
MAHA: Migration-based Adaptive Heuristic Algorithm for Large-scale
Network Simulations

Muhammad Ibrahim1
• Muhammad Azhar Iqbal2 • Muhammad Aleem3

• Muhammad Arshad Islam3
•

Nguyen-Son Vo4

Received: 29 May 2018 / Revised: 2 July 2019 / Accepted: 18 September 2019
� Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The scalable wireless network simulation poses huge computation challenges as the execution time needed to perform the

simulation can be prohibitively high. Parallel and distributed simulation (PADS) approaches have been proposed that use

huge memory and high processing power of multiple execution units [i.e., logical processes (LPs)] to handle scalable

simulations. Each LP is comprised of a set of simulation entities (SEs) that can interact local or remote SEs. However, the

remote communication among SEs and synchronization management across LPs are two main issues related to PADS

execution of large-scale simulations. A number of migration techniques have been used to mitigate the problem of high-

end remote communication. The problem is that most of the existing migration strategies result in higher number of

migrations that ultimately lead to higher computation overhead. In this paper, we propose a migration-based adaptive

heuristic algorithm (MAHA). Considering the run-time dynamics of the wireless network simulations, MAHA provides

dynamic partitioning of the simulation model to achieve better local communication ratio (LCR). In addition, an adaptive

academic simulation cloud platform, namely A-SIM-Cumulus cloud, is deployed for scalable simulations. The MAHA is

implemented on A-SIM-Cumulus Cloud and simulations are executed multiple times with different configurations and

execution environments. The results with optimum LCR show that the proposed algorithm significantly reduces the number

of migrations and achieves a good speedup in terms of parallel (i.e., both multi-core and distributed) execution.

Keywords MAHA � EHA � A-SIM-Cumulus � Large-scale wireless network simulation � Migration � ARTIS/GAIA

1 Introduction

From the past few decades, network simulators are reck-

oned as eminent recourse for network researchers. The

complex nature, expensive experimentations, and

limitations of conventional analytical evaluation methods

adhere the espousal of network simulation [1, 2] for pre-

deployment performance evaluation of communication and

wireless network systems [3]. The most common approach

for network simulations is based on monolithic design,

where a single execution unit is in-charge of managing all

parts of the simulation. The monolithic approach is more

realistic for small-to-medium scale network simula-

tions [4]. On the other hand, scalable wireless network

simulations with microscopic details are impractical to

execute on monolithic systems. Generally, microscopic

details of a wireless network simulation model ascertain

the accuracy of simulation results and are essential for the

successful deployment of the proposed model. Concerning

the monolithic systems, memory scarcity and low com-

puting power are two important factors that limit the scale

of network simulations [3]. This is due to the facts that (1)

memory requirements increase exponentially (as

& Muhammad Azhar Iqbal

m.a.iqbal@swjtu.edu.cn

1 Department of Computer Science, Virtual University of

Pakistan, Rawalpindi 46000, Pakistan

2 Department of Computer Science, SWJTU-Leeds Joint

School, Southwest Jiaotong University (SWJTU),

Chengdu 611756, People’s Republic of China

3 Department of Computer Science, National University of

Computer and Emerging Sciences, Islamabad 44000,

Pakistan

4 Institute of Fundamental and Applied Sciences, Duy Tan

University, Ho Chi Minh City 700000, Vietnam

123

Cluster Computing
https://doi.org/10.1007/s10586-019-02991-5(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-4195-9782
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-019-02991-5&domain=pdf
https://doi.org/10.1007/s10586-019-02991-5

representation of each node’s state requires a certain

amount of memory) and simulations takes long time span

to be completed and (2) numerous interactions (i.e., event,

packets) are required to be created, stored and delivered

instantly [4, 5].

As an alternate, parallel and distributed simulation

(PADS) [6] approach effectively executes the large-scale

simulations. In PADS, the simulation is segregated into

different parts and each part is assigned to specific logical

unit known as logical processor (LP). These LPs may

reside on same or different physical execution unit (PEU).

The PADS has a capability to employ a huge amount of

memory and computation resources from different PEUs.

For precise simulation execution using PADS, all LPs are

required to be synchronized during the whole span of a

simulation. PADS simulations could be implemented on

multiple platforms, such as grid computing [7], high per-

formance computing (HPC) [8], Cloud computing [9] etc.

In recent advancements, Cloud computing eliminates the

barriers of resource limitations for large-scale applica-

tions [10]. The implementation of PADS over Cloud

computing provides an essential platform to address the

problems encompassing scalable simulations with micro-

scopic details. The proposed academic Cloud leads to good

performance in terms of simulation execution time. The

initial employed partitioning scheme was based on static

allocation of simulation entities (SEs) on a number of LPs.

The goal of this scheme was two folds: the load on dif-

ferent LPs should be balanced keeping the remote com-

munication (among SEs located on different LPs [11]) as

minimum as possible. However, the static partitioning

mechanism embroils two issues that are: latency overhead

of remote communication (inter-LP communication for

parallel execution) and synchronization management

among the LPs.

In this paper, we are considering large-scale wireless

network simulations. The nodes in the wireless networks

are mobile in nature and frequently move due to high

mobility involved. This leads to high-end remote commu-

nication and thus every form of static partitioning may not

be an optimal choice. The partitioning problem becomes

more complex due to a number of factors that must be

taken into account. The LPs in the simulation may not be

homogeneous [5] in nature and the communication pattern

may vary during the course of the simulation as the mes-

sage sending by the SEs is random in wireless networks.

Moreover, the execution architecture may be comprised of

several components that can be heterogeneous (i.e., both in

terms of hardware used and performance). In contrast to the

static partitioning techniques, the dynamic partitioning was

proposed to keep the load balanced on LPs and reduce

high-end remote communication [12]. The dynamic parti-

tioning techniques use the concept of SE migrations from

one LP to another with the aim to reducing the high remote

communication. The migration is triggered based on the

condition specified by simple heuristics that are evaluated

for each SE at their respective LPs. The local available

information is used for the migration decision. The

migration mechanism is an attempt to localize the com-

munication among the SEs as much as possible and to keep

the load balanced on different LPs. The migration mech-

anism has a certain computation cost which is crucial for

achieving good performance. The migration approach will

be effective if the cost associated with employing the

migration is lower than the remote communication cost.

Another important consideration is related to the number of

migrations which is required to minimize the remote

communication among the SEs located on different LPs.

The required number of migrations raises frequently due to

the continuous node mobility in wireless networks. Thus,

more computing and memory will be required to achieve

optimal LCR (local communication ratio). The LCR cor-

responds to the ratio of the total number of local commu-

nications by all SEs in a given LP, with respect to all

interactions originating from this LP [5]. The proposed

approaches [5, 9, 12] are appropriate to handle the net-

works with no or very low mobility nodes.

The high mobility involved in mobile wireless networks

leads to more frequent migrations which attribute huge

migration cost, ultimately leading to poor simulation per-

formance. To address the migration related issue in this

research, we present migration-based adaptive heuristic

algorithm (MAHA). MAHA considers the transitive

dependency communication property of the SEs. The

proposed algorithm provides a dynamic partitioning of the

simulation model based on runtime requirements of the

wireless network simulations. The algorithm uses an

adaptive heuristic for migration decision in order to reduce

the number of migrations with an ultimate goal to achieve

better LCR. The proposed algorithm is better in terms of

achieving optimum LCR with a reduced number of

migrations. This leads to a reduction in the total time

needed to execute the simulation. In addition, an adaptive

academic cloud namely A-SIM-Cumulus is proposed and

implemented for large-scale wireless network simulations.

