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Abstract
This is the first literature survey of its kind on aggregate production planning (APP) under uncertainty. Different types of
uncertainty, such as stochasticity, fuzziness and possibilistic forms, have been incorporated into many management science
techniques to study APP decision problem under uncertainty. In current research, a wide range of the literature which employ
management science methodologies to deal with APP in presence of uncertainty is surveyed by classifying them into five main
categories: stochastic mathematical programming, fuzzy mathematical programming, simulation, metaheuristics and evidential
reasoning. First, the preliminary analysis of the literature is presented by classifying the literature according to the
abovementioned methodologies, discussing about advantages and disadvantages of these methodologies when applied to APP
under uncertainty and concisely reviewing the more recent literature. Then, APP literature under uncertainty is analysed from
management science and operations management perspectives. Possible future research paths are also discussed on the basis of
identified research trends and research gaps.

Keywords Aggregate production planning (APP) under uncertainty .Management sciencemethods . Literature on uncertainAPP
models

1 Introduction

1.1 Introductory overview

Aggregate production planning (APP) is a type of medium-
term capacity planning that usually covers a time horizon of 3
to 18 months and its aim is to determine optimal level of
production, inventory and human resources regarding the lim-
itations of production resources and other constraints. The
purpose of APP is (I) determining overall level of each

product category to meet fluctuating and uncertain demand
in near future and (II) adopting decisions and policies in re-
gard to hiring, lay off, overtime, backorder, subcontracting,
inventory level and available production resources.

APP has attracted considerable attention from both practi-
tioners and academia [1]. Since the pioneering studies by Holt
et al. [2] and Holt et al. [3] proposed linear decision rule and
Bowman [4] suggested transportation method to deal with
APP, researchers have developed different methodologies to
handle the APP problem.

Figure 1 outlines the APP position among other types of
production planning and control techniques and their intercon-
nected relationships from a holistic perspective. As it can be
seen from Fig. 1, in the hierarchy of production planning
activities, APP falls between long-term strategic planning de-
cisions such as new product development and short-term
shop-floor scheduling practices.

Uncertainty is described by Funtowicz and Ravetz [5] as a
situation of inadequate information, which can be present in
three forms: inexactness, unreliability, and border with igno-
rance. Walker et al. [6] adopt a general definition of uncertain-
ty as being any departure from the unachievable ideal of com-
plete determinism.
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A large portion of the existing research studies the deter-
ministic state of APP and ignores its inherent uncertain nature.
This assumption may be valid in several APP decision-
making problems where product demand exhibits a smooth
pattern, i.e., demand has low coefficient of variation and
workforce market, materials price and availability and other
related factors show a rather consistent state.

However, in practical business environments, products
usually have shorter life cycles, demand is uncertain and var-
iable, customers’ preferences are changing, production capac-
ity is limited, workforce market condition is unstable,
subcontracting may impose higher costs and has its own dif-
ficulties, raw materials supply is uncertain and increase in
backorders leads to customers’ dissatisfaction and makes
them change their purchasing source. These all display the
dynamic and uncertain characteristics of APP and the need
to incorporate these uncertainties into the APP decision
models. Therefore, the utilisation of traditional deterministic

methodologies may lead to considerable errors and imprecise
decisions.

A significant number of studies have been devoted to APP
subject to uncertainty by considering different forms of uncer-
tainty including stochasticity, possibilistic forms, fuzziness
and randomness.

Figure 2 indicates APP literature map (diagram). The early
management science approaches applied to study APP are
categorised as (1) linear programming [7, 8], (2) linear deci-
sion rule [2, 3], (3) transportation method [4], (4) management
coefficient method [9], (5) parametric production planning
[10], (6) search decision rule [11], (7) simulation [12] and
(8) tabular/graphical methods [13, 14].

Then, subsequent studies used different methods to deal
with various kinds of APP problems, which can be divided
into three general categories: (I) studies that apply determin-
istic management science techniques to APP decision-making
problem, (II) research which incorporates uncertainty in
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management science methods to study APP problem (III) and,
finally, research on APP that applies qualitative research ap-
proaches such as surveys and reviews instead of management
science methodologies.

The abovementioned classic approaches to deal with APP
such as linear decision rule, transportation method and man-
agement coefficient method which were popular in 1950s,
1960s and early 1970s are outdated and are very rarely used.
Therefore, in the present research, the literature which has
applied the subsequently developed approaches to handle
APP are surveyed from about mid-1970s until October 2018.

As Fig. 2 shows, the management science methods that
have been adopted in literature to study APP under uncertainty
are generally classifiable into five main categories: stochastic
mathematical programming, fuzzy mathematical program-
ming, simulation, metaheuristics and evidential reasoning.
Each of these categories could be divided into smaller sub-
categories, which will be described in detail in subsequent
parts.

The paper is further organised as follows. The need for a
literature survey on APP under uncertainty is justified in the
next part. Section 2 gives a preliminary literature analysis,
which includes classification plan and discussion on advan-
tages and disadvantages of methodologies applied to study
APP under uncertainty and succinctly reviewing more recent
literature on APP under uncertainty. Section 3 and Section 4
analyse the surveyedAPP literature frommanagement science
and operations management perspectives, respectively. In
Section 5, conclusions are drawn, and possible future research
directions are discussed.

1.2 The need for literature survey on APP
under uncertainty

The researchers have been incorporating uncertainty in APP
to make decision models which better represent the present-
day turbulent industrial environments. The research onAPP in
presence of uncertainty has been growing constantly over the
recent decades.

This is the first literature survey of its kind on APP under
uncertainty. The authors have benefited from their decade-
long experience of doing concentrated research on APP under
uncertainty and their deep familiarity with APP literature to
critically review and analyse a comprehensive set of relevant
literature. Some of the major features of this literature survey
which differentiates it from those conducted by Nam and
Logendran [16] and Cheraghalikhani et al. [15] are as follows:

1. It presents in-depth discussions about the situations in
which each management science methodology is ap-
plied to APP under uncertainty and strengths and
weaknesses of these methodologies when applied to
APP under uncertainty or similar problems.

2. Detailed statistical analysis of the literature categorically
reveals the sources of uncertainty in APP models under
uncertainty, the publication frequency and growth rate of
the literature regarding each type of the applied manage-
ment science methods.

3. In relevant sections, the types of industries that APP under
uncertainty have been applied to, and the specific charac-
teristics of these industries that may involve more uncer-
tainty, type of manufacturing systems considered by the
reviewed literature, e.g. process manufacturing and
reconfigurable manufacturing systems, rolling horizon
APP, incorporation of sustainability-related principles to
APP models under uncertainty, type of APP strategies
considered by the reviewed literature are presented, which
together with abovementioned features provide research
insights about recent research trends and research gaps for
interested researchers.

4. We have linked the findings from the research trends and
research gaps to the extensive set of proposed future re-
search paths that are presented in Section 5. These recom-
mendations on future research directions which are drawn
based on recent research trends and existing research gaps
will provide a basis for other researchers to make their
own research agenda.

The authors decided to consider APP, as a central activity in
production planning and control which was depicted in Fig. 1,
instead of general production planning in order to provide an
in-depth and focused literature analysis.

The current study considers the existing research on APP
under uncertainty as a crucial and constantly growing part of
the research about APP. The research on deterministic APP
decision models would require a separate literature survey,
again, to present another in-depth and specialised literature
analysis.

1.3 Research method

Uncertainty has been incorporated in management science-
based models of APP in different shapes including
stochasticity, randomness, possibility, fuzziness and vague-
ness of the information. Search for the term “aggregate pro-
duction planning (APP)” found a large number of published
results but they were filtered by adding the words “uncertain/
uncertainty”, “stochastic/stochasticity”, “possibility/
possibilistic”, “random/randomness”, “fuzzy/fuzziness”,
“probability/probabilistic” and “chance-constrained”. Then,
by abstract and keywords reviewing, these publications were
again filtered to make sure they really consider APP under
uncertainty, although in many cases reviewing full texts was
needed, since whether those studies have considered APP
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under uncertainty or deterministic APP have not been clearly
mentioned in the abstract. We also reviewed the references
section of these publications to find relevant literature to our
study.

As of 19t October 2018, a total of 92 publications were
surveyed, which include 73 journal articles (79.35%), 9
conference/proceedings papers (9.78%), 7 book chapters
(7.61%), 2 PhD theses (2.17%) and 1 paper from Social
Science Research Network (1.09%).

To get the relevant information from reviewed literature,
we read the full texts and took notes of useful information that
also helped us in grouping the literature into categories which
will be detailed in next section.

