
International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July – Sept.2014

14
http://hipore.com/ijsc

MODEL-DRIVEN DESIGN AND VALIDATION OF SERVICE

ORIENTED ARCHITECTURE BASED ON DEVS SIMULATION

FRAMEWORK

 Jianpeng Hu1,2, Linpeng Huang2, Renke Wu2, Bei Cao2, Xuling Chang
2

1
College of Electrical and Electronic Engineering, Shanghai University of Engineering Science, Shanghai,

China;
2
Dept. of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

mr@sues.edu.cn, huang-lp@sjtu.edu.cn, sjtuwrk@sjtu.edu.cn, caobei.sjtu@gmail.com, changxl@sjtu.edu.cn

Abstract
It is very important to validate functional requirements and evaluate non-functional requirements in earlier design
phase of a Service Oriented Architecture (SOA) by executable modeling methodology. To make SOA executable,
basically, most of the proposed approaches can be divided into two categories: formalism-based ones and model-
driven ones, which both have the advantages and limitations. In this paper, we take advantage of both formalism-
based and model-driven methodologies to specify a unified model-driven design and validation approach to SOA. This
approach bridges generic service design and universal simulation paradigm with formal bases and practical
implementation. To achieve this goal, we first extend the DEVS modeling language (DEVSML) to support
nondeterministic state transition and enhance its capability to describe complex behavior of systems. Then we
provide an automated transformation process using Extended DEVSML as a model transformation intermediary to
bring together Model Driven Service Engineering (MDSE) with Service oriented architecture Modeling Language
(SoaML) and Modeling & Simulation (M&S) methodology based on Discrete Event System Specification (DEVS). To
demonstrate the applicability of this approach, we introduce an aircraft docking process in an airport scenario as the
case study.
Keywords: Model Driven Service Engineering; Executable modeling; SOA; DEVS; Simulation; System of Systems

__

1. INTRODUCTION
Nowadays, enterprise information systems have become

large-scale, composite systems, consisting of software and

hardware components, which should be effectively

combined to ensure system efficient operation. Service

Oriented Architecture (SOA) is an attractive architecture

paradigm for developing enterprise scale distributed

software systems. It emphasizes loosely coupled, protocol

independent distributed system development with the

“software as service” concept. Many SOA-based systems

show System of Systems (SoS) characteristics including

large-scale, consisting of software and hardware

components, and cooperative processes among independent

systems. The term Service Engineering first appeared in the

1990s as a discipline in business studies describing a new

approach for creating and managing business services. As

the underlying technology gradually matured, service

development or service engineering has received more

attention. A general challenge for Service Engineering is to

enable service modules to be rapidly developed, and to be

deployed and composed without undesirable service

interactions. This is a formidable problem and a very

challenging and attractive application area for Model Driven

Architecture (MDA). SOA has been promoted for many

years without a specific language that supports modeling

services.

In order to meet this requirement, the Service oriented

architecture Modeling Language (SoaML) (Object

Management Group, 2009) was specified. The goals of

SoaML are to support the activities of service modeling and

design and to fit into an overall model-driven development

process. This is done in such a way as to support the

automatic generation of derived artifacts following an

MDA-based approach, and it is also more convenient for

designers to transform a business model into a technical

model and facilitate the alignment between high-level

complex business requirements and IT systems. It is not the

role of SoaML to define a methodology, but rather to

provide a foundation for Model-Driven Service Engineering

(MDSE) based on the MDA approach that can be adopted in

different software development processes.

To design SOA-based software systems capable of

satisfying multiple Quality of Service (QoS) attributes,

executable modeling is desirable. For instance, simulation

plays a central role in enabling tradeoff study among time-

based quality of service attributes. For successful project

managements, it is very important to validate Functional

Requirements (FR) and evaluate Non-functional

requirements (NFR) precisely in early design phase before

mailto:huang-lp@sjtu.edu.cn
mailto:caobei.sjtu@gmail.com

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July – Sept.2014

15
http://hipore.com/ijsc

implementation of these systems. Most of current solutions,

however, are based on interface testing, do not support early

assessment of service performance, and mainly evaluate the

overhead of service protocols and specifications. Also, such

techniques do not allow customers, with no access to the

service code, to simulate service performance at runtime

(Ardagna, 2013). Other efforts are made to transform the

SOA models into other executable models like discrete-

event models (e.g. Symbolic Transition System (Ardagna,

2013), Petri Net (He, 2011) or its variants). Unfortunately,

the transformed models including a lot of “places/states”

and “transactions” which gives an appearance completely

different from the original system architecture, hence this

kind of simulation can’t provide an intuitive observation of

systems’ behavior and interactions between services. On the

other hand, Discrete Event System Specification (DEVS)

which starts from general system theory may be the best

option as the target formalism to make the SOA models

executable, since it provides comprehensive and intuitive

description of structure and behavior. In addition, it has

been proven to be a universal formal mechanism to express

a variety of discrete-event system subclasses, including Petri

Net, Cellular Automata and Generalized Markov Chain

(Vangheluwe, 2000).

This paper aims to provide an integrated model-driven

design and validation approach to SOA by bringing together

MDSE with SoaML and Modeling & Simulation (M&S)

methodology based on DEVS. In the rest of this paper,

section 2 discusses related work on similar problems in

executable modeling approach to SOA. Section 3 introduces

Parallel DEVS (P-DEVS) and DEVS Modeling Language

(DEVSML). Section 4 proposes an Extended DEVS

Modeling Language (E-DEVSML) based on extended

elements in P-DEVS. Section 5 gives the outline of our

approach and introduces the example used to demonstrate

our approach. Section 6 presents our approach in detail and

proves its applicability and practicability. Section 7

concludes the paper and proposes the direction for future

research.

2. RELATED WORK
Many research works have been made in M&S related to

service-oriented computing. To make SOA executable,

basically, most of the proposed approaches can be divided

into two categories: formalism-based methods and model-

driven methods. Next, we present a comprehensive survey

of them in detail.

