Simulation of Electronic Transactions using the DEVS Formalism
for SCI 2001 / ISAS 2001

Ivan Melgrati, Carlos Giorgetti, Ana Rosa Tymoschuk
GIRED Research Group — Systems Department
Universidad Tecnoldgica Nacional — Facultad Regional Santa Fe
Lavaise 610, (S3004EWB), Santa Fe, Argentina

ABSTRACT

Transactions over the Internet are rapidly becoming the
tool of choice for users around the world to carry out an
ever-increasing number of tasks. In part, this follows from
satisfactory results of the first experiences in e-commerce
of these users. After these first brush with Internet
technology, they become more confident, and turn to on-
line transactions more often.

The economic impact of electronic transactions is beyond
any doubt one the most important aspects related to the
use of Internet. These transactions display very distinctive
features and cause, in turn, specific demands on the
underlying infrastructure.

This presentation comprises the first stage of a research
project focused on developing simulation models of e-
commerce systems. On the basis of these models,
different typical scenarios are tested. This paper
introduces a general model for representing and
simulating the components of the systems supporting
electronic business transactions, using the DEVS
(Discrete EVent System Specification) formalism.

The model considers a network composed of 2 Web
Servers, one servicing static page requests and the other
dynamic pages (ASP, Perl, CGI, etc.). Each resource is
represented a DEVS atomic model, which are coupled to
form the complete networking environment.

Keywords: simulation, models, electronic transactions,
DEVS formalism, performance analysis, e-commerce.

1. INTRODUCTION

Transactions over the Internet are rapidly becoming the
tool of choice for users around the world to carry out an
ever-increasing number of tasks. Moreover, the explosion
of the available Web sites makes the Internet a very
valuable resource, providing almost any kind of
information or service that can be thought of. Among
these, are the all-too-common e-mail, discussion groups,
virtual libraries, etc. As new technologies increase the
capabilities of the Internet, new services arise: On-Line
Learning, Streaming Audio and Video, E-Commerce, as
well as many others.

E-commerce [1-2] has become a very effective means for
doing business. Then, there is business-to-business
(B2B) and business-to-customer (B2C). These
transactions must be reliable, secure and efficient in order
to guarantee the maximum profit and minimize risks.
Therefore, the technology supporting them must comply
with certain technological and functional standards to
ensure an acceptable quality of service.

This paper introduces a general model for representing
and simulating the components of the systems supporting
electronic business transactions, using the DEVS
(Discrete EVent System Specification) formalism. Once
the models are completed, they are simulated under
different load profiles so as to determine the impact of
these workloads on the performance of the components of
system and the system as a whole. These measurements
provide insightful information that allow and support
decision-making processes.

2. MODELING OF ELECTRONIC TRANSACTIONS

Electronic transaction model
(e-commerce, e-learnning, virtual library, etc.)

Functional model
Navigation structure and built-in functions

(User behavior)

[Behavioral Model]

Resource model
(Site architecture and service
demands)

Simulation

Performance
Indicators

Figure 1

As Figure 1 shows, the modeling of the electronic
transactions (and of any system in general) consists of

several levels of abstraction. In the first stage the
functional pattern of the proposed system is developed,
depending on the system'’s actual transaction type. This
accomplished by specifying its features and functions
(access methodology to the system, users' validation,
etc.)

Starting from these patterns and the users' preferences, it
is possible to outline a model that reflects these
characteristics, giving a formal specification of these
patterns. This formalization process allows characterizing
different workload profiles to which the system will have to
respond.

Based on the load parameters, the structure and
configuration of the modeled system, the resulting
behavior is analyzed, to determine the system’s
capabilities and avoid the potential bottlenecks.

This behavior is studied constructing a performance
model where the resources are basically considered as
centers of service with their associated waiting lines. The
main objective is to evaluate the system’s performance by
assessing indicators such as response time, processing
speed, among other. Its purpose is to identify the key
areas for improvements, always aiming to increase the
system’s capabilities and reliability. In turn, it can also be
used to tune or adjust its operational parameters, using
the results to estimate the capacity necessary to meet the
new requirements

3. THE DEVS FORMALISM

In 1976, Bernard P. Zeigler [3-6] proposed a hierarchical
modeling and simulation mechanism, known as DEVS.
This methodology applies system theory concepts to
model continuous-time systems using a discrete events
approach. This paradigm lets the modeler describe the
model's behavior in a modular fashion, attacking
complexity using a hierarchical approach.