A-SIM-Cumulus framework integrates ARTIS (advanced

run-time infrastructure)/GAIA (generic adaptive interac-

tion architecture) middleware [13] with our implemented

academic Cloud [14].

The rest of this paper is organized as follows: Sect. 2

describes the related work about partitioning and migration

approaches for PADS. In sect. 3, we discuss the compo-

nents of proposed adaptive academic Cloud framework

namely A-SIM-Cumulus. Section 4 provides the details

regarding migration mechanism and proposed heuristics.

Section 5 presents the simulation setup and results

Cluster Computing

123

discussion. Finally, Sect. 6 reports our conclusions and

future work.

2 Related work

Executing large-scale wireless network simulations in

parallel involves partitioning of the simulation model into a

number of smaller components also called LPs [5]. The

components encompass part of the simulation that need to

be executed independently on an individual PEU. Con-

cerning the partitioning of simulation models in a dis-

tributed environment, a number of approaches have been

proposed to maintain a global shared-state in the dis-

tributed simulation. Some partition schemes are based on

the static approach [15], while other schemes such as

simulation domains [16], data distribution manage-

ment [17, 18], dynamic adaptive partitioning [19], and

hierarchical federations [20] use dynamic approach. The

authors presented a static partitioning approach for parallel

conservative simulations in [21]. In [22], the authors pro-

posed the static as well as dynamic load balancing strate-

gies. The proposed approach relies on the use of

conservative synchronization algorithm and thus is appli-

cable only on shared memory architecture. In [23], the

authors introduced a novel approach for the partitioning of

disjoint parts of the large-scale network topology and

assigning them to different LPs for performance efficiency.

Three set of partitioning strategies (i.e., random, k-cluster,

and METIS) are implemented in order to quantify the

performance of the proposed partitioning scheme. The

authors in [24] proposed a novel partitioning technique that

uses the concept of convex hulls for partitioning of crow-

ded simulations. The authors in [24–27] presented the

work related to the provisioning of the Internet of Things

(IoT) simulations. The proposed methodology in [25]

integrates multiple simulation models (i.e., OMNeT??,

MATLAB, and ARTIS/GAIA) for the implementation of

IoT-based complex scenarios. Logan et al. [28] floated a

novel agent-based approach for PADS simulations. In their

approach, each of the agent is implemented as distinct LP.

The dynamic partitioning method is used to implement the

parallel simulation using shared state approach. The pro-

posed approach supports conservative as well as optimistic

synchronization in an adaptive way to meet the require-

ments of computation and communication demands of the

simulated model. The associated cost related to the

migration is not optimal and may vary due to the

involvement of high mobility nodes. Most of the PADS

solutions have been suffered from high cost of remote

communication and computation required for synchro-

nization management. A number of techniques have been

proposed to accomplish the speedup in simulations using

migration and load-balancing for PADS simula-

tion [5, 9, 12]. In [29] and [30], the authors have proposed

dynamic partitioning algorithm for optimistic distributed

simulation based on the migration of parts of the simulated

model. The proposed approach reduces the computation

and communication cost using migration and load-balanc-

ing mechanisms. Anglo et al. [30] have introduced an

adaptive and dynamic approach to obtain simulation

speedup through the use of two proposed heuristics for

efficient migration and load-balancing of SEs. In [18], the

authors have proposed ARTIS Middleware, which supports

PADS for large-scale wireless networks over heteroge-

neous execution architecture. The ARTIS uses migration

mechanism to minimize the remote communication among

SEs located on different LPs. Moreover, ARTIS is in

combination with GAIA [31] is implemented for load-

balancing of SEs across different LPs. Anglo et al. [32]

have designed a new simulation tool namely PaScas that

enables the simulation of scale-free networks. The ARTIS

middleware is used as the underlying module for remote

communication provisioning and management among SEs

(i.e., located on different LPs). In addition, the authors

have presented a number of algorithms (named as GOSSIP)

as test cases to evaluate the performance of the scale-free

networks. The proposed solution leads to a good level of

LCR; however, the number of migrations leads to an extra

overhead. Thus, it produces a negative impact on the

overall performance gain. The author in [33] presented

self-scalable distributed network simulation environment

for Cloud computing. A slightly different technique has

been proposed in [34] that uses a fault-tolerant parallel

simulation Middleware to support PADS. The SEs are

replicated and distributed on different LPs, which conse-

quently provide a mechanism to handle crash-failures of

execution units. In [5], PADS approach was presented that

used the concept of dynamic partitioning (i.e., migration)

of the simulation model to handle large-scale wireless

network simulation. A set of heuristics are being employed

that are evaluated (i.e., locally on each LP) for the SEs

migration during the simulation execution.

Conclusively, most of the existing proposed approaches

have certain deficiencies that must be mitigated to ensure

the smooth simulation of PADS on Cloud architecture. In

particular, there are two issues as given below. First, most

of the schemes have improved the LCR; however, the

increased number of migrations ultimately leads to the

migration cost. Second, the proposed approaches are

appropriate to handle the networks with no or very low

mobility nodes. However, the existing approaches degrade

the performance for the networks (i.e., wireless networks)

involving high mobility nodes. High mobility in these

networks will lead to more frequent migration causing a

huge migration cost, ultimately leading towards poor

Cluster Computing

123

simulation performance. To overcome these issues, we

present MAHA algorithm that uses the transitive depen-

dency communication property of the SEs. MAHA pro-

vides a dynamic partitioning of the simulation model based

on runtime requirements of the wireless network simula-

tions. The algorithm uses an intelligent heuristic for

migration decision in order to reduce the number of

migrations with an ultimate goal to achieve better LCR.

The proposed algorithm is better in terms of achieving

optimum LCR with reduced number of migrations. This

leads to a reduction in the total time needed to execute the

simulation.

3 Adaptive SIM-Cumulus architecture

The A-SIM-Cumulus comprises of four layers i.e., System

Accessibility Layer (SAL), Cloud Instance Management

Layer (CIML), Virtual Platform Layer (VPL), and Physical

Infrastructure Layer (PIL) as shown in Fig. 1. The details

of necessary A-SIM-Cumulus components required to

perform network simulations are presented below.

3.1 System accessibility layer (SAL)

At the front end, the SAL enables users to interact with

cloud instance management layer (CIML) through the use

of cloud front-end interface (CFI) and remote desktop

protocol (RDP). At CFI, REpresentational state transfer

(REST) API (web services interface) is used to provide and

acquire registration and usage information, respectively.

RESTful web services allow end-users to configure (i.e.,

selection of operating system, a network simulator,

mobility model, map, and traffic generators etc.) and

launch the required instances on the A-SIM-Cumulus

cloud. The RDP connection manager is used to launch the

instance of A-SIM-Cumulus to perform the required

simulations.

3.2 Cloud instance management layer (CIML)

The CIML is comprised of two components that are: cloud

instance resource management (CIRM) and Cloud prove-

nance. The core responsibility of CIRM is to configure and

manage Cloud instances of the SIM-Cumulus. CIML hides

the complexities associated with configuration setup of the

simulation tools from users. The description of other

related components of the adaptive academic Cloud

A-SIM-Cumulus can be found in [14].