In general, some directly use a modeling method based

on formalism with executable semantic to analyze different

non-functional properties of services. It shows that

performance analysis can be integrated in the early

development process. In fact, traditional formalism-based

framework depends on certain simulation formalisms in a

theoretical or mathematical way. Furthermore, many tools

for service-oriented formalism-based simulation framework

are implemented. A model based approach (Ardagna, 2013)

that relies on Symbolic Transition Systems (STS) is

proposed to describe web services as finite state automata

and provide an early assessment of service performance.

This approach uses simulation along the design and pre-

deployment phases of the web service lifecycle to

preliminarily assess web service performance. Another

approach (Sarjoughian, 2008) is developed by unifying the

DEVS and SOA frameworks. Based on the DEVS and SOA

concepts and principles, a set of primitive and composite

service model abstractions along with their interactions are

defined. The resulting SOA-compliant DEVS (SOAD)

framework supports simulations of service based systems.

These approaches need modelers to be familiar with the

formal basis and the corresponding modeling method. These

researchers (Muqsith, 2010) also extend the SOAD

framework by introducing dynamic structure DEVS to

model and simulate the structure changes in service-based

systems. The Cell-DEVS is another DEVS-based formalism

that defines spatial models as cell spaces. Web enabling

CD++ (Madhoun, 2006), which is an M&S toolkit to

execute Cell DEVS models, can expose simulation

functionalities as Web services to improve interoperability

and reusability for the users’ convenience. And D-CD++

(Wainer, 2008), an architecture of a web services based

distributed simulation framework, is then put forward.

Comparing with CD++, D-CD++ emphasizes the specific

characteristic of distribution explicitly. It improves

reusability and interoperability for users’ convenience.

Although the declarative formalism based methods (e.g.

SOAD, D-CD++) has the advantages of rigorous theoretical

basis, mathematical semantics, mature formalism and strong

presentation capability to various systems. There still exist

limitations. In one hand, formalism based methods are

extremely too abstract and difficult to follow by users. In the

other hand, the modeling for these methods is extraordinary

complex. Hence, they have not been widely recognized by

academic and industry.

Apart from formalism-base methods, there have been

many approaches that aim to make static SOA models

executable by MDA approach such as code generation. The

Dynamic Distributed Service-Oriented Simulation

Framework (DDSOS) (Tsai WT, 2006) focuses more on the

domain of service-oriented software development. It is a

distributed multi-agent service-oriented framework based on

the Process Specification and Modeling Language for

Services (PSML-S) (Tsai WT, 2007). A similar framework

is also mentioned in (Jia L, 2009). The differences between

their framework and DDSOS are the replacement of PSML

with UML as the common model specification and the lack

of some dynamic properties. Nevertheless, it lacks some

high level formalism or theory basis for PSML and the

DDSOS framework. The model driven methods perform

excellently in modeling and generating code automatically.

They have dynamic composability and support service-

oriented systems engineering. Some limitations of the model

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July – Sept.2014

16
http://hipore.com/ijsc

driven methods still exist and should be improved. For

instance, these methods only focus on service oriented

software development and have limited simulation

capabilities. In addition, theory, efficiency, and applications

still need to be improved.

Some researchers also propose methods which combines

both formalism and MDA. Petri-net based approach is

commonly used. In Narayanan’s approach (Narayanan,

2003), the services are specified with using the DARPA

Agent Markup Language for Services (DAML-S) and

converted to Petri-net models and simulated using the

“KarmaSim” environment. However, it provides a strong

basis for verification and validation of the models, the

combination of DAML-S and Petri-net lacks a sound basis

for describing time-based dynamics of SOA, and this kind

of simulation can’t provide an intuitive observation of

systems’ behavior and interactions between services. By

comparison, more powerful cross-platform framework

DEVS/SOA (Mittal S, 2009) give ways to automatically

generate DEVS models from various types of business

process specifications and realize distributed simulation

execution using web services, but the DEVSML used as key

modeling language has difficulties to describe complex

transitional behaviors due to limitations of Finite and

Deterministic DEVS (FD-DEVS).

We also proposed a generic and comprehensive

approach (Hu, 2014) to the design of SOA by combining a

universal modeling language for SOA (SoaML) and a

universal formal mechanism (DEVS) to service-oriented

systems. This paper extends the former work presented in

SCC 2014, which includes more details of the approach

with some important improvements of DEVS modeling and

expands on the worked example with more experimental

results. We extended DEVSML to support nondeterministic

state transition and enhance its capability to describe

complex behavior of systems. Then we provided an

automated transformation process using E-DEVSML as a

model transformation intermediary to realize executable

SOA in a DEVS-based simulation. We take advantage of

both formalism-based and model-driven methodologies to

specify a unified model-driven design and validation

approach to SOA. This approach bridge generic service

design and universal simulation paradigm with formal bases

and practical implementation.

3. PARALLEL DEVS AND DEVS MODELING

LANGUAGE
DEVS is a formal specification for general discrete

event dynamic systems. Starting from the classic DEVS

proposed by Zeigler, the simulation community have

proposed different forms of DEVS for systems with

different characteristics. As we shall introduce later, P-

DEVS removes constraints in the classic DEVS that

originated with the sequential operation of early computers

and hindered the exploitation of parallelism (Zeigler, 2000).

3.1 Parallel DEVS
DEVS models can fall into two categories: atomic and

coupled. The atomic model is the irreducible model

definition that specifies the behavior for any modeled entity.

The coupled model represents the composition of two or

more atomic and coupled models connected by explicit

couplings. An atomic model M and a coupled model N are

defined by the following equations:

M = < IP, OP, X, S, Y, δint, δext , δcon, λ, ta > (1)

N = < IP, OP, X, Y, D, EIC, EOC, IC > (2)

In an atomic model, S is the state space; IP, OP are the

set of input and output ports; X, Y are the set of

Inputs/Outputs, which are basically lists of port-value pairs,

are the basic exchange medium.