2 Preliminary analysis of the literature

2.1 Classification scheme

As it was already mentioned in Subsection 1.1, the manage-
ment science methodologies applied in the literature to handle
APP under uncertainty can be classified into five main cate-
gories: stochastic mathematical programming, fuzzy mathe-
matical programming, simulation, metaheuristics and eviden-
tial reasoning. Each of these categories is divided into sub-
categories, which have been shown in Table 1.

In short, these categories and sub-categories are described
as follows:

2.1.1 Fuzzy mathematical programming

This class of models for APP in presence of uncertainty covers
a wide range of mathematical programming models in fuzzy
environment such as fuzzy linear programming, fuzzy nonlin-
ear programming, fuzzy multi-objective optimisation and so
forth. In this set of models, uncertainty is present in the form
of fuzziness, which involves market demand, objective/goal

values, constants, coefficients and constraints of the devel-
oped management science models.

Due to high similarity between fuzzy mathematical pro-
gramming and possibilistic programming, in this study we
consider possibilistic programming literature as part of fuzzy
mathematical programming literature.

Possibilistic linear programming and possibilistic linear
multi-objective optimisation methods belong to possibilistic
programming sub-category. In general, the possibilistic pro-
gramming models are recommended to deal with APP when
the information about the forecasted demand, parameters and
coefficients of the constructed mathematical programming
models and objective function/goal values are imprecise in
essence.

Advantages Fuzziness is equivalent to not having been clearly
defined and having ill-defined boundaries. This can exist in
many situations that involve human judgements and reasoning
in terms of linguistic variables. Fuzzy sets and fuzzy logic can
effectively handle such ill-defined situations which may be
present in APP process. As fuzziness is generally different
from randomness, fuzzy mathematical programming tech-
niques can hardly be replaced with stochastic mathematical
programming to handle the ill-defined situations or situations
with imprecise information.

Disadvantages Despite the advantages of fuzzy mathematical
programming approach to model APP, it suffers from disad-
vantages as well. The membership functions of fuzzy sets
which represent linguistic variables resulting from decision
makers’ linguistic judgments, vague information, etc. are nor-
mally constructed based on experts’ judgments that can vary
from one expert to another. This, in turn, can make the
resulting fuzzy mathematical models even more imprecise
and un-robust. Based on personal experience of the authors,
another shortcoming of fuzzy mathematical programming
techniques is that, compared to stochasticity, it is a hard task
to intuitively explain the fuzziness to business managers who

Table 1 Classification of the
methodologies applied to study
APP subject to uncertainty

Categories Sub-categories

Fuzzy mathematical
programming

Fuzzy multi-objective optimisation; fuzzy linear programming;
fuzzy nonlinear programming; fuzzy logic control; fuzzy robust
optimisation; approximate reasoning; possibilistic linear programming;
possibilistic linear multi-objective optimisation; interactive possibilistic
linear programming

Stochastic mathematical
programming

Stochastic linear programming; stochastic nonlinear programming;
stochastic multi-objective optimisation; robust optimisation;
stochastic control; stochastic queuing; stochastic process

Simulation Discrete-event simulation; system dynamics; Monte Carlo simulation

Metaheuristics Genetic algorithm; tabu search; harmony search algorithm;
particle swarm optimisation

Evidential reasoning Belief-rule-based inference method
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may have little or very basic knowledge of mathematics and
get them support your research project by involving in it or
providing the necessary data.

2.1.2 Stochastic mathematical programming

It includes mathematical models for APP under uncertainty
that apply stochastic linear programming, stochastic nonlinear
programming, stochastic multi-objective optimisation and so
on where demand for products, constants and coefficients of
the mathematical programming models and decision variables
are of stochastic/random nature. This group also includes
mathematical programming models with probabilistic con-
straints or chance-constrained models.

Advantages As stated above, randomness and fuzziness, as
two forms of uncertainty, are essentially different, and thus
fuzzy mathematical programming can hardly be efficient in
dealing with this kind of uncertainty. Present-day business
environments are instable in nature, and deterministic APP
models hardly fit these unstable, uncertain environments.
APP models need to be built in such a way that includes the
uncertainties. These uncertainties could be randomness of
parameters/constants and decision variables which is not un-
usual in real-world production planning and control activities.
An efficient method to handle randomness present in mathe-
matical models of APP is stochastic mathematical
programming.

Disadvantages Similar to fuzzy mathematical programming
method, in stochastic mathematical programming, the subjec-
tivity is still present regarding the fact that in many cases the
associated scenario probabilities are estimated or modified
subjectively by business managers with regard to their expe-
rience of specific events. This may affect the preciseness of
the developed models.

In addition, from both theoretical and computational view-
points, there are serious concerns with stochastic mathemati-
cal programming models.

The recourse approach, as a widely used stochastic pro-
gramming technique, assumes that all constraints relating to
different scenarios have equal probability of 1, or certainty,
where the objective function represents the expected value
with regard to different scenarios. From practical point of
view, this does not sound robust, since when all constraints
relating to different scenario are put together under the same
mathematical programming model, it is as if they all happen
simultaneously.

APP problems modelled by multi-stage stochastic mathe-
matical programming techniques, e.g. stochastic dynamic pro-
gramming, would normally need to deal with the curse of
dimensionality due to rather large scale of real-world APP

decision problems and typically due to the high number of
scenarios involved.

2.1.3 Simulation

The simulation methods that have been proposed to run APP
decision problem, where forecasted demand, objective/goal
values, parameters/coefficients and constraints are supposed to
be uncertain in their nature, can be divided into two main cat-
egories: discrete-event simulation (DES), which is essentially a
discrete simulation method, and system dynamics (SD) which
is probably the most famous continuous simulation technique.

SD treats the entities as continuous variables, while DES
presents objects pictorially so that they can be visually tracked
throughout the simulated system, a capability that SD lacks.
Unlike SD that updates the state of the simulated system con-
tinuously, when DES is applied, the state of the system chang-
es at discrete time points. Both simulation techniques’ objec-
tive is to provide insights for decision makers on systems
performance over time [17, 18].

Advantages Simulation modelling, whether applied to APP or
other managerial decision-making activities, has several ad-
vantages in comparison with mathematical programming
methods [19–24]: (i) unlike mathematical programming tech-
niques that mostly operate based on average values, the sim-
ulation techniques can satisfactorily handle the transient ef-
fects in dynamic models, (ii) simulation is more flexible and
needs less simplifying assumptions compared tomathematical
optimisation or artificial intelligence, (iii) SD simulation
models can easily consider the interactions and interrelation-
ships between components of APP system which are deci-
sions that are made in various parts of a manufacturing com-
pany, (iv) simulation techniques provide an adequate base for
the construction of predictive and explanatory operational pro-
cesses models, (v) simulation is able to show how a system
behaves within a time period rather than just showing the final
results and (vi) it allows the modeller to get insight on how the
model under study actually works and realise the variables
that are key performance indicators.

Additionally, as an extra advantage, DES and SD can easily
be combined in building APP models to present an enhanced
performance, as DES performs well when applied to opera-
tional, shop-floor activities, while SD is more suitable for
aggregate/strategic level decision modelling; see [25] for
example.

Disadvantages Although simulation is generally a powerful
decision modelling tool with successful application record to
APP, it also has disadvantages. Simulation does not basically
provide the optimum solution and it can take long time to set
the parameters to obtain near-optimal solutions. Providing ac-
curate description of equations and formulas in order to
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indicate interrelationships between the simulated model’s
components is normally harder than mathematical program-
ming. Furthermore, more complex simulation models may
necessitate using computers with much higher processing ca-
pabilities and larger memory spaces.

2.1.4 Metaheuristics

Due to the nonlinearity, combinatorial and large-scale nature
of APP problems, metaheuristics have proved to be efficient
techniques to solve APP problems with uncertain characteris-
tics. In this group of APP models, uncertainty is present in
decision variables, customer demand, objective function/goal
values, constraints, constants and coefficients of the construct-
ed management science models.

Among the metaheuristics, genetic algorithms (GAs), par-
ticle swarm optimisation (PSO), tabu search (TS) and harmo-
ny search (HS) algorithm have been used to deal with APP
models in the presence of uncertainty.

Advantages Metaheuristics are always used for NP-hard
models of APP, e.g. nonlinear programming, nonlinear
multi-objective optimisation and large-scale linear program-
ming where the ordinary optimisation methods could get
trapped in local optima, and the computation time also could
get unreasonably long. Another advantage of metaheuristics is
that contrary to ordinary optimisation algorithms, by using
metaheuristics, it does not really matter whether the construct-
ed mathematical model is convex, differentiable and smooth
or not.

