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Abstract—Progress in life, physical sciences and technology

depends on efficient data-mining and modern computing tech-

nologies. The rapid growth of data-intensive domains requires

a continuous development of new solutions for network infras-

tructure, servers and storage in order to address Big Data-

related problems. Development of software frameworks, in-

clude smart calculation, communication management, data

decomposition and allocation algorithms is clearly one of the

major technological challenges we are faced with. Reduction

in energy consumption is another challenge arising in connec-

tion with the development of efficient HPC infrastructures.

This paper addresses the vital problem of energy-efficient high

performance distributed and parallel computing. An overview

of recent technologies for Big Data processing is presented.

The attention is focused on the most popular middleware and

software platforms. Various energy-saving approaches are

presented and discussed as well.

Keywords—Big Data, cloud, cluster, energy-efficient computa-

tion, grid, HPC, software platform.

1. Introduction

A truly explosive growth in the volume, variety and speed

of digital data created and collected on a daily basis

may be observed from the very onset of the Internet era.

Big Data computing is a critically difficult challenge for

High-Performance Computing (HPC). The main goal is to

develop efficient technologies for transforming massively

large and often unstructured or semi-structured data - firstly

into valuable information, and then into meaningful knowl-

edge. Raw data that are gathered by numerous sources

including sensors, mobile devices, open and commercial

datasets and archives, social networks, etc. have to be

processed, often in the on-line mode. The challenge con-

sists in the ability to integrate, store and analyze such data

while satisfying fewer software and hardware-related re-

quirements that may apply to huge collections of data sets

generated by and gathered from distributed sources. There-

fore, Big Data problems require continuous improvement of

processors, servers, as well as storage and network infras-

tructure in order to enable the efficient processing of data

through remote data management applications. The main

challenge is to design and develop complete frameworks for

intelligent management and communication, data filtration,

aggregation, correlation and fusion. Moreover, reduction

in energy consumption is another technological challenge

arising with the development of computing infrastructures

for Big Data-related applications. The programming ab-

stractions and data processing techniques must therefore be

designed for:

• seamless implementation of applications with effi-

cient levels of virtualization of computing resources

such as servers, storage and networks,

• effective normalization, unification and merging of

various types of data into a consistent format,

• energy conservation in data centers and communica-

tion infrastructure.

Distribution transparency, reliability, scalability, informa-

tion sharing, fast and secure exchange of information orig-

inating from remote sources and efficient management of

energy consumption are the main requirements for HPC

systems. The idea behind distribution transparency is to

hide the distribution-related aspects of a system from its

users and applications, i.e. to provide a single system

view. Transparency is often described in terms of uni-

fication of the process, memory, distributed file systems

and input/output device space. A unified process space is

implemented by providing visibility of and control over

all processes running across the whole computing sys-

tem. Unification of memory space applies to globally

addressable shared memory and process-level distributed

shared memory. Distributed file systems are used to provide

an aggregated hierarchy of file collections stored across

the computing nodes. Unification of input/output devices

provides transparency and performance. Reliability and

scaling are achieved through distribution, replication and

caching techniques. Distributed file systems and non-re-

lational (NoSQL) databases, fast and secure data networks

aim to improve the efficiency of information sharing and

remote data exchange. Modern, energy-efficient hardware

components, mechanisms and methods relied upon to en-

sure energy-aware management of computation and com-

munication processes foster energy conservation.
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Numerous mechanisms, algorithms, computing infrastruc-

tures, software platforms and middleware for high perfor-

mance computing have been developed during the past

decades. Many surveys are available on recent technologies

for Big Data applications (e.g. [1], [2]). However, due to

their rapid development, reviews quickly become outdated.

In this paper we present and discuss the most popular in-

frastructures, platforms and middleware that may be used

for Big Data processing, modeling and simulation.

The remainder of this paper is organized as follows. A short

survey of infrastructure and middleware for Big Data-

related problems is presented in Section 2. Primary at-

tention is focused on computing clusters, grids and clouds.

A brief description of job scheduling and load balancing

methods and algorithms is presented in Section 3. Widely

used Big Data processing, visualization and machine learn-

ing platforms are discussed in Sections 4 and 5. Some

frameworks for modeling and simulating Big Data prob-

lems are described in Section 6. A general overview of

approaches to energy-aware computation is presented in

Section 7. Finally, conclusions are drawn in Section 8.

