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Abstract 
It is very important to validate functional requirements and evaluate non-functional requirements in earlier design 
phase of a Service Oriented Architecture (SOA) by executable modeling methodology. To make SOA executable, 
basically, most of the proposed approaches can be divided into two categories: formalism-based ones and model-
driven ones, which both have the advantages and limitations. In this paper, we take advantage of both formalism-
based and model-driven methodologies to specify a unified model-driven design and validation approach to SOA. This 
approach bridges generic service design and universal simulation paradigm with formal bases and practical 
implementation. To achieve this goal, we first extend the DEVS modeling language (DEVSML) to support 
nondeterministic state transition and enhance its capability to describe complex behavior of systems. Then we 
provide an automated transformation process using Extended DEVSML as a model transformation intermediary to 
bring together Model Driven Service Engineering (MDSE) with Service oriented architecture Modeling Language 
(SoaML) and Modeling & Simulation (M&S) methodology based on Discrete Event System Specification (DEVS). To 
demonstrate the applicability of this approach, we introduce an aircraft docking process in an airport scenario as the 
case study.  
Keywords:  Model Driven Service Engineering; Executable modeling; SOA; DEVS; Simulation; System of Systems 

__________________________________________________________________________________________________________________ 

1. INTRODUCTION 
Nowadays, enterprise information systems have become 

large-scale, composite systems, consisting of software and 

hardware components, which should be effectively 

combined to ensure system efficient operation. Service 

Oriented Architecture (SOA) is an attractive architecture 

paradigm for developing enterprise scale distributed 

software systems. It emphasizes loosely coupled, protocol 

independent distributed system development with the 

“software as service” concept. Many SOA-based systems 

show System of Systems (SoS) characteristics including 

large-scale, consisting of software and hardware 

components, and cooperative processes among independent 

systems. The term Service Engineering first appeared in the 

1990s as a discipline in business studies describing a new 

approach for creating and managing business services. As 

the underlying technology gradually matured, service 

development or service engineering has received more 

attention. A general challenge for Service Engineering is to 

enable service modules to be rapidly developed, and to be 

deployed and composed without undesirable service 

interactions. This is a formidable problem and a very 

challenging and attractive application area for Model Driven 

Architecture (MDA). SOA has been promoted for many 

years without a specific language that supports modeling 

services. 

In order to meet this requirement, the Service oriented 

architecture Modeling Language (SoaML) (Object 

Management Group, 2009) was specified. The goals of 

SoaML are to support the activities of service modeling and 

design and to fit into an overall model-driven development 

process. This is done in such a way as to support the 

automatic generation of derived artifacts following an 

MDA-based approach, and it is also more convenient for 

designers to transform a business model into a technical 

model and facilitate the alignment between high-level 

complex business requirements and IT systems. It is not the 

role of SoaML to define a methodology, but rather to 

provide a foundation for Model-Driven Service Engineering 

(MDSE) based on the MDA approach that can be adopted in 

different software development processes.  

To design SOA-based software systems capable of 

satisfying multiple Quality of Service (QoS) attributes, 

executable modeling is desirable. For instance, simulation 

plays a central role in enabling tradeoff study among time-

based quality of service attributes. For successful project 

managements, it is very important to validate Functional 

Requirements (FR) and evaluate Non-functional 

requirements (NFR) precisely in early design phase before 
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implementation of these systems. Most of current solutions, 

however, are based on interface testing, do not support early 

assessment of service performance, and mainly evaluate the 

overhead of service protocols and specifications. Also, such 

techniques do not allow customers, with no access to the 

service code, to simulate service performance at runtime 

(Ardagna, 2013). Other efforts are made to transform the 

SOA models into other executable models like discrete-

event models (e.g. Symbolic Transition System (Ardagna, 

2013), Petri Net (He, 2011) or its variants). Unfortunately, 

the transformed models including a lot of “places/states” 

and “transactions” which gives an appearance completely 

different from the original system architecture, hence this 

kind of simulation can’t provide an intuitive observation of 

systems’ behavior and interactions between services. On the 

other hand, Discrete Event System Specification (DEVS) 

which starts from general system theory may be the best 

option as the target formalism to make the SOA models 

executable, since it provides comprehensive and intuitive 

description of structure and behavior. In addition, it has 

been proven to be a universal formal mechanism to express 

a variety of discrete-event system subclasses, including Petri 

Net, Cellular Automata and Generalized Markov Chain 

(Vangheluwe, 2000). 

This paper aims to provide an integrated model-driven 

design and validation approach to SOA by bringing together 

MDSE with SoaML and Modeling & Simulation (M&S) 

methodology based on DEVS. In the rest of this paper, 

section 2 discusses related work on similar problems in 

executable modeling approach to SOA. Section 3 introduces 

Parallel DEVS (P-DEVS) and DEVS Modeling Language 

(DEVSML). Section 4 proposes an Extended DEVS 

Modeling Language (E-DEVSML) based on extended 

elements in P-DEVS. Section 5 gives the outline of our 

approach and introduces the example used to demonstrate 

our approach. Section 6 presents our approach in detail and 

proves its applicability and practicability. Section 7 

concludes the paper and proposes the direction for future 

research.  

 

2. RELATED WORK 
Many research works have been made in M&S related to 

service-oriented computing. To make SOA executable, 

basically, most of the proposed approaches can be divided 

into two categories: formalism-based methods and model-

driven methods. Next, we present a comprehensive survey 

of them in detail. 

In general, some directly use a modeling method based 

on formalism with executable semantic to analyze different 

non-functional properties of services. It shows that 

performance analysis can be integrated in the early 

development process. In fact, traditional formalism-based 

framework depends on certain simulation formalisms in a 

theoretical or mathematical way. Furthermore, many tools 

for service-oriented formalism-based simulation framework 

are implemented. A model based approach (Ardagna, 2013) 

that relies on Symbolic Transition Systems (STS) is 

proposed to describe web services as finite state automata 

and provide an early assessment of service performance. 