 X = { (p,v)∣p∈IP, v∈Xp } , Y = { (p,v)∣p∈OP, v∈
Yp },where Xp and Yp are input/output values on port p.

δint : S→S is the internal transition function;

δext :Q × Xb →S is the external transition function, where

Q = { (s,e) s∈S, 0≤e≤ta(s) } is the total state set, e is the

time elapsed since last transition, and Xb is a set of bags

composed of elements in X;

δcon : S × Xb → S is the confluent transition function,

which decides the order between δint and δext in cases of

collision between simultaneous external and internal events,

subject to δcon (s, Ø) =δint (s), where Ø means no input

occurs.

λ: S→Yb is the output function, where Yb is a set of bags

composed of elements in Y; ta(s): S→R0
+ ∪∞is the time

advance function. Two state variables are usually present in

the state space of an atomic model: ‘phase’ and ‘sigma’.

Sigma keeps the time advance value. In the absence of

external events the system stays in the current ‘phase’ for

the time given by ‘sigma’.

In a coupled model, IP, OP, X and Y have similar

connotation as in atomic model, but mean external (not

coupled) elements; D is a set of DEVS component models.

EIC is the external input coupling relation; EOC is the

external output coupling relation; IC is the internal coupling

relation. The coupled model itself can be a part of a

component in a larger coupled model system giving rise to a

hierarchical DEVS model construction.

3.2 DEVS Modeling Language
A DEVS specification language or modeling language

(e.g. XFD-DEVS (Mittal, S, 2013), DEVSpecL (Hong. KJ,

2006), DEVSML2.0 (Mittal, S, 2012)) is usually used as a

model transformation intermediary to make static models

executable. For example, UML models are first converted to

DEVSML models, and then translated into executable codes.

XFD-DEVS based on XML and FD-DEVS (Hwang Moon

Ho, 2009) has many shortcomings, such as, no confluent

function, no multiple inputs, no multiple outputs, no

complex message types and no state variables. These

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July – Sept.2014

17
http://hipore.com/ijsc

shortcomings are removed in the upgraded version

DEVSML 2.0. Both based on Extended Backus-Naur Form

(EBNF) notation, but by comparison with DEVSpecL, the

DEVSML2.0 is more close to the true DEVS formalism

with some necessary abstractions. In his recently work

(Mittal, S, 2013), Mittal presented DEVSML 2.0 stack

employing Model to Model, Model to DEVSML and Model

to DEVS transformations, which aim to unify the Domain

Specific Language (DSL) community with the DEVS

community, and make those components fall under an

DEVS unified process (DUNIP). This framework is

attractive, however, how to realize M2DEVSML between

different DSL and DEVSML 2.0 is still not given, and it has

some limitations to express complex transition logic as it

employs deterministic properties of the constituent elements,

which are formally defined in FD-DEVS.

DEVSML contains three primary element types (i.e. the

Atomic, the Coupled and the Entity). When DEVS is tied to

a platform specific implementation, the message objects are

exchanged according to the port-value pairs specified in the

atomic model structure. In this manner, the entities are

defined as a data class to depict message types. These

entities are then declared in atomic or coupled components

for their reuse. Both Atomic and Coupled model grammar

stay as close as possible to the P-DEVS formalism.

However, some abstractions still exist. For instance, any

state transition based on the message content is not

realizable because of FD-DEVS. The major specification of

DEVSML is shown in Figure 1, and detail introduction can

be found in (Mittal, S, 2012).

Figure 1.DEVSML specified in EBNF grammar

4. EXTENDED DEVS MODELING LANGUAGE
In practice, when we model system architecture with

previous DEVSML version, FD-DEVS usually can’t resolve

complex problem. For instance, when an input arrives on

one port of an atomic model, it may invoke an external state

transition or may not, that is depending on the practical

requirement and specific scenario, although it is forbidden

according to the deterministic property. Another example is

an atomic model with two input ports where a transition to

state SA will be triggered if a message arrives at port A but a

transition to state SB should be invoked if the message

arrives at port B. Certainly, there will be a collision if two

messages simultaneously arrive on both ports. Although

DEVSML provide user-defined code block that elaborating

detailed behavior of models, it is still inconvenient to deal

with troublesome nondeterministic state transitions.

Therefore, we take appropriate measures to extend

DEVSML to deal with these complex situations. This

section presents the proposed extended part of DEVS

modeling language and its formal bases.

4.1 Extended Elements in P-DEVS
There are three essential modeling elements: messages,

states and transitions in DEVS. In practice, the number of

messages and states is so huge and sometimes infinite that

we cannot treat it easily by directly applying the DEVS

formalism in the course of modeling. It’s important to note

that in the equations of P-DEVS, we could not directly

understand what is the state space S and what is the set of

inputs Xb. Thus we propose an extension called SP-DEVS

on the base of these equations to exploit the notion of

message as a structured form of related I/O, and of state

variables to aggregate relevant sequential states. Note that

basic definitions of atomic model and coupled model also

follow Equation 1 and 2.

4.1.1 Formalized Message with Port, Value and I/O

variable
As stated, X and Y are the set of I/O, which are basically

lists of port-value pairs, and a message is a bag of elements

in X or Y. If a message is arrived, several ports may catch

some values at the same time. Therefore we have:

X = { (p,v)∣p∈IP, v∈dom(p) } , Y = { (p,v)∣p∈OP,

v∈dom(p) }, where dom(p) is type or domain of port p, if a

coupling from one output port py to another input port px

such that dom(py) ⊆ dom(px).