2. Infrastructure and Middleware

for Big Data Problems

During the past three decades, software for parallel comput-

ers focused on providing powerful mechanisms for manag-

ing communication between processors and environments

for parallel machines and computer networks. High Perfor-

mance Fortran (HPF), OpenMP, OpenACC, Parallel Virtual

Machine (PVM) and Message Passing Interface (MPI) were

designed to support communications for scalable applica-

tions. Application paradigms were developed to perform

calculations on shared memory machines and clusters of

machines. Moreover, the architecture of computing nodes

may be different (a single processor or a symmetric mul-

tiprocessor), and types of methods relied upon to access

storage devices may vary as well.

On the other hand, easy access to information offered by

the Internet has spawned a new idea, i.e. extending the

connection between computers. Thanks to such an ap-

proach, distributed resources, including applications, com-

puting power, storage, etc., can be accessed as easily as

information on Web pages. The idea was implemented in

various forms, but three computing environments have been

dominating recently: computing clusters, grids and clouds.

2.1. Computing Cluster

A cluster is a group of cooperating, off-the-shelf commod-

ity computers and resources that serves as one virtual ma-

chine [3], [4]. The efficiency of a cluster depends on the

speed of processors of separate nodes and the efficiency

of network technology. Each computing node may have

different characteristics, i.e. may be of the single proces-

sor or the symmetric multiprocessor design, and may offer

various types of storage devices. In advanced computing

clusters, simple local networks are substituted by very fast

communication channels – dedicated networks made up of

low latency and high speed switches.

Numerous software tools supporting cluster computing have

been developed. Most of them rely on the single system

image (SSI) computing paradigm, where a group of com-

puting and storage resources is aggregated and is seen

by the user as a single system. SSI technology involves

a broad variety of techniques, from custom hardware and

hypervisors to dedicated operating systems and user-level

tools. A survey of classification schemes and implemen-

tation techniques is provided in [1]. Notable hardware,

hypervisor and kernel level techniques are discussed. The

focus is on distributed operating systems, both dedicated

operating systems and adaptations of existing operating sys-

tems. MOSIX [5] is one of the oldest and most commonly

known SSI kernel patches that provides transparent process

migration and automatic load balancing within the cluster.

MOSIX does not provide full SSI. All processes which were

launched on a given node are displayed, even if they have

been moved to remote nodes. However, processes initiated

on other nodes are not displayed. The unique space of pro-

cess IDs is preserved in OpenSSI [6] and Kerrighed [7]

systems. OpenSSI allows the migration of transparent pro-

cesses and groups of threads and enables load balancing

within the cluster. Kerrighed provides transparent migra-

tion of processes, as well as single threads. All kernel-

level implementations mentioned above are accompanied

by a complementary suite of user-level software tools.

2.2. Computing Grid

A grid [8] is a collection of loosely coupled, geograph-

ically distributed, heterogeneous computational resources

and devices. Initially, the idea of a grid was to expand the

parallel computing paradigm from tightly coupled clusters

onto geographically distributed computing systems. How-

ever, in practice, grids are utilized more often as a platform

for integration of loosely coupled applications. Nowadays,

computational grids enable the sharing and the aggregation

of a wide variety of geographically distributed computing

resources. Moreover, they present them as a unified re-

source for solving large-scale computation problems.

The resources that are taken into account in these defini-

tions include the following: computer clusters, supercom-

puters, databases and storage systems, visualization devices

and dedicated software. To facilitate the creation and main-

tenance of grids, several features have been assumed. The

most important of them are: scalability, adaptability, data

transfer, process scheduling and allocation, use of open

standard protocols, interfaces, and often processes migra-

tion. The calculation and data space are in fact heteroge-

neous, but virtually they are homogeneous. A broad spec-

trum of grid computing activities and scientific projects

have been carried out, e.g. a uniform interface for comput-
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ing resources Unicore [9], Globus Toolkit [10] – a software

toolkit used for building grids and many others described

in literature [11], [12].