3.3 Modified virtual platform layer (MVPL)

The MVPL is responsible for the provisioning of Cloud

instances configured with various network simulators (i.e.,

MATLAB, NS2, OMNeT?? etc.). The MVPL uses the

Eucalyptus services and enable users to access Cloud

instances. ARTIS and GAIA are integrated into VPL layer

to perform parallel simulations [14]. The ARTIS is mid-

dleware that implements several modules to optimize

parallel simulation (of microscopic, dynamic, and complex

nature systems) over homogeneous and heterogeneous

execution platforms [31]. The ARTIS offers several ser-

vices such as simulation bootstrap and termination, LP co-

ordination, track runtime statistics, synchronization man-

agement, and managing the interaction primitives for the

communication among SEs on different LPs [5]. The

GAIA framework allows the migration of SEs from one LP

to another LP. The migration decision in GAIA is imple-

mented on the basis of heuristics that basically involves the

local and remote communication among different SEs. The

local and remote communication of the SEs is useful in

determining the migration decision of a particular SE. If

the ratio of remote to local communication of an SE

exceeds a certain threshold, then that SE is considered as

candidates for migration. The migration has a certain

computational cost, which could be very crucial. In other

words, the introduction of the complex heuristic algorithm

for migration decision may attribute to a high overhead.

Moreover, the heuristic may contribute to higher number of

migrations while achieving the same LCR value. This work

exploits the migration and communication services of

ARTIS and GAIA middleware to perform adaptive

migration of SEs dynamically. In this paper, the MAHA is

proposed to use an intelligent heuristic for migrationFig. 1 A-SIM-Cumulus architecture

Cluster Computing

123

decision and minimize the number of migrations with an

ultimate goal to achieve better LCR. The objective is to pay

some extra computation with the aim to reduce the com-

putation overhead required for large number of migrations.

The MAHA algorithm is better in terms of achieving the

same LCR with reduced number of migrations. The pro-

posed algorithm is implemented and evaluated using our

proposed Cloud framework known as A-SIM-Cumulus.

The details pertaining to migration decision is provided in

Sect. 4.

3.4 Virtual infrastructure layer (VIL)

The VIL resides at the lower layer of A-SIM-Cumulus that

exposes the Cloud resources to the upper layers. A-SIM-

Cumulus uses Eucalyptus Open Source Cloud plat-

form [35] architecture. The Eucalyptus supports private as

well hybrid Cloud implementation [36]. Moreover, Euca-

lyptus is inherently flexible and interoperable with most of

the advanced commercial Clouds (i.e., Amazon EC2, IBM

SmartCloud etc.). KVM is used as a baseline hypervisor for

virtualization of A-SIM-Cumulus Cloud. In addition, live

migration of running VMs is also supported by KVM.

3.5 Physical infrastructure layer (PIL)

The PIL deals with the physical computing resources such

as: multi/many-core machines, clusters, data-centers, net-

works, storage devices etc. All the resources are pooled and

provided to the upper layer in an on-demand fashion.

4 MAHA: migration-based adaptive
heuristic algorithm

The PADS provides the opportunity to solve simulation

problems that encompasses massive nodes and micro-level

details. The PADS simulation requires the partitioning of

simulation model into a number of equal partitions and

then places each component on a separate execution

component called LP. Each LP is responsible for the

management and handling of simulation events among the

SEs that are located on it. A major hurdle in getting the

required gain in performance is due to the LP synchro-

nization and remote communication cost in the PADS

simulation [5]. Moreover, the distributed simulation envi-

ronment is dynamic and unpredictable in nature with

respect to the network load. Partitioning the simulation

model in an effective way can attribute to the performance

gain. However, the static partitioning of wireless networks

simulation does not help in a performance gain due to

involvement of the high mobility which could lead to an

increase in the cost of LP synchronization and remote

communication. Thus, every form of static partitioning is

inadequate and therefore, requires a dynamic and adaptive

migration approach. In this work, we aim to propose an

adaptive migration algorithm that automatically reconfig-

ures the simulation in an adaptive fashion to meet the run-

time dynamics. This is the starting point to design and

implement a mechanism that will result in a reduction in

communication cost and is discussed in Sect. 4.1. The

proposed adaptive heuristic and algorithm details are pre-

sented in Sects. 4.2 and 4.3, respectively.

4.1 Remote communication cost reduction

The simulation model comprises a number of SEs which

interact with each other during the simulation execution.

The intra-LP communication between SEs has low link

latency. However, the inter-LP communication between

SEs may face inconsistent latency depending on the type of

link between the LPs. Figure 2 shows the intra-LP and

inter-LP communication of different SEs. The main idea is

to observe the communication pattern of every SE during

simulation execution and decides whether the migration of

SE to another LP is necessary. The SEs that have high

interaction with other remote SEs during certain time

period are considered as appropriate candidates for

migration. In this way, the high cost of inter-LP (remote)

communication is reduced. The migration leads to a per-

formance gain, however; it may results in performance

degradation if the cost of migration is higher than remote

communication cost.

4.2 Heuristic basis

In this research, we consider WLAN simulation to evaluate

the performance of the proposed adaptive heuristic algo-

rithm for large-scale PADS. The wireless communication

networks are suitable as the interaction among the wireless

nodes is generally location dependent. In wireless net-

works, all the nodes move due to the mobility changes

which lead to a change of the neighbor nodes and network

topology. Therefore, the communication pattern among the

SEs changes very frequently during the course of the

simulation.The SEs may follow a communication pattern,

where a transitive dependency among SEs may exist. For

example, existance of transitive dependency among three

different SEs (as shown in Fig. 3), including SE2, SE4, and

SE10 that are located in LP1, LP2, and LP3, respectively.

It is considered that SE2 has most of its interaction with

SE4 and at the same time SE4 had high interaction with

SE10. Thus, after a certain amount of time, SE2 needs to be

migrated to LP2 and SE4 needs to be migrated to LP3. In

order to cluster SE2 with SE4, the SE2 is first migrated to

LP2 and then moves to LP3. This will lead to extra

Cluster Computing

123

Fig. 2 Intra-LP and Inter-LP communication between SEs

Fig. 3 SE internal/external interaction and migration execution

Cluster Computing

123

overhead and resources in moving SE2 to LP2 first and then

migrating to LP3. The problem is more specifically known

as a transitive dependency. To resolve this issue, this work

proposes an adaptive heuristic algorithm designed to han-

dle migrations in PADS environment. One of the evalua-

tion approaches is to execute the heuristic evaluation at

each timestep [5]. This evaluation is beneficial for systems

that involves a lot of communication among the SEs and

there are rare chances that a timestep results in zero

interaction. However, with a large number of SEs the cost

of heuristic evaluation can lead to extensive computation,

that will, in turn, result in performance degradation. The

alternate approach for heuristic evaluation uses the inter-

action size as a decision parameter for evaluation. The

evaluation is triggered only if an SE has sent at least M

messages since the last evaluation. The value of M repre-

sents the maximum size of interaction window. In many

large-scale systems, this evaluation approach greatly

reduces the number of evaluation at each timestep and thus

leads to more scalable performance. The base condition

used for the evaluation of this approach employs the

technique introduced in [5]. The algorithm checks whether

there exist some SEs that meet the condition of the tran-

sitive dependency and thus migration is triggered.

4.3 Migration-based adaptive heuristic
algorithm

The proposed MAHA algorithm uses the adaptive heuristic

for the implementation of migration during the simulation.