The message set M= Xb∪ Yb , and Xb ={ mx∣mx⊆ X },

Yb ={ my∣my⊆ Y}. Sometimes, simultaneously arriving

inputs on different ports make it complex to describe the

behavior of the external transition function. If we choose an

alternative transition to trigger, some inputs may be ignored

or lost. Therefore we try to separate the processing of inputs

from state transition, if we first store these inputs in some

I/O variables, such that, any inputs will not be ignored or

lost. To realize this idea, we define a set of Input-port-

associate Variables (IV) Vx, and a set of Output-port-

associate Variables (OV) Vy, these variables may be simple

data type (e.g. integer, floating number, string) or a

container of simple data types (e.g. queue, stack, list). We

can also define a binding between an I/O variable and a port:

Rev ={ (p, vx)∣p∈IP, vx∈Vx , dom(p)= dom(vx)}, Sed=

{ (p, vy)∣p∈OP, vy∈Vy , dom(p)= dom(vy)} where Rev is

used to receive messages and Sed is used to send messages.

4.1.2 Formalized State with Phase and State variable

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July – Sept.2014

18
http://hipore.com/ijsc

A discrete-event system’s status can be specified by a

set of system variables or attributes. Each state variable

represents an attribute characterizing the system. Thus a

system state is a combination of values that the state

variables have at a time. Now consider that we partition the

composite state set into equivalent groups such that each

group has a set of sequential states. Let each group have a

single representative name, called a phase. Formally, a

phase ψ is a representative value of a set of equivalent states

which produce the same output event and/or have the same

time advance at the states. Therefore the state space S can be

defined as follow:

 S = < Ψ, SV,{dom(sv)∣sv∈SV}, αs> (3)

Ψ is a set of phases, SV is a set of state variables, dom(sv)

is the range set of a state variable sv∈SV, and αs is the one-

to-one assignment function which is subject to the constraint:

 αs
-1 : ×sv∈SV dom(sv) → Ψ (4)

which is a bijection such that S = { si= {ψi}∪{sv1i,sv2i,…}

∣ψi∈Ψ,sv1i ∈dom(sv1), sv2i ∈dom(sv2),…,svi∈SV, si =

s’ ={ψ’}∪ {sv1
’,sv2

’,…} }. An element svi = {sv1i,sv2i,…}

mapped to a sequential state si is called a composite state in

the state space. s’ is the initial state of the state space and ψ’

is the initial phase. By the way, a phase can be hierarchical,

that is, a phase can be decomposed into sub-phases having

disjoint composite state members. It is always true that a

union of sub-phases within a phase gives the total states set

of the phase and the intersection of all sub-phases results in

an empty set. So this feature makes it easy to map P-DEVS

onto StateCharts or UML StateMachine which also have

composite state or sub-StateMachine.

Figure 2 gives an illustration of the notion of the

structured states and phase transitions. There are three states

with phases ψ1 , ψ2, ψ3, and ψ1 has three sub-phases ψ11, ψ12,

ψ13; The values of two state variables sv1 and sv2 are

grouped into these states with disjoint composite state

members. When the system stay at ψ11 and a message m1

arrives, an external transition is triggered, if the guard

condition g1 is satisfied, the system will transit into phase ψ2

and the action a1 is executed to change the value of sv1 from

sv11 or sv12 to sv14. While the system stay at ψ12 and

e=ta(s1) ,an internal transition is triggered, if the guard

condition g2 is satisfied, the system will transit into phase ψ3

and the action a2 is executed to change the value of sv1 from

sv13 to sv15 and a message m2 will be sent out as well.

Figure 2. Illustration of the structured states and phase

transitions

4.1.3 Formalized Transition with Event, Guard and

Action
A state transition usually occurs by an

event/guard/action pair, and is actually a phase transition

here. The event refers to an external message arrival or an

internal event (e=ta(s)) happening, but the guard and the

action are still not formally defined in P-DEVS, and they are

just implemented within transition functions in executable

codes of DEVS. Some DEVS modeling languages are

created based on a sub set of classic DEVS called FD-

DEVS which only support deterministic state transitions.

The guard condition is unnecessary in FD-DEVS, however,

we wish P-DEVS to be capable of coping with complex

situations including nondeterministic state transitions. So

the guard condition should be added to transition functions.

It may be a guard of messages or guard of variables.

The action is usually used to change value of variables

including state variables and I/O variables. After that the

output function λ can only be implemented by pushing out

the data stored in OVs after an internal state transition. In

this way, we revise the definition of the transition functions

like these:

δext :Q×Xb×G→S×A (5)

Where Q, S and Xb are the same as in P-DEVS; G is the

guard condition set consisting of logical expressions on

messages or variables. It is denoted by:

G: Xb×v∈SV∪Vx dom(v)→Boolean (6)

And the action A is a data process function, which may

construct a vector of individual actions for each variable:

 A:×v∈SV∪Vx∪Vy dom(v) → dom(v) (7)

The internal transition function is also extended with

guards and actions:

 δint :S×G→S×A (8)

The output functionλ: S→Yb and the time advance

function ta(s): S→R0
+ ∪∞ are the same as original P-DEVS.

Finally the confluent transition function is:

 δcon : Q×Xb×G→ Ot
 , Q = { (s,e), e=ta(s) } (9)

Which decides the order between δint and δext in cases of

collision between simultaneous external and internal events.

Ot is a choice among the options including ignore-input,

input-only, input-first and input-later, and then trigger the

corresponding transition functions in this order.

4.2 Abstract Syntax of E-DEVSML
A textual language is usually specified using Extended

Backus-Naur Form (EBNF) notation, and Xtext is a

powerful tool to do this for the development of a domain

specific language. After using Xtext's EBNF grammar

language to define the abstract syntax of E-DEVSML, it

will create the meta-model and the parser automatically by

starting a generator. Considering of both convenience of use

and conformity with the P-DEVS formalism, we specify

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July – Sept.2014

19
http://hipore.com/ijsc

SPDML with modular and object-oriented features. Models

in E-DEVSML are divided into three primary elements: the

Atomic, the Coupled and the Entity.