2.3. Computing Cloud

In general, both grid and cloud computing offer similar

functionalities and serve the same purpose. However, their

implementations are different. The cloud computing model

offers facilities and common resources, on an on-demand

basis, over the Web [13], [14]. A typical cloud comput-

ing provider delivers common business applications on-

line. The applications are accessed from a Web service

or a Web browser, while the software and data are stored

on servers. Most cloud computing infrastructures consist

of services delivered through common centers and are built

on servers. Cloud often appears as a single point of access

for the customers’ computing needs. Quality of service

(QoS) and service level agreements (SLAs) are generally

expected. Cloud computing provides three remarkable ser-

vices: Infrastructure as a Service (IaaS), Platform as a Ser-

vice (PaaS) and Software as a Service (SaaS). Resource

virtualization is generally at the heart of cloud architec-

tures. The concept of virtualization provides an abstract,

logical overview of the physical resources and includes net-

works, servers and data stores. The basic idea is to join

physical resources and manage them as a whole. How-

ever, it should be noted that in classic HPC applications,

some performance degradation may occur while working

in a virtualized environment.

2.4. GPU Computing

A Graphics Processing Unit (GPU) is a specialized mas-

sively parallel graphics processor that may be used as

a general purpose computing accelerator that is a low-cost,

highly accessible alternative to supercomputers [15]. GPU-

enabled parallel computing has become extremely popular

over the past decade. The GPU-based model for parallel

computing has rapidly increased its advance into different

areas of technology and is currently used to solve com-

plex scientific and engineering problems. GPUs allow to

perform massively parallel computations. Therefore, those

computation tasks which may be divided into large numbers

of independent parts are of special interest.

This technology may be specifically exploited for massive

data processing purposes. Using CPU and GPU jointly,

along with CUDA or OpenCL parallel computing plat-

forms, many real-world applications may be easily im-

plemented and are capable of running significantly faster

than on multicore or multiprocessor systems. Nowadays,

GPU clusters are one of the most progressive branches of

HPC. However, problems associated with the optimization

of memory management are still experienced when it is

necessary to provide fast access to data chunks exceeding

the size of the local GPU’s memory.

3. Job Scheduling and Load Balancing

Job scheduling and load balancing are one of the most im-

portant characteristics of distributed systems. Techniques

such as checkpointing, as well as placement and migration

of processes allow for transparent load balancing across

computing nodes. An efficient load balancing algorithm is

triggered when loads of nodes are not balanced or when

local resources are limited. Numerous static and dynamic

load balancing techniques have been developed for clus-

ter, grid and cloud systems. A survey on load balancing

algorithms is provided in [16]–[18].

There are many software tools for supporting job schedul-

ing and management in distributed systems. Torque [19] is

a distributed resource manager that provides control over

batch jobs and distributed computing resources. Torque

allows also to work in an interactive mode. Torque ex-

pands the original PBS system [20] offering scalability,

fault tolerance and better functionality. It may be inte-

grated with the Moab Cloud smart workload manager that

is responsible for load balancing and for optimizing ap-

plication performance. Torque is customizable to match

the needs of the computing system and the specific appli-

cation. Slurm [21] is a fault-tolerant and highly scalable

open source cluster management and job scheduling system

for Linux clusters of various sizes. Slurm provides a frame-

work for starting, executing and monitoring allocated jobs.

Moreover, the Slurm system manages a queue of pending

tasks. MapReduce and YARN represent two different ap-

proaches to job scheduling and managing cluster resources.

MapReduce [22] is a framework that provides and imple-

ments a programming model. It simplifies the process-

ing of massive volumes of data by using two subsequent

functions that handle data computations. The MapReduce

processing scheme is composed of a map method, which

performs data filtering, sorting and splitting, and a reduce

method, which performs a summary operation - processes

intermediate output data. In fact, the idea is to design data

for easy scheduling and cluster management. The YARN

resource management and job scheduling technology [23]

is more generic than MapReduce. YARN allows multiple

data processing engines, such as batch processing, real-time

streaming, interactive SQL and data science to handle data

stored on a single platform. Unlike MapReduce, YARN

enhances efficiency by splitting two main functionalities of

the job tracker into two separate daemons responsible for

allocation and management of cluster resources, and for

task scheduling and monitoring, respectively.

4. Platforms for Big Data Processing

Various software platforms for supporting large scale and

massive data distributed processing have been developed

during the past decade. Apache Hadoop ([23], [24]), is

a framework that enables distributed, scalable processing

of large data sets across clusters of computers utilizing a

simple programming model. It is designed to scale up from
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single servers to many (thousands) machines, each offering

local storage and processing capabilities. The power of

the Hadoop platform is based on the Hadoop Distributed

File System (HDFS), the HBase distributed and scalable

non-relational database and programming models. Hadoop

delivers a highly-available service on top of a cluster of

computers, each of which may be prone to failures. The

failures are detected and handled at the application layer.