This approach uses simulation along the design and pre-

deployment phases of the web service lifecycle to 

preliminarily assess web service performance. Another 

approach (Sarjoughian, 2008) is developed by unifying the 

DEVS and SOA frameworks. Based on the DEVS and SOA 

concepts and principles, a set of primitive and composite 

service model abstractions along with their interactions are 

defined. The resulting SOA-compliant DEVS (SOAD) 

framework supports simulations of service based systems. 

These approaches need modelers to be familiar with the 

formal basis and the corresponding modeling method. These 

researchers (Muqsith, 2010) also extend the SOAD 

framework by introducing dynamic structure DEVS to 

model and simulate the structure changes in service-based 

systems. The Cell-DEVS is another DEVS-based formalism 

that defines spatial models as cell spaces. Web enabling 

CD++ (Madhoun, 2006), which is an M&S toolkit to 

execute Cell DEVS models, can expose simulation 

functionalities as Web services to improve interoperability 

and reusability for the users’ convenience. And D-CD++ 

(Wainer, 2008), an architecture of a web services based 

distributed simulation framework, is then put forward. 

Comparing with CD++, D-CD++ emphasizes the specific 

characteristic of distribution explicitly. It improves 

reusability and interoperability for users’ convenience. 

Although the declarative formalism based methods (e.g. 

SOAD, D-CD++) has the advantages of rigorous theoretical 

basis, mathematical semantics, mature formalism and strong 

presentation capability to various systems. There still exist 

limitations. In one hand, formalism based methods are 

extremely too abstract and difficult to follow by users. In the 

other hand, the modeling for these methods is extraordinary 

complex. Hence, they have not been widely recognized by 

academic and industry. 

Apart from formalism-base methods, there have been 

many approaches that aim to make static SOA models 

executable by MDA approach such as code generation. The 

Dynamic Distributed Service-Oriented Simulation 

Framework (DDSOS) (Tsai WT, 2006) focuses more on the 

domain of service-oriented software development. It is a 

distributed multi-agent service-oriented framework based on 

the Process Specification and Modeling Language for 

Services (PSML-S) (Tsai WT, 2007). A similar framework 

is also mentioned in (Jia L, 2009). The differences between 

their framework and DDSOS are the replacement of PSML 

with UML as the common model specification and the lack 

of some dynamic properties. Nevertheless, it lacks some 

high level formalism or theory basis for PSML and the 

DDSOS framework. The model driven methods perform 

excellently in modeling and generating code automatically. 

They have dynamic composability and support service-

oriented systems engineering. Some limitations of the model 
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driven methods still exist and should be improved. For 

instance, these methods only focus on service oriented 

software development and have limited simulation 

capabilities. In addition, theory, efficiency, and applications 

still need to be improved. 

Some researchers also propose methods which combines 

both formalism and MDA. Petri-net based approach is 

commonly used. In Narayanan’s approach (Narayanan,  

2003), the services are specified with using the DARPA 

Agent Markup Language for Services (DAML-S) and 

converted to Petri-net models and simulated using the 

“KarmaSim” environment. However, it provides a strong 

basis for verification and validation of the models, the 

combination of DAML-S and Petri-net lacks a sound basis 

for describing time-based dynamics of SOA, and this kind 

of simulation can’t provide an intuitive observation of 

systems’ behavior and interactions between services. By 

comparison, more powerful cross-platform framework 

DEVS/SOA (Mittal S, 2009) give ways to automatically 

generate DEVS models from various types of business 

process specifications and realize distributed simulation 

execution using web services, but the DEVSML used as key 

modeling language has difficulties to describe complex 

transitional behaviors due to limitations of Finite and 

Deterministic DEVS (FD-DEVS).  

We also proposed a generic and comprehensive 

approach (Hu, 2014) to the design of SOA by combining a 

universal modeling language for SOA (SoaML) and a 

universal formal mechanism (DEVS) to service-oriented 

systems. This paper extends the former work presented in 

SCC 2014, which includes more details of the approach 

with some important improvements of DEVS modeling and 

expands on the worked example with more experimental 

results. We extended DEVSML to support nondeterministic 

state transition and enhance its capability to describe 

complex behavior of systems. Then we provided an 

automated transformation process using E-DEVSML as a 

model transformation intermediary to realize executable 

SOA in a DEVS-based simulation. We take advantage of 

both formalism-based and model-driven methodologies to 

specify a unified model-driven design and validation 

approach to SOA. This approach bridge generic service 

design and universal simulation paradigm with formal bases 

and practical implementation. 

 

3. PARALLEL DEVS AND DEVS MODELING 

LANGUAGE 
DEVS is a formal specification for general discrete 

event dynamic systems. Starting from the classic DEVS 

proposed by Zeigler, the simulation community have 

proposed different forms of DEVS for systems with 

different characteristics. As we shall introduce later, P-

DEVS removes constraints in the classic DEVS that 

originated with the sequential operation of early computers 

and hindered the exploitation of parallelism (Zeigler, 2000). 

 

3.1 Parallel DEVS   
DEVS models can fall into two categories: atomic and 

coupled. The atomic model is the irreducible model 

definition that specifies the behavior for any modeled entity. 

The coupled model represents the composition of two or 

more atomic and coupled models connected by explicit 

couplings. An atomic model M and a coupled model N are 

defined by the following equations: 

M = < IP, OP, X, S, Y, δint, δext , δcon, λ, ta >              (1) 

N = < IP, OP, X, Y, D, EIC, EOC, IC >                       (2) 

In an atomic model, S is the state space; IP, OP are the 

set of input and output ports; X, Y are the set of 

Inputs/Outputs, which are basically lists of port-value pairs, 

are the basic exchange medium. 

     X = { (p,v)∣p∈IP, v∈Xp } , Y = { (p,v)∣p∈OP, v∈
Yp },where Xp and Yp are input/output values on port p.  