1) Entity: DEVS is a component-based framework where

each of the components communicates using messages.

These message objects are exchanged according to the port-

value pairs specified in the atomic model, and the datatype

of a input value can be defined as an entity and reused by

some ports. According to the object-oriented principles, the

entities are defined not as a part of the component but as a

first-class citizen. Figure 3 gives the definition of Entity in

EBNF.

Figure 3．Definition of Entity in EBNF

An Entity is specified by a name, name=ID. It may

extend another entity. The expression [Entity|

QualifiedName] means that the superType is to be specified

as a QualifiedName, which is an Xtext construct and is of

type Entity. For more details on QualifiedName, please refer

Xtext manual. We define a variable type named container

which is a common data structure (e.g. queue) to store a

series of entities. The keyword default assigns values to

variables when model is started or restarted.

2) Atomic: The Atomic is the most important and

complicated part of DEVS. Every core concepts in SP-

DEVS should be defined as corresponding elements in

EBNF. The Atomic model is specified in EBNF grammar as

Figure 4 showing.

Figure 4．Definition of Atomic in EBNF

The keyword vars defines a set of variables including

I/O variables and state variables. The interfaceIO

specification gives the definition of ports with specific data

type which is referenced as an Entity type. And state-time-

advance defines set of states and the associated time-

advances. Each state-time-advance pair is defined as a

Phase. The time-advance TimeAdv can have values of either

DOUBLE, infinity or a Variable declared above in the

atomic model. The state-machine contains the initial state

InitState and the atomic behavior AtomicBehavior. The

expression state=[Phase] implies that the model references

the state already defined in the construct Phase defined

earlier in the model. The next expression (code=Code)?

implies that there may be code snippet associated with

setting up of the initial state. As we shall see in a later

section on applicability of SPDML, the code expressed as a

STRING is syntactically checked at run-time for any

compilation errors.

E-DEVSML has four functions to specify the atomic

behavior. Correspondingly, the AtomicBehevior is divided

into four parts (shown in Figure 5): Deltext, Deltint, Outfn

and Confluent. To enhance flexibility and convenience of

modeling, some special features are provided:

a) Separation of message processing from state

transition: from functional perspective, an abstract

description of an atomic model is: accepting inputs or

incentives, and generating an output with state changes. We

could divide this input/output process into three parts:

receiving a message, data processing during a series of

transitions and sending a message. As any input ports may

accept some inputs when a message arrives during any state,

the ReceiveMessage is used to allocate the message (port-

value pairs) to several IVs which is a static banding declared

in an atomic model. In this way these variables play roles as

buffers controlled by user. On the contrary, the

SendMessage is a dynamic banding declared in the output

function to pack values of OVs and output ports into a

message. After outputs are pushed out these variables are

cleared out automatically.

b) Guard transition defined to support for

nondeterministic state transitions: a guard may be variable

correlate or message correlate. We argue that a specific

input can also be viewed as a part of a guard condition

owing to it is stored in an IV. For example, a variable is

used for storage of inputs on a port, after receiving a

message, if this variable is not null (guard condition),

transition is triggered. In both Deltext and Deltint, for more

flexible description of a guard condition, literal strings are

used as standard format which will be directly translated

into executable codes.

c) Additional extended features: the UserFunction

permit user to add code embedded in the generated atomic

and coupled model class source file, user-defined method

defined in an atomic model can be called by the atomic

itself and the coupled model comprising it to implement

interoperability. The Hold allows the model to still stay in

the source state but advance the elapsed time or redefine the

time-advance. The SetSigma rule also allows the resetting of

time-advance of the target state.

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July – Sept.2014

20
http://hipore.com/ijsc

3) Coupled: The specification of a coupled model is

shown in Figure 6. To put it simply, the coupled model can

extend from another coupled model and it has the same

interface specification as the atomic model. It is composed

of a set of models which can be either atomic component or

coupled component. The definition of Coupling includes

EIC (defined for connections originating from input

interface of the coupled model to its subcomponents), IC

(specified between the sub components) and EOC

(specified from the contained component to the outside

interface of the coupled model). The keyword this means

the component itself.

Figure 5. Definition of AtomicBehavior in EBNF

Figure 6. Definition of Copuled in EBNF

Compared to the original version, in this paper we make

a lot of changes on the atomic model definition to enhance

its capability of complex behavior description but fewer

changes on coupled model. Without operational characters

and complex control statements, unlike a programming

language, E-DEVSML still needs some embedded code to

describe complex logics. Fortunately, these codes are only

involved in data processing from IVs to OVs, which is

independent of specific DEVS simulator.

5. OVERVIEW OF THE APPROACH
5.1 Outline of the Approach

The MDSE methodology based on MDA guides

solution architects in how to specify services that are

aligned with the business process models (Elvesæter, B.,

2011). In our model-driven approach shown in Figure 7, the

Business Architecture is first built as a Computation

Independent Model (CIM), the computational and

implementation details of the system are hidden at this level

of description. The CIM is transformed into the System

Architecture Model, a Platform Independent Model (PIM)

which contains the necessary computational information for

the application, but no information specific to the

underlying platform technology which will be used to

eventually implement the PIM. After finishing the design of

the SOA, the SoaML models can be transformed into

platform independent DEVS models in E-DEVSML and

finally are transformed into a Platform Specific Models

(PSM), which are actually described using executable codes.

At the same time, we also need to design an Experimental

Frame (EF) to start the simulation. The construction of the

EF is as important as SOA models for this simulation

environment because it will introduce QoS goals associated

with system quality attributes and will calculate quality

indicators for each attribute to be analyzed. In this paper

we’ll construct generators and transducers to serve as

components in the experimental frame module for

measuring performance of this service-oriented system.