MAHA is comprised of four algorithms in order to perform

SE migrations to appropriate LPs. In Algorithm 1 (lines

1–2), the values of CommWinSize and MaxWinThreshold

are initialized. The CommWinSize and MaxWinThreshold

parameters are used in the decision-making pertaining to

the short-listing of SEs for migration evaluation. Next, all

SEs eligible for migration during each timestep is deter-

mined by the algorithm (lines 3–14). During migration

eligibility computation phase, the local and remote com-

munications of a particular SE interaction are added to

calculate the total interactions of that SE at each timestep

(lines 6–7). The CommWinSize is determined on the basis

of total SEInteractions (line 8). At line 9, all SEs that have

done sufficient communication are evaluated for the eli-

gibility of possible migration. The information about SE

local interaction, remote interaction, and LP are added to

hash table SEMigEvalHashtbl (line 10). The hash table is

then passed to EvalSEforMig module (in Algorithm 2),

which is used to find out all SEs that need migration.

The Algorithm 2 determines all the SEs that need to be

migrated upon their eligibility. The information regarding

the local interaction, remote interaction and LP (i.e., where

the SE is located) is provided as an input to Algorithm 2 in

the form of SEMigEvalHashtbl. The flaglist, Migration

Threshold (migTS), Standard Migration Factor (SMF), and

Migration Factor (Migf) are initialized (lines 1–4). The SEs

that are eligible for the migration are flagged and necessary

details required for migration are added to hash

table MigHashTbl (lines 5–11). The Migration Factor (MF)

is calculated using SElocInt and SEremInt of the SE (i.e.,

MigF ¼ SERemInt / SELocInt) as given in line 6. After

the determining of MigF, the SE is considered for migra-

tion only (line 7) if: MigF [SMF and at least DTSSE
timesteps having passed since the last evaluation of the

corresponding SE.

All the SEs that meets the criteria mentioned at line 7

are added to flagList (line 8). The information regarding

source SE, Destination SE, Source LP, and Destination LP

is added to hash table MigHashTbl (line 9). This infor-

mation is given as an input to FlagMig module given in

Algorithm 3. All the SEs that meets the criteria mentioned

at line 7 are added to flagList (line 8). The information

regarding Source SE, Destination SE, Source LP, and

Destination LP is added to hash table MigHashTbl (line 9).

This information is given as an input to FlagMig module

given in Algorithm 3.

Cluster Computing

123

The first two algorithms represent the EHA [5] approach

which is extended by proposed MAHA in Algorithm 3 and

4. Algorithm 3 represents the MAHA core algorithm to

determine all those SEs that meet the criterion of transitive

dependency required for migration decision. The input of

Algorithm 3 is the MigHashTbl containing information

regarding Source SE, Destination SE, Source LP, and

Destination LP. All the SEs meeting the criterion of tran-

sitive dependency are flagged for migration and added to

MigHashTbl table (lines 1–11). Each destination SE is

compared with all the source SEs one by one and if the

Destination SE is Source SE in another record, then both

Destination SEi and Source SEj are migrated to LP where

destination SEj is located (line 5–8).

4.4 Partitioning mathematical model

The ARTIS/GAIA as Parallel Discrete Event Simulation

(PDES) [37] provides flexible platform for the execution of

large-scale simulation. The simulation speedup using

PDES can be achieved by distributing the simulation over a

number of LPs that run in parallel. Each LP maintains their

simulation clock independently and is responsible to keep

track of the concurrent events execution [38]. ARTIS

framework is utilized to perform communication and syn-

chronization management among multiple LPs. To support

dynamic partitioning of the simulation model based on the

run-time dynamics of the simulation, the GAIA framework

is used. The SEs that have high remote communication are

analyzed during communication and migration is executed

if required to minimize the remote communication. The

detailed mathematical modeling of static and dynamic (i.e.,

SEs migration) partitioning is discussed as below.

Let a represents the set of available LPs then

a ¼
�
LP1; LP2; LP3; . . .; LPN

�
ð1Þ

and b be the set of SEs in the simulation model:

b ¼
�
SE1; SE2; SE3; . . .; SEn

�
ð2Þ

Initially, the Simulation model is divided into equal num-

ber of static partitions i.e., LPs and each is assigned equal

number of SEs.

c ¼ n=N ð3Þ

where n represents the number of SEs in the simulation and

N represents the number of LPs. In order to execute par-

allel simulation, SEs are required to be distributed across

different LPs. The allocation of specific range of SEs on

different LPs can be obtained by the given equation:

LPi ¼
�
ði� 1ÞðNÞ þ 1; ði� 1ÞðNÞ þ 2; . . .; ði� 1ÞðNÞ þ N

�

ð4Þ

To execute simulation in parallel, SEs are required to be

distributed across different LPs. The simulation execution

is started after the initial placement of SEs to their

respective LPs. During the simulation execution, SEs

Cluster Computing

123

communicate locally within the same LP or remotely with

SEs located on other LP. The information about local and

remote communication is maintained by each of the LP

locally and if the remote communication crosses a certain

threshold the migration will be required to minimize the

high-end remote communication. Let C represents the ratio

of the remote communication to the local communication

then

C ¼ SERemInt=SELocInt ð5Þ

The migration will be required only if:

C[x ð6Þ

and at least q timestep has passed since last migration. x is

standard migration factor used to control the number of

migrations. This represents the EHA approach employed

for migration execution. Although, the obtained local

communication is increased; however, the number of

migration tends to increase for wireless network with high

mobility nodes. The MAHA approach is employed to

control the number of migrations achieving an approximate

same level of LCR. All SEs that were tagged for migrations

are given as an input to the MAHA. The SEs will be

finalized for migration only if the SEs meet the transitive

dependency property (psudocode shown below).

4.5 Cost analysis

We now discuss the cost associated with the simulation

execution in sequential/parallel mode. The overall execu-

tion cost (OEC) is the time needed to complete the simu-

lation execution. OEC contains two costs that are (1) state

updating cost (SUC) and (2) local interaction cost (LIC).

OEC ¼ SUC þ LIC ð7Þ

The SUC cost is associated with updating the state vari-

ables during each simulation event whereas the LIC is cost

involved local communication among SEs. The OEC for

parallel simulation execution is obtained as follows:

OEC ¼ SUC þ GCC ð8Þ

The generic communication cost (GCC) is comprised of

interaction cost (IC), middleware management (MM), and

synchronization cost (SynC).

OEC ¼ SUC þ ðIC þ SynC þMMÞ ð9Þ

The IC is the cost associated with message delivery among

the SEs. This cost depends on a number of factors that are

the size of message and the location (LP) of the receiving

SE. The location is important as it can lead to a subtle

difference in cost if the SE are located locally. The IC can

be either local and remote interaction cost. The LIC refers

to the cost involved in delivering the message to the SE on

a local LP and Remote Interaction Cost (RIC) refers to the

SE communication with a remote SE as shown in

Equation 10.

IC ¼ LIC þ RIC ð10Þ

Thus, OEC can be calculated as

OEC ¼ SUC þ ðLIC þ RIC þ SynC þMMÞ ð11Þ

Performance depends on the ratio between local and

remote communications. Let LComm represents the size of

local communication and RComm represents size of remote

communication then LRR (i.e., local to remote communi-

cation ratio) can be obtained by

LRR ¼ LComm j RComm ð12Þ

An increase in the LRR corresponds the performance

improvement in simulation time.

Given the cost difference between these two commu-

nication types, the best performance can be obtained by

maximizing the local interactions. For this reason, we

propose a migration mechanism that re-allocates SEs

among the LPs, i.e., a mechanism that changes the parti-

tioning configuration. This aims to cluster the SEs that

interacts frequently in the same LP, reducing the use of

costly inter-LP communications. Taking into account all of

these aspects, we have

OEC ¼ SUC þ ðLIC þ RIC þ SynC þMMÞ þMigC

ð13Þ

where MigC is the migration cost. It means that the total

execution cost of the PADS now includes the computation

and communication costs paid for the reallocation of SEs.