The Hadoop community has contributed to enriching its

ecosystem both with open source projects and a wide range

of commercial tools and solutions. Some of the best-known

open source examples include:

• Pig – a framework for the generation of a high level

scripting language (Pig Latin),

• Hive – a data warehouse system that is designed to

simplify the use of Hadoop frameworks,

• JAQL – a declarative language designed to convert

high level queries into MapReduce jobs,

• Sqoop – software that provides a command-line in-

terface and moves relational data into HDFS,

• Oozie – a workflow scheduler system,

• Mahout – a framework for scalable machine learning,

etc.

A variety of commercial tools can be used for specific

Hadoop development, production, and maintenance tasks.

Hadoop is designed for batch processing.

Apache Spark [25] is a unified engine for Big Data process-

ing. Spark can run in a standalone mode or with a Hadoop

cluster serving as the data source. It is both a programming

and computing model. Spark provides an alternative to

MapReduce that enables workloads to be executed in mem-

ory, instead of on disk, thus eliminating resource-intensive

disk operations that MapReduce requires. It processes data

in RAM. The implemented data model is based on the Re-

silient Distributed Dataset (RDD) abstraction. The Spark

framework consists of components for memory manage-

ment, fault recovery, data exchange, task scheduling, etc.

The main Apache Spark use cases include the following:

streaming data, machine learning, fog computing, etc.

Apache Storm [26] is a scalable, rapid, fault-tolerant and

easy-to-use platform for distributed computing that has, un-

like Hadoop, the advantage of handling real time data pro-

cessing. A Storm interface may potentially support any

incoming data, hence data from real time synchronous and

asynchronous systems can be downloaded. It can process

one million tuples per second using a simple programming

model and hiding the complexity of the Big Data applica-

tion. Typical use cases include real-time analytics, online

machine learning, IoT, continuous computation, etc.

Apache Flink [27] is a framework for batch and stream pro-

cessing, event-time processing and stateful computations. It

can run in all common cluster environments, perform com-

putations at in-memory speed and on a high scale. Simi-

larly to Storm, it may be successfully used to develop soft-

ware systems for fraud and anomaly detection, monitoring,

as well as real-time and discrete-event simulation.

5. Platforms for Big Data Visualization

and Machine Learning

A number of tools for Big Data analysis, visualization and

machine learning are available in the network. RapidMiner

Studio [28], Orange [29] and Weka [30] belong to this

group of solutions. Numerous novel applications have been

designed and developed for browsing, interpreting, visual-

izing and analyzing large-scale sequencing data. Several of

these, including Tablet [31] have been designed specifically

for the visualization of genome sequence assemblies. Other

tools, such as BamView [32] have been developed specifi-

cally to visualize mapped read alignment data in the context

of the reference sequence. Artemis is a freely available inte-

grated platform for visualization and analysis of large-scale

experimental data. It is an established genome annotation

tool [33] that has been used in many genome projects. It

is an effective tool for visualization, analysis, interpretation

and inspection of high-throughput sequence-based experi-

mental data [34].

Plenty of platforms and packages have been developed for

social network analysis and visualization. The survey of

most popular ones, which find a wide range applications,

including network theory, finance, biology, sociology, etc.,

is presented in [35].

6. Simulation Frameworks

Simulation of large scale systems is another issue requir-

ing attention. Simulation and Big Data analytics produce

the most value when used together. Methods for Big Data

analytics process simulation data, extract valuable informa-

tion and convert it into proper decisions or predictions of

future behavior – all in a short period of time. The com-

bination of efficient and reliable simulation software and

specialized (purpose-built) hardware optimized for simu-

lation workloads is crucial to fully exploit the value of

simulating Big Data problems. The simulation power can

be increased by deploying both HPC infrastructures and

computing models that enable fast job execution and de-

liver the highest possible computing performance for the

simulation workloads. Synchronous and asynchronous dis-

tributed simulation is one of the options that may improve

the scalability of a simulator, both in terms of application

size and execution speed, enabling large-scale systems to

be simulated in real time [36], [37].

Investigations conducted in the field the development of

modern simulation technologies have led to the design of

general-purpose and problem-oriented software tools for

Big Data systems simulations. ScalaTion [38] serves as

a modeling and simulation testbed. It provides compre-

hensive support for discrete event simulation, and offers
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an easy-to-use framework for Big Data analytics and many

optimization solvers that may be successfully used to solve

simulation-optimization problems. A software framework

for federated simulation of WSN and mobile ad-hoc net-

works is presented in [39]. Paper [40] reviews several

large-scale military simulations producing Big Data and

describes two software frameworks for simulation and Big

Data management, based on layered and service-oriented

architectures.