δint : S→S is the internal transition function;  

δext :Q × Xb →S is the external transition function, where 

Q = { (s,e) s∈S, 0≤e≤ta(s) } is the total state set, e is the 

time elapsed since last transition, and Xb is a set of bags 

composed of elements in X;  

δcon : S × Xb → S is the confluent transition function, 

which decides the order between δint and δext in cases of 

collision between simultaneous external and internal events, 

subject to δcon ( s, Ø ) =δint (s), where Ø means no input 

occurs.  

λ: S→Yb is the output function, where Yb is a set of bags 

composed of elements in Y; ta(s): S→R0
+ ∪∞is the time 

advance function. Two state variables are usually present in 

the state space of an atomic model: ‘phase’ and ‘sigma’. 

Sigma keeps the time advance value. In the absence of 

external events the system stays in the current ‘phase’ for 

the time given by ‘sigma’. 

In a coupled model, IP, OP, X and Y have similar 

connotation as in atomic model, but mean external (not 

coupled) elements; D is a set of DEVS component models. 

EIC is the external input coupling relation; EOC is the 

external output coupling relation; IC is the internal coupling 

relation. The coupled model itself can be a part of a 

component in a larger coupled model system giving rise to a 

hierarchical DEVS model construction. 

 

3.2 DEVS Modeling Language 
A DEVS specification language or modeling language 

(e.g. XFD-DEVS (Mittal, S, 2013), DEVSpecL (Hong. KJ, 

2006), DEVSML2.0 (Mittal, S, 2012)) is usually used as a 

model transformation intermediary to make static models 

executable. For example, UML models are first converted to 

DEVSML models, and then translated into executable codes. 

XFD-DEVS based on XML and FD-DEVS (Hwang Moon 

Ho, 2009) has many shortcomings, such as, no confluent 

function, no multiple inputs, no multiple outputs, no 

complex message types and no state variables. These 
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shortcomings are removed in the upgraded version 

DEVSML 2.0. Both based on Extended Backus-Naur Form 

(EBNF) notation, but by comparison with DEVSpecL, the 

DEVSML2.0 is more close to the true DEVS formalism 

with some necessary abstractions. In his recently work 

(Mittal, S, 2013), Mittal presented DEVSML 2.0 stack 

employing Model to Model, Model to DEVSML and Model 

to DEVS transformations, which aim to unify the Domain 

Specific Language (DSL) community with the DEVS 

community, and make those components fall under an 

DEVS unified process (DUNIP). This framework is 

attractive, however, how to realize M2DEVSML between 

different DSL and DEVSML 2.0 is still not given, and it has 

some limitations to express complex transition logic as it 

employs deterministic properties of the constituent elements, 

which are formally defined in FD-DEVS. 

DEVSML contains three primary element types (i.e. the 

Atomic, the Coupled and the Entity). When DEVS is tied to 

a platform specific implementation, the message objects are 

exchanged according to the port-value pairs specified in the 

atomic model structure. In this manner, the entities are 

defined as a data class to depict message types. These 

entities are then declared in atomic or coupled components 

for their reuse. Both Atomic and Coupled model grammar 

stay as close as possible to the P-DEVS formalism. 

However, some abstractions still exist. For instance, any 

state transition based on the message content is not 

realizable because of FD-DEVS. The major specification of 

DEVSML is shown in Figure 1, and detail introduction can 

be found in (Mittal, S, 2012). 

 
Figure 1.DEVSML specified in EBNF grammar 

4. EXTENDED DEVS MODELING LANGUAGE 
In practice, when we model system architecture with 

previous DEVSML version, FD-DEVS usually can’t resolve 

complex problem. For instance, when an input arrives on 

one port of an atomic model, it may invoke an external state 

transition or may not, that is depending on the practical 

requirement and specific scenario, although it is forbidden 

according to the deterministic property. Another example is 

an atomic model with two input ports where a transition to 

state SA will be triggered if a message arrives at port A but a 

transition to state SB should be invoked if the message 

arrives at port B. Certainly, there will be a collision if two 

messages simultaneously arrive on both ports. Although 

DEVSML provide user-defined code block that elaborating 

detailed behavior of models, it is still inconvenient to deal 

with troublesome nondeterministic state transitions. 

Therefore, we take appropriate measures to extend 

DEVSML to deal with these complex situations. This 

section presents the proposed extended part of DEVS 

modeling language and its formal bases. 

 

4.1 Extended Elements in P-DEVS 
There are three essential modeling elements: messages, 

states and transitions in DEVS. In practice, the number of 

messages and states is so huge and sometimes infinite that 

we cannot treat it easily by directly applying the DEVS 

formalism in the course of modeling. It’s important to note 

that in the equations of P-DEVS, we could not directly 

understand what is the state space S and what is the set of 

inputs Xb. Thus we propose an extension called SP-DEVS 

on the base of these equations to exploit the notion of 

message as a structured form of related I/O, and of state 

variables to aggregate relevant sequential states. Note that 

basic definitions of atomic model and coupled model also 

follow Equation 1 and 2. 

4.1.1 Formalized Message with Port, Value and I/O 

variable  
As stated, X and Y are the set of I/O, which are basically 

lists of port-value pairs, and a message is a bag of elements 

in X or Y. If a message is arrived, several ports may catch 

some values at the same time. Therefore we have: 

X = { (p,v)∣p∈IP, v∈dom(p) } , Y = { (p,v)∣p∈OP, 

v∈dom(p) }, where dom(p) is type or domain of port p, if a 

coupling from one output port  py to another input port px 

such that dom(py) ⊆ dom(px).  

The message set M= Xb∪ Yb , and Xb ={ mx∣mx⊆ X }, 

Yb ={ my∣my⊆  Y}. Sometimes, simultaneously arriving 

inputs on different ports make it complex to describe the 

behavior of the external transition function. If we choose an 

alternative transition to trigger, some inputs may be ignored 

or lost. Therefore we try to separate the processing of inputs 

from state transition, if we first store these inputs in some 

I/O variables, such that, any inputs will not be ignored or 

lost. To realize this idea, we define a set of Input-port-

associate Variables (IV) Vx, and a set of Output-port-

associate Variables (OV) Vy, these variables may be simple 

data type (e.g. integer, floating number, string) or a 

container of simple data types (e.g. queue, stack, list). We 

can also define a binding between an I/O variable and a port:  

Rev ={ (p, vx)∣p∈IP, vx∈Vx , dom(p)= dom(vx)}, Sed= 

{ (p, vy)∣p∈OP, vy∈Vy , dom(p)= dom(vy)} where Rev is 

used to receive messages and Sed is used to send messages. 