This approximation provides a means to specify a
mathematical object named system. A system is
described as a set consisting of a time base, a set of
inputs, a set of outputs, and a group of functions used to
compute the model’s successive state changes as well as
informing other models about these changes.

DEVS is a universal formalism used to model and
simulate DEDS (Discrete Event Dynamic Systems). The
formalism defines how and when the state of a model
changes, thus giving the modeler great flexibility when
specifying the behavior of a system.

In addition, the time between events is variable. This
allows different models execute their transition functions
only if they have to, avoiding the overhead of checking
whether a transition has to occur in every model, at each
time-step (as in cellular automata, for instance). This
affords better simulation speed since no transition function
is activated unless it's necessary to do so.

DEVS models can be viewed as an entity with
input/output ports that allow the model to communicate

with its surroundings. The internal structure of the model
is composed of:

¢ A set of state variables (that make up the model’s
current state)

¢ An internal transition function, indicating how and
when internal changes take place

¢ An external transition function, which specifies how
the model reacts to external messages

¢ An output function (which is used to communicate
with other models).

The ability to “connect” atomic models together provides
the means to create new, more complex models named
coupled models. By applying a mathematical transform,
coupled models can be treated as atomic models, thus
allowing seamless development of models in a modular,
hierarchical way. By repeatedly applying this transform,
the modeler can develop very complex models in a
hierarchical manner, by developing (and testing) each
component separately and then combining them until the
complete model is finished.

This provides an abstraction layer that allows continuous
refinements to be applied to the model without affecting
the global structure of the system. Moreover, it lets the
modeler reuse the atomic model specifications without
having to re-write them from scratch. This gives the
modeler the ability to take models from a model database,
and place them into a new one thus enhancing
productivity and ensuring the correctness of the
components without re-testing them.

To develop these atomic components the CD++ [7]
simulation engine was used. For generating and
simulating the coupled models, the Visual DEVS
environment (developed by the authors of this paper) was
applied. After completing the simulation runs, a
performance analysis was performed to evaluate the
impact of network configuration/topology, measured under
different load levels, on the modeled system.

4. MODEL DESCRIPTION

Systems supporting transactions over the Internet can be
seen as one or more servers which service a number of
clients. These elements, along with operating systems,

Server 1
p{Clientl
i
AR N S
P Client2
[}
: Disk
I}Clientg controller
[———
Server 2
Figure 2

communication hardware and networking protocols work
together to allow the effective exchange of information
and content among the intervening parties.

Figure 2 depicts an outline of the modeled system,
showing the structure for one of the servers and its
physical resources. Circles represent a resource while
rectangles identify queues of unfinished requests.

Each of these requests has three distinct components:
processing time at the client, delay in the Intranet/Internet
(round-trip) and the time to complete the task at the
server.

Everyday users exhibit some characteristics that allow the
modeler to set them apart based on criteria such as
frequency of requests, types of requirements, etc. These
in turn generate different workloads on the system that
must be accounted for in order to analyze its performance
and avoid potential bottlenecks. In this case, it is useful to
divide requests based on the kind of content they request:
static Web pages, dynamic content and finally, a mixture
of both.

This model proposes 3 types of clients, each of them
falling into one of the categories mentioned above. Hence,
there is a client that request only static pages, another
one access exclusively dynamic content (such as ASP
pages, PHP-based scripts, etc.) while the third one
represents a user that accesses a mixture of either type.

5. DESCRIPTION OF THE VISUAL-DEVS TOOL

The integrated development environment (IDE) Visual-
DEVS (developed by I. Melgrati) was designed for
modeling and simulating discrete event models. The tool
was written in Visual Basic and uses the CD++ simulation
engine [7] to perform the actual simulation.

The multi-document interface (MDI) included in this tool
allows to work at the same time on several, independent
models. The specifications of the atomic models
(parameters, input/output ports) are stored in a database,
from which they are extracted whenever a new
component is added to the working model.

The purpose of this environment is to ease the design of
DEVS coupled models, in a graphical way, avoiding the
need to use formal descriptions based on text files.

The system allows adding models and couplings in a
dynamic way, and at the same time lets the user include
new descriptions of atomic components. Consequently,
new models can be integrated to the tool giving the
modeler the ability to adapt the tool to various
requirements of his/her work.