GPU-based simulation platforms are mainly dedicated

to massive data processing, e.g. high performance neu-

ral network simulators [41], [42], simulation of P sys-

tems – computational models that perform calculations us-

ing a biologically-inspired process [43], large scale volume

of data visualization [44], and more.

Some software platforms have been designed to simulate

large-scale distributed data centers and computer networks.

Jade [45] is a heterogeneous multiprocessor design simu-

lation environment that allows to simulate inter-chip net-

works, network-on-chips and intra-rack networks utilizing

optical and electrical interconnects. Jade supports mem-

ory hierarchy, cache coherence and low-power technologies.

SimGrid [46] can be used to simulate grids, clouds, HPC or

P2P systems, as well as to evaluate heuristics or prototype

applications. CloudSim [47], [13] is a Java framework for

modeling and simulating cloud computing infrastructures

and services. It is one of the most popular open source

cloud simulators in the research and academia community.

Multi2Sim [48] is a software platform for simulation of

CPU and GPU technologies, used to test and validate new

hardware designs before they are physically manufactured.

7. Energy-Aware Infrastructure for HPC

Computing

7.1. Energy Conservation and HPC Computing

Nowadays, energy efficiency in all sectors, including HPC

infrastructure, is a key part of European energy policies for

the upcoming decade [49], [50]. Energy awareness is an

important aspect of design and management processes in-

volving large-scale data centers. Over the past decade, the

amount of energy used by data centers has grown rapidly.

This stems primarily from the growing demand for HPC

services and computing clouds. Thus, progress in HPC

systems depends on energy-efficient data mining and com-

puting technologies.

Indeed, data centers, supporting both HPC applications

and cloud services, consume enormous amounts of energy.

Over the period of five years (2005–2010), the amount of

energy consumed by data centers has increased by 56%,

which accounts to 1.5% of the total electrical energy used

in 2010. Growing energy consumption increases operating

costs of data centers and contributes CO2 (carbon dioxide)

production. According to the analysis of current trends pre-

sented and discussed in [51], CO2 emissions generated by

the ICT industry are expected to exceed 2% of the global

emission levels [52], [53]. Data centers are very energy in-

tensive. Typical power densities in commodity data centers

equal 538–2153 W/m2 [54], and are even higher in the case

of classic HPCs, exceeding 5000 W/m2 [55]. High energy

consumption is attributed primarily to the computing and

networking demands and to cooling equipment. The cool-

ing system may use, on average, up to 40% of the energy

consumed by a given data center.

Energy efficiency (FLOPS/W) of ICT systems continues to

improve. However, the rate of improvement does not match

the growing demand for large scale computing. Unless new

energy-aware technologies are introduced, both in hardware

and software domains, it seems that it will not be possible

to meet DARPA’s 20-MW exaflop goal (50 GFLOPS/W)

by the year 2020 (50 GFLOPS/W) by the year 2020 [3].

Computational power improvements are, in fact, heavily

constrained by energy budgets that are necessary for driv-

ing computing grids, clouds and data centers. Limiting

power consumption and related thermal emissions has be-

come a key problem. Based on technology development-

related projections, it has been argued that the continued

scaling of the available systems will eventually lead to data

centers consuming more than a gigawatt of electrical power

(at Exaflop level), a value that violates the economic ratio-

nale for the provision of cloud or HPC services. Opti-

mization of energy consumption in data centers must be

addressed in response to environment protection and mar-

ket needs.

As an answer to the momentum that has been created, con-

siderable research efforts devoted to energy-efficient com-

puting and networking technologies have been undertaken

both in the research domain and on the ICT market. The

rapid increase in energy demand, generated by data centers

and network infrastructures, may be mitigated on software

and hardware levels. According to [56], the following in-

terrelated approaches and solutions can be distinguished:

• design and development of energy-efficient hardware

components (CPUs/GPUs, disks, memory units, net-

work interface cards, etc.),

• development of energy-saving systems for controlling

hardware components (servers, routers, etc.),

• introduction of energy-efficient control frameworks

for task scheduling and workload balancing.

