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SUMMARY

AnM/G/C/C state dependent queuing network measures the performance of a system whose service rate de-
creases with the increasing number of residing entities. However, the performance in terms of throughputs,
levels of congestions, the expected number of entities, and the expected service time is typically analyzed
based on a series of arrival rates without any further discussion on the optimal arrival rate. This paper
derives the optimal arrival rates of corridors in a topological network using calculus and numerical analysis
approaches. These optimal rates are then used as capacity parameters in the network’s flow model to obtain
the optimal arrival rates that maximize its total throughput. To ease the construction and performance eval-
uation of the network, we design and construct an M/G/C/C framework based on the Object-Oriented Pro-
gramming approach that integrates the LINGO software as an optimization tool. The framework is then tested
on virtual and real networks. This framework can be used to develop a more advanced traffic management
tool for studying and managing traffic flow through a complex network. Copyright © 2015 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Queuing networks have long been used to explore the effects of capacity constrained resources on
common performance measures such as throughputs and response time. The resources’ service times
in most queuing systems strictly fluctuate according to a statistical distribution regardless of the
number of residing entities. Examples of systems that follow this behavior include service, production,
and manufacturing processes. Other systems meanwhile physically adjust their service times based on
the current number of entities. This behavior can be best described using an M/G/C/C state dependent
queuing network.
The M/G/C/C network imitates how residing entities affect a resource’s service time and influence

its system’s performance. Common performance measures collected are the throughput, blocking
probability, expected number of entities, and expected service time. The service time becomes longer
when the number of requesting entities increases. However, any decrement of the number will speed
up the processing time to offer better service. Examples of systems that follow this behavior are entities
moving through a constrained network; for example, a corridor and road.
The maximum number of residing entities in an M/G/C/C system is limited by the capacity of its

resource. Because the capacity (i.e., the available space to accommodate entities) is fixed, the only
parameter that can be controlled to improve its performance is the current number of residing entities.
The number is implicitly influenced by the arrival rates of entities into the system. Slow arrival rates
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make the system process the residing entities faster, but this causes a small throughput at the end.
Higher arrival rates make the system process the entities slower, but this causes a higher throughput
at the end. Any arrival rates higher than its optimal arrival rate cause congestion instead of improving
the throughput. The importance of controlling and analyzing entities’ arrival rates to effectively flow
them through a network has been highlighted in much literature (e.g., [1–6]).
Our source of innovation is driven by previous research arguing that an M/G/C/C network is an ap-

propriate tool for modeling congestion in a state-dependent system. The approach has extensively been
used to evaluate the performance of evacuating occupants from a facility (e.g., multi-story building
[1, 7, 8] and hall [9, 10]), flowing vehicles through a road [11], and handling materials in an accumu-
lating conveyer system [12]. The analytical results have also been validated using a discrete event
simulation model [13–18] constructed either using a programming language [1] or simulation software
[19]. The previous research also suggests that appropriately controlling entities during their travel is
crucial to achieve the best possible performance. However, the performance is only derived based
on a series of experimental analyses, that is, by inputting a set of arrival rates and observing its impact
to the total throughput without any discussions on scientific methods to optimize it. Additionally, the
discussions are based on a model specifically designed and constructed for a considered network.
These deficiencies motivated us to provide a tool that can generally be used to easily handle and ana-
lyze anyM/G/C/C networks and automatically find arrival rates optimizing their performance based on
operations research techniques.
This paper has two objectives. The first objective is to derive the optimal arrival rate of pedestrians

at the origin of a corridor that maximizes its throughput. For this, we use calculus and numerical anal-
ysis methods. We then show how the optimal arrival rate of each of available corridors in a topological
network can be utilized to find the optimal arrival rates of its source corridors, which maximize its total
throughput using a network flow programming approach. The second objective is to design an M/G/C/
C software application as a platform for analyzing the performance of a network. The application em-
ploys an Object-oriented Programming (OOP) approach to ease the network’s construction (in terms
of its topology and network flow programming model) and performance evaluation (based on the
initial and optimal arrival rates) and uses the LINGO optimization commercial software through its
Dynamic Link Library (DLL) approach to solve an automated flow programming script that maxi-
mizes the network’s total flow subject to relevant flow constraints. LINGO is a comprehensive modeling
language and solver developed by LINDO Systems Incorporation (Chicago, IL, USA) (www.lindo.
com) for efficiently building and solving linear, nonlinear, integer and stochastic optimization models.
Thus, our main purpose of using the LINGO software is to solve linear network optimization models
created by our application. This proposed approach helps policymakers implement M/G/C/C state
queuing networks to best flow people through a network especially in emergency cases.
The main contribution of this paper is to present an algorithm for optimizing the arrival rates of pedes-

trian traffic flows through a topological network based on the combination of M/G/C/C state dependent
queuing network and network flow programming approaches. The demonstration of how our methodol-
ogy and algorithm can be applied to find the optimal arrival rates of any imaginary and real complex
topological networks through a software application is also a novel contribution of this paper. The derived
optimal arrival rates will effectively flow entities throughout the network and relatively minimize the time
needed to vacant them from any considered environment, for example, a building and hall.
This paper is structured as follows. Section 2 reviews the pedestrian traffic and congestion model

and illustrates the effect of arrival rates to the throughputs of some considered corridors. Note that
we have to present theM/G/C/C’s mathematical background in detail because our intention is to derive
its optimal throughput. Section 3 derives the equation maximizing a corridor’s throughput using calcu-
lus and numerical analysis methods. Combining both methods, we can then find the optimal arrival rate
of a corridor optimizing its throughput. In Section 4, we design anM/G/C/C framework for developing
a tool that easily structures a topological network, analyzes its performance based on inputted arrival
rates, and then automatically calculates the optimal arrival rates of each available source corridors
optimizing the whole network based on OOP and DLL approaches. In Section 5, we show how the tool
structures an imaginary and real topological network and analyzes its performance. This section also
discusses the performance of the application in analyzing various numbers of corridors in terms of
computational time. Section 6 discusses the practical scope of our methodology especially in dealing
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with the optimal arrival rates. Finally, Section 7 summarizes the findings and presents some conclu-
sions and future work.

2. PEDESTRIAN TRAFFIC AND CONGESTION MODEL

Evacuation planning that deals with evacuees’ behavior in a network can be modeled using micro-
scopic or macroscopic approaches. Microscopic approaches consider each individual evacuee as a
separate flow object and model the effect of their attributes (e.g., gender and age) and other relevant
factors (e.g., blockage and congestion at a particular point) to their movement. Macroscopic ap-
proaches meanwhile aggregate the evacuees and model their movements through an evacuation path,
for example, the effect of their density on the current flow. Examples of microscopic and macroscopic
models based on analytical and simulation techniques and their classification are discussed in detail in
[5]. Wang et al. [20] meanwhile provide a comprehensive review on various macroscopic models and
their performance compared with empirical data observation. There are two approaches of utilizing the
macroscopic models. The first approach is to use a relevant model to evaluate the performance of a set
of potential routes, while the second approach is to use an optimization technique to optimize the
model. We focus on the second approach and use the M/G/C/C as our evacuation model.
An M/G/C/C queuing network was developed based on Tregenza’s empirical study [21], who

asserted that a pedestrian’s walking speed through a corridor was influenced by the current number
of its residing pedestrians. By plotting the graph of crowd density versus mean walking speed, he dis-
covered two significant findings. First, the lone pedestrian’s walking speed (V1) was around 1.5m/sec-
ond. Second, the current walking speed (Vn) decreased when the current number of residing
pedestrians (n) approaches to the capacity of the corridor (c), with small movement may exist when
n= c. Whenever n≥ c+ 1, all movement should then stop; that is, Vn=0. He also discovered that the
capacity of a corridor is equal to the highest integer of five times its area in square meters.
The effect of the number of pedestrians on the walking speed was then formalized by Yuhaski and

Smith [6]. They presented linear and exponential models of walking speed as follows:

Linear : Vn ¼ V1

c
cþ 1� nð Þ (1)

Exponential : Vn ¼ A exp � n� 1
β

� �γ� �
(2)

where

γ ¼
ln ln Va=V1ð Þ

ln Vb=V1ð Þ
h i
ln a�1

b�1

� �

β ¼ a� 1

ln V1
Va

� 	h i1
=γ

¼ b� 1

ln V1
Vb

� 	h i1
γ=

γ, β = shape and scale parameters for the exponential model
Vn = average walking speed for n pedestrians in a corridor
Va = average walking speed when crowd density is 2 peds/m2= 0.64m/second
Vb = average walking speed when crowd density is 4 peds/m2= 0.25m/second
V1 = average walking speed for a single pedestrian = 1.5m/second
n =number of pedestrians in a corridor
a =2× l×w
b =4× l×w
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c =5× l×w
l =corridor length in meters, and
w =corridor width in meters.