The advantages of PSO are due to its simple concept/struc-
ture, robustness, quickness in getting solutions and high capa-
bility of bypassing the local optima [26]. Other advantages of
PSO algorithm are relatively easier implementation, robust-
ness when changing control parameters and computational
efficiency in comparison with mathematical algorithms for
heuristic optimisation [27]. When applying PSO, only a few
parameters need to be set. it performs well in global search,
scaling design variables have little impact on its performance
and parallelising it for concurrent processing is not difficult
[28–30].

GAs, the powerful tools that are inspired by biological
mechanisms and theory of natural selection, have several
useful features: (i) implicit parallelism, i.e. a property
which enables GA to parallelly evaluate large number of
schema patterns, (ii) ability to provide quick and reliable
solutions to problems that can hardly be tackled with tra-
ditional methods, (iii) are easily interfaced and hybridised
with other metaheuristic methods, (iv) bigger solution
space, (v) complex fitness/adaptive landscape, (vi) finding
global optimum is easier, (vii) having multiple objective
function, (viii) efficient handling of noisy functions and

(ix) ability to easily handle wide, not well-understood
solution spaces [31–33].

No prior domain information such as objective function
gradient is required when using HS algorithm. Unlike
population-based evolutionary methods, only a single search
memory is utilised in HS algorithm to evolve. Thus, the HS
method is simple from algorithmic viewpoint [34]. Other ad-
vantages of HS algorithm are significantly easier implemen-
tation, less parameter adjustment, good performance in global
search and fast convergence [35, 36].

To keep the search process record, TS algorithm uses a
flexible memory [37]. Compared to systems with rigid mem-
ory or memory-less systems, this flexible memory helps
exploiting search information more thoroughly. The flexible
memory of TS algorithm is also helpful in intensifying and
diversifying the search which leads the method towards opti-
mal solution. The semi-deterministic nature of TS makes it
both local and global search technique [38].

Disadvantages One disadvantage of metaheuristics is that
they need high proficiency of coding/programming. In
addition to high skilfulness in coding, the developers of
metaheuristics need to simultaneously have a deep under-
standing of mathematical foundations of mathematical
models under study and be able to present the solution
process in algorithmic form.

In addition to weakness in local search, a disadvantage of
PSO could be the premature convergence in below optimal
points (Poli, Kennedy and Blackwell, 2007; [28, 29]).
However, by coupling PSO algorithm suitable for discrete
optimisation and chaos theory through which various chaotic
maps are implemented for enlarging the search space and en-
hancing its diversity, Petrović et al. [39] proposed a mecha-
nism to prevent the premature convergence of PSO.

GAs also have their own drawbacks, mainly (i) are not
good at local search, (ii) premature convergence and (iii)
may get trapped in near-optimal solutions. This is especially
important when verifying the optimality of a solution on a
problem is computationally impossible by using conventional
methods, (iv) difficulties related to choosing a technique to
suitably represent the problem, (v) problems related to choos-
ing different parameters such as population size, crossover and
mutation probabilities and the selection rule and its robust-
ness, (vi) are not able to utilise gradients, (vii) information
related to specific problem cannot be easily incorporated and
(viii) are not effective terminators [31–33].

Despite the aforementioned strengths, HS algorithm is
also weak at local search [34]. Other main defects of HS
algorithm are premature convergence and lower speed of
convergence [36]. It is noteworthy to mention that chaos
disturbance strategy, parameter adaptive strategy and clus-
ter analysis can be used to make the local convergence of
the HS algorithm more speedy [35].
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Main disadvantages of TS algorithm are that it is strongly
dependent on the initial solution, and its search process is
serial iterative [40].

2.1.5 Evidential reasoning

Evidential reasoning (ER) approach which has been
founded on the basis of Dempster-Shafer theory of belief
functions is capable of dealing with information and
knowledge which include varying levels of uncertainty,
mainly coming from ignorance and incorrectness [41].
At present, only a single paper has been published on
ER to APP, which employs a belief-rule-based inference
(BRBI) method to handle APP decision-making problem
with uncertain demand.

AdvantagesWhen applied to APP, by changing the values
of relevant cost coefficients, BRBI sensitively makes ef-
fective planning strategies corresponding to each cost
scheme. Even if the forecast is provided in interval forms,
intended planning values are inferable from the belief
rules with regard to different preferences. The belief-rule
framework is concise and makes it possible for decision
maker to easily improve it by directly adjusting the rule
weights and thus belief degrees [42]. Contrary to regular
multi-attribute decision analysis (MADA) methods that
present an MADA problem under decision matrix struc-
ture, ER utilises a belief decision matrix where a distribu-
tion which depends on a belief structure is used for
assessing the alternatives with respect to different attri-
butes. The main benefit of this action is that it facilitates
modelling both precise and imprecise data arising from
ignorance and vagueness that can exist in subjective hu-
man judgments [43, 44]. The belief decision matrix en-
ables the ER approach to take different formats of data
with different form of uncertainties, e.g. single numerical
values, discrete/continuous probability distributions and
subjective expert judgments with associated belief de-
grees, as input. It also accepts data that is qualitative
and incomplete [45–47].

Disadvantages The main disadvantage of ER approach to
APP is that it is in absolutely beginning stage, and prob-
ably most of its strengths and weaknesses when applied to
production planning and control are unknown.

The way the rules are generated impacts the consisten-
cy of a rule base. If the rules are inferred from expert
knowledge, this issue would be assumed trivial. But if a
noise-affected dataset is used to generate the rules, it can
cause serious problems. Further investigations are needed
to make sure there is consistency between rules generated
with the intuition and common sense Yang et al. [44].

2.2 Concise review of the literature on APP
in presence of uncertainty

In following subsections, the more recent literature about
quantitative APP models under uncertainty is concisely
reviewed. The studies have been reviewed in chronological
order within each category.

2.2.1 Fuzzy mathematical programming

The literature on application of fuzzy mathematical program-
ming approaches in the APP context can be classified into
studies which apply (I) fuzzy multi-objective optimisation,
(II) fuzzy goal programming, (III) fuzzy linear programming,
(IV) fuzzy nonlinear programming, (V) fuzzy logic control,
(VI) fuzzy robust optimisation and (VII) approximate reason-
ing techniques.

As an explanation, although the fuzzy goal programming
could be considered as a subset of fuzzy multi-objective opti-
misation but due to the significant number of publications that
apply fuzzy goal programming to APP, it has been presented as
a separate sub-division to show a clearer picture of the literature.

Fuzzy multi-objective optimisation Since APP problem al-
ways involves several criteria (objectives) and also due to
the vagueness of the acquired information, fuzzy multi-
objective programming has been widely used in this area.

Gholamian et al. [48] and Gholamian et al. [49] developed
a fuzzy multi-site multi-objective mixed-integer nonlinear
APP model in a supply chain under uncertainty with fuzzy
demand, fuzzy cost parameters, etc. Sisca et al. [50] construct-
ed a fuzzy multi-objective linear programming model for APP
in a reconfigurable assembly unit for optoelectronics where
product price, inventory cost, etc. are supposed to be fuzzy
variables.

Fiasché et al. [51] developed a fuzzy linear multi-objective
optimisation model of APP in fuzzy environment where the
product price, unit cost of not utilising the resources, etc. are of
fuzzy nature.

Zaidan et al. [52] hybridised fuzzy programming, simulat-
ed annealing and simplex downhill algorithm to make a multi-
objective linear programming model of APP in a fuzzy envi-
ronment so that operating costs, production capacities and
forecasted customer demand are assumed to be fuzzy.

Chauhan et al. [53] developed a fuzzy multi-objective
mixed-integer linear programming (FMOMILP) model for
APP where many of the constants/parameters and objective
values are regarded as fuzzy variables.

Fuzzy goal programming Jamalnia and Soukhakian [54] pro-
posed a hybrid fuzzy goal programming approach that in-
cludes both quantitative and qualitative objectives with fuzzy
aspiration levels.
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Mezghani et al. [111] developed a fuzzy goal programming
formulation of APP in an imprecise environment in which the
concept of satisfaction function is used to explicitly incorpo-
rate the decision maker’s preferences into the APP model. In
their APP model, forecasted demand, capacity levels and as-
piration levels are supposed to be fuzzy values.

Sadeghi et al. [55] proposed a fuzzy goal programming
model of APP with fuzzy aspiration levels where coefficients
and parameters of the model are assumed to be grey numbers.

Fuzzy linear programming Liang et al. [56] constructed a
fuzzy linear programming model of APP, which attempts to
minimise total production cost subject to constraints on inven-
tory levels, workforce levels, etc. where objective function
and its coefficients and constraints’ upper/lower bounds are
assumed to be fuzzy variables. A fuzzy mixed-integer linear
programming model for APP with fuzzy demand, fuzzy ware-
house space, fuzzy cost parameters and so forth in a multi-
echelon multi-item supply chain network was developed by
Pathak and Sarkar [57].