More in detail, MigC can be written as.

MigC ¼ MigCPU þMigComm þ HeuC ð14Þ

where MigCPU is the computation cost involved in exe-

cuting the migration. The MigComm refers to cost involved

in moving an SE from one LP to the remote LP upon

migration and HeuC is the computation cost associated with

the migration evaluation.

Cluster Computing

123

5 Performance evaluation

For simulation experiments, we consider large-scale wire-

less networks with microscopic details and high-density

nodes. The computational complexity of the network

simulation is magnified in wireless networks due to the

involvement of continuous node (i.e., SE) mobility; espe-

cially in the case of large-scale deployment [39]. The

choice of the model is Agent-based approach [5], where

the agents correspond to the simulation entities. The sim-

ulation area comprises of two dimensions wherein each

agent is allowed to move freely. All the agents communi-

cate with their neighbor nodes that are located in their

proximity. In other words, if any SE has a new interaction,

it will be forwarded to all SEs that are situated within a

threshold distance. To comply with the interaction

requirements, the Random Waypoint (RWP) mobility

model is selected [40]. It is one of the most prevalent

mobility models that allows unrestricted movement of all

of the agents in the entire simulated area and these agents

are not correlated with each other. To obtain the simulation

results, the experiments are performed using the proposed

algorithm and EHA [5]. Three sets of simulation experi-

ments are executed to scrutinize the performance of the

adaptive algorithm.

5.1 High migration effects on obtained LCR

In the first round of simulation experiments, a total of

10,000 SEs are distributed on eight LPs. The SEs can send

an interaction to other SEs that are located within a range

of 250 space units. Each SE is placed in random positions

according to two dimensional plane and is assigned to a

certain LP. An equal number of SEs are placed in each LP

and the assignment of SE on a certain LP is performed

randomly. Each simulation run is executed for 3600 sec-

onds, occupying the 10,000 9 10,000 space units of sim-

ulation area. The probability of interaction (where each of

the SE can communicate at a given timestep, during the

simulation) is set to 0.5. This indicates that during a certain

timestep, half of the SEs are allowed to send messages. The

mobility model is RWP and the mobility speed is in the

range of 1–25 spaceuits per timestep. The range of MF

(Migration Factor) is set to 1–19 and the Migration

Threshold (MT) is equal to 10.

For every MT value and mobility speed value in the

specified range, an independent simulation is executed.

Figure 4 plots the relationship between the total number of

migrations, the obtained LCR and the mobility speed. The

results reveal that for low-speed mobility values, a limited

number of migrations can lead to a very high LCR values.

The important observation is that for a static allocation of

SEs on 8 LPs, the reported LCR value is 24%. For mod-

erate speed values, the obtained LCR value rises up to

81%. For higher mobility speed, a good clustering is

obtained, however, leading to the escalation in the number

of migrations.

5.2 LCR gain—comparison of MAHA and EHA

To obtain an insight into the performance of the proposed

adaptive algorithm, with respect to the LCR obtained, the

simulation is executed multiple times, by employing dif-

ferent number of LPs (i.e., 2, 4, 8, 16 and 32) during each

simulation run. The partitioning of the simulation model

into more and more LPs results in smaller clusters, which

ultimately lead to the decrease in overall local communi-

cation. In this simulation, performance is investigated with

respect to the DLCR gain and MR value when the number

of LPs is in 2–32 range. Here, the DLCR is defined as the

difference between the average value of local communi-

cation ratio when the migration status is on and off written

as:

DLCR ¼ LCRMigrationON � LCRMigrationOFF ð15Þ

The positive value of DLCR means that the employed

clustering technique is able to cluster the interacting SEs in

a better way, whereas a negative or zero means that the

approach is unable to cluster the SEs merely added the

processing overhead. All the parameters of this simulation

experiment are same as that of simulation except MR and

the mobility speed that is set to 11 spaceunits per timestep.

Figure 5 presents the results of gain in local communica-

tion (DLCR) when the simulation is executed multiple

times for different number of LPs (2, 4, 8, 16 and 32) in

each execution. The results in Fig. 5 demonstrate that for a

moderate number of LPs, the proposed algorithm is able to

Fig. 4 Obtained LCR versus speed and number of migrations

Cluster Computing

123

achieve large LCR (61 to 65%) gain. When the simulation

is divided into smaller partitions, it will be more difficult to

produce effective clustering among the interacting SEs,

even though there is still some LCR gain.

The results in Fig. 6 presents the details regarding

number of migrations when the simulation model is parti-

tioned into a different number of LPs during each simu-

lation run. The simulation is executed multiple times with

parameters stated in the initial discussion of Sect. 5.1. The

obtained results demonstrate 15 to 22 % decrease in the

number of migrations, while the attained LCR is same for

both the (MAHA and EHA) approaches.

5.3 Simulation speedup comparison

The last simulation experiment is executed to measure the

performance of the proposed adaptive algorithm’s attained

gain in terms of simulation execution speedup on the

A-SIM-Cumulus Cloud for both parallel and distributed

setup. The obtained results are then compared to that of the

EHA. The simulations run over parallel (multi-core [41])

and distributed setup and the obtained execution time

(simulation time (WCT)) with and without the migration is

compared. For the parallel execution of the simulation, the

A-SIM-Cumulus multi-core VM instance is configured

with ARTIS/GAIA middleware. The number of cores

allocated to VM is eight and the installed physical memory

reserved for VM is eight GB. The simulations are executed

multiple times and with different interaction probability (p)
that is p ¼ 0:2; 0:5, and 0.8, while keeping the value of MF

to 1.1. This means that if the value of p is set to 0.5, then

50% of the SEs sends interaction (messages) during each

timestep. The migration state size is set to 100, 45000, and

80000 bytes. The value 100 is default migration size for the

simulations whereas 45000 and 80000 are obtained by

padding extra bytes. In addition, the size of the commu-

nication message during each interaction is kept 1, 100, and

1024 bytes. The obtained results are average of several

independent runs.

In Table 1, the obtained results pertaining to the exe-

cution time over parallel setup are reported. The simulation

runs multiple times, with different configurations (inter-

action size and migration size) for three different dissem-

ination probability values (Low, Moderate, and High)

represented by p ¼ 0:2; 0:5, and 0.8 respectively. In all

cases, the simulation runs with migration status set to OFF

and recorded the time (SimT) taken to complete the sim-

ulation execution. Afterwards, the simulation is executed,

using the proposed MAHA algorithm and EHA. To eval-

uate the performance of the proposed approach, DSimT is

used to show the obtained speedup. The DSimT is defined

as the difference between the time taken to complete the

simulation with and without migration. It is noted that

DSimT is used to show the attained speedup for both the

approaches (i.e., MAHA and EHA). For all the reported

results, the migration approach is able to obtain a perfor-

mance gain (2.73% for EHA and 3.64% for MAHA) as

highlighted in Table 1. The worst case results are obtained

when the migration size is increased up to 80000 bytes and

the interaction size is 1 byte. Even though the migration

mechanism is able to save costly remote communication

for low Local Communication Cost (LCC). However, this

results in an increase of cost paid for the migration and thus

the gain in performance is narrow. On the other hand, the

best results obtained are 20.39% for EHA and 28% for

Fig. 5 Effect of the number of LPs on DLCR (LCR gain)

Fig. 6 Migration comparison of proposed MAHA versus EHA

Cluster Computing

123

MAHA when the interaction size is large (i.e., 1024 bytes)

and the migration size is small (i.e., 100 bytes). It is worth

noting that the best results are obtained when the MF is

decreased to 1, thus leading to an increase in the number of

migrations. The increase in the interaction dissemination

probability also has a greater impact on the increase in the

total interaction among SEs in the simulation. To obtain a

detailed impact of MF on the performance of the proposed

algorithm, the worst case and best case results are further

investigated. For all the values of MF, the gain and loss are

reported in Fig. 7. When the value of MF is set to 1.1,

means that the migration mechanism is be able to obtain a

large number of migrations. However, there will be no

migration as the MF value is increased to 19. The results in

Fig. 7 reveal that for MF value in the range of [1–10],

obtain a performance gain. However, the increase in MF

beyond 11 leads to an increase in the execution time.