According to Cheah [22] and Cheah and Smith [23], the exponential model also presents the walk-
ing speed for bi-directional and multi-directional flows except the values for parameters Va and Vb,
which are slightly smaller. For bi-directional flows, Va=0.60 peds/second and Vb=0.21 peds/second
while for multi-directional flows, Va=0.56 peds/second and Vb=0.17 peds/second. This corresponds
with what Fruin [24] found that there was a relatively small range in average walking speed between
unidirectional, bi-directional, and multi-directional traffic flows and proposed that the capacity a
corridor with bi-directional flow is nearly equal to that of unidirectional flow corridor. Based on the
models, Yuhaski and Smith [6] developed the limiting probabilities for the number of pedestrians in
an M/G/C/C model as follows:

Pn ¼ λE Sð Þ½ �n
n!f nð Þf n� 1ð Þ…f 2ð Þf 1ð ÞP0 n ¼ 1; 2; 3; …; c (3)

where

P�1
0 ¼ 1þ ∑

C

n¼1

λE Sð Þ½ �i
i!f ið Þf i� 1ð Þ…f 2ð Þf 1ð Þ

" #
:

In this model, λ is the arrival rate to a corridor, E(S) is the expected service time of a single pedes-
trian in the corridor, Pn is the probability when there are n pedestrians in the corridor, P0 is the prob-
ability when there is no pedestrian in the corridor, and f(n) is the service rate and is given by f nð Þ ¼ Vn

V1
.

c meanwhile refers to the capacity of the corridor. Any pedestrians attempting to enter the full capacity
corridor will be blocked. The probability of such blocking (Pbalk) is equal to Pn where n equals to c.
Because Cheah and Smith [23] showed that M/G/C/C networks are equal to M/M/C/C networks,
various performance measures of the corridor can then be computed as follows:

θ ¼ λ 1� Pbalkð Þ;E Nð Þ ¼ ∑
C

n¼1
nPn and E Tð Þ ¼ E Nð Þ

θ
(4)

where θ is the throughput of the corridor (in pedestrians per second, that is, peds/second), E(N) is the
expected number of pedestrians in the corridor (peds/second), and E(T) is the expected service time in
seconds.
Figure 1 charts the effects of arrival rates to the throughputs of considered corridors. Four corridors

with relevant lengths and widths are considered, that is, 8 × 2.5m, 8×4m, 10×3m, and 9.45× 1.5m.
For the first three corridors, the traveling distances that pedestrians must walk are the same as their
lengths. This situation represents that arrival sources are located at the origin of the corridors. For
the fourth corridor, the traveling distance is only 2.7m. This situation represents that the corridor
has multiple arrival sources located along the corridor and the average distance of the arrival sources
to the end of the corridor is 2.7m. More details on this can be found in other articles (e.g., [6,9]). Our
objective is to find the arrival rates that maximize the throughput of the corridors.

3. CORRIDOR OPTIMAL FLOW

This section derives the equation optimizing a corridor’s throughput. From the equation, we then use
available numerical analysis methods to find its optimal arrival rate. As mentioned earlier, the optimal
arrival rate is the best arrival rate that effectively and safely flows entities through the corridor with
little congestion. Any lower values than the optimal arrival rate will cause fewer throughputs, while
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any higher values than the optimal rate will cause congestion without improving the optimal
throughput.

3.1. Analytical optimal flow equation maximizing corridor throughput

Figure 1 shows that at a certain level of arrival rates, the throughput of a corridor is maximized. For
example, an arrival rate between 2 and 3 peds/second will maximize the throughput of corridor
8× 2.5m. For corridor 8 × 4m, the maximum throughput (i.e., more than 4 peds/second) can be
obtained if its arrival rate is controlled between 4 and 5 peds/second. Thus, our objective is to derive
the optimal arrival rate using calculus and numerical analysis methods.
From Equation (4), the throughput of an M/G/C/C network is defined as

θ ¼ λ 1� Pcð Þ

By substituting Pc ¼ λE Sð Þ½ �c
c!f cð Þf c�1ð Þ…f 2ð Þf 1ð ÞP0 to the equation, we obtain

θ ¼ λ-λ
λE Sð Þ½ �c

c!f cð Þf c� 1ð Þ…f 2ð Þf 1ð Þ

( ),
1þ ∑

c

i¼1

λE Sð Þ½ �i
i!f ið Þf i� 1ð Þ…f 2ð Þf 1ð Þ

" #( )
(5)

Taking

u ¼ λ
λE Sð Þ½ �c

c!f cð Þf c� 1ð Þ…f 2ð Þf 1ð Þ

 �

; we obtain
du

dλ
¼ cþ 1ð Þ λE Sð Þ½ �c

c!f cð Þf c� 1ð Þ…f 2ð Þf 1ð Þ

 �

while taking

v ¼ 1þ ∑
c

i¼1

λE Sð Þ½ �i
i!f ið Þf i� 1ð Þ…f 2ð Þf 1ð Þ

" #
; we obtain

dv

dλ
¼ 1

λ
∑
c

i¼1

i λE Sð Þ½ �i
i!f ið Þf i� 1ð Þ…f 2ð Þf 1ð Þ

" #

Figure 1. Arrival rates versus throughputs of corridors.
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Using the quotient rule [25], we obtain

dθ
dλ

¼ 1� 1

P�1
0

� �2 1þ ∑
c

i¼1

λE Sð Þ½ �i
i!f ið Þf i� 1ð Þ…f 2ð Þf 1ð Þ

" #( )(
cþ 1ð Þ λE Sð Þ½ �c

c!f cð Þf c� 1ð Þ…f 2ð Þf 1ð Þ

)
�

λ

P�1
0

� �2 λE Sð Þ½ �c
c!f cð Þf c� 1ð Þ…f 2ð Þf 1ð Þ

( )
∑
c

i¼1

λE Sð Þ½ �i
i!f ið Þf i� 1ð Þ…f 2ð Þf 1ð Þ

" #( )
(6)

This equation can be simplified as

dθ
dλ

¼ 1�
λE Sð Þ½ �c

c!f cð Þf c�1ð Þ…f 2ð Þf 1ð Þ cþ 1
� �

P�1
0

� �� ∑
c

i¼1

i λE Sð Þ½ �i
i!f ið Þf i� 1ð Þ…f 2ð Þf 1ð Þ

" #( )

P�1
0

� �2 (7)

A critical point of the throughput function θ happens when dθ
dλ ¼ 0. Thus, setting Equation (7) equals

to zero and solving it, we obtain λ= λopt, which maximizes the throughput function. To confirm that the

(λopt, θopt) point is a maximum point, we have to substitute λ= λopt to d2θ
dλ2

, which is given by

d2θ
dλ2

¼
2ψP�1

0 cþ 1� Φ½ � þ ψ P�1
0

� �2
P�1
0 Ω� 2 P�1

0 � 1
� �

Φ� c cþ 1ð Þ P�1
0

� �2h i
P�1
0

� �3 (8)

where

ψ ¼ Pc

λP0
; Φ ¼ ∑

c

i¼1

i λE Sð Þ½ �i
i!f ið Þf i� 1ð Þ…f 2ð Þf 1ð Þ

" #
; Ω ¼ ∑

c

i¼1

i2 λE Sð Þ½ �i
i!f ið Þf i� 1ð Þ…f 2ð Þf 1ð Þ

" #
; ∀λ > 0

If d2θ
dλ2

< 0 then the (λopt, θopt) point is a maximum point. Otherwise, it is a minimum point.