Omar et al. [58] investigated the benefits of applying fuzzy
mathematical programming in APP context by developing a
fuzzy mixed-integer linear programming model to APP with
fuzzy demand, fuzzy cost parameters, etc. in a resin
manufacturing plant, which considers both fuzzy and
possibilistic uncertainties. Wang and Zheng [59] proposed a
fuzzy linear programming method to APP in a refinery indus-
try in Taiwan, which aims at maximising total profit so that
market demand and cost items are characterised as fuzzy
numbers.

A fuzzy linear programming model of APP with imprecise
data which involves fuzzy demand and fuzzy cost items was
suggested by Iris and Cevikcan [60].

Fuzzy nonlinear programming Chen and Huang [61] con-
structed a fuzzy nonlinear programming model for APP using
the membership function of the fuzzy minimal total cost so
that maximum workforce level and forecasted demand adopt
fuzzy nature. An APP problem by considering learning effects
and demand under uncertainty was studied by Chen and
Sarker [62]. Then, their fuzzy nonlinear programming model
was compared to two other models which had not considered
learning effects and uncertain demand.

Possibilistic programming The literature on possibilistic pro-
gramming approaches that have been utilised to study APP
subject to uncertainty ranges from regular possibilistic pro-
gramming methods to interactive possibilistic programming
approaches.

Ordinary possibilistic programming Hsieh and Wu [63] pro-
posed a possibilistic linear multi-objective optimisation ap-
proach to consider APP decision-making problem with

imprecise demand and cost coefficients, which take triangular
possibility distribution functions. Sakallı et al. [64] presented a
possibilistic linear programmingmodel for APP in brass casting
industry. In the constructed model, demand quantities, percent-
ages of the ingredient in some raw materials, etc. have impre-
cise nature and adopt triangular possibility distributions. Zhu
et al. [65] developed an interval programming method to solve
a multi-period, multi-product APP problem in which product
demand and many of the coefficients are of imprecise nature.

Interactive possibilistic programming A multi-objective APP
problem with imprecise demand, cost coefficients, available
resources and capacity was studied by Liang [114] by apply-
ing an interactive linear multi-objective possibilistic program-
ming model. The proposed model minimises total production
costs and oscillations in workforce level.

Liang [113] presented an interactive possibilistic linear
programming (i-PLP) method to solve APP problems where
the objective function, forecasted demand, related capacities
and operating costs adopt imprecise nature. The study aims at
minimising total manufacturing costs subject to bounds on
inventory, labour, overtime and so on for each operating cost
category.

Other fuzzy mathematical programming approaches Turksen
and Zhong [66], Ward et al. [67] and Rahmani et al. [68]
proposed approximate reasoning schema to implement an ex-
pert system, C language fuzzy logic controller and robust
fuzzy model, respectively, to study APP under uncertainty.

A robust fuzzy model for APP was developed by Rahmani
et al. [68], which includes fuzzy customer demand and fuzzy
cost items.

2.2.2 Stochastic mathematical programming

The literature on stochastic mathematical programming ap-
proaches for APP in the presence of uncertainty includes sto-
chastic linear programming, stochastic nonlinear program-
ming, robust optimisation and stochastic control, which are
reviewed concisely in this subsection.

Stochastic linear programming A stochastic linear program-
ming method to handle APP with stochastic demand and sto-
chastic cost parameters was proposed by Leung et al. [69].
Demirel et al. [70] applied mixed-integer linear programming
to make a decision model for rolling horizon APP problem
with flexibility requirements profile where demand is
regarded as uncertain variable.

Stochastic multi-objective optimisation Chen and Liao [71]
adopted a multi-attribute decision-making approach to select
the most efficient APP strategy such that selling price, market
demand, cost coefficients, etc. are assumed to be stochastic
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variables. Jamalnia et al. [72] proposed a novel stochastic,
nonlinear, multi-objective optimisation decision model to
APP decision-making problem based on mixed chase and
level strategy under uncertainty where the market demand acts
as the main source of uncertainty. By constructing stochastic,
nonlinear, multi-objective optimisation models for five differ-
ent APP strategies, Jamalnia [73] evaluated the performance
of APP strategies under demand uncertainty with regard to
eight different criteria.

Stochastic nonlinear programming Ning et al. [74] presented
a multi-product nonlinear APP model by applying uncertainty
theory where the market demand, production cost, and so on
are characterised as uncertain variables.

Mirzapour Al-e-hashem et al. [75] and Lieckens and
Vandaele [76] both suggested nonlinear mixed-integer pro-
gramming methodologies to study APP decision problem in
the presence of uncertainty. Mirzapour Al-e-hashem et al. [75]
considered a multi-site APP problem in green supply chain
with uncertain demand, while Lieckens and Vandaele [76]
developed a multi-product, multi-routing model where a
routing consists of a sequence of operations on different re-
sources so that the uncertainty is associated with the stochastic
nature of the both demand patterns and production lead times.

Robust optimisationMirzapour Al-e-hashem et al. [77] and
Mirzapour Al-e-hashem et al. [78] suggested robust multi-
objective optimisation models to deal with APP problem
with two objective functions that aims at minimisation of
total costs and maximisation of the customer services with
cost parameters, demand, etc. under uncertainty. The for-
mer is solved using LP-metrics method and the latter with
a combination of an augmented ε-constraint method and
genetic algorithm.

Niknamfar et al. [79] developed a robust optimisation
model for aggregate production-distribution planning so
that unit production and fixed costs for production units,
unit storage and fixed costs for distribution centres, sell-
ing prices and so forth adopt uncertain nature in a three-
level supply chain. Modarres and Izadpanahi [80] pro-
posed a linear multi-objective optimisation model to
APP with uncertain product demand which tries to mini-
mise operational costs, energy costs and carbon emission.
To deal with uncertain input data, a robust optimisation
approach is also applied.

Entezaminia et al. [123] suggested a robust optimisation
approach to handle a multi-site APP problem in green supply
chain with regard to potential collection and cycling centres
under uncertainty. Customer demand and cost parameters are
supposed to be of uncertain nature. Makui et al. [81] imple-
mented APP for products with very limited expiration dates. A
robust optimisation method is also used due to inherent uncer-
tainty of parameters of the constructed APP model.

Stochastic control Silva Filho [82] formulated APP problem
as a chance-constrained stochastic control problem under im-
perfect information of states (i.e. the inventory levels).

Aggregate stochastic queuing and stochastic processes
Kogan and Portouga [83] considered a multi-period APP in
a news vendor framework where over/under production are
random variables. Their stochastic process model minimises
the expected total costs that includes productivity, overtime
and over- and underproduction costs.

An aggregate stochastic queuing (ASQ) model was intro-
duced by Hahn et al. [84] to anticipate capacity buffers and
lead time offsets for each time bucket of the APPmodel where
set-up times and processing times in the ASQ model are sto-
chastic variables.

Hahn and Brandenburg [85] presented hierarchical deci-
sion support system for sustainable APP which is integration
of deterministic linear programming and ASQ network
models, and duration of operations processes and equipment
failure rates are of stochastic nature.

2.2.3 Simulation

Simulation modelling of APP problem under uncertainty
covers a spectrum from discrete-event simulation (DES) and
system dynamics (SD) to fuzzy random simulation.

Common discrete-event simulation Tian et al. [86] applied a
simulation-based approach to aggregate planning of a batch
plant which produces concrete and asphalts so that fluctuating
demand could be generated by using a statistical distribution,
e.g. uniform and normal. Gansterer [87] investigated the im-
pact of APP with demand under uncertainty in a make-to-
order environment utilising a DES method within a compre-
hensive hierarchical production planning framework.

Altendorfer et al. [88] evaluated the effect of long-term
forecast error on optimal planned utilisation factor for a pro-
duction system with stochastic customer demand. Simulation
is used to determine overall costs like capacity, backorder and
inventory costs. Cebral-Fernández et al. [89] used DES to
model complex shipbuilding manufacturing process. Their
ongoing simulation model tries to minimise the effects of un-
certainties present in shipbuilding processes.

Other simulation modelling techniques Khouja [90],
Jamalnia and Feili [25] and Mendoza et al. [91] used Monte
Carlo simulation, integrated SD and DES and SD respectively
to consider APP subject to uncertainty.

Khouja [90] developed an APP framework to evaluate vol-
ume flexibility using Monte Carlo simulation with normally
distributed demand.

By employing an integrated SD and DES, Jamalnia and
Feili [25] evaluated effectiveness and practicality of different
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APP strategies regarding total profit criterion where the fore-
casted demand was represented as random normal
distribution.

