GK-DEVS

Bounding Space Management for Real-time Visual Simulation of GK-DEVS

Moon Ho Hwang

Abstract

This paper presents bounding space(BS) management for real-time visual simulation when using GK-DEVS models. Since GK-DEVS, extended from DEVS formalism, has information of 3D geometry and 3D hierarchical structure, we employe three types of bounding spaces: BS of its own shape, BS of its children GK-DEVS, and total BS. In addition to next-event scheduling functionality of previous GK-Simulator, its abstract simulation algorithms is extended to manage the three types of BSs so that BSs can be utilized in the rendering process of a renderer, so called GK-Renderer. We have implemented the method and evaluated it with an automated manufacturing system. In the case study, the proposed BSs management method showed about 2 times improvement in terms of rendering process speed.

Key Words: Real-time Simulation, Rendering, Bounding Space, GK-DEVS, GK-Simulator, GK-Renderer

1

* ()

,

1. . 가 DEDS (Discrete Event Dynamic System) (Real-time) **GK-DEVS** 가 (man-made . 가 가 가 system) [1][2]. DEDS DEVS (Discrete [5] Event System Specification) **GK-Simulator** , (Bounding Space)' 가 . 가 GK -Renderer [1][2][9]. 2 DEVS . 가 GK-DEVS **GK-Simulator** 가 (lattice) . 3 . 4 [8] GK [5]. 가 DEVS - Simulator GK-Renderer, Cellular Root-Coordinator Automaton 가 5 DEVS Robotics . 가 • 6 DEDS 3 가 2. (Structured Visualization) 가 가 . **GK-DEVS** 가 가 Scene 3 가 Graph [3] 가 3 2.1 (Viewing Frustum Culling) 가 2.2.1 GK-DEVS . GK (interdisciplinary) -DEVS . GK-DEVS [4] , [5]

 $Y^H = \bigcup_{m \in M} m \cdot Y^H \quad Y:$. GK-DEVS , $X^{H} = \bigcup_{m \in M} m \cdot X^{H} X$: GK - DEVS = $\langle X, S, Y, \delta_{int}, \delta_{ext}, f, \lambda, ta, M, Z, SELECT \rangle$ where • SELECT: $2^{M \bigcup \{se \mid f\}} - \{\} \rightarrow M \bigcup \{se \mid f\},\$; • X: ; GK-DEVS [5] • Y: , $S = \langle S^{disc}, S^{cont} \rangle$, S^{disc} : • S: 2.2.2 GK-Simulator , S^{cont}: GK- $S^{cont} = \langle GK, S^{cont-GK} \rangle, GK = \langle G, T \rangle, G:$ Simulator **GK-DEVS** . GK-Simulator $1; \quad T = \begin{bmatrix} \mathbf{R} & | \mathbf{P} \\ 0 & 0 & 0 | 1 \end{bmatrix};$) ((local coordinates)(4x4), , $\boldsymbol{P} (\in \boldsymbol{R}^3)$: **R** (3x3 matrix): ;): $S^{cont-GK} GK$ **GK-Simulator** [5]. **GK-Simulator** < 1> [5] • $\delta_{int}: S \rightarrow S:$; • $\delta_{ext}: Q \times X \to S:$ (tL_s), (tNT), $Q = \{(s, e) | s \in S, 0 \le e \le ta(s) \},\$ (tN_s), М • $f: Q \rightarrow S^{cont}$ 가 (tNм), $\boldsymbol{\varPhi}_q:<\!t_1,\,t_2\!>\!\!\rightarrow\!\!Q$ (e) $\Phi_{q}(t) = (s^{disc}, s^{cont} + \int_{t_{1}}^{t} f(\Phi_{q}(t')) dt', e+t)$ $tN_T = min(tN_s, tN_M)$ $(s^{disc}, s^{cont}, e) \in Q$ 가 2. $^{\rm U}{
m T}$, $^{\scriptscriptstyle U}G$ (1) $\mathbf{\Phi}_{q}(t_{1}) = (s^{disc}, s^{cont}, e),$. < 1> (2) $d\Phi_q(t)/dt = f(\Phi_q(t)), t \in \langle t_1, t_2 \rangle;$. 3 ; • $ta: S \longrightarrow R_0^{\infty}$, • $\lambda: S \to Y$, **GK-DEVS** S М ; **GK-DEVS** ; • *M*: • $Z \subseteq Y^H \times X^H$; G " 1) 2) [5] $tN_{self}, tN_{child}, tN$

"

 tN_s , tN_M , tN_T

< 2> 가 가

가 [3]. (Bounding GK-DEVS Space) . , GK-Simulator GK-Simulator 가 , 4 , 가 가 (geometry) 가 .