The tool has an interface to the simulation engine.
Simulation parameters (simulation time, accuracy, output
files, etc.) can be specified and passed to CD++. In figure
3, a typical view of the tool is shown.

i i e el i adiin]

L s Tool bar

S | | o -
,.Trri-ﬁ_'—.n—r--'l,-_:i_f|

m | 3] \) =

b Atomic model

Model coupling —

= Ak e W'Hpe
Figure 3

The model bar allows adding atomic components to the
coupled model, with a single click. When adding a model,
a dialog box appears where the parameters of the new
component can be written down. These properties can be
modified at any moment, by double clicking on the model
icon.

To link two icons, the user selects them, then a dialog box
is activated, where the origin and destination ports are
chosen from list boxes.

The tool bar lets the user carry out activities such as
exporting the outline from the coupled model to WMF or
EMF files, as well as to copy it to the Clipboard. The size
of the graph can also be adjusted (zoom), with options to
adjust the scales in different ways (fit to screen, 1:1, etc.)

6. RESULTS

The output variables of the chosen simulation model are
the system’s processing speed and response time under
each of the simulated load profiles.

Case 1 shows a comparison of the selected indicators
against the time between clients' requests to assess the
behavior of the system as the requests from clients or the
actual number of active clients -of each kind- connected to
the network increase. The input variables of the system
are the mean time between requests in each client; all
other parameters remaining unchanged. Figures 4a and
4b show the results of the simulation runs performed
under these conditions.

In this case, the inter-arrival time was varied among the
successive petitions of the clients to examine the server’s
response as the number of requests grows.

Just as it could be expected, the graphics demonstrate
that as it increases the petitions in the system, the speed
of prosecution of the works diminishes, at the same time
that the time of answer of the system increases visibly.

The performance measures improve as the requirements
become more frequent until arriving to a maximum (good)
where the indicators are degraded due to the overload of
the system and the biggest times of wait in the lines
associated to the devices.

Trhroughput vs. Inter-arrival Time
100
5 80
f:l n Throughput 1
g’ 60 J L —#— Throughput 2
o 40 —a— Throughput 3
E oIl \\‘\.
0 : }
0 5 10
Inter-arrival Time
Figure 4a
RTT vs. Inter-arrival Time
80 X
60 FTa
E 40 & —8—RTT2
20 18 —a—RTT3
0 «
0 5 10
Inter-arrival Time

Figure 4b

It is important to point out that dynamic-pages-only clients’
performance (black curve) degrades much faster than that
of the other clients’ because of the higher requirements
imposed on the CPU and disks serving those requests.

In Case 2 the servers’ relative load (% of requirements to
one server over the other), is the changing factor. It is
necessary to highlight that in this case, the parameters of
the three client groups were equaled to isolate the
influence of the relative load from any other factors.
Figures 5a and 5b show the results obtained during the
simulation under these conditions.

RTT vs. Relative Server Load

25 :
20 7\ RTT 1
15

—=—RTT2
—a—RTT3

RTT

0 : A

S50 0,5

Relative Server Load

Figure 5a

Troughput vs. Relative Server Load

~ 60
2 A
< 40 1 Throughput 1
g’ —&— Throughput 2
g 20 &« —a— Throughput 3
|_
0 T
0 0,5 1

Relative Server Load

Figure 5b

In this case, as the percentage of requirements of static
pages is increased (Server S1), the global performance
increases due to a smaller average time to complete the
transactions.

As the three load profiles possess the same operating
parameters, the measures are almost identical, except for
small fluctuations product of the random nature of the
modeled system.

In Case 3 the changes in the influence of the delay of
transmission at the router is considered.

Throughput vs. Router Residence Time

[
o

= 0 A
E’ 30 \ Throughput 1
2 20 \l —#— Throughput 2
g 10 \ —— Throughput 3
= A<y
O T T
0 0,25 0,5 0,75
Router Residence Time
Figure 6a
RTT vs. Router Residence Time
100 A
80 = —_
|: 60 1
T 40 —8—RTT2
20 2 —A—RTT3
0 l A T T
0 0,25 0,5 0,75

Router Residence Time

Figure 6b

From the observation of the results in Figures 6a and 6b it
follows that as the processing speed of the router drops,
the performance of the system is significantly hindered.

Case 4 shows the impact caused by the variation of the
delay on the Internet on the performance of the system. It
is necessary to underline that both servers are configured
to operate at the same speed. This avoids the influence of
different server speeds yielding a more accurate set of
results.