Mendoza et al. [91] explored different APP strategies (such
as production with maximum capacity and storing inventory
to meet the demand without using overt ime and
subcontracting, resorting to hiring and lay off as the pure strat-
egies to cover uneven demand, and flexible production plans
using overtime and/or subcontracting) for a multi-product,
multi-period APP problem by applying a SD model in a
two-level, labour-intensive supply chain under demand
uncertainty.

2.2.4 Metaheuristics

Different kinds of metaheuristics have been proposed by for
APP in condition of uncertainty as follows.

Genetic algorithms (Gas) Fichera et al. [92] suggested
possibilistic linear programming and GA as a decision support
system for APP to assist decision makers in APP decisions in
a vague environment where the constraints on balance equa-
tion for production, inventory and demand and total produc-
tion capacity are of possibilistic form. The chromosome vector
in their GA consists of variables for production amount, in-
ventory level and workforce level. An interactive fuzzy genet-
ic methodology to solve aggregate production-distribution
planning in supply chain subject to the fuzziness of total prof-
it, total expenses, etc. was developed by Aliev et al. [93],
where a data structure called chromosome or genome is used
to code decision variables. Since in their study binary coding
is used, genomes that are equivalent to bitstrings each can
store a potential coded solution. They convert fuzzy parame-
ters to binary type and linked them upwithin a single bitstring.

Tabu search (TS) Baykasoğlu and Göçken [94] proposed a TS
method to solve a fuzzy goal programming model of APP
with fuzzy goal values. In solving fuzzy goal programming
problem, they took three steps: (1) finding initial solution,
which is an initial random feasible solution vector that sat-
isfies all hard constraints, (2) changing the value of a decision
variable that has been randomly selected from the solution
vector to generate neighbourhood solutions and (3) selection
of the current best solution vector. Baykasoglu and Gocken
[95] proposed a multi-objective APP with fuzzy parameters
and solved the model by employing fuzzy numbers ranking
methods and TS. The fundamental search mechanism used by
them is the TS algorithm of Baykasoglu et al. [96]. The TS
algorithm entails several steps: (1) finding initial solution, (2)
generation of neighbourhood solutions, (3) selection of the
current best solution vector, (4) updating the best-known so-
lution vector, (5) putting the accepted solutions on the tabu

list, (6) aspiration criteria, which means accepting any move
that improves the best-know solutions and (7) termination.

Other metaheuristic approaches Aungkulanon et al. [97] ap-
plied a harmony search (HS) algorithm with different evolu-
tionary elements to solve a fuzzy multi-objective linear pro-
gramming model for APP with fuzzy objectives. They devel-
oped various hybridisations of the HS algorithm, the Hunting
Search Element on the Pitch Adjustment, Rate Novel Global
Best HS Algorithm (NGHSA) and Variable Neighbourhood
Search Element on the HS algorithm (VHSA), which employ
different neighbourhood and global search mechanisms to
generate new solution vectors that enhance accuracy and con-
vergence rate of HS algorithm.

Chakrabortty et al. [98] solved an integer linear program-
ming model of APP with imprecise operating costs, demand
and capacity-related data by employing a particle swarm op-
timisation (PSO) approach. To make convergence faster and
obtain better solutions, linear reduction of inertia weight as a
modified version of PSO was applied in solving the APP
model, where the algorithm stops when the maximum number
of loops is reached.

2.2.5 Evidential reasoning

Li et al. [42] presented a belief-rule-based inference method-
ology for APP under demand uncertainty. The proposed mod-
el was implemented by using a paint factory example to con-
duct a comparative study and sensitivity analysis.

3 Management science perspective on APP
under uncertainty literature

3.1 Source of uncertainty in APP models

As Table 2 indicates, the literature was analysed based on
which type of the five main methodologies described in
Subsection 2.1 they use and which elements are subject to
uncertainty. Uncertainty could be present in different elements
of the developed quantitative models for APP such as fore-
casted demand, objective function values, goals aspiration
levels, constants/coefficients, constraints and decision vari-
ables. Although forecasted demand would also be represented
under the coefficients/parameters category but because of the
great number of the occasions it has been under uncertainty in
the studied APP models, we represent it as a separate part to
make the literature analysis more informative.

Table 2 shows that coefficients/parameters account for the
highest frequency of the uncertainty in total, 79 (28.11%) out
of 281 (100%), among the components of the APP models
under study. That is, in total of 79 studies (publications),
coefficients/parameters were subject to a form of uncertainty.
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Two of the highest frequencies of the coefficients/parameters
under uncertainty, i.e. 32 (40.51%) and 31 (39.24%) out of 79
(100%), belong to the studies that apply stochastic mathemat-
ical programming and fuzzy mathematical programming
methods, respectively. The third tier is represented by the lit-
erature that employs simulation techniques which contributes
to 11 (13.92%) out of 79 (100%) occasions of the coefficients
and parameter uncertainty, that is a sharp decrease compared
to the first two highest frequencies.

Forecastedmarket demand comes in the second place among
the elements of the surveyed APP models under uncertainty in
terms of frequency of being uncertain, which adds up to 73
(25.98%) out of 281 (100%) in total. Similar to the
coefficients/parameters case, fuzzymathematical programming,
stochastic mathematical programming and simulation model-
ling methodologies top the list for the number of occasions that
forecasted demand characterised as uncertain in the reviewed
literature with corresponding frequencies 29 (42.03%), 28
(34.78%) and 11 (15.94%) out of 73 (100%), respectively.

Constraints represent the third level of the uncertainty fre-
quencies among the elements of the reviewed APP models in
presence of uncertainty with total frequency of 66 (23.49%)
out of 281 (100%). Again, similar to the two previously
analysed APP model components, fuzzy mathematical pro-
gramming and stochastic mathematical programming tech-
niques make the highest contributions in terms of number of
occasions that the surveyed research studies include uncertain
constraints, which are 30 (45.45%) and 27 (40.91%) out of 66
(100%), respectively. But, unlike the two previously analysed

elements of the APP models, now metaheuristics come in the
third place with respect to the number of occasions that the
surveyed literature includes uncertain constraints, i.e. 5
(7.58%) out of 66 (100%).

3.2 Trends for frequency of published research
regarding each main category of the methodologies

Table 3 shows the number of publications in each decade
regarding the respective methodologies applied in the litera-
ture to study APP in presence of uncertainty.

As is evident from Table 3, the two highest frequencies of
the published research on APP under uncertainty belong to
2010s and 2000s with total frequencies of 47 (51.09%) and
24 (26.09%) out of 92 (100%), respectively. 1990s comes in
the third place with total number of 13 (14.13%) publications
out of 92 (100%). Generally, the total number of literature
about APP subject to uncertainty has been increasing con-
stantly from 1970s until 2010s.

In 2010s, the research that applies fuzzy mathematical pro-
gramming and stochastic mathematical programming tech-
niques accounts for 20 (42.55%) and 17 (36.17%) out of total
publications in this decade, i.e. 47 (100%), which put them in
the first and second orders, respectively. The studies that uti-
lise simulation methods come in the third place with total
frequency of 6 (12.77%) out of 47 (100%).

For the decade starting in 2000, of 24 studies (100%), the
highest number, 14 (58.33%), goes to the literature which
applies fuzzy mathematical programming to APP. Stochastic

Table 2 The source of
uncertainty in APP models in the
presence of uncertainty

Forecasted
demand

Objective/
goal values

Coefficients/
parameters

Constraints Decision
variables

Fuzzy mathematical
programming

29 34 31 30 3

Stochastic mathematical
programming

28 13 32 27 4

Simulation 11 2 11 3 0

Metaheuristics 4 5 4 5 2

Evidential reasoning 1 0 1 1 0

Total 73 54 79 66 9

Table 3 The number of
publications on APP under
uncertainty over time

1970–
1979

1980–
1989

1990–
1999

2000–
2009

2010–
2018

Total

Fuzzymathematical programming 1 3 14 20 38

Stochastic mathematical
programming

2 2 7 6 17 34

Simulation 2 1 1 2 6 12

Metaheuristics 2 2 3 7

Evidential reasoning 1 1

Total 4 4 13 24 47 92
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mathematical programming and both simulation and
metaheuristic methods come in the second and third places
with respective contributions of 6 (25%) and 2 (8.33%) out
of 24 (100%).

In the time period 1990–1999, three of the highest frequen-
cies of the studies about APP under uncertainty belong to
stochastic mathematical programming, fuzzy mathematical
programming and metaheuristics-based methodologies with
corresponding frequencies of 7 (53.85%), 3 (23.08%) and 2
(15.38%) out of 13 (100%).

In terms of the total frequency of published literature on
APP in presence of uncertainty with regard to the methodol-
ogy applied, total number of the literature on fuzzy mathemat-
ical programming to APP for all decades, 38 (41.30%) out of
92 (100%), stays in the first place. The second and third levels
of the frequencies, 34 (36.96%) and 12 (13.04%) out of 92
(100%), are represented by stochastic mathematical program-
ming and simulation methods, respectively, which has been
shown in Fig. 3.