3. GK- DEVS

GK-DEVS (hierarchical bounding space)

3.1

.

- BS_G : ; GK-DEVS BS_G $\forall g \in G$.
- BS_M : ; GK-DEVS BS_M $\forall m \in M$.
- BS_T : ; GK-DEVS $BS_T \forall g \in G \quad \forall m \in M$

' (Sphere)

3.2

< 3> . ConnerFrame ,

가 < 4.c> 4.d> < (*,t), (done,t) ConnerFrame Pusher, LS1, LS2 (ö.t) BS_G, BS_M, BS_T BS tN $BS_G < 4.a>$ BS_M *BS*_{*T*} **7** Pusher, LS1, LS2 tL, e (x,t) (y.t) . 4. done,t) done.t) **GK-Simulator** 가 < 5> GK-Renderer, GK-Simulator Root-Coordinator . [5] . (*,t), , [6] (x,t), (y,t), , [7] (oriented bounding (done, t), box:OBB) (Ø,t)가 . . 4.1.2 GK-Simulator **GK-Simulator** Algorithm . A1 가 가 . Algorithm Algorithm A2 A3 . BSG, BSM, BST . 4.1 GK-Simulator (Sphere) 4.1.1 GK-Simulator • BSG Algorithm1 BSM, BSG BSM BST GK-DEVS • < 5> 가 (< 5> (2~10)). (12~16))가 (가 . BSG (10) 가 BSM .

BST .	7 "T := pareant's "T * T;
GK-Simulator	$8 {}^{u}G := G * {}^{u}T;$
[5] .	9 BS _G := GetBS(a G);
Procedure GK-Simulator::when_receive_(*,t)	$10 BS_{T} := GetBS(BS_{G}, BS_{M});$
1 if $t == tN_T$ then	11 send (done, tN) to parent simulator;
2 if $tN_s < t_M$ or $(tN_s == tN_M$	12 else
and this is selected by SELECT) then	13 ERROR;
3 $y := \lambda(s);$	14 end if
4 send (y,t) to influencee simulators;	Algorithm 2. GK-Simulator Procedure for (x,t)
5 s := $\partial_{int}(s);$	
$6 tL_s := t;$	Algorithm 3
7 $tN_s := tL_s + ta(s);$	가
8 "T := pareant's "T * T;	. 가
9 $^{\mathrm{u}}\mathrm{G} \coloneqq \mathrm{G} ^{\mathrm{s}} \mathrm{T};$	ВЅм
$10 \qquad BS_{\alpha} := GetBS(^{\alpha}G);$	$BS_{T} \qquad \qquad 7 \mathbf{k} \qquad (5, 6).$
11 else	
12 find the imminent child simulators;	Procedure GK-Simulator::when_receive_(done,t)
13 select one,1*, and send the (*,t)to it;	1 if tL _s t then
14 resort children by their tN_{T} ;	2 resort children by their tN_{T} ;
15 $tN_M := minimum \text{ of children's } tN_T$;	3 $tN_{M} := minimum of children's tN_{T};$
$16 \qquad BS_{M} := GetBS(M);$	$4 \qquad tN_{T} := MIN(tN_{*},tN_{M});$
17 end if	5 $BS_M := GetBS(M);$
$18 tN_{T} := MIN(tN_{s}, tN_{M});$	$6 \qquad BS_{T} := GetBS(BS_{G}, BS_{M});$
$19 \mathbf{BS}_{\mathrm{T}} := \mathbf{GetBS}(\mathbf{BS}_{\mathrm{G}}, \mathbf{BS}_{\mathrm{M}});$	7 send (done, tN) to parent simulator;
20 else	8 else
21 ERROR;	9 ERROR;
22 end if	10 end if
Algorithm 1. GK-Simulator Procedure for (*,t)	Algorithm 3. GK-Simulator Procedure for
Algorithm 2	(done,c,)
· 가	Algorithm 4
	가
BS_G BS_T	
(9, 10).	BSG,
Procedure GK-Simulator::when_receive_(x,t)	В S м В S т
1 if tL_s t tN_T then	가 (6, 8, 9).
2 $e := t - tL;$	
3 s := $\partial_{ext}(s,e,x);$	Procedure GK-Simulator::when_receive_(Ø,t)
4 $tL_s := t;$	1 if tL _s t tN then
$5 tN_s := tL_s + ta(s);$	2 $e := t - tL_s;$
$6 tN_{T} := MIN(tN_{s}, tN_{M});$	·