4.1.2 Formalized State with Phase and State variable  
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A discrete-event system’s status can be specified by a 

set of system variables or attributes. Each state variable 

represents an attribute characterizing the system. Thus a 

system state is a combination of values that the state 

variables have at a time. Now consider that we partition the 

composite state set into equivalent groups such that each 

group has a set of sequential states. Let each group have a 

single representative name, called a phase. Formally, a 

phase ψ is a representative value of a set of equivalent states 

which produce the same output event and/or have the same 

time advance at the states. Therefore the state space S can be 

defined as follow: 

            S = < Ψ, SV,{dom(sv)∣sv∈SV}, αs>                   (3) 

Ψ is a set of phases, SV is a set of state variables, dom(sv) 

is the range set of  a state variable sv∈SV, and αs is the one-

to-one assignment function which is subject to the constraint: 

                     αs
-1  : ×sv∈SV dom(sv) → Ψ                             (4) 

which is a bijection such that S = { si= {ψi}∪{sv1i,sv2i,…} 

∣ψi∈Ψ,sv1i ∈dom(sv1), sv2i ∈dom(sv2),…,svi∈SV,  si = 

s’ ={ψ’}∪ {sv1
’,sv2

’,…} }. An element svi = {sv1i,sv2i,…} 

mapped to a sequential state si is called a composite state in 

the state space. s’ is the initial state of the state space and ψ’ 

is the initial phase. By the way, a phase can be hierarchical, 

that is, a phase can be decomposed into sub-phases having 

disjoint composite state members. It is always true that a 

union of sub-phases within a phase gives the total states set 

of the phase and the intersection of all sub-phases results in 

an empty set. So this feature makes it easy to map P-DEVS 

onto StateCharts or UML StateMachine which also have 

composite state or sub-StateMachine.  

Figure 2 gives an illustration of the notion of the 

structured states and phase transitions. There are three states 

with phases ψ1 , ψ2, ψ3, and ψ1 has three sub-phases ψ11, ψ12, 

ψ13; The values of two state variables sv1 and sv2 are 

grouped into these states with disjoint composite state 

members. When the system stay at ψ11 and a message m1 

arrives, an external transition is triggered, if the guard 

condition g1 is satisfied, the system will transit into phase ψ2 

and the action a1 is executed to change the value of sv1 from 

sv11 or sv12 to sv14. While the system stay at ψ12  and 

e=ta(s1) ,an internal transition is triggered, if the guard 

condition g2 is satisfied, the system will transit into phase ψ3 

and the action a2 is executed to change the value of sv1 from 

sv13  to sv15 and a message m2 will be sent out as well. 

 

Figure 2. Illustration of the structured states and phase 

transitions 

4.1.3 Formalized Transition with Event, Guard and 

Action  
A state transition usually occurs by an 

event/guard/action pair, and is actually a phase transition 

here. The event refers to an external message arrival or an 

internal event (e=ta(s)) happening, but the guard and the 

action are still not formally defined in P-DEVS, and they are 

just implemented within transition functions in executable 

codes of DEVS. Some DEVS modeling languages are 

created based on a sub set of classic DEVS called FD-

DEVS which only support deterministic state transitions. 

The guard condition is unnecessary in FD-DEVS, however, 

we wish P-DEVS to be capable of coping with complex 

situations including nondeterministic state transitions. So 

the guard condition should be added to transition functions. 

It may be a guard of messages or guard of variables.  

The action is usually used to change value of variables 

including state variables and I/O variables. After that the 

output function λ can only be implemented by pushing out 

the data stored in OVs after an internal state transition. In 

this way, we revise the definition of the transition functions 

like these: 

δext :Q×Xb×G→S×A                                (5) 

Where Q, S and Xb are the same as in P-DEVS; G is the 

guard condition set consisting of logical expressions on 

messages or variables. It is denoted by: 

G: Xb×v∈SV∪Vx dom(v)→Boolean                 (6) 

And the action A is a data process function, which may 

construct a vector of individual actions for each variable: 

                        A:×v∈SV∪Vx∪Vy dom(v) → dom(v)              (7) 

The internal transition function is also extended with 

guards and actions: 

                                  δint :S×G→S×A                               (8) 

The output functionλ: S→Yb and the time advance 

function ta(s): S→R0
+ ∪∞ are the same as original P-DEVS. 

Finally the confluent transition function is: 

               δcon : Q×Xb×G→ Ot
  , Q = { (s,e), e=ta(s) }       (9) 

Which decides the order between  δint  and δext in cases of 

collision between simultaneous external and internal events. 

Ot is a choice among the options including ignore-input, 

input-only, input-first and input-later, and then trigger the 

corresponding transition functions in this order. 

 

4.2 Abstract Syntax of E-DEVSML 
A textual language is usually specified using Extended 

Backus-Naur Form (EBNF) notation, and Xtext is a 

powerful tool to do this for the development of a domain 

specific language. After using Xtext's EBNF grammar 

language to define the abstract syntax of E-DEVSML, it 

will create the meta-model and the parser automatically by 

starting a generator. Considering of both convenience of use 

and conformity with the P-DEVS formalism, we specify 
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SPDML with modular and object-oriented features. Models 

in E-DEVSML are divided into three primary elements: the 

Atomic, the Coupled and the Entity.   

1) Entity: DEVS is a component-based framework where 

each of the components communicates using messages. 

