranking and selection. In Chan, W. K. V., D'Ambrogio, A., Zacharewicz, G.,

Mustafee, N., Wainer, G., and Page, E., editors, Proceedings of the 2017 Winter

Simulation Conference, pages 1998�2009, Piscataway, NJ. IEEE.

Wang, Y., Lee, L. H., Chew, E. P., Lam, S. S. W., Low, S. K., Ong, M. E. H., and

Li, H. (2015). Multi-objective optimization for a hospital inpatient �ow process

via discrete event simulation. In Yilmaz, L., Chan, W. K. V., Roeder, T. M. K.,

Macal, C., and Rosetti, M., editors, Proceedings of the 2015 Winter Simulation

Conference, pages 3622�3631, Piscataway, NJ. IEEE.

Weizhi, L. (2017). PyPRS. GitHub repository.

Wiecek, M. M., Ehrgott, M., and Engau, A. (2016). Continuous multiobjective pro-

gramming. In Greco, S., Ehrgott, M., and Figueira, J. R., editors, Multiple Criteria

Decision Analysis: State of the Art Surveys, volume 233 of International Series in

Operations Research & Management Science, pages 739�815. Springer New York,

New York.

111

Zhang, H. (2008). Multi-objective simulation-optimization for earthmoving opera-

tions. Automation in Construction, 18:79�86.

Zhou, C., Li, H., Lee, B. K., and Qiu, Z. (2018). A simulation-based vessel-truck

coordination strategy for lighterage terminals. Transportation Research Part C:

Emerging Technologies, 95:149�164.