Figure 7. Framework of the model-driven approach to SOA

Generally, there are two different ways to implement a

DEVS simulation from other PIMs. One is directly mapping

formalism of different diagrams to DEVS formalism and

generating executable codes for DEVS simulators on

different platforms. Another way is to apply a DEVS

specification language or modeling language as a model

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July – Sept.2014

21
http://hipore.com/ijsc

Figure 9. Illustrative scenario described by an use case

Figure 10. Services architecture of docking guidance in SoaML

transformation intermediary. According to the first method

simulation can be implemented on a single platform, and the

conversion process is relatively complex; The second

method is more reasonable because it has two major

advantages: (1) the DEVS modeling languages are generally

platform-independent and can be transformed into

executable codes on different platforms, that exactly

satisfies the requirements of SOA; (2) Before creating a

DEVS simulation we need to remove redundancy and take

the intersection of the information provided by models of

different perspectives. Therefore, we certainly take

advantage of the two-steps method to make SOA models

executable. At last, we use one of the open source DEVS

simulator named DEVS-Suite (The Arizona Center for

Integrative Modeling and Simulation, 2014) to validate the

SOA models.

5.2 Illustrative Scenario
An airport is a typical SoS and it is composed of

systems from different suppliers that use different design

methods and implementation technologies, thus SOA is

Figure 8． Illustrative scenario described by a use case

usually applied to deal with that kind of heterogeneity. We

motivate our approach using the airport scenario and

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July – Sept.2014

22
http://hipore.com/ijsc

business process of an aircraft docking is illustrated. Figure

8 show this scenario by an Use Case diagram, the

collaboration of the involved systems includes FIS (Flight

Information System), GOS (Gate Operation System), DGS

(Docking Guidance System) and Operator Pannel (OP).

They are all necessary for the aircraft to be smoothly

manoeuvred to the correct centerline and stop-position.

First, the FIS sends docking request to the GOS before

aircrafts’ landing, and the GOS assigns the suitable gates

(each gate has a set of DGS including an OP) for each

aircraft according to the schedule. After that, the flight

information is sent to the corresponding DGS. And the

operator checks it for correct aircraft type and flight number,

then activate a docking process. Note that a GOS usually

takes charge of many gates with DGS, for concise

illustration of this example we only show few sets of DGS

in the business process.

6. MODEL-DRIVEN DESIGN AND

VALIDATION OF SOA
6.1 Business Architecture design

Our model-driven approach starts from design of

Business Architecture Model (BAM). It illustrates the

business processes with the associated elements of

information by using a UML Activity Diagram (AD) shown

in Figure 9. It can provide a great assistance for capturing

business activities and identifying services in ADs. The

BAM further describes the services architecture of the

business community and the service contracts between the

business entities participating in the community as

illustrated in the SoaML diagrams. The Business Process

Modeling Notation (BPMN) is often used to describe

business processes while mapping rules between BPMN and

SoaML frequently appear in articles on MDSE (Elvesæter,

B., 2011). Note that we decided to use the activity diagram

at this level in contrast with BPMN. The main reason is that

AD is a standard notation, well-known from software

developers, while BPMN is a notation created for business

people, although both notations and views on the meta-

model are very similar. In this activity model, actions are

displayed while business collaborators are displayed as a

partition in the AD. Then the SoaML diagrams can be

derived from this AD and some refinements may be

required.

A service architecture is a high level description of how

participants work together for a common purpose by

providing and using services expressed as service contracts.

Participants are identified in an AD partition, and when two

single actions follow one another across several partitions

and are connected with a control flow, this collaboration can

be identified as a service contract. Once the service

contracts are identified, the consumer and provider roles

should be specified. The services architecture and service

contracts of the docking guidance process are shown in

Figure 10 and Figure 11.

Figure 11. Service Contract, Services Interface and

Message Typese

Figure 12. Service Choreography between FIS and GOS

Figure 13. State Machine Diagram of GOS

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July – Sept.2014

23
http://hipore.com/ijsc

TABLE I. Mapping rules between DEVS and SoaML.

P-DEVS IP OP D EIC EOC IC

E-DEVSML
interfaceIO

input

interfaceIO

outout
models couplings eic couplings eoc couplings ic

Composited

Participants

Ports with

provided

interface

Ports with

required

interface

Components
Input delegation

connectors

Output

delegation

connectors

Interfaces

connected

P-DEVS S ta δint δext λ X/Y

E-DEVSML state-time-advance deltint deltext outfn receive/send

StateMachine

Diagram
State Constraint

Transition

effect
Transition effect State exit

Event/Actio

n

Service

choreography

Execution or

Message

Occurrence

Specification

Constraint

Consecutive

Occurrence

Specificatio

n

Consecutive

Occurrence

Specification

Message

Occurrence

Specification

Message

interchange

Figure 14. State Machine Diagram of GOS

6.2 System Architecture design
The System Architecture Model (SAM) describes the IT

perspective of a service-oriented architecture. The SAM is a

refinement of the BAM, and is used to express the overall

architecture of the system at the PIM level. It partitions the

system into components which are specified in a service

components diagram. It also defines the components in

terms of “what interfaces are used” and “how the interfaces

should be used”. Furthermore, Figure 11 shows the Service

Interfaces and the data objects in the control flows which

are represented by SoaML message types. Provided and

required interfaces are denoted by provider and consumer.

The provided interface contains the operations of the service,

while the required interface can have callbacks, which are

specified as signals. For instance Figure 11 shows the

consumer interface dockingRequest with the operation

sendDockingRequest, and the provider interface with the

callback requestResponse. Service choreographies in Figure

12 are usually described by a Sequence Diagram (SD). It

also specifies how operations and callbacks are put together

into a conversation between the two participants. The

message specification types are closely related to the

specification of the operations and callbacks in the

interfaces. The message type Docking Request in Figure 8

has some properties which contain additional information to

support the FIS communications with the GOS. On Figure

13, the State Machine Diagram (SMD) of the GOS can be

acquired by refining the AD in Figure 9. Finally, the

component model focuses on specifying the involved

software components that realize the services architecture

shown in Figure 14.