Throughput vs. Internet Delay

50 [
5 40 AR
f__l 30 k._ Throughput 1
2 20 \l\ —=— Throughput 2
(o] ~—
= —a&— Throughput 3
£ 10 A—
0 T T ‘
0 0,2 0,4
Internet Delay
Figure 7a
RTT vs. Internet Delay
80
- 00 /k R
= 40 A ~—8—RTT2
ad
i —&—RTT3
20 l/l/
Q Aa=a mES T T
0 0,2 0,4

Internet Delay

Figure 7b

From the analysis of the results it is inferred that, as in the
previous case, the lag imposed by the Internet provokes a
sound decrease in the efficiency of the transactions. The
optimization of the Internet portion of the system is of vital
importance to improve its overall quality of service.

In the last Case the reaction of the system is shown in the
light of changes in the processing power of the dynamic-
pages server's CPU. It is worth to mention that during this
series of simulations the speed of the CPU of the static-
page server remained constant.

Troughput vs. CPU S2 Processing Time
60 ‘
~ 50
=}
5 40 Throughput 1
g’ 30 1 —&— Throughput 2
_8 20 1 —a— Throughput 3
F 10
0 ‘ ‘
0 2 4 6
CPU S2 Processing Time

Figure 8a

RTT vs. CPU S2 Processing Time
90
70
50 | RTT 1

E —m—RIT2

30 1 —&—RTT3
. &

A= — T .
109 2 4 6 8

CPU S2 Processing Time

Figure 8b

As figures 8a and 8b confirm, the variation of the
performance of the CPU of the dynamic-page server
significantly affects those users that perform transactions
using that server, especially those who only operate with
it.

7. CONCLUSIONS

A simple model of electronic transactions operating over
the Internet was implemented using | the DEVS formalism
as the selected modeling tool.

From the simulation runs, results consistent with
characteristic measures of typical systems of this kind
were obtained.

From these results the following conclusions were
extracted:

% The router poses a potential bottleneck, since all the
requests and replies must go through it. Hence, it is
vital to achieve the highest possible speed in the
routing process in order to minimize delays.

% The optimization of the communications link to the
Internet greatly improves the system throughput.

In general, all these factors have a tremendous impact on
user satisfaction. Therefore, it is crucial to take every
possible action to improve the overall quality of service.
Simulation models are a very effective way to detect
potential bottlenecks as well as to test new scenarios
without having to physically implement them.

The use of the DEVS formalism has proven to be an
effective means to develop powerful, expressive
simulation models. Moreover, the use of this methodology
has allowed a simple, effective way to modify these
models, which in turn allowed for an easy adaptation to
the proposed scenarios.

The use of graphical tools (such as Visual DEVS) is a
very compelling means to develop DEVS models, for the
modeler can better visualize its overall structure and
dependencies. On the other hand, these tools avoid the
error-prone procedures which are common in text-based

specifications, helping to achieve a greater degree of
accuracy and expressiveness.

8. ONGOING AND FUTURE WORK

This paper outlines some of the work carried out until the
moment by the GIRED Research Group (Networks
Research Group), in the area of modeling and simulation
of computer networks through the use of the DEVS
formalism.

Other areas of development of the group include the
monitoring of computer networks in a controlled
atmosphere (Connectivity Lab at the Systems
Department).

Also, Petri Nets are used to model these networks, to
assess the applicability of this modeling paradigm to real-
world environments.

Below is a summary of the Group’s current and future
areas of work:

% Improvements to the of Visual DEVS tool‘'s GUI, such
as the inclusion of coupled models to the toolbar,
thus allowing multi-level, hierarchical modeling.

% Performance monitoring on real-world systems is
continued to obtain typical-data feeds, thus aiding to
refine and validate output generated by simulation
models.

% After completing a basic model-base, the Group is
planning to expand it by including new, more specific
models (hosts, network interfaces, routers, etc.)

9. REFERENCES

[1] D. Menasce, V. Almeida, “Scaling for E-Business.
Technologies, Models, Performance and Capacity
Planning.” Prentice Hall, 2000.

[2] D. Menasce, V. Almeida, “Capacity Planning for Web
Performance. Metrics, Models, and Models.” Prentice
Hall, 1998.

[3] B. Zeigler, "Theory of modeling and simulation".
Wiley, 1976.

[4] B. Zeigler, "Multifaceted Modelling and discrete event
simulation". Academic Press, 1984.

[5] B. Zeigler, "Object-oriented simulation with
hierarchical modular models". Academic Press, 1990.

[6] B. Zeigler, D. Kim, "Design of high level modelling /
high performance simulation environments".
Technical Report, Department of Electrical and
Computer Engineering, University of Arizona. 1995.

[7] D. Rodriguez, G.Wainer, N-CD++: Manual del
Usuario, Departamento de Computacion, FCEN,
UBA, Argentina, 1999.