3.2. Computing the optimal arrival rate using numerical analysis methods

We can observe that the throughput graphs for all considered corridors follow the same pattern. For
λ ∈[0, λopt), the slope of the throughput function, dθdλ ¼ 1. At the optimal arrival rate, that is, λ= λopt,

the slope of the throughput function, dqdλ ¼ 0. After this optimal point, dθdλ has big negative values and

finally decreases to �1 when λ reaches a certain arrival rate. Figure 2 shows the graphs of dθ
dλ versus

arrival rates for the considered corridors while Figure 3 shows the graphs of the second derivative
of the throughputs versus arrival rates for the corridors.
We have to solveP λð Þ ¼ dθ

dλ ¼ 0 to get λ= λopt. Because its analytical solution is impossible, we used
numerical analysis methods [26, 27]. Examples of numerical methods include Bisection, Regula-Falsi,
Secant, Newton–Raphson (whose computational methods in finding the optimal arrival rate of a corri-
dor are discussed in Appendix A), and Iterative methods. We found that the Iterative method is the
best numerical method in terms of the number of iterations for searching λopt of all of the considered
corridors.
The Iterative method requires us to change P λð Þ ¼ dθ

dλ to λ =φ(λ). λnew =φ(λold) is repeated until

|λnew� λold|< ε. Thus, the new equation for P λð Þ ¼ dθ
dλ is
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λ ¼ P�1
0

� �2
λE Sð Þ½ �c

c!f cð Þf c�1ð Þ…f 2ð Þf 1ð Þ cþ 1
� �

P�1
0

� �� ∑
c

i¼1

i λE Sð Þ½ �i
i!f ið Þf i� 1ð Þ…f 2ð Þf 1ð Þ

" #( )
0
BBBB@

1
CCCCA

1=c

Table I shows the effect of arrival rates to the corridors’ performance measures. For each corridor,
three arrival rates are considered, that is, an arrival rate lower than its optimal arrival rate, its optimal
arrival rate, and an arrival rate higher than its optimal arrival rate. The table also shows the number of
iterations required to search λopt of the corridors based on the Iterative, Bisection, and Regula-Falsi
methods.
From Table I, we can deduct four significant patterns of the effect of arrival rates to the corridors’

throughputs. First, any arrival rates less than the optimal arrival rates flow pedestrians smoothly

Figure 2. First derivative of throughput versus arrival rate.

Figure 3. Second derivative of throughput versus arrival rate.
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without any blocking. However, the rates cause little throughputs at the end. Second, at the optimal
arrival rates, the throughputs are maximized with some pedestrians that are blocked from entering
the corridors. Third, any arrival rates greater than the optimal arrival rates cause high blocking, and this
situation decreases the corridors’ throughputs at the end. Fourth, for corridors that have the same
capacities (e.g., corridors 8 × 4m and 4×8m), the lengths determine their throughputs; that is, the
corridor with a shorter length has a higher throughput.

4. TRAFFIC MANAGEMENT TOOL

4.1. Object-oriented M/G/C/C framework

A complex topological network typically consists of series, merging, and splitting corridors. These
corridors have their own lengths, widths, capacities, arrival rates, optimal arrival rates, and so on.
To model the network’s structure and evaluate its performance, we have designed and constructed
an M/G/C/C framework, which is mainly based on an OOP approach. Figure 4 shows the structure
of our M/G/C/C framework.
Our framework consists of two classes. The first class is a Corridor class that is used to create

corridor objects to represent available corridors in a topological network. The second class is a
Network class whose object is used to manage the execution of the network. This includes reporting
its current performance (in terms of corridors’ performances), creating its network flow programming
script, sending the script to the LINGO optimization software, retrieving its source corridors’ optimal
arrival rates, re-measuring its optimal performance based on the optimal arrival rates, and finally
reporting the maximum throughput that can be achieved. All of these functionalities are available
through their class methods as shown in Figure 5.
There are three types of methods provided in the Corridor class. All these methods are named based

on their functionality. The first type is to initialize a corridor’s identification and physical dimension,
for example, ID, length, width, average, and traveling distance. The second type is to set or report its
performance, for example, arrival rate, throughput, blocking probability, expected service time,
expected number of occupants, and optimal arrival rate. The optimal arrival rate of each available

Table I. Samples of arrivals rates that optimize corridors.

Corridor λ ⊖ P(c) E(N) E(T)

5.0 × 4.0 2.0000 2.0000 0.0000 7.8197 3.9098
14.3173 4.2573 0.0139 28.9942 6.8104
8.0000 3.1198 0.6100 99.3507 31.8448

8.0 × 2.5 2.0000 2.0000 0.0000 14.4875 7.2438
22.6983 2.6608 0.0139 28.9942 10.8966
4.0000 1.9593 0.5102 99.0114 50.5337

8.0 × 4.0 3.0000 3.0000 0.0000 20.9090 6.9697
34.3378 4.3012 0.0085 42.7223 9.9327
8.0000 3.1045 0.6119 159.3598 51.3322

4.0 × 8.0 3.0000 3.0000 0.0000 8.9150 2.9717
48.6757 8.6023 0.0085 42.7243 4.9666
16.0000 6.2090 0.6119 159.3598 25.6661

10.0 × 3.0 2.5000 2.5000 0.0000 22.8638 9.1455
53.2513 3.2219 0.0090 40.3966 12.5380
6.0000 2.3296 0.6117 149.3588 64.1128

9.45 × 1.80 (ATD= 2.7000m) 4.5000 4.5000 0.0000 10.5286 2.3397
66.7516 6.6423 0.0162 25.2361 3.7993
10.0000 4.8753 0.5125 85.0150 17.4380

n of iterations 1 = 17*, 30†, 130‡; 2 = 16*, 30†, 506‡; 3 = 15*, 30†, 218‡; 4 = 16*, 30†, 23‡; 5 = 15*, 30†, 476‡;
6 = 18*, 30†, 20‡

*Interative method based on λ = 1.0 ped/second and error tolerance = 0.00000001.
†Bisection method based on λ1 = 1.0 ped/second and λ2 = 10.0 peds/second and error tolerance = 0.00000001.
‡Regula-Falsi method based on λ1 = 1.0 ped/second and λ2 = 10.0 peds/second and error tolerance = 0.00000001.
ATD, Average Travelling Distance.
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corridor can be obtained through the getOptimalArrivalRate( ) method that implements the Iterative
numerical method. The ID and optimal arrival rate are used as a corridor’s identification and capacity
in a network flow programming model, respectively. The performance of the corridor based on this op-
timal arrival rate is generated using the getOptimalPerformance( ) method. Note that all of these func-
tions should be used after the instantiation and initialization of the corridor. The third type is to define
how this corridor is linked to other corridors to form a topological network. The relevant methods are
nextCorridor(Optional prob:Double, corr:Corridor) and previousCorridor(corr:Corridor). All corri-
dors that have connection with the corridor can then be accessed through the listOfNextCorridor( )
and listOfPreviousCorridor( ) methods.
The nextCorridor(Optional probability:Double, nextCorridor: Corridor) is called by a corridor to

set the nextCorridor object as its downstream corridor, which is then stored in its
collectionOfNextCorridor variable. Upon calling this method, the previousCorridor(prevCorridor:
Corridor) method is activated to set the corridor as the upstream corridor of the previousCorridor
object, which is then stored in its collectionOfPreviousCorridor variable. For example, Corridor1.
nextCorridor=Corridor2 links Corridor1 and Corridor2 objects. This statement implies that Corri-
dor2 is set as a downstream corridor of Corridor1. At the same time, the program automatically sets
Corridor1 as an upstream corridor of Corridor2. The probability parameter in the method is an
optional parameter. It specifies how the throughput of an upstream corridor is channeled to its down-
stream corridor. If unspecified, the probability is automatically calculated based on the number of its
downstream corridors. For example, if a corridor has two downstream corridors, the probability is then
set to 0.5. Otherwise, the statement of Corridor1.nextCorridor(0.4) =Corridor2 means that 40% of the

Figure 4. M/G/C/C framework. DLL, Dynamic Link Library.