6.3 Mapping DEVS onto SoaML
As mentioned above, there are two ways to realize

transformation from SoaML to DEVS and both of them

require some mapping rules between source models and

DEVS formalism. First, all the data types (e.g. Class,

MessageType) inherit from UML::Class can be translated

into data types of Inputs (X) / Outputs (Y) in DEVS as

entities in E-DEVSML. Second, from structural perspective,

Class Diagram give definition of attributes in an atomic

model, while Composited Participants provide structural

information about a coupled model including components in

coupled model and couplings between them. In addition,

Service choreography is able to represent both coupled

model structure and behavior of its model, and Messages

between lifelines are used to define ports in each

components and couplings between them. However it’s a

little bit complex to transform it into atomic models without

explicit states and transitions definition. Roberto (Pasqua

Roberto, 2012) has made it possible by generating states and

transitions between two consecutive specification

occurrences. At last, from behavioral perspective, a SMD is

more suitable to provide behavioral information of an

atomic model since it is more convenient and provide more

complete information. The detailed mapping rules between

these diagrams and DEVS models are listed in table 1. And

there is no concept can be mapped onto δcon. The default

definition of confluent transition function simply applies

δint before applying δext to the resulting state.

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July – Sept.2014

24
http://hipore.com/ijsc

Figure 15. Comparison between E-DEVSML and java source file of GOS

6.4 Transform SoaML into E-DEVSML and
Java Codes

Xtext is a powerful framework which we applied in the

development of E-DEVSML. As long as we define a

grammar and execute the MWE2 workflow in Xtext, it

automatically generates a compiler, an editor and a rich

validation framework. In addition, the Xtext framework is

seamlessly integrated with the Eclipse Java framework by

code generator with Xtend. The automated transformation

process from SoaML to DEVS is a two-step approach which

employs and tools which contains model transformation

technologies such as Xpand and Xtend. As SoaML models

are stored in XMI files, due to the textual style of E-

DEVSML, we use Model to Text (M2T) technology such as

Xpand, a language specialized on code generation based on

Eclipse Modeling Framework (EMF) models, to transform

SoaML into E-DEVSML. Then the java codes are generated

automatically by Xtend.

Generating DEVS models through the diagrams of

SoaML as described table 1 may follow a certain order. First,

we transform data perspective diagrams into DEVS entities;

second, we select the structural perspective diagram of

components which generates the corresponding DEVS

coupled structure and class definition diagrams that generate

variables in atomic model; at last, the behavior of each

atomic model is defined by behavioral perspective diagrams

which are augmented with more information as per DEVS

requirements. The critical process of using Xpand is the

translation from an XMI file containing various diagrams

into E-DEVSML. Besides mapping rules given in table 1,

the relation between source diagrams and extended parts of

DEVSML is also needed. The guard conditions of

transitions in SMD certainly are mapped onto the phase

guard. The message receiving function, transition actions

are derived from transition effects, and the message sending

function is derived from state exit effects, Figure 15 gives a

template that teach the code generator how to translate

source diagrams into E-DEVSML. Note that, when we

create SOA models, we can embed multiform codes (e.g.

C++, java, OCL and Natural language) into diagrams, and

E-DEVSML and other platform codes may be used together

to realize multi-platform executable models generation.

Figure 16 gives a comparison between E-DEVSML source

file (.fns) and java source file of GOS.

Figure 16. Comparison between E-DEVSML and java

source file of GOS

6.5 Experimental Frame Design and Setting
EF is used to simulate the dynamic view of SOA to

obtain output data produced by the system under specified

conditions. It actually represents the external environment

that interacts with the evaluated architecture. There are three

major elements in the EF (Zeigler, B. P., 2000): generator

which provides input segments to the system, transducer

which observes and analyzes the system output segments,

and acceptor that monitors experiments to verify the desired

conditions. In this paper we only set some generators as

providers, and some transducers as measurement calculators,

where these two types of elements were enough to be

adapted to the context of the aircraft docking. Design of EF

depends on FR and NFR of SOA, because we need to

validate the behavior of the system and calculate the

corresponding QoS when the modeled SOA interacts with

the EF. In this paper, we choose performance as illustrative

metric related to quality attributes that can be measured at

runtime in the simulation environment. For an airport, the

throughput of flights is a critical concern during the design

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July – Sept.2014

25
http://hipore.com/ijsc

Figure 17. Simulation animation of aircraft docking

process of airport systems, therefore, we calculate Average

Turnaround Time (ATT) and throughput for the aircraft

docking.

In an aircraft docking process, FIS actually plays a role

of generator which is the source of stimulus to this SOA,

because it sends docking request to the GOS before

aircrafts’ landing. We set periodic requests generated by FIS

(e.g. one request every five minutes). The transducers are

observers that keep a count of flights as well as docked ones.

To compare performance of different DGS, we set several

transducers as performance calculators: transducer1 for the

DGS1, transducer2 for the DGS2, and transducer as total

performance indicator for the entire GOS. As shown in

Figure 14, after GOS receives docking requests, it will

allocate these tasks to two sets of DGS averagely. The time

advance values of different phases of DGS and OP are set

asrandomly distributed numbers between a minimum value

and a max value according to experts’ experience and

prediction. Aircaft1 and Aircrat2 simulate different flights

to be guided by the corresponding DGS during the docking

process. We assume that DGS2 is installed in a location

which is further from the runway than where DGS1 is

installed, thus it may take more time for an aircraft guided

by DGS2 to finish the docking task.

6.6 DEVS Simulation and Discussion
 When the final generated codes are executed in

DEVS-Suite, we can get visualization of models and

animation of the simulation. Their animations are supported

by “SimView” function illustrated in Figure 17. It shows

this aircraft docking case in the DEVS-Suite interface.

