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ABSTRACT 
 
   Modeling and simulation tools have been used for helping 
in the early stages of hardware/software systems design. 
The DEVS formalism is a technique that enables 
hierarchical description of discrete event models that can be 
used for this task. The CD++ tool enables the description of 
discrete event models based on the DEVS formalism, and 
we have used it to provide hardware-in-the-loop simulation 
using the CODEC of a DSP board. First, a DEVS model 
was built using the real-time version of CD++ to simulate 
the behavior of the CODEC together with a test program 
using the CODEC. Next, the actual CODEC was deployed 
as a hardware prototype to replace the CD++ model, 
integrating the prototype into the original DEVS 
component. The real -time data communication between the 
CD++ model and the DSP board was explored in detail. As 
a result, we are now able to study models in a simulated 
environment, and to execute them in a hardware surrogate. 
The hierarchical nature of DEVS permitted to do this 
without modifying the original models, providing the base 
for enhanced system development in embedded platforms.  
 
INTRODUCTION 
 
   In the early stage of the design of embedded systems, 
software and hardware are designed independently. The 
software development team is waiting for the hardware 
prototypes to be available; however, the hardware 
development team is waiting for the software environment 
for hardware prototype verification and testing. It is 
difficult to decide the trade-offs between the hardware and 
software solutions in terms of system performance 
requirements (time, power consumption) and probably 
delays the product design cycle. In addition, there are few 
interactions between hardware and software, which restrict 
the exploration of solutions where some functionality could 
migrate between both components (Berge 1997). With the 
emerging of the specific components (I/O, DSP, ASIC, 
FPGA), a mixed-system design is more efficient to realize 
specific applications, such as signal processing or 
telecommunications. The user can test the functionality of 
the hardware in a very early stage. This is economically 

efficient, and shortens the product development cycle and 
time-t o-market period. 
 
   The DEVS (Discret e EVents Systems specifications) 
formalism for modeling and simulation (Zeigler. Praehofer 
and Kim 2000) provides a framework for the construction 
of hierarchical models in a modular fashion, allowing 
model reuse, reducing development and testing time. The 
hierarchical and discrete event nature of DEVS makes it a 
good choice to achieve an efficient product development 
test. DEVS are timed models, which also enables us to 
define timing properties for the models under development. 
Each DEVS model can be built  as a behavioral (atomic) or 
a structural (coupled) model. A DEVS atomic model is 
described as: 
 

M = <X, S, Y, δint,  δext, λ, D > 
 

X: the input events set  
S: the state set  
Y: the output events set 
δint : internal transition function 
δext : external transit ion function 
λ: output function 
D: the elapsed time 
 
A DEVS coupled model is formed by configuring several 
atomic models or coupled models: 
 

CM = < X, Y, D, {M i}, {Ii}, {Zij} , select > 
 

X: the set of input events 
Y: the set of output events 
D: an index of components, each i∈ D 
M i: a basic DEVS model, where Mi = < Ii, Xi, Si, Yi, δinti, 
δexti ,  tai > 
Ii: the set of influencees of model I, each j ∈ Ii     
Zij: the i to j translation function 
Select: the function prescribes which atomic model should 
be activated first under simultaneous events. 
 
   The CD++ environment (Wainer 2002) is a tool built to 
implement the DEVS and Cell-DEVS theory. The toolkit 
has been built as a set of independent software pieces, each 
of them independent of the operating environment chosen. 
The defined models are built as a class hierarchy, and each 



of them is related with a simulation entity that is activated 
whenever the model needs to be executed. New models can 
be incorporated into this class hierarchy by writing DEVS 
models in C++, overloading the basic methods representing 
DEVS specifications: external transitions, internal 
transitions and output functions. CD++ employs a virtual 
time simulation approach (Rodríguez and Wainer 1999), 
which allows skipping periods of inactivity. The abstract 
simulation technique enables defining and using different 
simulation engines without affecting existing models. The 
recent real -time extension (Glinsky and Wainer 2002) 
enables simulation advancing based on the wall-clock, 
making the simulation process to be quiescent between 
events. The model being executed must react to external 
event in a timely fashion. This means when an external 
event arrives, the model should react within a predefined 
deadline, and return a result before that time. The real-time 
extension of the toolkit allows associating deadline with 
external events.  
 