Figure 5. Class diagram for the M/G/C/C network.
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throughput of Corridor1 is channeled to Corridor2. Using these strategies, we can construct a topolog-
ical network for series, splitting, and merging networks as follows:

Series topology:

Corridor1.nextCorridor = Corridor2
Corridor2.nextCorridor = Corridor3

Splitting topology:

Corridor1.nextCorridor (0.4) = Corridor2
Corridor1.nextCorridor (0.6) = Corridor3

Merging topology:

Corridor1.nextCorridor = Corridor3
Corridor2.nextCorridor = Corridor3

Storing a corridor’s upstream and downstream corridors also allows us to differentiate between
source, intermediate, and exiting corridors. Source corridors are corridors that do not have any up-
stream corridors unless arrival rates are imposed to the corridors. Intermediate corridors are corridors
that have both upstream and downstream corridors. Exiting corridors are corridors that only have
upstream corridors. Using this strategy, we can calculate arrival rates to any intermediate or exiting
corridors as illustrated in Figure 6.
The arrival rate of a corridor is how much the throughputs of its upstream corridors are channeled to

this corridor. For example, consider a corridor with three upstream corridors. To calculate its arrival
rate, we have to find the throughputs of the upstream corridors and multiply them with their routing
probabilities to this corridor. The arrival rate of each of the upstream corridors is again based on
how much the throughputs of its upstream corridors are channeled to the corridor. The process is re-
peated until a source corridor is found, that is, a corridor that has no upstream corridors. Thus, this pro-
cess should be recursive. The recursive function guarantees that the arrival rate of a relevant corridor is
calculated correctly. The algorithm for calculating the arrival rate of a corridor is shown in Table II. In
the algorithm, V refers to a set of nodes (corridors), A is a set of arcs connecting corridors, and G(V, A)
is a graph that defines the topological network.
To manage the execution of corridors, we have to insert them to a Network object. The network ob-

ject must first be created and fed with corridors using the addCorridor(CorridorName:Corridor)
method. For example, the statement myNetwork.addCorridor=Corridor1 inserts Corridor1 to the
myNetwork object. Note that this method should only be used after we have created Corridor1. Other
methods in the Network class will be discussed in the next section. We used Visual Basic [28] as an
implementation language for the framework.

Figure 6. Relationship between arrival rate and throughput of a node.
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4.2. Optimizing a topological network total throughput

An M/G/C/C queuing network is typically used to evaluate the performance of evacuation strategies
based on certain flow rates. The impacts of various flow rates to source corridors are documented,
and the ideal evacuation rates are recommended to best flow pedestrians through a topological net-
work. In order to maximize the network’s throughput, we propose the combination of the M/G/C/C
network and network flow programming approaches.
Implementing these approaches requires us to convert a network’s structure to its equivalent net-

work flow diagram. In this case, each corridor is represented using a node, while links between corri-
dors are presented using edges. Because the network may have multiple sources (s1, s2, …, sn) and
sinks (t1, t2, …, tn), we introduce a fictitious super-source S and a fictitious super-sink T. The flow
capacities from the super-source S into each available source (S, si) and the flow capacities from each
available sink into the super-sink T (tj, T) are unlimited, that is, c(S, si) = c(tj, T) =∞.
The network flow programming has the following characteristics:

NOTATION

i = an index for origin node (vertex) i
j = an index for destination node j

DECISION VARIABLE

xi→j = the flow from origin node i to destination node j

MATHEMATICAL FORMULATION

Maximize xT→ S xT→ S represents the flow from super-sink node T back to
super-source node S

subject to:
∑jxi→ j� (∑ixj→ i� xT→ S) = 0 outflow of node i must equal to its inflow for node i=S
∑jxi→ j� (∑ixj→ i� xS→ i) = 0 outflow of source node i must equal to its inflow for every node

i= s1, s2, …, sn
∑jxi→ j�∑ixj→ i=0 outflow of node i must equal to its inflow for every node i≠ s, t

Table II. Throughput algorithm.

read G(V,A)
read routing probabilities Pij, ∀ i, j ∈A
read arrival rates, λi, ∀ i ∈V
for ∀ i ∈V do
read its upstream nodes Uk where Pki ≠ 0
if Uk> 0 then
/*traverse until its source nodes*/
for ∀ j ∈Uk do
/* λi in the right hand side represents the node has its own arrival rate*/
λi = θj × Pji + λi

end for
end if
/* arrive at a source node and calculate the node’s throughput*/
θi = λi × (1 - blockingi)

end for
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(∑jxi→ j+ xi→ T)�∑ixj→ i=0 outflow of sink node i must equal to its inflow for every node
i= t1, t2, …, tn

(∑jxi→ j+ xT→ S)�∑ixj→ i=0 outflow of node i must equal to its inflow for node i=T
xi→ j≤ ui→ j flow capacity for every edge i→ j
xi→ j≥ li→ j minimum flow for every edge i→ j

Note that the summation of arrival rates to a corridor must be smaller or equal to its optimal arrival
rate; that is, ∑

i
xi→ j ≤ cj,where cj is the optimal arrival rate to corridor j.

The performance of traffic flows through a single node (i.e., corridor) can be measured using the
discussed analytical model. It is however impossible to construct an analytical model for measuring
the performance of entity flows through a network of nodes because any arrivals or departures of entities
at any particular nodes require the adjustment of service rates in the whole network. Thus, any saturated
downstream nodes due to heavy traffic or low capacity will affect the performance of their upstream
nodes. In order to comprehensively compute its performance, simulation or approximation methods
such as the Generalized Expansion Method (GEM) [29, 30] can be used. The essence of the GEM is
to add an artificial holding node prior to each node in the network to register entities blocked from join-
ing the node when it is in full capacity. By doing this, the network is now converted to an equivalent
Jackson network [31, 32] where each node can now be decomposed and analyzed separately. A detailed
discussion on how the GEM is used to analyze traffic flows in anM/G/C/C network and how well it ap-
proximates the actual performance of the network can be found in the literature (e.g., [7, 8, 11, 23]).
Our network flow programming approach is also based on the stability condition as in a Jackson net-

work. This condition requires us to ensure that there is no blockage between the links of nodes in a
finite capacity topological network. To achieve this, our application software first analyzes the network
by relaxing the finite capacity of each node and modeling them as M/G/∞ queues so that its service
time is drawn independently of the service time in other nodes. This technique enables us to decom-
pose each node and analyze them separately. For each node, our software then searches its optimal
arrival rate maximizing its throughput while minimizing its blocking probability.
The minimal blocking ensures that entities do not overflow each of the state-dependent queues in the

whole network. The optimal arrival rates are then used in the network flow programming model to
search the optimal arrival rates of source nodes and other nodes (when they are considered as a net-
work) subject to the total flow out of each node that is equal to its total flow in, and the total arrival
rate to the node must be smaller or equal to its optimal arrival. This is the main reason the network flow
programming model does not contain any terms related to congestion because the congestion has been
accommodated during the searching process of the optimal arrival rate for each node. Solving the
model will give the optimal arrival rates of source corridors that guarantee the flow to each down-
stream node that is smaller than its optimal flow and will ensure that the number of entities in all
M/G/C/C queues is below the threshold value for their blocking probabilities so that no entities will
be lost during their flows. These optimal arrival rates of source nodes are then fed to the network to
assess the real throughput and blocking probability based on the algorithm in Table II.
Our purpose is to develop a software application that automatically creates and solves a network

flow programming script for any M/G/C/C networks structured by users. For this, we equip the Net-
work class with relevant LINGO commands (Appendix B) to establish the network’s objective function
and constraints. All of these commands are private (which are accessible within the Network class) and
can only be accessed through our lingoScript( ) method. Thus, the lingoScript( ) generates a complete
network flow programming script based on the LINGO syntax. To report the performance of each avail-
able corridor based on the initial and optimal arrival rates, we provide the performance( ) method. This
method forces all of the corridor objects stored in the collectionOfCorridor variable to calculate their
throughputs, blocking probabilities, expected number of occupants and the expected service times.
Users’ tasks are only to create a topological network. Upon completing this, our application dynam-

ically generates its network flow script, runs relevant LINGO commands in the background, and re-
trieves the optimal arrival rates of source corridors. These values are then used to calculate the
network’s new total throughput. Our application is linked to the LINGO software using its DLL. The
DLL provides access to all LINGO’s major features using command scripts, for example, to create
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and delete a LINGO environment object, to create and open a LINGO’s log file, to map LINGO’s memory
pointers to an application, and to execute a model and solves it. Some of the important commands used
to link our application and LINGO are found in Appendix B.