New computing components, i.e. CPUs/GPUs, disks,

memory units, network line cards, have been developed

to operate in multiple (performance and idle) modes

and at differentiated energy consumption levels (ACPI).

Mode switching and high-frequency performance monitor-

ing functions have also been exposed by co-designed Ap-

plication Program Interfaces (API) [57]. Development of

APIs and management tools is essential for optimized use

of computing resources. On the other hand, system-wide

regulation of power consumption needs to be controlled

by a centralized management framework, capable of col-

lecting and processing energy consumption measurements,
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and taking, in real time, coordinated actions across the data

center infrastructure.

Fig. 1. Server utilization histogram [58].

According to [58], data center server utilization rate rarely

approaches 100% (see Fig. 1). Most of the time the servers

operate at 10–50% of their full capacity. This results from

the requirements of providing sufficient quality of service

(QoS) provisioning margins. The over-subscription of com-

puting resources is applied as a sound strategy to eliminate

potential breakdowns caused by traffic fluctuations or inter-

nal disruptions stemming from hardware or software faults.

A fair amount of slack capacity is also required for the

purpose of performing maintenance tasks. However, the

strategy of resource over-provisioning is clearly a source

of energy waste, i.e. the provisioned power supply is less

than the sum of the possible peak power demands of all

the servers [59]. This highlights the problem of distribut-

ing power throughout the entire data center. To keep the

total power consumption within the available power range,

servers are equipped with power (ACPI-based) budgeting

mechanisms capable of limiting their power use. The chal-

lenge of energy-efficient data center or cloud control is,

therefore, to design a control structure improving the uti-

lization of computing resources and reducing energy usage

in accordance with QoS constraints in a highly stochastic

environment, capable of providing fast responses to fluc-

tuations in application workloads. To reduce energy con-

sumption, the control system is required to dynamically

deactivate and reactivate (by switching between low-power

modes) physical computing elements (CPU/GPU, memory,

interconnect) to meet the observable resource demand.

Moreover, data intensive computing, and especially Big

Data processing, requires advanced methodologies to ef-

ficiently allocate resources (CPU, memory and network ca-

pacity) to user applications. In general, the idea is to reduce

the gap between the capacity provided by data centers and

networking environments, and the requirements of users,

especially during low workload periods. Nowadays, the

main challenge is to arrange and adapt all available meth-

ods and techniques to develop energy-efficient and flexible

power control systems encompassing all elements of clus-

ter, grid and cloud infrastructures.

7.2. Energy-Saving Technologies

Improvement of energy efficiency of data centers and net-

work infrastructures includes, as it has been already men-

tioned, optimization of performance of CPU units and net-

work interfaces. For an overview of recent design trends

and a detailed discussion on related technical issues con-

cerned with the energy conservation approaches and solu-

tions, see e.g. [56], [60]–[63]. A commonly used direction

is to apply novel measurement technologies and utilize as-

sessment of energy consumption characteristics exposing

power management functionality through APIs. A detailed

study of energy monitoring mechanisms for data centers

can be found in [64]. A discussion of power consumption

identification problems has been presented in [65], [66].

A survey of memory power management has been presented

in [67], [68].

The second approach focuses on control systems and mech-

anisms adjusting performance of devices to their short-term

workload. Two main technologies are distinguished in this

context, namely, low power idle and service rate adapta-

tion. They are discussed in [69], [66]. The first one allows

a device to switch off for a short period of time when-

ever there is no workload to be processed, while the other

one allows a device to lower its service rate – dynamic

voltage frequency scaling (DVFS) mechanisms can be used

whenever reduced workloads are observed. The 802.3az

Ethernet standard [4] is an example of the implementation

of the low power idle technology. The service rate adap-

tation of Ethernet links has been presented and discussed

in [70]. Two mechanisms implementing low power idle and

adaptive rate concepts to control the performance of CPUs

are delivered by Linux kernel:

• cpuidle governor [71],

• cpufreq governor [61], [56], [72].