   We show how to gradually incorporate hardware 
prototypes into a simulated environment using the real-time 
version of CD++ toolkit (Glinsky and Wainer 2002). The 
hardware prototype employed is a CODEC (a device 
performing A/D and D/A operations) embedded in a Digital 
Signal Processor (DSP) board (Analog Devices 2000). The 
block diagram in figure 1 below is the 2189M EZ-KITLITE 
DSP Board (Analog Devices 2000) and some major 
components used.  
  

 
Figure 1: Scheme of the Analog Devices 2189M EZ-

KITLITE Evaluation Board 
 
THE APPLICATION MODEL 
 
   The prototype was designed in two stages. In the first 
stage, we built a set of DEVS atomic models using the real-
time version of CD++. Figure 2 shows the test A 
experimental frame built in CD++, which was used to test 
the behavior of the CODEC model.  
  
   The test A experimental frame includes five atomic 
models. They are clock , control, CODEC, analog signal 
generator and display. A brief description of the these 
atomic models is given below: 
 
• Clock: generates control signals with a predefined 

period.  

• Control: distinguishes the incoming signal. If a 
command signal is received, it will invoke the CODEC 
atomic model.  

• CODEC: simulates the behavior of the CODEC.  
• Analog signal generator: generates an analog signal. 
• Display: updates the results from the CODEC model 

and displays them. 
 

 
Figure 2: Test A, Experimental Frame Conceptual Model 

 
   The detailed definition of these models can be found in 
(Li, Pearce and Wainer 2002), but we will focus in the 
description of the CODEC model. Later, we will show its 
implementation using the available hardware. The CODEC 
model is responsible for translating an analog signal into an 
output digital signal. Figure 3 shows the CODEC DEVS 
atomic model used in our example.  
 

CODEC = <X, Y, S, δext, δint, λ, D> 
 
X = { ControlIn ∈ N+, AnalogIn ∈ R } 
Y = { DigitOut ∈ BinaryStream } 
S = { AnalogIn ∈ R } ∪ { ControlIn = 1 } 
 
δext ( s, e, x ){ 
  If ControlIn //check which port is signaling 
  
  case: port = ControlIn 
    if control = 1, //start signal conversion 
 analog_data = X.AnalogIn;  
 digital_data = convert (analog.data); 
 holdIn (active, time); 
    else   
 passivate(); // wait for the next event 
  
  //if AnalogIn signals 
  case: port = AnalogIn 
 passivate(); // wait for the next event 
} 
δint ( s, e ) { 
 passivate(); 
} 
λ (s) { 
 send digital_data to DigitOut; 
} 

 
Figure 3: CODEC Model Conceptual Definition 

 
   When an event arrives at ControlIn and its value equals to 
1, the CODEC atomic model starts analog to digital signal 
conversion using the analog received in the AnalogIn port. 
When the signal conversion completes, the CODEC sends 
all results using the DigitOut port. The analog signal is a 
stream of floats and the digital signal is a stream of binary 



strings. Please see the table 1 for a sample analog->digital 
conversion. The Analog generator is an atomic model and 
all it does is to randomly generate float representation of 
the analog signal. 

 
Table 1: Analog to Digital Conversion 

 
Analog Input (voltage) Digital Output 
0 0000 
0.2 0001 
0.4 0010 
0.6 0011 
0.8 0100 

 
   The test A coupled model is built to test the behavior of 
the software version of the CODEC. Figure 4 is the 
simulation output of the test A experimental frame. 
According to the figure, the first digital signal is obtained at 
time 00:00:40:708 through the signal output port. Its 
associated value is 0001 (here we use binary strings 
representing the digital signal value). At the time 
00:00:41:608, another digital signal is arrived at ground  
output port and its value is 0000. All digital signals are 
processed successfully through the software CODEC 
model. 
 