These message objects are exchanged according to the port-

value pairs specified in the atomic model, and the datatype 

of a input value can be defined as an entity and reused by 

some ports. According to the object-oriented principles, the 

entities are defined not as a part of the component but as a 

first-class citizen. Figure 3 gives the definition of Entity in 

EBNF.  

 
Figure 3．Definition of Entity in EBNF 

An Entity is specified by a name, name=ID. It may 

extend another entity. The expression [Entity| 

QualifiedName]  means that the superType is to be specified 

as a QualifiedName, which is an Xtext construct and is of 

type Entity. For more details on QualifiedName, please refer 

Xtext manual. We define a variable type named container 

which is a common data structure (e.g. queue) to store a 

series of entities. The keyword default assigns values to 

variables when model is started or restarted. 

2) Atomic: The Atomic is the most important and 

complicated part of DEVS. Every core concepts in SP-

DEVS should be defined as corresponding elements in 

EBNF. The Atomic model is specified in EBNF grammar as 

Figure 4 showing. 

 
Figure 4．Definition of Atomic in EBNF 

The keyword vars defines a set of variables including 

I/O variables and state variables. The interfaceIO 

specification gives the definition of ports with specific data 

type which is referenced as an Entity type. And state-time-

advance defines set of states and the associated time-

advances. Each state-time-advance pair is defined as a 

Phase. The time-advance TimeAdv can have values of either 

DOUBLE, infinity or a Variable declared above in the 

atomic model. The state-machine contains the initial state 

InitState and the atomic behavior AtomicBehavior. The 

expression state=[Phase] implies that the model references 

the state already defined in the construct Phase defined 

earlier in the model. The next expression (code=Code)? 

implies that there may be code snippet associated with 

setting up of the initial state.  As we shall see in a later 

section on applicability of SPDML, the code expressed as a 

STRING is syntactically checked at run-time for any 

compilation errors. 

E-DEVSML has four functions to specify the atomic 

behavior. Correspondingly, the AtomicBehevior is divided 

into four parts (shown in Figure 5): Deltext, Deltint, Outfn 

and Confluent. To enhance flexibility and convenience of 

modeling, some special features are provided: 

a) Separation of message processing from state 

transition: from functional perspective, an abstract 

description of an atomic model is: accepting inputs or 

incentives, and generating an output with state changes. We 

could divide this input/output process into three parts: 

receiving a message, data processing during a series of 

transitions and sending a message. As any input ports may 

accept some inputs when a message arrives during any state, 

the ReceiveMessage is used to allocate the message (port-

value pairs) to several IVs which is a static banding declared 

in an atomic model. In this way these variables play roles as 

buffers controlled by user. On the contrary, the 

SendMessage is a dynamic banding declared in the output 

function to pack values of OVs and output ports into a 

message. After outputs are pushed out these variables are 

cleared out automatically. 

b) Guard transition defined to support for 

nondeterministic state transitions: a guard may be variable 

correlate or message correlate. We argue that a specific 

input can also be viewed as a part of a guard condition 

owing to it is stored in an IV. For example, a variable is 

used for storage of inputs on a port, after receiving a 

message, if this variable is not null (guard condition), 

transition is triggered. In both Deltext and Deltint, for more 

flexible description of a guard condition, literal strings are 

used as standard format which will be directly translated 

into executable codes. 

c) Additional extended features: the UserFunction 

permit user to add code embedded in the generated atomic 

and coupled model class source file, user-defined method 

defined in an atomic model can be called by the atomic 

itself and the coupled model comprising it to implement 

interoperability. The Hold allows the model to still stay in 

the source state but advance the elapsed time or redefine the 

time-advance. The SetSigma rule also allows the resetting of 

time-advance of the target state. 
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3) Coupled: The specification of a coupled model is 

shown in Figure 6. To put it simply, the coupled model can 

extend from another coupled model and it has the same 

interface specification as the atomic model. It is composed 

of a set of models which can be either atomic component or 

coupled component. The definition of Coupling includes 

EIC (defined for connections originating from input 

interface of the coupled model to its subcomponents), IC 

(specified  between the sub components) and EOC 

(specified from the contained component to the outside 

interface of the coupled model). The keyword this means 

the component itself.  

 
Figure 5. Definition of AtomicBehavior in EBNF 

 
Figure 6. Definition of  Copuled in EBNF 

Compared to the original version, in this paper we make 

a lot of changes on the atomic model definition to enhance 

its capability of complex behavior description but fewer 

changes on coupled model. Without operational characters 

and complex control statements, unlike a programming 

language, E-DEVSML still needs some embedded code to 

describe complex logics. Fortunately, these codes are only 

involved in data processing from IVs to OVs, which is 

independent of specific DEVS simulator. 

5. OVERVIEW OF THE APPROACH 
5.1 Outline of the Approach 

The MDSE methodology based on MDA guides 

solution architects in how to specify services that are 

aligned with the business process models (Elvesæter, B., 

2011). In our model-driven approach shown in Figure 7, the 

Business Architecture is first built as a Computation 

Independent Model (CIM), the computational and 

implementation details of the system are hidden at this level 

of description. The CIM is transformed into the System 

Architecture Model, a Platform Independent Model (PIM) 

which contains the necessary computational information for 

the application, but no information specific to the 

underlying platform technology which will be used to 

eventually implement the PIM. After finishing the design of 

the SOA, the SoaML models can be transformed into 

platform independent DEVS models in E-DEVSML and 

finally are transformed into a Platform Specific Models 

(PSM), which are actually described using executable codes. 

At the same time, we also need to design an Experimental 

Frame (EF) to start the simulation. The construction of the 

EF is as important as SOA models for this simulation 

environment because it will introduce QoS goals associated 

with system quality attributes and will calculate quality 

indicators for each attribute to be analyzed. In this paper 

we’ll construct generators and transducers to serve as 

components in the experimental frame module for 

measuring performance of this service-oriented system. 