The trend lines for the number of studies with respect to
different methodologies they employ to study APP under un-
certainty over a time period from 1974 to 2018 are presented
in Table 4. If we suppose the trend line equation is Y = a + bt
where t represents time in years, Table 4 shows the computed
parameters of the trend lines.

The trend line for the time series on the number of publi-
cations about fuzzy mathematical programming models for
APP in presence of uncertainty has the largest slope, i.e.
0.06568, whichmeans the amount of this category of literature
has had the highest rate of growth over time.

The regression line for the number of studies on stochastic
mathematical programming to APP under uncertainty with the

slope of 0.0434 shows the second steepest line during the last
44 years.

The trend lines for the frequencies of studies that apply
simulation modelling and metaheuristics techniques to APP
decision problem under uncertainty, with approximately equal
slope 0.011, are less steep compared to those of fuzzy and
stochastic mathematical programming which is indicator of
relatively lower growth rate in the amount of literature in these
areas.

3.3 Frequency of published research with regard
to each sub-category of the methodologies

Table 5 shows the frequency of publications when each cate-
gory of the management science methodologies for APP in
presence of uncertainty are split into sub-categories. As it can
be seen from the Table 5, under the fuzzy mathematical pro-
gramming category, methodologies such as fuzzy multi-

Stoch Math Prog
Fuzz Math Prog
Sim
Metaheur
Evid Reas

Category
EvidReas

1.1%
Metaheur

7.6%

Sim
13.0%

Fuzz Math Prog
41.3%

Stoch Math Prog
37.0%

Fig. 3 The share of each
methodology from literature on
APP under uncertainty

Table 4 Trend lines for different management science methodologies
applied to APP under uncertainty

Parameters

Management science methodology a b

Fuzzy mathematical programming − 0.614 0.06568

Stochastic mathematical programming − 0.204 0.0434

Metaheuristics − 0.087 0.01092

Simulation 0.032 0.01071
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objective optimisation, fuzzy goal programming and fuzzy
linear programming respectively represent the three highest
numbers of studies: 11 (28.95%), 8 (21.05%) and 6
(15.79%) out of 38 (100%).

Of 34 publications about stochastic mathematical program-
ming for APP, robust optimisation and stochastic linear pro-
gramming techniques equally represent the highest share on
the number of published research among others, i.e. 8

Table 5 The frequencies of studies regarding each sub-category of the methodologies applied to APP under uncertainty

Methodology Number of
publications

Related references

Fuzzy mathematical programming

Fuzzy linear programming 6 Dai et al. [99], Liang et al. [56], Pathak and Sarkar [57], Omar et al. [58],
Wang and Zheng [59], Iris and Cevikcan [60]

Fuzzy nonlinear
programming

4 Tang et al. [100], Fung et al. [101], Chen and Huang [61], Chen and Sarker [62]

Fuzzy multi-objective
optimisation

11 Lee [102], Gen et al. [103], Wang and Fang [104], Wang and Liang [105],
Ghasemy Yaghin et al. [106], Gholamian et al. [48], Gholamian et al. [49],
Sisca et al. [50], Fiasché et al. [51], Zaidan et al. [52], Chauhan et al. [53]

Fuzzy goal programming 8 Lin and Liang [107], Da Silva and Marins [136], Wang and Liang [108], Ertay [109],
Tavakkoli-Moghaddam et al. [110], Jamalnia and Soukhakian [54],
Mezghani et al. [111], Sadeghi et al. [55]

Fuzzy logic control 1 Ward et al. [67]

Approximate reasoning 1 Turksen and Zhong [66]

Fuzzy robust optimisation 1 Rahmani et al. [68]

Possibilistic linear
programming

4 Wang and Liang [112], Liang [113], Sakallı et al. [64], Zhu et al. [65]

Possibilistic linear
multi-objective optimisation

2 Hsieh and Wu [63], Liang [114]

Stochastic mathematical programming

Stochastic linear
programming

8 Lockett and Muhlemann [147], Kleindorfer and Kunreuther [115], Günther [116],
Thompson and Davis [117], Thompson et al. [118], Jain and Palekar [119],
Leung et al. [69], Demirel et al. [70]

Stochastic multi-objective
optimisation

5 Rakes et al. [120], Chen and Liao [71], Mezghani et al. [121],
Jamalnia et al. [72], Jamalnia [73]

Robust optimisation 8 Leung and Wu [146], Kanyalkar and Adil [122], Mirzapour Al-e-hashem et al. [77],
Mirzapour Al-e-hashem et al. [78], Niknamfar et al. [79], Modarres
and Izadpanahi [80], Entezaminia et al. [123], Makui et al. [81]

Stochastic control 3 Love and Turner [124], Shen [125], Silva Filho [82]

Aggregate stochastic
queueing

2 Hahn et al. [84], Hahn and Brandenburg [85]

Stochastic process 2 Silva Filho [126], Kogan and Portouga [83]

Simulation

Regular discrete-event
simulation

8 Lee and Khumawala [127], McClain and Thomas [128], Lee et al. [129],
Tang et al. [130], Tian et al. [86], Gansterer [87], Altendorfer et al. [88],
Cebral-Fernández et al. [89]

Monte Carlo simulation 1 Khouja [90]

System dynamics 3 Dejonckheere et al. [131], Jamalnia and Feili [25], Mendoza et al. [91]

Metaheuristics

Genetic algorithms 3 Wang and Fang [132], Fichera et al. [92], Aliev et al. [93]

Tabu search 2 Baykasoğlu and Göçken [94], Baykasoglu and Gocken [95]

Harmony search algorithm 1 Aungkulanon et al. [97]

Particle swarm optimisation 1 Chakrabortty et al. [98]

Evidential reasoning

Belief-rule-based inference
method

1 Li et al. [42]
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(23.53%). Stochastic nonlinear programming stays in the sec-
ond order with total number of publications 6 (17.65%) out of
34 (100%).

Common discrete-event simulation as a subset of the sim-
ulation methodology in general has been utilised in research
onAPP in presence of uncertainty in 8 occasions (66.67%) out
of 12 (100%), which is the greatest contribution among other
simulation methods. System dynamics and Monte Carlo sim-
ulation with frequencies 3 (25%) and 1 (8.33%) out of 12
(100%) stay in the second and third places, respectively.

4 Operations management perspective
on APP under uncertainty literature

4.1 Rolling horizon APP

Unlike fixed-horizon APP models, in rolling horizon APP
models, the forecasted demand, planned production volumes,
backordered orders and subcontracting quantity are updated
constantly in each time period with regard to remaining time
periods in the future. This is especially important regarding
the fact that the forecasted market demand as the driving force
in APP is not static and dynamically changes in each time
period within the planning horizon. Dynamicity of market
demand will automatically make the whole APP system dy-
namic as well.

Rolling horizon planning entails solvingmultiple and prob-
ably different optimisation problems within each planning pe-
riod t, where these optimisation problems for each plan may
have different initial conditions which in turn depend on the
plan at period t – 1 [70].

Different measures can be incorporated into rolling horizon
production planning models to reduce instability/nervousness
that results from rolling horizon, mainly (1) quantifying ner-
vousness in terms of cost and including it in objective function
and (2) minimising oscillations in production volumes and the
number of set-ups.

McClain and Thomas [128] evaluated the effect of different
horizon lengths on their APP model performance. Kleindorfer
and Kunreuther [115] studied APP problems with stochastic
horizons and determined the optimal horizon lengths.
However, none of these studies can be categorised as rolling
horizon APP regarding the above-presented description of
rolling horizon planning.

In general, very few published studies on rolling horizon
APP exist in both uncertain and deterministic conditions.

Demirel et al. [70] created a rolling horizon-based APP
model under flexibility requirements profile (FPR). In their
mixed-integer linear programming formulation of APP under
demand uncertainty, to avoid instabilities arising from rolling
horizon, the FPR is, in fact, lower and upper bounds on planned
productions. The parameters representing these bounds are

called “flex-limits”. The overall results show that the proposed
FPR framework has superior performance in terms of produc-
tion stability compared to traditional APP models.

4.2 APP for reconfigurable manufacturing systems

Reconfigurable manufacturing systems (RMS) have been de-
veloped to respond to the requirements of manufacturing en-
vironments such as quicker response time/shorter lead time,
increasing the product variants, lowering production volume
and cost-effectiveness.

RMS are designed from the beginning for timely reaction
to rapid change in structure, hardware and software compo-
nents, so that quick adjustment of manufacturing capacity and
functionality within a part family to respond the sudden
changes in market requirements or business-related regula-
tions becomes possible [133]. The purpose of RMS concept
is to deal with the changes and uncertainties which are typical
of modern manufacturing environments. This objective can be
achievable by reconfiguration of hardware as well as software
resources [134].