6>

3
$$s^{cont} := s^{cont}(tL_s) + \int_{L_s}^{t} f(\mathcal{O}(t')/dt';$$

4 "T := pareant's "T * T;
5 "G := G * "T;
6 BSc := GetBS(*G);
7 \forall m in child simulators, send (\emptyset ,t) to m;
8 BSw := GetBS(M);
9 BSr := GetBS(BSc, BSw);
10 else
11 ERROR;
12 end if
Algorithm 4. GK-Simulator Procedure for (\emptyset ,t)
4.1.3
 $< 4>$ Pusher
Pusher
7
 $. < 6>$ Pusher
.
Pusher
Pusher
 $BS_M 7$
 $BS_M 7$
 BS_T

4.2 GK-Renderer

4.2.1 GK-Renderer GK-Renderer 7> GK-Renderer < 가 < 2> (Viewing Frustum: VF) 기 (Containment Flag: $cf \in \{CONTAIN, OVERLAP, \}$ DISJOINT }) (r, sm) sm GK-Simulator (r, sm) **GK-Renderer** cf

> 7 > GK-Renderer<

4.2.2 GK-Renderer 가

3 4

5

6

7 8

9

11

가

[3] , Algorithm 5	7 if cf != DISJOINT then
GK-Simulator	8 \forall g in sm.G, render g;
	9 endif
(recursive) ,	10 cf := contain(VF, BS_{M});
GK-Simulator BST 가	11 if cf == CONTAIN then
CONTAIN BSG BSM 가	12 \forall sm in children simulators,
,	13 when_receive_(r,sm);
가 Rendering (1~4	14 else if cf == OVERLAP then
). BST가 가	15 \forall sm in children simulators,
OVERLAP (5~20),	16 begin
BS _G BS _M 기	18 cf := contain(VF, sm.BS _T);
, 가 가	19 if cf != DISJOINT then
DISJOINT Rendering	20 when_receive_(r,sm);
	21 end if
	22 end
Procedure GK-Renderer: when receive (r.sm)	23 end if
1 if cf == CONTAIN then	24 end if
2. $\forall \sigma$ in sm G render σ	Algorithm 5. GK-Renderer Procedure for (r.sm)
\forall sm in children simulators	
4 when receive (r sm):	422 Rendering
5 also if $cf = OVERIAP$ than	< 8> 71
$6 \text{of } := \text{ contain}(VE \ \mathbf{PS}))$	
0 cr = contain(vr , BSG),	. < 0.a>

< 6.c>			
LS1		. <	8.a>
	가	<	8.b>
	. < 8.1) >	
	B S _G		LS1 <i>BS</i> _G
ConnerFrame	<i>BS</i> _G 가		
contain(VF	, ConnerFram	eBS_T)	

= OVERLAP, $contain(VF, ConnerFrameBS_G)$ =OVERLAP, contain (VF, ConnerFrame.Pusher BS_T) = DISJOINT, contain (VF, ConnerFrame.LS1 BS_T) =CONTAIN, contain (VF, ConnerFrame.LS2 BS_T) = DISJOINT

.

4.3 Root-Coordinator

(Algorithm 6.b 3

4.3.1 Root-C	boor din at or
[5]	Root-Coordinator
71	rd 7t < 9>
	(*,t) ,
(\emptyset,t)	GK-Simulator sm
(done,t)	. 7 GK-Renderer <i>rd</i>
가	
4.3.2 RootCo	ordinator
	RootCoordinator
	BSフト
(*,t)	(Algorithm 6.a 13

. Root-Coordinat	or 가		
·	가		
DISJOINT	가		GK
-Renderer rd ren	ndering		
(r, sm)		sm	Root
- Coordinator		GK-Simu	lator

9> Root-Coordinator

Procedure Root-Coordinator::run(TimeType tf,

BS

가

)

(done, t)

) BS

TimeType tvi, TimeType tci) 1 TimeType tne := its child simulator's tN; 2 TimeType tnv := tvi; 3 TimeType t := tci; 4 while (MIN(tne, tnv) < tf) begin while(t < MIN(tne, tnv)) begin 5 send (\emptyset, t) to sm; 6 7 t = t + tci;end_of_while 8 9 send (Ø,MIN(tne, tnv)) to sm; if the thv then 10 11 send (*, tne) to sm; 12 tne := sm.tN; 13 $BS := sm.BS_T;$ 14 else 15 rd.cf= contain(rd.VF, BS); if rd.cf != DISJOINT then 16 17 send (r, sm) to rd 18 end if