5. RESULTS AND ANALYSIS

5.1. Imaginary topological network

This section shows how our application measures the performance of a selected topological network,
generates its network flow programming script, and analyzes its optimal performance. We consider a
network structure as in Figure 7. The dimension of each available corridor and its relationship with the
throughputs of other corridors are displayed in Table III.
The network consists of series, merging, and splitting topologies. For example, a series topology is

formed by corridors 2, 4, and 6. Splitting topologies are formed by corridor 1 (splits to corridors 3 and
5), corridor 2 (splits to corridors 3 and 4), corridor 5 (splits to corridors 7 and 8), and corridor 6 (splits
to corridors 7 and 8). Merging topologies are formed by corridor 3 (merged by corridors 1 and 2), cor-
ridor 7 (merged by corridors 3, 5, and 6), and corridor 8 (merged by corridors 5, 6, and 7). To construct
the network, we first define the network object via

Set myNetwork = New Network

We then instantiate all available corridors and specify their lengths and widths. For the source cor-
ridors, we have to initialize their arrival rates. For example, corridor 1 (which refers to Corridor1 in our
application) is defined and initialized using this code:

Set Corridor1 = New Corridor
Corridor1.ID = "Corr1"
Corridor1.Length = 9

Figure 7. A topological network structure.

Table III. Corridor dimension, arrival rate, and throughput.

Type Corridor Length Width Arrival rate Throughput

Source 1 9.0 3.5 λ1 θ1
2 8.0 2.0 λ2 θ2

Intermediate 3 10.0 3.0 λ3 ¼ θ1
2 þ θ2

2 θ3

4 7.0 4.0 λ4 ¼ θ2
2 θ4

5 6.0 4.5 λ5 ¼ θ1
2 θ5

6 5.0 4.0 λ6 = θ4 θ6
7 8.0 4.0 λ7 ¼ θ3 þ θ5

2 þ θ6
2 θ7

Exiting 8 8.0 2.5 λ8 ¼ θ5
2 þ θ6

2 þ θ7 θ8
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Corridor1.Width = 3.5
Corridor1.AverageLength = 9
Corridor1.Lambda = 2
myNetwork.addCorridor = Corridor1

Note that the ID property, that is, Corr1 is used to represent the corridor name in the network’s
flow programming script. The same procedure must be followed to create other corridors. How-
ever, only source corridors or intermediate corridors that have additional arrival rates need to
specify the Lambda property values. To create links between the available corridors, the following
code must be written:

Corridor1.nextCorridor(0.5) = Corridor3
Corridor1.nextCorridor(0.5) = Corridor5
Corridor2.nextCorridor(0.5) = Corridor3
Corridor2.nextCorridor(0.5) = Corridor4
Corridor3.nextCorridor(1) = Corridor7
Corridor4.nextCorridor(1) = Corridor6
Corridor5.nextCorridor(0.5) = Corridor7
Corridor5.nextCorridor(0.5) = Corridor8
Corridor6.nextCorridor(0.5) = Corridor7
Corridor6.nextCorridor(0.5) = Corridor8
Corridor7.nextCorridor(1) = Corridor8

Note that the splitting probabilities for all corridors are assumed to be 0.5. These values can be
changed to any values as long as the total splitting probabilities of each node is 1. Once the code has
been written, users can now run the application. The application then evaluates the performance of each
corridor, generates the LINGO script based on the established network structure, sends it to the LINGO

software, retrieves the optimal arrival rates of source corridors, and reports the performance for each
corridor based on the optimal arrival rates. Table IV shows the results reported by our application.
We can confirm that the throughputs of the upstream corridors (based on their splitting probabili-

ties) are the arrival rates of their downstream corridors. For example, the arrival rate of intermediate
Corridor 3 (i.e., 2.9364peds/second; line 5) is the summation of half of the throughputs of Corridor 1
(i.e., 3.757 peds/second; line 3) and Corridor 2 (i.e., 2.1159peds/second; line 4). The arrival rate of
Corridor 8 (i.e., 5.6707 peds/second; line 10) is half of the throughput of Corridor 5 (i.e., 1.8785 peds/
second; line 7), half of the throughput of Corridor 6 (i.e., 1.0579peds/second; line 8), and the full
throughput of Corridor 7 (i.e., 4.2025 peds/second; line 9). Note also that we purposely used the
optimal arrival rates of the source corridors; that is, Corridor 1 and Corridor 2 as their initial arrival
rates because we wish to test if the rates maximize the total throughput of the network. Using these
initial arrival rates, the total throughput of the network is 1.9466 peds/second (line 11), that is, the
throughput of exiting Corridor 8. To search the optimal rates of the source corridors, the application
automatically generates the network flow programming script for the network structure (lines 14 to 58).
The application first writes the network’s objective function, that is, to maximize the pedestrian flow

from super-sink node T back to super-source node S. Because this network only has two source corri-
dors, its XT_S is the summation of the arrival rates of Corridor 1 and Corridor 2 (line 18). Second, the
application guarantees that all flow out of each node is equal to its flow in. For example, the flow from
Corridors 1 and 2 to Corridor 3 must equal to its flow out, that is, the flow from Corridor 3 to Corridor
7 (line 23). Third, the flow out of the super-sink node T must equal to its flow in. Because the consid-
ered network only has one exiting corridor, that is, Corridor 8, the throughput of Corridor 8 must equal
to XT_S (line 18). Fourth, the upper limit of arrival rate of a node must be smaller or equal to its op-
timal arrival rate to guarantee no blocking exists. For example, the arrival rate from Corridor 1 and
Corridor 2 to Corridor 3 must be smaller or equal to its optimal arrival rate, that is, 3.2513peds/second
(line 36). Finally, the application ensures that the splitting probabilities of a node are satisfied. For ex-
ample, the splitting probabilities of Corridor 2 to Corridors 3 and 4 are 0.5, respectively, (line 45). In
order to capture the solutions generated by LINGO, the application maps the memory linkage with the
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Table IV. Application outputs