Only two published pieces of research have studied APP
(whether deterministic or under uncertainty) from RMS
viewpoint.

Jain and Palekar [119] considered APP problem in
configuration-based manufacturing environment, in which
machines and equipment’s lay-out can be re-arranged to form
new production lines. Their APP model was implemented in a
food processing company where the production processes are
basically continuous, and products go through several produc-
tion stages. At each stage, several machines are available, and
creating new machine configurations to co-manufacture
groups of products at various output rates is performed by
combining these machines in different ways.

Sisca et al. [50] developed a fuzzy multi-objective APP
model in a manufacturing environment of high mix, low vol-
ume products where Robotic Reconfigurable Assemble Units
(RRAU) are integrated using different integration scenarios in
a preexisting shop-floor. Each RRAU receives and storages
raw materials, then processes the raw materials and finally
storages the semi-finished products.

4.3 APP for process industries

In contrast to discrete manufacturing, process manufacturing
is essentially continuous and uninterrupted. Examples of pro-
cess industries include soft drink production, food processing
and oil refinery. Due to the special features of process indus-
tries which may not allow keeping in process inventory and
regarding the fact that unlike discrete manufacturing, process
manufacturing is concerned with bulk of materials instead of
individual units, ingredients rather than parts, formulas instead
of bill of materials, production planning for process industries
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can be fundamentally different from that of discrete
manufacturing.

Another important issue to consider in operations planning
of process industries is that delays and breakdown of ma-
chines, which could stop the production process, can easily
increase the amount of perished products and materials.

Among the reviewed literature, only Jain and Palekar [119]
and Hahn and Brandenburg [85] have considered APP in pro-
cess industries.

Jain and Palekar [119] applied stochastic linear pro-
gramming method to study APP with resource limitation
considerations in continuous food producing company,
where keeping in-process inventories cannot be allowed
due to cost considerations or shorter lifetime of the inter-
mediate products. Additionally, the production process in
their study is reconfigurable by re-arranging the machines
and equipment.

Hahn and Brandenburg [85] developed a sustainable APP
decision model for chemical process industry by applying
stochastic queuing networks. In their model, work in progress
(WIP) inventory may be allowed. Since chemical production
processes normally operate in campaign mode, i.e. required
production resources are assigned to the sequential production
of batches of the same type for days or even weeks, by cam-
paign planning their APP model is concerned with anticipat-
ing the impact of decisions related to production mix, produc-
tion volume and production routing on campaign lead times
and work in process inventories in stochastic manufacturing
environment. Their model also tries to minimise carbon emis-
sions and negative social impacts due to varying operating
rates.

4.4 APP under uncertainty with sustainability
considerations

Recently, literature on APP under uncertainty has started in-
corporating newer trends in operations management such as

green supply chain management, energy saving and sustain-
ability in general in APP models in order to optimise carbon
emission, greenhouse gas emissions, energy consumption and
overtime working hours.

This category of literature which can be classified as
sustainability-related literature on APP under uncertainty in-
cludes Hahn and Brandenburg [85], Entezaminia et al. [123],
Modarres and Izadpanahi [80] and Mirzapour Al-e-hashem
et al. [75].

Practical requirements of the contemporary operations
management which stems from stakeholders and govern-
ment pressures and environmental and social activists’
expectations necessitates taking into account the
abovementioned sustainability-related factors in the devel-
oped APP decision models.

4.5 Literature with respect to the applied APP
strategy

Table 6 presents the number of the published studies on
APP under uncertainty with respect to different APP strat-
egies, i.e. mixed chase and level, pure chase, pure level,
modified chase, modified level and demand management
strategies. As Table 6 shows, 100% of the surveyed liter-
ature applies the mixed chase and level strategy, i.e. 92
out of 92. Modified chase and modified level strategies
with equal frequencies of 4 (4.35%) out of 92 (100%) and
pure chase and pure level strategies with equal frequen-
cies of 3 (3.26%) out of 92 (100%) come in the second
and third orders respectively. The demand management
strategy with total frequency of 1 (1.09%) out of 92
(100%) stays in last place. However, studies performed
by Thompson et al. [118], Chen and Liao [71], Jamalnia
and Feili [25] and Jamalnia [73] compared various APP
policies in the presence of uncertainty and found out that
the chase strategies family are the most effective strategies
or are among the most effective strategies.

Table 6 Comparing the research
on APP in presence of uncertainty
with respect to the utilised APP
strategy

Mixed chase
and level
strategy

Pure
chase
strategy

Pure
level
strategy

Modified
chase
strategy

Modified
level
strategy

Demand
management
strategy

Stochastic
mathematical
programming

34 1 1 3 3 0

Fuzzy
mathematical
programming

38 0 0 0 0 0

Simulation 12 2 2 1 1 1

Metaheuristics 7 0 0 0 0 0

Evidential
reasoning

1 0 0 0 0 0

Total 92 3 3 4 4 1
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4.6 Type of industries in which APP models
under uncertainty have been applied more frequently

Table 7 shows the types of industries in which APP models
under uncertainty have been applied in existing literature.
Please note that some literature has used hypothetical numer-
ical examples or has not stated the type of industry fromwhich
it has collected the data for APP model implementation. So,
Table 7 only indicates the types of industries for the literature
which has provided the relevant information.

As it can be seen from Table 7, three industries have been
used most frequently as case studies by literature about APP
under uncertainty. These industries in terms of frequency of
application by literature on APP under uncertainty are ma-
chinery and machine parts manufacturing, food and drink in-
dustry and paint products with respective frequencies 11
(22%), 10 (20%) and 6 (12%) out of 50 (100%).

The paint products and wood and paper Industries have
been taken as case studies from the research conducted by
Holt et al. [2] and Mirzapour Al-e-hashem et al. [77], respec-
tively, by subsequent researchers.

As it was already stated in Subsection 3.1, the uncertainty
is mostly present in product demand in APP models in pres-
ence of uncertainty. Unsurprisingly, the market demand for
products in abovementioned industries is normally highly var-
iable. The market demand for machines including industrial
manufacturing machines, cars and aero-engines and conse-
quently the demand for their components could easily fluctu-
ate due to economic growth, recessions, political instabilities,
change in customers’ preferences, fierce competitions in mar-
ket and so on, which makes this industry a suitable case for
implementing APP models under uncertainty.

Demand for food and drink products is also highly variable
because of reasons which can range from seasonal factors to
population growth/decline, change in consumption patterns
and change in society’s age construction. Similar to machines
and machine parts industry, the high variability in food and
drink products’ demandmakes it a suitable case study for APP
in presence of uncertainty.

Customer demand for paint products, whether decorative
or industrial paints, can oscillate as result of the rate of urban-
isation and pace of development of the realty, automobile and
infrastructure that in turn makes the demand volume uncertain
and hardly predictable. Therefore, it is not a surprise that paint
industry has been a favourite source of operational data for the
literature on APP under uncertainty.

5 Conclusions and future research directions

In this research, a wide scope of literature on APP under un-
certainty was analysed. This literature includes journal papers,
book chapters, conference/proceedings papers and PhD theses

which were classified into five main categories on the basis of
the methodologies applied, such as stochastic mathematical
programming and fuzzy mathematical programming. The un-
certainties present in the constructed management science
models are of sorts like stochasticity, fuzziness, impreciseness
of the information and so on. First, the preliminary analysis of
the literature regarding the classification schemes according to
the abovementioned methodologies together with advantages
and disadvantages of these methodologies were presented,
and then recent literature was concisely reviewed. Finally,
more detailed analysis of the surveyed literature from man-
agement science and operations management perspectives
was followed.

Total numbers of studies which apply fuzzy mathematical
programming and stochastic mathematical programming to
APP in the presence of uncertainty come in the first and sec-
ond places, respectively. The trend lines for the frequency of
studies on fuzzy mathematical programming and stochastic
mathematical programming to APP under uncertainty show
the highest slopes. Very few published studies exist, whether
in uncertain or deterministic modes, on APP for RMS, process
industries and rolling horizon condition, sustainable APP and
APP strategies other than the mixed chase and level strategy,
which is indicator of sensible research gaps in these areas.

Possible future research directions according to in-depth
literature survey in present study are recommended as follows:

& Forecasted market demand plays a central role in APP
process. APP in practice is medium-range decision-mak-
ing which normally covers a time horizon between 3 to
18 months. Thus, the rather long planning horizon can
mean less accurate forecasting of the demand in the be-
ginning of planning horizon. The diminished accuracy of
demand forecast could lead to lost orders due to stock-out
or over-stoking in case of overestimating the demand. In
either cases, underestimating or overestimating the de-
mand, the company will incur the relevant costs. Rolling
horizon APP includes the possibility of updating/revising
the demand in each time period and therefore modifying
the errors in demand forecast.