In [73], a design of a feedback controller for solving

the problem of low utilization of servers in a data-center

running I/O-intensive applications is proposed. To adjust

CPU frequency, the controller relies on energy-related

system-wide feedback rather than on CPU utilization lev-

els. A technique to reduce memory bus and memory bank

contention by DVFS-based control of thread execution on

each core is presented in [74]. The process model iden-

tification technique applied for the purpose of designing

CPU frequency control mechanisms has been presented

in [61]. A feedback control design methodology that leads

to stochastic minimization of performance loss is described

in [75]. The optimal design of a controller is formulated

as a problem of stochastic minimization of runtime perfor-

mance error for selected classes of applications. A super-

vised learning technique is used to predict the performance

state of the processor for each incoming job and to reduce

the overhead of state observation (see [76]). A hardware-

level implementation and performance of power manage-

ment mechanisms, allowing for independent DVFS of the

cores of a multi-core processor that integrates 48 cores and

4 DDR3 memory channels is given in [77].
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Fig. 2. General control framework architecture.

A DVFS technique that makes use of adaptive update in-

tervals for optimal frequency and voltage scheduling has

been proposed in [78]. An optimized control strategy was

developed to meet the workload processing deadlines. Pa-

pers [61], [79], and [56] address issues concerned with the

structure of optimized energy-aware CPU frequency scaling

rules. A class of CPU frequency switching rules, exploiting

DVFS, is discussed. A benchmarking methodology derived

from the RFC2544 specification for identification of models

of CPU workload dynamics is proposed and discussed.

Next, it is demonstrated how the proposed models can

be applied in the design of customized energy-aware

controllers that dynamically adjust CPU frequency to

application-specific workload patterns. The numerous ex-

periments referred to above show that customized con-

trollers may outperform standard general-purpose governors

of the Linux kernel, both in terms of server performance

and power saving capabilities.

The third approach to energy conservation in HPC sys-

tems has been focusing on the development of mechanisms

for energy management in data centers and networks link-

ing computing nodes. Performance metrics for green data

centers have been discussed in [80], [64]. It is believed

that considerable energy savings may be achieved in this

scenario if only operations of computing and network de-

vices are coordinated and adjusted to workload and traf-

fic patterns observed. In some scenarios, the energy con-

sumed by clusters and network infrastructures may be min-

imized by switching off or idling servers, routers or line

cards [81], [82]. The ability to control the activity of com-

puting nodes is provided by various tools and platforms

described in Sections 3 and 4, for instance by Slurm.

Moreover, various efforts have been undertaken to develop

energy-efficient task scheduling, load balancing and green

routing protocols [83]–[85], [72]. However, optimized task

scheduling and allocation becomes much more difficult

with the classic makespan criterion with energy-efficiency

and user-perceived QoS [86], [87] taken into consideration.

Figure 2 shows an overview of a general computer system

for an energy-aware data center. The system introduces dy-

namic power and performance control technologies, based

on standby and performance scaling capabilities, improving

energy efficiency of computing devices. The idea is to com-

bine the ability of setting the adequate energy states of the

computing devices using CPU frequency switching rules,

exploiting DVFS implemented along with a control mecha-

nism for optimization of the allocation of resources used by

the central unit. The knowledge of the expected computing

workload and network traffic matrix leads to considerable

and comprehensive optimization problem formulations that

have to be solved by the central dispatcher.

A literature survey of green cloud computing is provided

in [88]. The paper demonstrates the main achievements in

energy-aware computing clouds. The recent developments

are summarized, as well as future research directions and

open problems related to green cloud computing are pre-

sented. Other novel solutions in the field of cluster, grid and

cloud energy use optimization are surveyed in [89], [90].

8. Summary and Conclusions

HPC facilities and technologies are required in a rapidly in-

creasing number of data-intensive domains – from life and

physical sciences to socioeconomic systems. Thus, the Big

Data era offers HPC striking opportunities to expand its

range and to strengthen its societal and economic impact.

A broad spectrum of activities concerned with the devel-

opment of HPC infrastructure and middleware for solving

Big Data problems have been undertaken. Much of the

research has been devoted to the development of methods,

algorithms and techniques for energy conservation in data

centers, grids, clouds and computer networks. To meet

the increasing demand for computing power, a holistic ap-

proach to energy-aware design of hardware, middleware

and data processing applications is proposed. This paper
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presents an overview of middleware, software platforms and

simulation platforms for solving Big Data problems. Par-

ticular attention is paid to techniques developed to improve

energy efficiency of HPC infrastructure. We have taken

a look at power-saving algorithms utilizing low power idle

and service rate adaptation mechanisms and algorithms for

task scheduling and energy-efficient load balancing. How-

ever, although numerous energy conservation strategies and

systems have been proposed and described in literature, de-

velopment of scalable, energy-efficient infrastructures for

HPC still remains a challenging task.
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