Wall Clock Time    Result    Output Port  Value 
00:00:40:708     succeeded     signal      0001 
00:00:41:008     succeeded     signal      0110 
00:00:41:308     succeeded     signal      0011 
00:00:41:608     succeeded     ground      0000 
00:00:41:900     succeeded     signal      1010 
… 

 
Figure 4: Output of Test A Experimental Frame 

 
INTRODUCING HARDWARE-IN-THE-LOOP 
 
   The application model we built in the previous section 
was reused when we replaced the model for the CODEC by 
the actual hardware. The new experimental frame (figure 5) 
was built to support interaction with the real CODEC on the 
board, and existing atomic models were reused. A clock  
model generates periodic signals to awake the control  
model. Then the control model will invoke the TCL model, 
which is in charge of initializing the CODEC and start the 
conversion. When the CODEC finishes the conversion, the 
dataTransfer model will acquire these data and send them 
to the control model. Finally, the DataTransfer  model will 
feed the data to the display model. A brief description of 
the new atomic models is given following:  
 
• TCL: invokes and opens the VisualDSP debugger 

system. Once the debugger system is opened, the 
different TCL files needed for A/D and D/A access can 
be invoked to obtain samples and regenerate the analog 
signal. 

• DataTransfer: reads the digital samples and sends 
them back to the control model. In addition, the data 
will be written back to the board for display if the DAC 
is working. 

 
 

Figure 5: Test B Experimental Frame Conceptual Model 
with Hardware-in-the-loop  

 
   Figure 6 shows the CD++ coupled model definition of the 
Test B experimental frame. The first line in the figure 
defines the Top model, which includes four atomic models 
and one coupled model. The Out port represents two output 
ports: signal, ground, and the links describe the internal and 
external coupled schema. The similar configurations are 
specified for each of the atomic models in the Test B 
experimental frame conceptual model.  
 
   The [top] model always defines the coupled model at the 
top level. As showed in the formal specifications presented 
earlier, four properties must be configured:  
• Components: describes the models integrating a 

coupled model. The syntax is modelName@className, 
allowing more than one instance of the same model 
using different  names. The class name reference to 
either atomic or coupled models (which should be 
defined in the same configuration file).  

• Out: it defines the names of output ports.  
• In: it defines the names of input ports.  
• Link: it describes the internal and external coupling 

scheme. The syntax is: source_port[@model]    
destination_port[@model]. The name of the 
model is optional and, if it is not indicated, the coupled 
model being defined is used. 

 
[top] 
components : clock@Clock control tcl@TclCycle 
display@DisplayCycle DataTransfer@FileTransferCy 
Out : ground signal 
Link : out@clock in@control 
Link : out@control in@tcl 
Link : out@tcl start@transfer 
Link : out@transfer in@display 
Link : ground@display ground 
Link : signal@display signal 
 
[control] 
components : queue@Queue central@ControlCycle 
In : in  
Out : out data_out 
Link : in in@queue 
Link : out@queue in@central 
Link : data_out@central done@queue 
… 

 
Figure 6: CD++ Coupled Model Specification for Source 

Code for Test B 
 



IMPLEMENTATION 
 
   The system was designed using two components: one 
running in a PC/Workstation, and another on the DSP 
board. See figure 7.  
 

  
Figure 7: A High-level Architecture of the Simulation 
 
   The CD++ test experimental frame communicates with 
the board through the IDE software, and a built-in TCL 
script controls the debugger operation. The IDE uses serial 
communication to access the ADSP chip memory on the 
DSP board. In the board, a talkthrough program is loaded 
by the IDE, which invokes the CODEC, stores the digital 
samples in a circular buffer, and sends the data back to the 
CODEC for output. When the samples are available, the 
TCL control script gets them and makes them available for 
CD++ as new external events. The interaction between the 
components is depicted in Figure 7. There are three 
cooperating subsystems in the simulation, the DSP board, 
the IDE and CD++. The DSP board subsystem acquires an 
analog signal from a 15MHZ function/waveform generator, 
and digitizes it through an A/D of the CODEC. These 
digital samples are saved in a predefined location in the 
DSP chip memory. In addition, the CODEC D/A writes 
these digital samples back to reproduce the analog signal, 
and displays them in a digital oscilloscope. 
 