The simulation is also executed on the distributed setup

(A-SIM-Cumulus Cloud). The detailed specification for

Cloud instances used in the simulation is given in Table 2.

The parameters chosen for parallel simulation are also

used for distributed simulation setup. The obtained simu-

lation results are reported in Table 3. All the configuration

in terms of migration size and interaction size is tested for

different dissemination probability (i.e., low, moderate, and

high). Initially, the simulation runs without migration

option and the simulation time (SimT) is measured for

different runs. The obtained results are then stated as

DSimT as shown in Table 3. DSimT is the difference

between the time required to execute the simulation, with

and without migration. In order to find the best configu-

ration, the simulation is executed with different MF value

in the range from 1 to 19. The best and worst case results

for both MAHA and EHA are represented as italic face in

Table 3. The best results obtained on EHA is 64% and on

MAHA bumped up to 80% when the interaction size is

1024 and the migration size is 100 bytes. The gain is

positive for the simulation where the value of MF is less

than or equal to 10 which tends to decrease when MF[10.

The best case and worst case speedup (DSimT) for the

distributed simulation configuration are plotted in Fig. 8.

The worst case results obtained is - 25% for EHA when

the migration size is set to 80000 and small interaction size

(i.e., 1 byte) and - 19% for MAHA. The results obtained

Fig. 7 DSimT for parallel setup when the MF value is in the range

1–19

Table 1 Parallel setup with migration OFF/ON. Different migration and interaction sizes. Different dissemination probability (p)

Input Parameters p ¼ 0:2 p ¼ 0:5 p ¼ 0:8

EHA MAHA EHA MAHA EHA MAHA

Migration

status

Migration

size

Interaction

size

SimT DSimT SimT DSimT SimT DSimT SimT DSimT SimT DSimT SimT DSimT

OFF – 1 110 – 110 – 245 – 245 – 324 – 324 –

ON 100 1 102.5 6.82 102 7.27 223 8.98 217.5 11.22 281.5 13.12 263 18.83

ON 45,000 1 105 4.55 104.5 5.00 234 4.49 221.8 9.47 287 11.42 271 16.36

ON 80,000 1 107 2.73 106 3.64 236 3.67 226 7.76 291 10.19 280 13.68

OFF – 200 118 – 118 – 279 – 279 – 395 – 395 –

ON 100 200 108 8.47 104.5 11.44 256 8.24 242 13.26 339.5 14.05 326 17.47

ON 45,000 200 109.5 7.20 108 8.45 262 6.09 249.1 10.72 341 13.67 332 15.95

ON 80,000 200 110.4 6.44 109.5 7.20 263.2 5.66 251 10.04 342.5 13.29 340 13.92

OFF – 1024 147 – 147 – 365 – 365 – 461 – 461 –

ON 100 1024 122 17.01 117.5 20.07 295 19.18 273.5 25.07 367 20.39 332.5 27.87

ON 80,000 1024 126.2 14.29 121 17.69 302 17.26 280.2 23.23 369.4 19.87 344 25.38

Cluster Computing

123

from both parallel and distributed are not comparable due

to the difference in hardware specification. From the given

results it can be said that the lookahead delay has a clear

impact on the time required to complete the simulation

execution. Lookahead delay is the time required for

synchronization among the LPs when an SE is to be

migrated from one LP to another LP. With the increase in

lookahead delay, the total cost of migration is also

increased and thus increase in the number of migrations

will adversely affect the execution time, however LCR will

be improved. This will lead to a decrease in overall gain.

Table 4 presents the results pertaining to the speedup

obtained for three different approaches when migration is

applied. The simulation is executed for 10,000 and 20,000

nodes with three different LPs combination that is 2, 4, and

8 LPs during each simulation run. For distributed approach,

Fig. 8 DSimT for distributed setup when the MF value is in the range

1–19

Table 4 Speed obtained when migration is applied for distributed,

EHA, and MAHA approach

Number of nodes 10,000 20,000

Number of LPs 2 4 8 2 4 8

Input parameters

Distributed approach [28] 1.2 1.27 1.3 1.24 1.29 1.35

EHA [5] 1.4 1.51 1.65 1.42 1.55 1.68

MAHA1.2 1.56 1.72 1.78 1.59 1.76 1.82

Table 2 Platform specification
Machine CPU Memory No of cores Operating system

VM1 Intel Core i3 1.70 GHz 4GB 4 Ubuntu 12.04.5 LTS

VM2 Intel Core i7 3.40 GHz 4GB 4 Ubuntu 12.04.5 LTS

VM3 Intel Core i7 3.40 GHz 8GB 8 Ubuntu 12.04.5 LTS

VM4 Intel Core i5 3.20 GHz 8GB 8 Ubuntu 12.04.5 LTS

Table 3 Distributed setup with migration OFF/ON. Different migration and interaction sizes. Different dissemination probability (p)

Input parameters p ¼ 0:2 p ¼ 0:5 p ¼ 0:8

EHA MAHA EHA MAHA EHA MAHA

Migration

status

Migration

size

Interaction

size

SimT DSimT SimT DSimT SimT DSimT SimT DSimT SimT DSimT SimT DSimT

OFF – 1 801 – 801 – 2178 – 2178 – 3178 – 3178 –

ON 1000 1 745 6.99 730 8.86 1965 9.78 1899 12.81 2789 12.24 2610 17.87

ON 45,000 1 819 - 2.25 779 2.75 1998 8.26 1926 11.57 2876 9.5 2705 14.88

ON 80,000 1 825 - 3.00 804 - 0.37 2023 7.12 1982 9.00 2901 8.72 2789 12.24

OFF 0 200 1159 – 1159 – 2350 – 2350 – 3590 – 3590 –

ON 1000 200 1046 9.75 989 14.67 2110 10.21 2056 12.51 3019 15.91 2676 25.46

ON 45,000 200 1098 5.26 1026 11.48 2170 11.76 2110 10.21 3112 13.31 2870 20.06

ON 80,000 200 1121 3.28 1067 7.94 2208 6.04 2156 8.26 3270 8.91 2915 18.80

OFF 0 1024 2890 – 2890 – 7550 – 7550 – 9866 – 9866 –

ON 1000 1024 1199 58.51 989 65.94 2879 61.84 1767 76.60 3566 63.86 1984 79.89

ON 45,000 1024 1265 56.23 1140 60.94 3150 58.28 1925 74.50 3965 59.81 2450 75.17

ON 80,000 1024 1304 54.88 1189 58.86 3357 55.30 2377 68.52 4488 54.51 2689 72.74

Cluster Computing

123

the maximum attained speedup is 1.3 and 1.35 for 10,000

and 20,000 nodes respectively when simulation is dis-

tributed and executed over 8 LPs. The highest speedup is

observed for the proposed MAHA approach for both the

simulation execution that is 1.78 and 1.82 respectively for

8 LPs with 10,000 and 20,000 nodes in the simulation. The

obtained results reveal that the proposed approach is scal-

able and better in terms of the speedup achieved as com-

pared to the distributed as well as EHA approach.