As it was already discussed in Subsection 4.1, very few
published research on rolling horizon APP in both uncer-
tain and deterministic conditions exists. More research on
rolling horizon APP is needed to correct the above-
described deficiency in APP models.

& Nowadays, manufacturing companies are concerned with
rapid response to change in market demand and customer
requirements to remain competitive. A company needs to
be responsive to be able to meet changing market expec-
tations by developing new products.

By enhancing responsiveness for manufacturing sys-
tems, re-configurability facilitates quickly launching new
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Table 7 Type of industries considered in literature on APP under uncertainty

Industry The related published research The relevant industry category Frequency

Shipbuilding Cebral-Fernández et al. [89] Machinery and machine parts
manufacturing

1

Vegetable production Pang and Ning [135] Food and drink industry 1

Home appliance Jamalnia and Feili [25], Sadeghi et al. [55] Appliances 2

General appliance Aliev et al. [93], Niknamfar et al. [79] Appliances 2

Paint company Love and Turner [124], Shen [125], Li et al. [42], Hsieh
and Wu [63], Turksen and Zhong [66], Dejonckheere
et al. [131]

Paint products 6

Wood and Paper
Industries

Mirzapour Al-e-hashem et al. [77], Mirzapour
Al-e-hashem et al. [75], Gholamian et al. [48],
Gholamian et al. [49], Entezaminia et al. [123]

Wood and paper industries 5

Precision machinery
and transmission
components

Wang and Liang [108], Wang and Liang [112], Liang
[113], Liang et al. [56], Liang [114]

Machinery and machine parts
manufacturing

5

Chemical process
industry

Hahn and Brandenburg [85] Chemical industry 1

Soft drink industry Jamalnia et al. [72], Jamalnia [73] Food and drink industry 2

Food products Jain and Palekar [119], Kogan and Portouga [83], Ning
et al. [74]

Food and drink industry 3

Garments Chakrabortty et al. [98] Garments 1

Vegetable oils Zaidan et al. [52] Food and drink industry 1

Chemical industry Wang and Fang [132] Chemical industry 1

Refrigerator
manufacturing

Jamalnia and Soukhakian [54] Appliances 1

Automotive supplier Gansterer [87], Demirel et al. [70] Machinery and machine parts
manufacturing

2

Consumer goods Kanyalkar and Adil [122] General consumer goods 1

Oil production Wang and Zheng [59] Chemical industry 1

Lingerie production Leung et al. [69] Garments 1

Beer production Lee and Khumawala [127] Food and drink industry 1

Brass casting industry Sakallı et al. [64] Metallic, non-metallic and useful
substances

1

Bolt, screw and nut
production

Hahn et al. [84] Machinery and machine parts
manufacturing

1

Batch plant (asphalt
production)

Tian et al. [86] Asphalt production 1

Sugar mill Da Silva and Silva Marins [136] Food and drink industry 1

Aero-engine production Tang et al. [130] Machinery and machine parts
manufacturing

1

Gear manufacturer
company

Chauhan et al. [53] Machinery and machine parts
manufacturing

1

Mosquito expellant
production

Chen and Sarker [62] General consumer goods 1

Resin manufacturing Omar et al. [58] Food and drink industry 1

Smelting manufacturer Modarres and Izadpanahi [80] Metallic, non-metallic and useful
substances

1

Calendar producing Makui et al. [81] General consumer goods 1

Cement production Love and Turner [124] Metallic, non-metallic and useful
substances

1

Textile Demirel et al. [70] Garments 1

Frequencies

Appliances Paint
products

Wood and
paper
industries

Machinery and
machine parts
manufacturing

Metallic,
non-metallic and
useful substances

Food and
drink
industry

Garments General
consumer
goods

Chemical
industry

Asphalt
production

5 6 5 11 3 10 3 3 3 1
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products on existing production facilities and reacting rap-
idly and cost-effectively to changes in marketplace and
product specifications and system failures [137].

As very few published studies have considered APP for
RMS, research onAPP under uncertainty regarding the re-
configurability of modern manufacturing systems would
be interesting since the re-configurability can significantly
reduce the negative effects caused by unstable business
environments.

& Process industries such as oil refineries, beverage
manufacturing and chemical processes which operate con-
tinuous, uninterrupted production processes, constitute a
major part of industries. Because of especial features of
process industries, e.g. stocking work in process inventory
may not be allowed, and delays and stoppage in produc-
tion process can easily lead to perished products/raw ma-
terials, these industries need their own type of production
planning and control. Production planning of process in-
dustries can be specifically challenging when it is done
using discrete-event simulation methods to simulate
shop-floor activities due to continuity of themanufacturing
process activities. However, each of the abovementioned
challenges can open up a new future research path with
regard to the fact that very few researches have considered
APP, whether deterministic or under uncertainty, for pro-
cess industries.

& In Subsection 4.4, the incorporation of sustainability-
related issues in APP models in presence of uncertainty
was discussed. This new path can be further extended by
taking into account the circular economy principles in
APP models, where instead of “take, make and dispose”
mentality, the products and materials are recovered and
regenerated when they reach the end of their service life.

& As it was already shown in Table 6, the absolutely preva-
lent APP strategy in the literature about APP in presence
of uncertainty (and even in the literature on deterministic
APP models) is the mixed chase and level strategy.
However, the surveys conducted by Buxey [138–140] re-
vealed that the most popular APP policy among opera-
tions managers is the chase strategy, which shows a gap
between APP in academia and APP in practice. This also
indicates an intense gap related to the lack of the studies
about quantitative APP models under uncertainty based
on other APP strategies such as chase strategy, level strat-
egy and the demand management strategy.

& Several relative advantages of the simulation techniques
over mathematical programming methods, e.g. coping
with dynamic or transient effects, addressing interactions
between different components of a system and the ability
of providing a sufficient basis for developing explanatory
and predictive models of operational processes, have been
stated in the literature. Therefore, the relatively low share
of the literature which apply simulationmodelling to study

APP subject to uncertainty (13.04%) and the least steep
trend line of the frequency of the number of published
research in this area over recent decades recommend the
need to do extra research in this field to compensate the
unfairly narrow share of the simulation methods.

More specifically, even a single piece of research has
not yet been published on agent-based simulation (ABS)
to APP, whether in deterministic or uncertain manner.
Nevertheless, ABS has been successfully applied to relat-
ed areas such as production planning and control [141],
advanced supply chain planning and scheduling [142] and
inventory-production-transportation modelling [143]. In a
supply chain context, APP involves different agents in-
cluding focal firm, suppliers, customers and workforce
market. In company-wide level, APP involves different
units, such as operations management, human resource
management, marketing management and purchasing
and procurement departments, as agents. In both cases,
these agents interact with each other via interrelationships.
This feature makes ABS an effective tool inmodelling and
simulation of APP under uncertainty, e.g. with uncertain
seasonal demand pattern. ABS has efficiently been
utilised to production planning of both push and pull pro-
duction systems, a feature that can be considered in future
studies on APP in both uncertain and deterministic modes.

& APP in practical settings entails multiple objectivity and is
of large-scale and combinatorial nature. In addition, fac-
tors such as quadratic cost functions, stepwise product
price functions and learning curve effect in APP problems
can make APP models nonlinear as well. Moreover, deci-
sion variables in APP problems can be integer. All this can
make dealing with APPmodels computationally challeng-
ing in practice. Researchers may adopt decomposition
methods or model the APP problem in such a way that
the number of variables and constraints is reduced.

Another efficient method to deal with these computa-
tionally challenging APP models is to recourse to
metaheuristics. Different metaheuristics like PSO, GA,
HS algorithm and TS have been applied by literature on
APP under uncertainty to solve combinatorial APP prob-
lems. The advantages and disadvantages of these
metaheuristic approaches were discussed in Subsection
2.1. However, despite the proven strengths of ant colony
optimisation (ACO) such as providing positive feedback
which helps quicker solution finding, and having distrib-
uted computation which avoids premature convergence
[144], this well-established metaheuristic method has not
yet been applied to handle APP models in presence of
uncertainty. Applying the ACO to deal with computation-
ally hard APP problem under uncertainty can be a future
research path.

& Only a single journal paper has been published on eviden-
tial reasoning (ER) to APP in both uncertain and
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deterministic manners. ER method can conjunctively
combine multiple pieces of independent evidence with
weights and reliabilities [47]. Regarding the capabilities
of the ER in handling the uncertainty, this could act as a
foundation stone to drive more research in this area.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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