1 Performance based on the current arrival rates:
2 Corridor Lambda Theta Blocking E(N) E(T)
3 Corr1 3.7893 3.757 0.0085 41.9674 11.1706
4 Corr2 2.1541 2.1159 0.0177 24.5859 11.6196
5 Corr3 2.9364 2.9364 0 29.7747 10.1398
6 Corr4 1.0579 1.0579 0 5.3093 5.0185
7 Corr5 1.8785 1.8785 0 8.5107 4.5306
8 Corr6 1.0579 1.0579 0 3.8002 3.5921
9 Corr7 4.4046 4.2025 0.0459 59.5345 14.1666
10 Corr8 5.6707 1.9466 0.6567 99.4712 51.1009
11 Total throughput of the network: 1.9466
12
13 Network Flow Programming Model:
14 MODEL:
15 [R_OBJ] MAX = XT_S;
16
17 !Flow out of a super source node equals its flow in;
18 XT_S = XS_Corr1 + XS_Corr2;
19
20 !Flow out of each node equals its flow in;
21 XS_Corr1 = X_Corr1_Corr3 + X_Corr1_Corr5;
22 XS_Corr2 = X_Corr2_Corr3 + X_Corr2_Corr4;
23 X_Corr1_Corr3 + X_Corr2_Corr3 = X_Corr3_Corr7;
24 X_Corr2_Corr4 = X_Corr4_Corr6;
25 X_Corr1_Corr5 = X_Corr5_Corr7 + X_Corr5_Corr8;
26 X_Corr4_Corr6 = X_Corr6_Corr7 + X_Corr6_Corr8;
27 X_Corr3_Corr7 + X_Corr5_Corr7 + X_Corr6_Corr7 = X_Corr7_Corr8;
28 X_Corr5_Corr8 + X_Corr6_Corr8 + X_Corr7_Corr8 = X_Corr8_T;
29
30 !Flow out of a super sink node equals its flow in;
31 X_Corr8_T = XT_S;
32
33 !Maximum arrival rate for a node;
34 XS_Corr1 <= 3.7893;
35 XS_Corr2 <= 2.1541;
36 X_Corr1_Corr3 + X_Corr2_Corr3 <= 3.2513;
37 X_Corr2_Corr4 <= 4.3321;
38 X_Corr1_Corr5 <= 4.8719;
39 X_Corr4_Corr6 <= 4.3173;
40 X_Corr3_Corr7 + X_Corr5_Corr7 + X_Corr6_Corr7 <= 4.3378;
41 X_Corr5_Corr8 + X_Corr6_Corr8 + X_Corr7_Corr8 <= 2.6983;
42
43 !Channeling probabilities of a node;
44 0.5* X_Corr1_Corr3 = 0.5* X_Corr1_Corr5;
45 0.5* X_Corr2_Corr3 = 0.5* X_Corr2_Corr4;
46 0.5* X_Corr5_Corr7 = 0.5* X_Corr5_Corr8;
47 0.5* X_Corr6_Corr7 = 0.5* X_Corr6_Corr8;
48 XS_Corr1 = XS_Corr2;
49 DATA:
50 @POINTER(1) = @STATUS();
51 @POINTER(2) = R_OBJ;
52 @POINTER(3) = XS_Corr1;
53 @POINTER(4) = XS_Corr2;
54 END DATA
55 END
56 SET GLOBAL 1
57 GO
58 QUIT
59
60 SOLUTION FOR THE MODEL
61 Status: Globally Optimal

(Continues)
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LINGO solver (lines 50 to 53). The @POINTER commands capture the values of status, objective func-
tion, and arrival rates of source corridors.
The script is then transferred to the LINGO software through the DLL approach to find the op-

timal arrival rates of the source corridors (lines 61 to 64). The optimal arrival rates of the source
Corridors 1 and 2 that maximize the overall throughput of the network are 1.34915 peds/second,
respectively. Both of these values are then supplied back to the main application to measure the
new performance of the available corridors (lines 67 to 75). The optimal throughput of the net-
work is 2.6608 peds/second (line 76). Notice that the optimal arrival rates of the source corridors
cause little or no blocking at intermediate and exiting corridors. This finding corresponds to the
recommendation (e.g., [5, 30, 33]) that the population safety during an evacuation process can be
achieved by minimizing congestion along route links. Notice that the arrival rates that only opti-
mize the source corridors (i.e., 3.7893 and 2.1541 peds/second) do not guarantee the optimal
throughput of the whole network.
Controlling pedestrian arrival rates to maximize a network’s throughput is a desirable

objective. However, the real issue is not necessarily how to control pedestrian flow rates, but
how to efficiently and safely route the pedestrians through the network. For this case, we can
request the application not to write the channeling probabilities of each node (e.g., lines 44 to
47). Removing these constraints will simply route the pedestrians accordingly. For this consid-
ered network, we should flow pedestrians with 1.34915 peds/second from Corridor 1 and Corridor
2 to Corridor 3, and then to Corridor 7, and lastly to Corridor 8 to achieve the same optimal
throughput.
To test the overall performance of our application regarding its computational time in solving

various numbers of nodes and edges, we consider a network structure as illustrated in Figure 8.
The structure consists of n node layers, n source nodes, 1 2n nþ 1ð Þ= nodes, and n2� n edges. The
central processing unit time consumed by our application for this various numbers of layers is
shown in Table V. It is clear that the performance of the application is much influenced
by the number of layers and edges in the network because much time must be allocated to
calculate the optimal arrival rate of each node and to measure the performance of the node, which
depends on the throughputs of its previous nodes, and this must be repeated until its last
upstream nodes.

5.2. A real college university hall

We consider a real college university hall in Malaysia as a test platform of our application software.
The hall is used as a place for important events, for example, convocation ceremony, big seminar,

Table IV. (Continued)

62 Objective value = 2.6983
63 XS_Corr1 = 1.34915
64 XS_Corr2 = 1.34915
65
66 Performance based on the optimal arrival rates:
67 Corridor Lambda Theta Blocking E(N) E(T)
68 Corr1 1.3492 1.3492 0 9.0545 6.7113
69 Corr2 1.3492 1.3492 0 9.1763 6.8015
70 Corr3 1.3492 1.3492 0 10.3001 7.6345
71 Corr4 0.6746 0.6746 0 3.2894 4.8762
72 Corr5 0.6746 0.6746 0 2.8048 4.1579
73 Corr6 0.6746 0.6746 0 2.3528 3.4879
74 Corr7 2.0237 2.0237 0 12.6221 6.2371
75 Corr8 2.6983 2.6608 0.0139 28.9923 10.8959
76 Total throughput of the network: 2.6608
77
78 Elapsed run time: 401.58seconds
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and grand staff meeting. Its available corridors are presented in Figure 9. The numbers represent the
corridors, the alphabets A to I represent the entrances to source corridors, A’ is an exit door while B’
and C’ are exit corridors. Notice that the items 1 to 11 are not rooms, they are corridors. We intention-
ally partitioned each of them to measure their dimensions, show the sequence of networks, and ease
measurement of their performance. The dimensions of the corridors in terms of lengths and widths
and their capacities are shown in Table VI.
The hall consists of 13 corridors. Nine of them are source corridors, two are intermediate corridors,

and the other two are exit corridors (Table VII). After entering the source corridors, pedestrians choose
their nearest corridors to exit. For example, pedestrians near to entrance doors D, E, and F choose exit
corridor B’ because it is the nearest exit, while pedestrians near to entrance doors G, H, and I choose
exit corridor C’. Other pedestrians near to entrance doors A, B, and C choose exit door A’. The rela-
tionships between the arrival rates and throughputs of the corridors when the facility is considered
as a topological network are presented in Table VII.
The flow of occupants from corridor to corridor in the facility can be illustrated as in Figure 10. The

facility only consists of a combination of series and merging networks. A series of networks is formed,
for example, by corridors 1, 2, 3, 4, and 5. In this topology, the throughput of the corridor will be the
arrival rate for its next corridor. Thus, the throughput of corridor 1 will be the arrival rate for corridor 2,

Figure 8. Performance measure structure.

Table V. Performance of the program

No. of layers No. of nodes No. of edges CPU time
n 1

2n nþ 1ð Þ= n2� n (second)

3 6 6 97.47
4 10 12 162.39
5 15 20 255.80
10 55 90 1424.88
12 78 156 3685.97

CPU, central processing unit.
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and its throughput will then be the arrival rate for corridor 3. A merging network is formed, for exam-
ple, by corridors 6 and 7, which later merge to exit corridor B’. In this topology, the arrival rate for the
merging corridor is the sum of the throughputs of its previous corridors. Thus, the arrival rate for cor-
ridor B’ is the sum of the throughputs of corridors 6 and 7. The arrival rate of a relevant corridor is
sometimes the sum of the throughput of its previous corridor and an arrival rate to the corridor. This
case can be seen, for example, in corridor 3 where its arrival rate is the sum of the throughput of cor-
ridor 2 and the arrival rate of the entrance door B. All of the corridors must be instantiated and initial-
ized its properties, and their links must then be set up in the application software. Notice that we
assume that there are no occupants in any of the corridors during the initial state of the network.
Any pre-existence of occupants will decrease the calculated throughput in our analysis.