In summary, the proposed migration algorithm is able to

achieve speed up for all the tested configuration on the

parallel setup. Even though the magnitude of gain is lim-

ited in some configurations but relevant. For distributed

simulation in most of the tested configurations, the results

are much better in terms of performance gain, however, in

some cases, the results are dropped down to negative.

6 Conclusion and future work

This research work opens new directions in the area of

large-scale PADS. In this work, we have proposed an

adaptive migration-based heuristic algorithm namely

MAHA for large-scale network simulations over the Cloud.

To support large-scale simulations in the Cloud, ARTIS/

GAIA framework is integrated with SIM-Cumulus Cloud.

The obtained results (for both multi-core and distributed

simulations) demonstrate that the proposed migration

algorithm significantly reduces the number of migrations

and achieves better LCR. In addition, the proposed

approach is able to achieve speedup in terms of execution

time on both the multi-core and distributed architectures

using A-SIM-Cumulus instances. In the case of distributed

PADS, all the LPs follow heterogeneous architecture in

terms of hardware resources and simulation communica-

tion load. An LP may become overloaded due to the

computation required for handling huge communication

(i.e., local as well as remote), which may result in LP crash.

This will lead to the failure of overall simulation execution.

To resolve this issue, in our future work, an LP migration

approach will be proposed that could detect the LP load at

run time and migrate the corresponding LP accordingly.

References

1. Benkhelifa, E., Welsh, T., Tawalbeh, L., Jararweh, Y., Basala-

mah, A.: Energy optimisation for mobile device power con-

sumption: a survey and a unified view of modelling for a

comprehensive network simulation. Mob. Netw. Appl. 21(4),
575–588 (2016)

2. Bahwaireth, K., Benkhelifa, E., Jararweh, Y., Tawalbeh, M.A.,

et al.: Experimental comparison of simulation tools for efficient

cloud and mobile cloud computing applications. EURASIP J. Inf.

Secur. 2016(1), 15 (2016)

3. Fujimoto, R.: Parallel and distributed simulation, in: Proceedings

of the 2015 Winter Simulation Conference, pp. 45–59 (2015)

4. Mubarak, M., Carothers, C.D., Ross, R.B., Carns, P.: Enabling

parallel simulation of large-scale hpc network systems. IEEE

Trans. Parallel Distrib. Syst. 28, 87–100 (2015)

5. Angelo, G.D.: The simulation model partitioning problem: An

adaptive solution based on self-clustering. Simul. Model. Pract.

Theory 70, 1–20 (2017)

6. Fujimoto, R.M.: Parallel and Distributed Simulation Systems,

vol. 300. Wiley, New York (2000)

7. Rhodes, J.D., Upshaw, C.R., Harris, C.B., Meehan, C.M., Wall-

ing, D.A., Navrátil, P.A., Beck, A.L., Nagasawa, K., Fares, R.L.,

Cole, W.J., et al.: Experimental and data collection methods for a

large-scale smart grid deployment: methods and first results.

Energy 65, 462–471 (2014)

8. Zehe, D., Knoll, A., Cai, W., Aydt, H.: Semsim cloud service:

large-scale urban systems simulation in the Cloud. Simul. Model.

Practice Theory 58, 157–171 (2015)

9. Angelo, G.D., Marzolla, M.: New trends in parallel and dis-

tributed simulation: from many-cores to cloud computing. Simul.

Model. Practice Theory 49, 320–335 (2014)

10. Rittinghouse, J.W., Ransome, J.F.: Cloud Computing: Imple-

mentation, Management, and Security. CRC Press, Boca Raton

(2016)

11. Zeng, X., Bagrodia, R., Gerla, M.: Glomosim: a library for par-

allel simulation of large-scale wireless networks, in: ACM SIG-

SIM Simulation Digest, Vol. 28, IEEE Computer Society,

pp. 154–161 (1998)

12. Angelo, G.D.: Parallel and distributed simulation from many

cores to the public Cloud, in: High Performance Computing and

Simulation (HPCS), 2011 International Conference on, IEEE,

pp. 14–23 (2011)

13. D’Angelo, G.: Artis: design and implementation of an adaptive

middleware for parallel and distributed simulation, in Technical

Report, (2005)

14. Ibrahim, M., Iqbal, M.A., Aleem, M., Islam, M.A.: Sim-cumulus:

An academic Cloud for the provisioning of network-simulation-

as-a-service (nsaas), IEEE Access (2018)

15. Boukerche, A., Fabbri, A.: Partitioning parallel simulation of

wireless networks, in: Proceedings of the 32nd conference on

Winter simulation, Society for Computer Simulation Interna-

tional, pp. 1449–1457 (2000)

16. Szymanski, B.K., Saifee, A., Sastry, A., Liu, Y., Madnani, K.:

Genesis: a system for large-scale parallel network simulation, in:

Proceedings of the sixteenth workshop on Parallel and distributed

simulation, IEEE Computer Society, pp. 89–96 (2002)

17. Group, H.W., et al.: Ieee standard for modeling and simulation

(m&s) high level architecture (hla)-framework and rules, IEEE

Standard 1516–2000 (2000)

18. Raczy, C., Tan, G., Yu, J.: A sort-based ddm matching algorithm

for hla. ACM Trans. Model. Comput. Simul. 15(1), 14–38 (2005)

19. Kumova, B.İ.: Dynamically adaptive partition-based data distri-

bution management, in: Proceedings of the 19th Workshop on

Principles of Advanced and Distributed Simulation, IEEE Com-

puter Society, pp. 292–300 (2005)

20. Cai, W., Turner, S.J., Gan, B.P.: Hierarchical federations: an

architecture for information hiding, in: Parallel and Distributed

Simulation, 2001. Proceedings. 15th Workship on, IEEE,

pp. 67–74 (2001)

21. Boukerche, A., Tropper, C.: A static partitioning and mapping

algorithm for conservative parallel simulations, in: ACM SIGSIM

Simulation Digest, Vol. 24, ACM, pp. 164–172 (1994)

22. Boukerche, A., Das, S.K.: Dynamic load balancing strategies for

conservative parallel simulations, in: Parallel and Distributed

Cluster Computing

123

Simulation, 1997., Proceedings., 11th Workshop on, IEEE,

pp. 20–28 (1997)

23. Yocum, K., Eade, E., Degesys, J., Becker, D., Chase, J., Vahdat,

A.: Toward scaling network emulation using topology partition-

ing, in: Modeling, Analysis and Simulation of Computer

Telecommunications Systems, 2003. MASCOTS 2003. 11th

IEEE/ACM International Symposium on, IEEE, pp. 242–245

(2003)

24. Vigueras, G., Lozano, M., Orduña, J.M., Grimaldo, F.: A com-

parative study of partitioning methods for crowd simulations.