   An important issue raised was how to achieve the 
system’s deadline. The real-time CD++ simulator uses the 
wall-clock to determine when to execute the next event. In 
this case, when the TCL model invokes the IDE 
application, we need time to reset the board. The solution is 
to let the model to wait for the hardware to start. During 
this period, the model will remain in the active state, and 
after that, it will generate an internal transition, recording 
the physical time it takes to this action. Another issue is to 
ensure that the model is ready to start a new read cycle, and 
that will depend on the speed for reading. The clock model 
will generate the read command according to the following 
diagram (Figure 8): 
 

 
Figure 8: Clock Timing Diagram 

 
   Figure 8 shows that at time 0:0:1:0, the model st arted to 
read data from the board memory. After 9 time units, the 
model finished reading the data. The clock model will 
record this time, and then it will issue the next command at 
time 0:0:11:0 to start another cycle. 
 
   Displaying the analog signal on the real-time digital 
oscilloscope is another difficult issue. Due to the limitation 
of the current IDE debugger, only 256 sample points can be 
written back at a time. These digital points went through the 
D/A and displayed on the oscilloscope. The following 
digital pictures show a 1 KHz sine waveform on the scope. 
 

    
 

 
 

Figure 9: Digital Pictures of 1 KHz Sin Waveform 
 
   The top is the input signal in sine waveform; the bottom 
image is the output from the simulation. Since the output 
signal is instantaneous, the display of the output signal is 
caught by freezing the screen. After adjusting the scale of 
the signal, we can read that the frequency is 1 KHz, which 
means the output signal is correct (in the picture they seem 
to be different, because the digital oscilloscope does not 
have enough signals to acquire in order to auto-set the 
display).  
 
TEST EXAMPLES  
 
   Different tests were conducted to evaluate the software 
and hardware components, as well as the program as a 
whole (refer to Test B conceptual frame) to examine the 
correctness and performance of the simulation. 
 
   1) Examining the A/D functionality of the CODEC. At 
initialization, the clock atomic model generated a control 
signal to start the control atomic model at time 
00:00:00:040. The control model then invokes the TCL 



model to start the IDE application and to load the TCL 
script. After pressing the reset button on the DSP board, the 
talkthrough program is loaded into the DSP board. At the 
same time, the dataTransfer atomic model is hold in the 
sleep state and is waiting for the data to be generated by the 
CODEC on the DSP board. Upon receipt of the converted 
digital data, the dataTransfer model will take these data and 
send them back to the control model. Finally, through a 
display atomic model, these samples will be updated and 
stored in a bin. After one simulation cycle, the clock will 
generate the next command. The simulation can be 
terminated by a preset simulation time or manually.  
 
   The following execution results show that all the signal 
conversions are successful and the values are obtained. 
These results match with those of the test A experimental 
frame and the differences in the value column represent a 
difference in the format and the analog waveform used.  
 
Wall clock time  results  Output Port    value 
00:00:40:708    succeeded   signal      0.50391 
00:00:41:008    succeeded   signal     -1.00000 
00:00:41:308    succeeded   signal     -0.97546 
00:00:41:608    succeeded   ground      0.03967 
00:00:41:900    succeeded   signal     -1.00000 
… 
00:06:51:210    succeeded   signal      0.99997 
00:06:51:210    succeeded   ground      0.03894 

 
Figure 10: Output of Test Model 

 
   2) D/A functionality of the CODEC was added into the 
simulation cycle. The purpose of this test is to verify the 
correctness of the digital samples obtained from the 
previous testing case. 
 
CONCLUSION  
 
   We presented how to achieve hardware-in-the-loop 
simulation of discrete event models based on the DEVS 
formalism. The real -time data communication between the 
CD++ model and the DSP board was explored in detail. As 
a result, we are now able to study models in a simulated 
environment, and to execute them in a hardware surrogate. 
The hierarchical nature of DEVS permitted to do this 
without modifying the original models, providing the base 
for enhanced system development in embedded platforms.  
 
   This is the first version of the CD++ simulation platform 
that employs an actual piece of hardware in the simulation 
loop. The hardware has been successfully introduced into 
the CD++ simulation platform. Different test examples and 
results were described to verify the correctness of the 
approach. The future development could be done towards 
making large systems and exploring different ways of 
hardware/software communications to further enhance and 
formalizing real-time simulation using CD++. 
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