Figure 9. Hall structure.

Table VI. Dimensions (in meter) and capacities of the corridors.

Corridor Length (l) Width (w) Capacity (5lw)

1 6.45 1.88 61
2 6.00 1.65 50
3 8.40 3.30 139
4 6.00 1.65 50
5 5.48 5.90 160
6 8.98 1.88 84
7 8.98 1.88 84
8 11.55 1.88 109
9 11.55 1.88 109
10 8.98 1.88 84
11 8.98 1.88 84
B′ 3.60 4.00 72
C′ 10.00 3.00 150
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To run our application, we set the default arrival rates of source corridors (i.e., corridors 1, 3, 5, 6, 7,
8, 9, 10, and 11) to 2 peds/second. The total throughput for the setting is 9.1641peds/second. The
arrival rates that maximize the total throughput of the hall, that is, 11.2495 peds/second, are shown
in Table VIII. The processes of calculating the hall’s performance based on the default arrival rates,
writing and solving its Lingo script, and recalculating its optimal performance consumed
227.64 seconds.
We also conducted two other cases of arrival rates to compare the performance of the hall. In the first

case, we set the arrival rates that maximize the throughputs of all of the source corridors, that is,
λ1 = 1.9972peds/second, λ3 = 3.5565 peds/second, λ5 = 4.1237 peds/second, λ6 = λ7 = 2.0188 peds/sec-
ond, λ8 = λ9 = 2.0179 peds/second, and λ10 = λ11 = 2.0188 peds/second. The total throughput of the hall
for these settings is only 8.8532 peds/second. In the second case, we set the arrival rates that maximize
the throughput of exit corridors, that is, λ5 = 4.1237 peds/second, λ6 = λ7 = 2.0188 peds/second,
λ10 = λ11 = 2.0188 peds/second, and let λ1 = λ3 = 0.0000 peds/second. The total throughput of the hall
for this setting is 10.3893 peds/second.
To obtain the optimal throughput, we should flow the occupants in the upper hall directly to entrance

door C with the evacuation rate of 4.1237 peds/second. They then travel through corridor 5 and exit the
hall using exit door A’. We do not recommend they use entrance doors A and B because they have to
travel quite far through relevant corridors before exiting through exit door A’. For occupants located in
the middle of the hall, they have two choices to exit. If they are in the right side of the hall, they can
then use entrance door D, travel through corridor 6, and then exit through corridor C’, or they can

Table VII. Arrival rates and throughputs of corridors.

Corridor Total λ θ

Source corridor 1 λ1 θ1
3 λ3 = λ3 + θ2 θ3
5 λ5 = λ5 + θ4 θ5
6 λ6 θ6
7 λ7 = λ7 + θ8 θ7
8 λ8 θ8
9 λ9 θ9
10 λ10 = λ10 + θ9 θ10
11 λ11 θ11

Intermediate corridor 2 λ2 = θ1 θ2
4 λ4 = θ3 θ4

Exit door A′ λA’ ¼ θ5 θA ’

Exit corridor B′ λB’ ¼ θ6 þ θ7 θB ’

C′ λC’ ¼ θ10 þ θ11 θC ’

Figure 10. Hall network flow diagram.
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choose entrance door E, travel through corridor 7, and then exit through corridor B’. The best evacu-
ation rates for both corridors are 2.0188peds/second. We should block the entrance to corridor 8 be-
cause the pedestrians using this corridor have to compete with other occupants from corridors 6 and
7. For those near to the left side of the hall, they should use entrance door H and travel through corridor
10 with the rate of 2.0188 peds/second or use entrance door I and travel through corridor 11 with the
rate of 1.2325peds/second, and then exit through corridor C’. We should block the entrance to corridor
9 because the pedestrians using this corridor have to compete with other pedestrians from corridors 10
and 11. The total throughput of the network based on the arrival rates is 11.2493 peds/second; that is,
the total throughputs of 4.07036 peds/second (exit door A’), 3.97015 peds/second (corridor B’), and
3.20884 peds/second (corridor C’). Notice that this is the optimal throughput that can be achieved if
we control the arrival rates to source corridors based on the suggested values. In this case, the optimal
arrival rates will maximize pedestrian flows (i.e., impose the pedestrians to enter the source corridors)
as long as no blockage along the corridors. Any lower or higher arrival rates than the optimal values
will decrease the throughput of the hall as shown in our previous cases. Based on the optimal arrival
rates, the hall can approximately be emptied within 2minutes and 13 seconds if we consider the num-
ber of occupants is 1500, that is, the maximum number of occupants who can occupy the hall.
The analysis of the results shows that people should always use the routes near to them in

emergency cases while the routes are still safe. However, in a real-life evacuation scenario, the optimal
arrival rates of pedestrians estimated by our application are difficult to implement. For example, we
cannot control the entrance to corridor 5 to match 4.1237 peds/second. However, it is clear that any real
evacuation rates that exceed the estimated optimal values will cause congestion and decrease the total
throughput. Thus, it is important to have and train traffic control officers to direct and assist the pedes-
trians to enter the corridor as long as they will not contribute to the congestion. How should we know
this? We could extend the estimated value to a bigger scale; that is, we should convert from 4.1237 to
41.237 peds/10 seconds. In other words, we can have a good flow during emergency if we ensure that
at the end of each 10 seconds, 41 people have been allowed to enter corridor 5.

6. THE PRACTICAL SCOPE OF OUR METHODOLOGY

Our methodology derives the optimal rates of arrival sources maximizing pedestrian flows through a
topological network. The flows are modeled using the founded M/G/C/C state dependent network,
which formulates the interaction between the current walking speed and crowd density under a normal
situation. There also exists other variations of state-dependent queuing systems, for example, PH/PH
(n)/C/C [34] and G/G(n)/C/C [35]. In case of emergency situations, the formula may not consider real
pedestrians’ behavior because such behavior is unpredictable, very complex, and difficult to model

Table VIII. Performance measures of the source corridors for the arrival rates that maximize the total throughput.

Performance based on the optimal arrival rates:

Corridor Lambda Theta Blocking E(N) E(T)

1 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.00000 0.00000 0.00000 0.00000 0.00000
3 0.00000 0.00000 0.00000 0.00000 0.00000
4 0.00000 0.00000 0.00000 0.00000 0.00000
5 4.1237 4.07036 0.01294 29.74026 7.30654
6 2.0188 1.98558 0.01645 25.26272 12.72308
7 2.0188 1.98558 0.01645 25.26272 12.72308
8 0.00000 0.00000 0.00000 0.00000 0.00000
9 0.00000 0.00000 0.00000 0.00000 0.00000
10 2.0188 1.98558 0.01645 25.26272 12.72308
11 1.2325 1.2325 0.00000 9.30706 7.55137
B’ 3.97116 3.97015 0.00025 15.40113 3.87923
C’ 3.21808 3.20884 0.00287 37.02719 11.53914
Total throughput of the network: 11.2493
Elapsed run time: 227.64seconds

115ANALYZING AND OPTIMIZING PEDESTRIAN FLOW

Copyright © 2015 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:96–119
DOI: 10.1002/atr



[36]. Thus, our methodology only simulates the emergency situation based on the main assumption
that pedestrians walk at their best speed to achieve the overall optimal throughput without the possi-
bility of panic and confuse during the movement because these factors tend to make havoc in the entire
system, delay their movement, and significantly decrease the throughput.
As mentioned earlier, it is quite difficult to control the exact optimal arrival rates to arrival sources.

We may however control the arrival rate if we extend the estimated value to a bigger scale. For exam-
ple, if the optimal arrival rate of an arrival source is 3 peds/second, then it should be converted to
30 peds/10 seconds; that is, in each 10-second interval time, there should be 30 pedestrians enter the
arrival source. Following this rule, the level of congestion along the downstream evacuation network
links can be minimized without exceeding the network capacity. Other suggested methods of control-
ling traffic flows include the development of a sensor that can compute the arrival rates through light
array (e.g., [37, 38]).