 
Figure 7. Framework of the model-driven approach to SOA 

Generally, there are two different ways to implement a 

DEVS simulation from other PIMs. One is directly mapping 

formalism of different diagrams to DEVS formalism and 

generating executable codes for DEVS simulators on 

different platforms. Another way is to apply a DEVS 

specification language or modeling language as a model 
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Figure 9.   Illustrative scenario described by an use case 

 
Figure 10.   Services architecture of docking guidance in SoaML 

transformation intermediary. According to the first method 

simulation can be implemented on a single platform, and the 

conversion process is relatively complex; The second 

method is more reasonable because it has two major 

advantages: (1) the DEVS modeling languages are generally 

platform-independent and can be transformed into 

executable codes on different platforms, that exactly 

satisfies the requirements of SOA; (2) Before creating a 

DEVS simulation we need to remove redundancy and take 

the intersection of the information provided by models of 

different perspectives. Therefore, we certainly take 

advantage of the two-steps method to make SOA models 

executable. At last, we use one of the open source DEVS 

simulator named DEVS-Suite (The Arizona Center for 

Integrative Modeling and Simulation, 2014) to validate the 

SOA models. 

5.2 Illustrative Scenario 
An airport is a typical SoS and it is composed of 

systems from different suppliers that use different design 

methods and implementation technologies, thus SOA is 

 
Figure 8． Illustrative scenario described by a use case 

usually applied to deal with that kind of heterogeneity. We 

motivate our approach using the airport scenario and 
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business process of an aircraft docking is illustrated. Figure 

8 show this scenario by an Use Case diagram, the 

collaboration of the involved systems includes FIS (Flight 

Information System), GOS (Gate Operation System), DGS 

(Docking Guidance System) and Operator Pannel (OP). 

They are all necessary for the aircraft to be smoothly 

manoeuvred to the correct centerline and stop-position. 

First, the FIS sends docking request to the GOS before 

aircrafts’ landing, and the GOS assigns the suitable gates 

(each gate has a set of DGS including an OP) for each 

aircraft according to the schedule. After that, the flight 

information is sent to the corresponding DGS. And the 

operator checks it for correct aircraft type and flight number, 

then activate a docking process. Note that a GOS usually 

takes charge of many gates with DGS, for concise 

illustration of this example we only show few sets of DGS 

in the business process. 

 

6. MODEL-DRIVEN DESIGN AND 

VALIDATION OF SOA 
6.1 Business Architecture design 

Our model-driven approach starts from design of 

Business Architecture Model (BAM). It illustrates the 

business processes with the associated elements of 

information by using a UML Activity Diagram (AD) shown 

in Figure 9. It can provide a great assistance for capturing 

business activities and identifying services in ADs. The 

BAM further describes the services architecture of the 

business community and the service contracts between the 

business entities participating in the community as 

illustrated in the SoaML diagrams. The Business Process 

Modeling Notation (BPMN) is often used to describe 

business processes while mapping rules between BPMN and 

SoaML frequently appear in articles on MDSE (Elvesæter, 

B., 2011). Note that we decided to use the activity diagram 

at this level in contrast with BPMN. The main reason is that 

AD is a standard notation, well-known from software 

developers, while BPMN is a notation created for business 

people, although both notations and views on the meta-

model are very similar. In this activity model, actions are 

displayed while business collaborators are displayed as a 

partition in the AD. Then the SoaML diagrams can be 

derived from this AD and some refinements may be 

required. 

A service architecture is a high level description of how 

participants work together for a common purpose by 

providing and using services expressed as service contracts. 

Participants are identified in an AD partition, and when two 

single actions follow one another across several partitions 

and are connected with a control flow, this collaboration can 

be identified as a service contract. Once the service 

contracts are identified, the consumer and provider roles 

should be specified. The services architecture and service 

contracts of the docking guidance process are shown in 

Figure 10 and Figure 11. 

 
Figure 11. Service Contract, Services Interface and 

Message Typese 

 
Figure 12. Service Choreography between FIS and GOS 

 
Figure 13. State Machine Diagram of GOS 
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TABLE I. Mapping rules between DEVS and SoaML. 
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Figure 14. State Machine Diagram of GOS 

6.2 System Architecture design 
The System Architecture Model (SAM) describes the IT 

perspective of a service-oriented architecture. The SAM is a 

refinement of the BAM, and is used to express the overall 

architecture of the system at the PIM level. It partitions the 

system into components which are specified in a service 

components diagram. It also defines the components in 

terms of “what interfaces are used” and “how the interfaces 

should be used”. Furthermore, Figure 11 shows the Service 

Interfaces and the data objects in the control flows which 

are represented by SoaML message types. Provided and 

required interfaces are denoted by provider and consumer. 

The provided interface contains the operations of the service, 

while the required interface can have callbacks, which are 

specified as signals. For instance Figure 11 shows the 

consumer interface dockingRequest with the operation 

sendDockingRequest, and the provider interface with the 

callback requestResponse. Service choreographies in Figure 

12 are usually described by a Sequence Diagram (SD). It 

also specifies how operations and callbacks are put together 

into a conversation between the two participants. The 

message specification types are closely related to the 

specification of the operations and callbacks in the 

interfaces. The message type Docking Request in Figure 8 

has some properties which contain additional information to 

support the FIS communications with the GOS. On Figure 

13, the State Machine Diagram (SMD) of the GOS can be 

acquired by refining the AD in Figure 9. Finally, the 

component model focuses on specifying the involved 

software components that realize the services architecture 

shown in Figure 14. 