11 4 , 2002. 12

Den denen CK Simulaton			
		DSM	
	. ,		•
2 F		Sphere GetBS(Set <gkdevs> M)</gkdevs>	
	71	1 Sphere $BS((0,0,0), 0);$	
	•	2 Real radius_sum = 0;	
가		$3 \forall s, s is simulator of m in M,$	
Navigation	,	4 begin	
2		5 $BS.cp = BS.cp + s.BS_T.cp;$	
	가	6 radius_sum = radius_sum + s.I	3S _T .r;
가 .	가	7 end	
		8 if (radius_sum > 0)	
' (Cost)'		9 BS.cp = BS.cp / radius_sum;	
フ	,	10 \forall s, s is simulator of m in M,	
,	(Axis Aligned	11 $BSr = MAX(BSr, BScp-s.BS_T]$	cp + s.BS _T .r);
Bounding Box),	(Oriented	12 return BS;	
Bounding Box)		Algorithm A2. BS of Set<	GKDEVS> M
	가	Algorithm A3	
		$B S_G \qquad B S_M$	BS_T
(Collision Detection)			
		Sphere GetBS(Sphere A, Sphere B)	
		1 Sphere BS((0,0,0), 0);	
		2 Real radius sum $= 0$;	
:		$3 \forall bs in \{A, B\},$	
		4 begin	
Algorithm A 1		5 $BS.cp = BS.cp + bs.cp;$	
		6 radius_sum = radius_sum + bs	.r;
RSC		7 end	
Selver Cet DS(Set (Delvered C))	•	8 if (radius_sum > 0)	
1 Serberg DS ((0.0.0) - 0):		9 BS.cp = BS.cp / radius_sum;	
1 Sphere BS ((0,0,0), 0);		10 \forall bs in {A, B}.	
2 ∀ g in polygons set G		11 BS $r = MAX(BS r, BS cp-bs cp)$	+ bs r):
$\forall v \text{ in vertexes set of g}$		12 return BS:	
4 $BS.cp = BS.cp + v;$		Algorithm A3 BS of Sph	ere A and B
5 BS.cp = BS.cp / no_of_vertexes	_of(G);	ingorithm no. Do or oph	
$6 \forall$ g in polygon set G,			
7 \forall v in vertexes set of g,			
8 $cpr = MAX(cpr, v-BScp)$);	2	
9 return BS;		3	(
Algorithm A1. BS of Se	et <pologon> G</pologon>	, 3	1
Algorithm A2 GKDEVS		()	
•			

.

)

- [1] Yu-Chi Ho, "Scanning the Issue," Proceedings of the IEEE, V77, pp. 3-6, 1989
- [2] Yu-Chi Ho, "Forward to the Special Issue," Discrete Event Dynamic Systems: Theory and Applications, V3, pp. 111, 1993
- [3] Tomas Moller and Eric Haines, *Real-Time Rendering*, A K Peters, Ltd, 1999
- [4] , , , "GK-DEVS: 3

DEVS,"

VOL. 9, No.1, 3 , pp39-54, 2000

- [5] M.H. Hwang and B.K. Choi, "GK-DEVS: Geometric and Kinematic DEVS Formalism for Simulation Modeling of 3 Dimensional Multi-Component Systems," *Transactions of SCS*, V18, N3, p159-173, 2001
- [6] S.M. Omohundro, "Five Balltree Construction Algorithms," Technical Report #89-063, International Computer Science Institute, November 20, 1989. http://www.icsi.berkeley.edu/techreports/
- [7] S. Gottschalk and M.C. Lin and D. Manocha, "OBBTree: A Hierarchical Structure for Rapid Interference Detection," *SIGGRAPH* 96, p171-180, 1996
- [8] G. A. Wainer, N. Giambiasi, "Application of the Cell-DEVS paradigm for cell spaces modelling and simulation," *Simulation*, V76, N1, pp22-39, 2001

1990 1992 (KAIST) 1999 (KAIST) 1998 2001 () , 2002 () , :

[9] B.P. Zeigler, H. Praehofer, T.G. Kim, *Theory of Modeling and Simulation*, 2nd Edition, Academic Press, 2000