7. CONCLUSION AND FUTURE WORK

This paper finds the optimal arrival rates of available corridors in a topological network based on anM/
G/C/C approach. We then show how these values can be utilized to find the optimal arrival rates of
source corridors that maximize the network’s throughput using the network flow programming ap-
proach. In order to ease the network’s construction and its performance evaluation, we employ OOP
as the design and development of an M/G/C/C software application. The application automatically an-
alyzes the current performance of the network, generates its network flow programming script, links it
to the LINGO solver, and then retrieves the LINGO solution to report the network’s optimal performance.
Our application can be used as a decision tool to best flow people through a complex topological net-
work that may consist of any combination of series, merging, and splitting topologies.
The instantiation of corridor objects and initialization of their property values still require much pro-

gramming efforts. Thus, a better approach to make it more user-friendly, for example, by decreasing the
use of code is crucial and offers some advantages. This includes the use grids to allow users to create
corridors, to define their dimensions, and to establish their links with other corridors and the provision
of a canvas to allow them to drag, drop, and link corridors to structure the network graphically. Such an
extension will greatly help users analyze and optimize pedestrian flow in any considered network.

8. LIST OF SYMBOLS AND ABBREVIATIONS

dθ
dλ the first derivate of throughput
d2θ
dλ2

the second derivate of throughput
λopt the optimal arrival rate maximizing throughput where dθ

dλ λopt
� � ¼ 0

θopt the optimal throughput
λnew the current arrival rate value after a certain iteration
λold the previous arrival rate value before the current iteration
ε error tolerance; i.e., the absolute error in calculating λopt
λa the lower value of an arrival rate in an interval
λb the upper value of an arrival rate in an interval
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APPENDIX 1: COMPUTATIONAL METHODS FOR FINDING THE OPTIMAL

ARRIVAL RATE.

The Bisection method searches the value of λopt∈ [λa, λb], which satisfies P λopt
� � ¼ dθ

dλ ¼ 0 if

P(λa)<0 and P(λb)>0. A new value of λnew ¼ λaþλb
2 replaces λa if P(λnew)< 0 or replaces λb if

P(λnew)> 0. This process is repeated until |λb� λa|< ε, where ε is an error tolerance. Thus, every

iteration cuts the length of the range in half. After n number of iterations, the range is only cut

to |λb� λa|/2n. As a result, a lot of iterations are required for getting a good solution of λ= λopt
with a very small error. For all of the considered corridors, 30 iterations were required for

getting their optimal arrival rates with ε= 1× 10�8.
The Regula-Falsi method is an alternative to the Bisection method. Instead of cutting the range

length to half for every iteration, this method expedites the convergence process to λ= λopt by drawing
a straight line that connects the points of (λa, P(λa)) and (λb, P(λb)) with P(λa)< 0 and P(λb)> 0 to find
the point where the line crosses the x-axis, that is, λnew ¼ λa � P λað Þ λb�λa

P λbð Þ�P λað Þ. If P(λnew)<0, λnew then

replaces λa. Otherwise, it replaces λb. The process is repeated until |λa� λb|< ε. The iteration number to

obtain the optimal arrival rate depends on the initial values of λa and λb. The closer both of the values to

λ= λopt, the lesser number of iterations required to converge to λ= λopt. For example, consider corridor

8× 2.5m, where λopt is located between 2 and 3peds/second (Figure 2). Setting these values for λa and

λb, respectively, the number of iterations required for obtaining λopt is only 25. However, setting

λa=1ped/second and λa=7peds/second required 178 iterations, while setting λa=1ped/second and

λa=10 peds/second required 506 iterations to obtain λopt. The large number of iterations is required

in both cases because λnew is almost calculated on one side of λopt, which makes the convergence pro-

cess relatively slow.
The Secant method attempts to avoid the one-sided calculation as happened in the Regula-Falsi

method. The default values of λa and λb are still required, but its range does not need to contain λopt.

The new solution for every iteration is given by λnþ1 ¼ λn � P λnð Þ λn�λn�1
P λnð Þ�P λn�1ð Þ. While both Bisection

and Regula-Falsi methods confirm to find λopt (because it keeps bracketing λopt), the Secant method

sometimes fail to find λopt, which does exist. For example, if we set λa=a and λb= b and λopt is greater

than b, we will then get overflow because the slopes of the throughput graph at both of the values are

the same, that is, 1. Thus, P(λa)�P(λb) = 0 (Figure 2). If the range of both of the initial values covers

the λopt but the slopes of the throughput graph at the two points are quite perpendicular to x-axis, λnew is

then getting far and far away from λopt. This situation can be observed when setting λa=1 and λa=8 for

corridor 8× 2.5m as in Table A.I. It shows that for every iteration, the new value of λ does not con-

verge to λopt. We only manage to get λopt if we bracket λopt before it reaches the flat function. Thus,

this method should not be implemented in the congestion model to find its λopt.

Table A.1 Iterations of the Secant method for corridor 8.0 ×2.5

Iteration x0 x1 P(x0) P(x1) x2 P(x2)

1 1.00000 8.00000 1.00000 �0.00149 7.98960 �0.00149
2 8.00000 7.98960 �0.00149 �0.00149 10.96514 �0.00066
3 7.98960 10.96514 �0.00149 �0.00066 13.34260 �0.00041
4 10.96514 13.34260 �0.00066 �0.00041 17.28492 �0.00023
5 13.34260 17.28492 �0.00041 �0.00023 22.10499 �0.00013

(Continues)
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6 17.28492 22.10499 �0.00023 �0.00013 28.69806 �0.00007
7 22.10499 28.69806 �0.00013 �0.00007 37.32824 �0.00004
8 28.69806 37.32824 �0.00007 �0.00004 48.81541 �0.00002
9 37.32824 48.81541 �0.00004 �0.00002 64.00611 �0.00001

The Newton–Raphson method improves the value of λnew based on the formula λnew ¼ λold � P λoldð Þ
P’ λoldð Þ

where λold is any values that are near to λopt. This method is not supposed to be used because in our
case, the value of P’ λð Þ ¼ d2θ

dλ2
is almost zero (unless for the range that is near to λopt (see Figure 3)).

APPENDIX 2: LINGO COMMANDS AND THEIR PURPOSES.
Command Purpose

objectiveFunctionScript( ) Maximize the pedestrian flows through a network
flowEqualityScript( ) Provide the equal outflow and inflow for available nodes
probabilityChannelScript( ) Ensure the throughput of a node is correctly

channeled to its downstream nodes
based on their routing probabilities

corridorConstraintScript( ) Set the total arrival rate so that it is smaller or
equal to its optimal arrival rate to avoid any blocking

LScreateEnvLng( ) Create a LINGO environment object
LSopenLogFileLng(pLINGO, path) Open a LINGO log file for debugging the application

• pLINGO is the variable where the value
of the LScreateEnvLng() is assigned

• path is the directory path where the log file (.log) is stored
LSsetPointerLng
(pLINGO, dObj, nPointersNow)

Create the direct memory linkage between the application
and a LINGO solver so that its data can be transferred and
retrieved n and out of LINGO

• dObj is the variable to be mapped
• nPointersNow is the nth pointer in the stored memory list,
and this requires a Lingo script to embed the @POINTER(n)
command. For example, @POINTER(3) =XS_Corridor1
requests LINGO to export the value of XS_Corridor1
to its third memory location. The first memory location
is to be reserved for retrieving the solution status; that is,
@POINTER(1) =@status where the command tells if the solution
is the global optimum, infeasible, unbounded, feasible, and so on.

LSexecuteScriptLng
(pLINGO, cScript)

Request LINGO to solve the model where cScript is a generated
script whose solution information is passed from LINGO back
to the application’ variables via @POINTER (n) reference

LSdeleteEnvLng (pLINGO) Delete the created LINGO environment to free up the system
memory allocated to the LINGO object

(Continued).
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