 

6.3 Mapping DEVS onto SoaML 
As mentioned above, there are two ways to realize 

transformation from SoaML to DEVS and both of them 

require some mapping rules between source models and 

DEVS formalism. First, all the data types (e.g. Class, 

MessageType) inherit from UML::Class can be translated 

into data types of Inputs (X) / Outputs (Y) in DEVS as 

entities in E-DEVSML. Second, from structural perspective, 

Class Diagram give definition of attributes in an atomic 

model, while Composited Participants provide structural 

information about a coupled model including components in 

coupled model and couplings between them. In addition, 

Service choreography is able to represent both coupled 

model structure and behavior of its model, and Messages 

between lifelines are used to define ports in each 

components and couplings between them. However it’s a 

little bit complex to transform it into atomic models without 

explicit states and transitions definition. Roberto (Pasqua 

Roberto, 2012) has made it possible by generating states and 

transitions between two consecutive specification 

occurrences. At last, from behavioral perspective, a SMD is 

more suitable to provide behavioral information of an 

atomic model since it is more convenient and provide more 

complete information. The detailed mapping rules between 

these diagrams and DEVS models are listed in table 1. And 

there is no concept can be mapped onto δcon. The default 

definition of confluent transition function simply applies 

δint before applying δext to the resulting state. 
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Figure 15. Comparison between E-DEVSML and java source file of GOS 

6.4 Transform SoaML into E-DEVSML and 
Java Codes 

Xtext is a powerful framework which we applied in the 

development of E-DEVSML. As long as we define a 

grammar and execute the MWE2 workflow in Xtext, it 

automatically generates a compiler, an editor and a rich 

validation framework. In addition, the Xtext framework is 

seamlessly integrated with the Eclipse Java framework by 

code generator with Xtend. The automated transformation 

process from SoaML to DEVS is a two-step approach which 

employs and tools which contains model transformation 

technologies such as Xpand and Xtend. As SoaML models 

are stored in XMI files, due to the textual style of E-

DEVSML, we use Model to Text (M2T) technology such as 

Xpand, a language specialized on code generation based on 

Eclipse Modeling Framework (EMF) models, to transform 

SoaML into E-DEVSML. Then the java codes are generated 

automatically by Xtend. 

Generating DEVS models through the diagrams of 

SoaML as described table 1 may follow a certain order. First, 

we transform data perspective diagrams into DEVS entities; 

second, we select the structural perspective diagram of 

components which generates the corresponding DEVS 

coupled structure and class definition diagrams that generate 

variables in atomic model; at last, the behavior of each 

atomic model is defined by behavioral perspective diagrams 

which are augmented with more information as per DEVS 

requirements. The critical process of using Xpand is the 

translation from an XMI file containing various diagrams 

into E-DEVSML. Besides mapping rules given in table 1, 

the relation between source diagrams and extended parts of 

DEVSML is also needed. The guard conditions of 

transitions in SMD certainly are mapped onto the phase 

guard. The message receiving function, transition actions 

are derived from transition effects, and the message sending 

function is derived from state exit effects, Figure 15 gives a 

template that teach the code generator how to translate 

source diagrams into E-DEVSML. Note that, when we 

create SOA models, we can embed multiform codes (e.g. 

C++, java, OCL and Natural language) into diagrams, and 

E-DEVSML and other platform codes may be used together 

to realize multi-platform executable models generation. 

Figure 16 gives a comparison between E-DEVSML source 

file (.fns) and java source file of GOS. 

 
Figure 16. Comparison between E-DEVSML and java 

source file of GOS 

6.5 Experimental Frame Design and Setting 
EF is used to simulate the dynamic view of SOA to 

obtain output data produced by the system under specified 

conditions. It actually represents the external environment 

that interacts with the evaluated architecture. There are three 

major elements in the EF (Zeigler, B. P., 2000): generator 

which provides input segments to the system, transducer 

which observes and analyzes the system output segments, 

and acceptor that monitors experiments to verify the desired 

conditions. In this paper we only set some generators as 

providers, and some transducers as measurement calculators, 

where these two types of elements were enough to be 

adapted to the context of the aircraft docking. Design of EF 

depends on FR and NFR of SOA, because we need to 

validate the behavior of the system and calculate the 

corresponding QoS when the modeled SOA interacts with 

the EF. In this paper, we choose performance as illustrative 

metric related to quality attributes that can be measured at 

runtime in the simulation environment. For an airport, the 

throughput of flights is a critical concern during the design 
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Figure 17. Simulation animation of aircraft docking 

process of airport systems, therefore, we calculate Average 

Turnaround Time (ATT) and throughput for the aircraft 

docking.  

In an aircraft docking process, FIS actually plays a role 

of generator which is the source of stimulus to this SOA, 

because it sends docking request to the GOS before 

aircrafts’ landing. We set periodic requests generated by FIS 

(e.g. one request every five minutes).  The transducers are 

observers that keep a count of flights as well as docked ones. 

To compare performance of different DGS, we set several 

transducers as performance calculators: transducer1 for the 

DGS1, transducer2 for the DGS2, and transducer as total 

performance indicator for the entire GOS. As shown in 

Figure 14, after GOS receives docking requests, it will 

allocate these tasks to two sets of DGS averagely. The time 

advance values of different phases of DGS and OP are set 

asrandomly distributed numbers between a minimum value 

and a max value according to experts’ experience and 

prediction. Aircaft1 and Aircrat2 simulate different flights 

to be guided by the corresponding DGS during the docking 

process. We assume that DGS2 is installed in a location 

which is further from the runway than where DGS1 is 

installed, thus it may take more time for an aircraft guided 

by DGS2 to finish the docking task. 

6.6 DEVS Simulation and Discussion 
   When the final generated codes are executed in 

DEVS-Suite, we can get visualization of models and 

animation of the simulation. Their animations are supported 

by “SimView” function illustrated in Figure 17. It shows 

this aircraft docking case in the DEVS-Suite interface. 

There are four main sections to this screen: the Model 

Viewer, Simulator Control, SimView, and Tracking 

Window. The Model Viewer in the top left corner is 

populated with a list of the components. Immediately below 

the component list is a box that lists the predefined variables 

pertaining to the model selected by the user. In this figure, 

we can see that the component “OperatorPannel2” which 

has two input ports and two output ports is staying at 

“checking” phase and have an event that will occur at 30 

seconds later. The SimView window on the top right 

displays the model visually, including any hierarchical 

components. Below that is the Tracking Window, which 

contains the standard output console by default, and we can 

see that after three aircrafts finish docking process, ATT and 

throughput calculated by the transducer are illustrated. 