Appl. Soft Comput. 10(1), 225–235 (2010)

25. Angelo, G.D., Ferretti, S., Ghini, V.: Distributed hybrid simula-

tion of the internet of things and smart territories, Concurrency

and Computation: Practice and Experience

26. Angelo, G.D., Ferretti, S., Ghini, V.: Modeling the internet of

things: a simulation perspective, in: High Performance Comput-

ing & Simulation (HPCS), 2017 International Conference on,

IEEE, pp. 18–27 (2017)

27. Ferretti, S., D’Angelo, G., Ghini, V., Marzolla, M.: The quest for

scalability and accuracy: Multi-level simulation of the internet of

things, arXiv preprint arXiv:1710.02282

28. Logan, B., Theodoropoulos, G.: The distributed simulation of

multiagent systems. Proc. IEEE 89(2), 174–185 (2001)

29. Peschlow, P., Honecker, T., Martini, P.: A flexible dynamic

partitioning algorithm for optimistic distributed simulation, in:

Proceedings of the 21st International Workshop on Principles of

Advanced and Distributed Simulation, IEEE Computer Society,

pp. 219–228 (2007)

30. Angelo, G.D., Bracuto, M.: Distributed simulation of large-scale

and detailed models. Int. J. Simul. Process Model. 5(2), 120–131
(2009)

31. Bononi, L., Bracuto, M., D’Angelo, G., Donatiello, L.: Perfor-

mance analysis of a parallel and distributed simulation frame-

work for large scale wireless systems, in: Proceedings of the 7th

ACM international symposium on Modeling, analysis and sim-

ulation of wireless and mobile systems, ACM, pp. 52–61 (2004)

32. Angelo, G.D., Ferretti, S.: Simulation of scale-free networks, in:

Proceedings of the 2nd International Conference on Simulation

Tools and Techniques, ICST (Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering), p. 20

(2009)

33. Serrano-Iglesias, S., Gómez-Sánchez, E., Bote-Lorenzo, M.L.,

Asensio-Pérez, J.I., Rodrı́guez-Cayetano, M.: A self-scalable

distributed network simulation environment based on cloud

computing. Clust. Comput. 21(4), 1899–1915 (2018)

34. D’Angelo, G., Ferretti, S., Marzolla, M., Armaroli, L.: Fault-

tolerant adaptive parallel and distributed simulation, in: Dis-

tributed Simulation and Real Time Applications (DS-RT), 2016

IEEE/ACM 20th International Symposium on, IEEE, pp. 37–44

(2016)

35. I. Eucalyptus Systems, ‘‘Eucalyptus community cloud,’’ http://

open.eucalyptus.com/try/community-cloud [online] Accessed on

36. Zhou, A.C., He, B., Ibrahim, S.: ‘‘A taxonomy and survey of

scientific computing in the cloud,’’ Big Data: Principles and

Paradigms, Morgan Kaufmann, eScience and Big Data Work-

flows in Clouds

37. Wainer, G.A., Mosterman, P.J.: Discrete-Event Modeling and

Simulation: Theory and Applications. CRC Press, Boca Raton

(2016)

38. Qu, Y., Zhou, X.: Large-scale dynamic transportation network

simulation: a space-time-event parallel computing approach.

Transp. Res. C 75, 1–16 (2017)

39. Rawat, P., Singh, K.D., Chaouchi, H., Bonnin, J.M.: Wireless

sensor networks: a survey on recent developments and potential

synergies. J. Supercomput. 68, 1–48 (2014)

40. Musolesi, M., Mascolo, C.: Mobility models for systems evalu-

ation, in: Garbinato, B., Miranda, H., Rodrigues, L. (eds.) Mid-

dleware for Network Eccentric and Mobile Applications,

pp. 43–62. Springer, New York (2009)

41. Yang, C., Chi, P., Song, X., Lin, T.Y., Li, B.H., Chai, X.: An

efficient approach to collaborative simulation of variable struc-

ture systems on multi-core machines. Clust. Comput. 19(1),
29–46 (2016)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Muhammad Ibrahim completed

his Ph.D. in Computer Science

from Capital University of Sci-

ence and Technology (CUST),

Islamabad in 2019. Currently,

he is working as Lecturer at

Virtual University of Pakistan.

His area of research include

Large-scale Network Simula-

tion and Modeling, VM Migra-

tion, and Task Scheduling in

Cloud Computing.

Muhammad Azhar Iqbal com-

pleted his Ph.D. in Communica-

tion and Information Systems

from Huazhong University of

Science and Technology,Wuhan,

China in 2012. Currently, he is

working as Lecturer in SWJTU-

Leeds Joint School at Southwest

Jiaotong University, Chengdu,

China. His research interests

include Internet of Things, Rout-

ing inWireless Ad hocNetworks,

and Large-scale Simulation

Modeling and Analysis of com-

puter networks in Cloud.

Muhammad Aleem received the

Ph.D. degree in computer sci-

ence from the Leopold-Fran-

zens-University, Innsbruck,

Austria in 2012. His research

interests include parallel and

distributed computing comprise

programming environments,

multi-/many-core computing,

performance analysis, cloud

computing, and big-data pro-

cessing. He is currently working

as an Associate Professor at

National University of Com-

puter and Emerging Sciences

(FAST-NUCES), Islamabad, Pakistan.

Cluster Computing

123

http://arxiv.org/abs/1710.02282
http://open.eucalyptus.com/try/community-cloud
http://open.eucalyptus.com/try/community-cloud

Muhammad Arshad Islam com-

pleted his Doctorate from

University of Konstanz, Ger-

many in 2011. His dissertation

is related to routing issues in

opportunistic network. His cur-

rent research interests are rela-

ted to MANETs, DTNs, social-

aware routing and Graph Algo-

rithms. He is currently working

as an Associate Professor

National University of Com-

puter and Emerging Sciences

(FAST-NUCES), Islamabad,

Pakistan.

Nguyen-Son Vo received the

Ph.D. degree in communication

and information systems from

Huazhong University of Science

and Technology, China, in

2012. He is with the Institute of

Fundamental and Applied Sci-

ences, Duy Tan University, Ho

Chi Minh City, Vietnam. His

research interests focus on self-

powered multimedia wireless

communications, quality of

experience provision in wireless

networks for smart cities, IoT to

disaster and environment man-

agement. He received the Best Paper Award at the IEEE Global

Communications Conference 2016 and the prestigious Newton Prize

2017. He has been serving as an Associate Editor of IEEE Commu-

nications Letters, 2019; Guest Editor of Elsevier Physical Commu-

nication, Special Issue on ‘‘Mission Critical Communications and

Networking for Disaster Management’’, 2019; Guest Editor of IET

Communications, Special Issue on ‘‘Recent Advances on 5G Com-

munications’’, 2018; and Guest Editor of ACM/Springer Mobile

Networks and Applications, Special Issues on ‘‘Wireless Communi-

cations and Networks for 5G and Beyond’’, 2018 and ‘‘Wireless

Communications and Networks for Smart Cities’’, 2017.

Cluster Computing

123

	MAHA: Migration-based Adaptive Heuristic Algorithm for Large-scale Network Simulations
	Abstract
	Introduction
	Related work
	Adaptive SIM-Cumulus architecture
	System accessibility layer (SAL)
	Cloud instance management layer (CIML)
	Modified virtual platform layer (MVPL)
	Virtual infrastructure layer (VIL)
	Physical infrastructure layer (PIL)

	MAHA: migration-based adaptive heuristic algorithm
	Remote communication cost reduction
	Heuristic basis
	Migration-based adaptive heuristic algorithm
	Partitioning mathematical model
	Cost analysis

	Performance evaluation
	High migration effects on obtained LCR
	LCR gain---comparison of MAHA and EHA
	Simulation speedup comparison

	Conclusion and future work
	References