Finally, in the lower left, there is the Simulator Control. 

From here, the user can control the actions of the simulator. 

Run-time display of message on ports and trajectory of 

variables as two dimensional plots are supported by 

“TimeView” function. This view in Figure 18 represents the 

component “GOS” and it contain multiple graphs pertaining 

to this component including the state variable “phase” and 

message on each port. For more precise tracking of 

variables, detailed data sets can be illustrated in “Tracking 
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Figure 18. Tracking window of the component GOS 

 
Figure 19.  Tracking log of the component GOS 

Log” as Figure 19 is showing. At the time of 1800 seconds, 

the component “GOS” receive two inputs on different ports 

simultaneously. In this situation, according to the rule 

defined beforehand in E-DEVSML, GOS will transit into 

phase “preparing” prior to phase “send_parked”. This log 

shows that after GOS staying in phase “preparing” for 20 

seconds an internal transition to phase “send_message2” is 

triggered because internal transitions are also prior to 

external transitions, and finally the phase “send_parked” is 

reached and a message on port “SendBlocks_onMessage” is 
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sent off. These simulation tracking results in Figure 

17,18,19 are all very useful to validate the FR of the system, 

and also prove the applicability of our approach and 

extended features in E-DEVSML. 

Next, we’ll focus on the simulation results of NFR. 

After 16 aircrafts docked with different processing time, 

NFR statistics including ATT and throughput are shown in 

Figure 20 and 21. With the increase of number of docked 

aircrafts, ATT and throughput also gradually stabilize. We 

can see that DGS1 has better performance than DGS2, the 

total ATT of GOS calculated by transducer is always less 

than 300 seconds. So this docking system may have the 

possibility to cope with the requirement of 5 flights per 

minutes. In Figure 21, total throughput of GOS is less than 

the throughput sum of two DGS, that’s because GOS 

usually need some preparing time, and sequential processing 

of messages lead to the delay of GOS’s turnaround time. 

 
Figure 20. ATT with increasing number of docked aircrafts 

 
Figure 21. Throughput with increasing number of docked 

aircrafts 

Figure 22 and 23 show the measure defined in the 

scenario and the values of these metrics obtained in 10 

simulation runs. As can be seen, the total ATT ranges from 

260 to 300 during all the simulation runs, and the same 

metric captured by transducer2 fluctuate more wildly than 

others; however for the results of throughput, all the 

transducers represent quite stable data. According to these 

simulation results of throughput, we are sure about that the 

max throughput of this docking system is 11 aircrafts per 

hour. If this performance can’t satisfy the real requirement, 

adjustments and improvements on this SOA design should 

be made. To sum up, all these features of DEVS framework 

precisely in earlier design phase. 

The simulation of the SOA execution provided 

information that is needed to make decisions about the 

design of the system.  This study focused on a concrete 

scenario related to the FR and NFR; the simulation shows 

the behavior of the system and calculates quantitative 

information to validate these performance attributes and to 

find the possible causes that can affect the measures. The 

reports show information not only to validate the FR 

specified in the previous SoaML models but also NFR 

statistics to analyze each component. This information helps 

the architects to determine if the architecture fulfills the 

quality requirements, and system measures can be used to 

decide between different design alternatives. By the way 

this simulation framework based on DEVS can also be used 

in other quality aspects such as availability and reliability 

(Pasqua Roberto, 2014). 

 

Figure 22.  ATT in 10 simulation runs 

 
Figure 23. Thoughput in 10 simulation runs 

When we started up this research case, we also tried to 

use other methods including CPN and DUNIP. The major 
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problem with CPN is that most model transformation 

processes are manual and the CPN-tool is less convenient 

and flexible than DEVS-suite. DUNIP provide a 

comprehensive solution for executable architecture 

construction from static architecture, but modeling using 

DEVSML with limitation of FD-DEVS always troubles us. 

For instance, the State Machine Diagram of GOS on Figure 

10 has complicated state transitions, and we could not 

directly transform it into DEVSML and Java codes because 

it may need a semi-automated transformation process with 

some codes added manually. 

 

7. CONCLUSIONS AND FUTURE WORK 
We have presented a model-driven approach to design 

and validation of SOA using SoaML in conjunction with E-

DEVSML, which is a guide to be adapted in a generic 

service-oriented circumstance. E-DEVSML enhances its 

capability to describe complex behavior of systems without 

the limitation of FD-DEVS. It helps modelers to realize 

automated transformation from static SOA models into 

executable codes to conduct a systematic simulation of the 

architecture. Our approach features many advantages:  

(1) It is flexible and comprehensive as it is suitable for 

validation of FR and NFR in SOA development. To fulfill 

these requirements, this approach based on DEVS 

framework integrate different perspectives into a more 

comprehensive evaluation of the designs, and it is adaptable 

to different contexts and quality objectives of an evaluation. 

(2) It provides better usability with modular and 

hierarchical features than other formalisms such as Petri 

Nets or the Markov process. Furthermore, E-DEVSML 

encapsulates the complexity of the simulation technique and 

keeps the model in a higher level, while the EF captures the 

architect’s objectives and how they impact the SOA model. 

These features and graphical representation tools could 

make this approach easier to be learned and used by 

architects. 

(3) It bridges the gap between MDSE and DEVS 

framework using E-DEVSML as a model transformation 

intermediary. It is innovative as it combines MDA, SOA 

and DEVS methodologies, taking advantage of each one in 

order to address complex system issues. 

The configuration of SOA model and EF need the 

estimation of a set of parameters, and more accurate 

parameters will produce more precise results. In this way, 

our approach assumes that architects or experts are able to 

specify these initial parameters. This requirement may 

represent the main limitation of our approach because this 

information may not always be available. However, specific 

information can be estimated from historical data, similar 

SOA projects, expert judgment, etc. As the current status of 

E-DEVSML is still in a static-structure phase, our future 

work also includes description of DEVS dynamic-structure, 

which permits the structure of the coupled model to change 

over time. 
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