There are four main sections to this screen: the Model

Viewer, Simulator Control, SimView, and Tracking

Window. The Model Viewer in the top left corner is

populated with a list of the components. Immediately below

the component list is a box that lists the predefined variables

pertaining to the model selected by the user. In this figure,

we can see that the component “OperatorPannel2” which

has two input ports and two output ports is staying at

“checking” phase and have an event that will occur at 30

seconds later. The SimView window on the top right

displays the model visually, including any hierarchical

components. Below that is the Tracking Window, which

contains the standard output console by default, and we can

see that after three aircrafts finish docking process, ATT and

throughput calculated by the transducer are illustrated.

Finally, in the lower left, there is the Simulator Control.

From here, the user can control the actions of the simulator.

Run-time display of message on ports and trajectory of

variables as two dimensional plots are supported by

“TimeView” function. This view in Figure 18 represents the

component “GOS” and it contain multiple graphs pertaining

to this component including the state variable “phase” and

message on each port. For more precise tracking of

variables, detailed data sets can be illustrated in “Tracking

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July – Sept.2014

26
http://hipore.com/ijsc

Figure 18. Tracking window of the component GOS

Figure 19. Tracking log of the component GOS

Log” as Figure 19 is showing. At the time of 1800 seconds,

the component “GOS” receive two inputs on different ports

simultaneously. In this situation, according to the rule

defined beforehand in E-DEVSML, GOS will transit into

phase “preparing” prior to phase “send_parked”. This log

shows that after GOS staying in phase “preparing” for 20

seconds an internal transition to phase “send_message2” is

triggered because internal transitions are also prior to

external transitions, and finally the phase “send_parked” is

reached and a message on port “SendBlocks_onMessage” is

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July – Sept.2014

27
http://hipore.com/ijsc

sent off. These simulation tracking results in Figure

17,18,19 are all very useful to validate the FR of the system,

and also prove the applicability of our approach and

extended features in E-DEVSML.

Next, we’ll focus on the simulation results of NFR.

After 16 aircrafts docked with different processing time,

NFR statistics including ATT and throughput are shown in

Figure 20 and 21. With the increase of number of docked

aircrafts, ATT and throughput also gradually stabilize. We

can see that DGS1 has better performance than DGS2, the

total ATT of GOS calculated by transducer is always less

than 300 seconds. So this docking system may have the

possibility to cope with the requirement of 5 flights per

minutes. In Figure 21, total throughput of GOS is less than

the throughput sum of two DGS, that’s because GOS

usually need some preparing time, and sequential processing

of messages lead to the delay of GOS’s turnaround time.

Figure 20. ATT with increasing number of docked aircrafts

Figure 21. Throughput with increasing number of docked

aircrafts

Figure 22 and 23 show the measure defined in the

scenario and the values of these metrics obtained in 10

simulation runs. As can be seen, the total ATT ranges from

260 to 300 during all the simulation runs, and the same

metric captured by transducer2 fluctuate more wildly than

others; however for the results of throughput, all the

transducers represent quite stable data. According to these

simulation results of throughput, we are sure about that the

max throughput of this docking system is 11 aircrafts per

hour. If this performance can’t satisfy the real requirement,

adjustments and improvements on this SOA design should

be made. To sum up, all these features of DEVS framework

precisely in earlier design phase.

The simulation of the SOA execution provided

information that is needed to make decisions about the

design of the system. This study focused on a concrete

scenario related to the FR and NFR; the simulation shows

the behavior of the system and calculates quantitative

information to validate these performance attributes and to

find the possible causes that can affect the measures. The

reports show information not only to validate the FR

specified in the previous SoaML models but also NFR

statistics to analyze each component. This information helps

the architects to determine if the architecture fulfills the

quality requirements, and system measures can be used to

decide between different design alternatives. By the way

this simulation framework based on DEVS can also be used

in other quality aspects such as availability and reliability

(Pasqua Roberto, 2014).

Figure 22. ATT in 10 simulation runs

Figure 23. Thoughput in 10 simulation runs

When we started up this research case, we also tried to

use other methods including CPN and DUNIP. The major

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July – Sept.2014

28
http://hipore.com/ijsc

problem with CPN is that most model transformation

processes are manual and the CPN-tool is less convenient

and flexible than DEVS-suite. DUNIP provide a

comprehensive solution for executable architecture

construction from static architecture, but modeling using

DEVSML with limitation of FD-DEVS always troubles us.

For instance, the State Machine Diagram of GOS on Figure

10 has complicated state transitions, and we could not

directly transform it into DEVSML and Java codes because

it may need a semi-automated transformation process with

some codes added manually.

7. CONCLUSIONS AND FUTURE WORK
We have presented a model-driven approach to design

and validation of SOA using SoaML in conjunction with E-

DEVSML, which is a guide to be adapted in a generic

service-oriented circumstance. E-DEVSML enhances its

capability to describe complex behavior of systems without

the limitation of FD-DEVS. It helps modelers to realize

automated transformation from static SOA models into

executable codes to conduct a systematic simulation of the

architecture. Our approach features many advantages:

(1) It is flexible and comprehensive as it is suitable for

validation of FR and NFR in SOA development. To fulfill

these requirements, this approach based on DEVS

framework integrate different perspectives into a more

comprehensive evaluation of the designs, and it is adaptable

to different contexts and quality objectives of an evaluation.

(2) It provides better usability with modular and

hierarchical features than other formalisms such as Petri

Nets or the Markov process. Furthermore, E-DEVSML

encapsulates the complexity of the simulation technique and

keeps the model in a higher level, while the EF captures the

architect’s objectives and how they impact the SOA model.

These features and graphical representation tools could

make this approach easier to be learned and used by

architects.

(3) It bridges the gap between MDSE and DEVS

framework using E-DEVSML as a model transformation

intermediary. It is innovative as it combines MDA, SOA

and DEVS methodologies, taking advantage of each one in

order to address complex system issues.

The configuration of SOA model and EF need the

estimation of a set of parameters, and more accurate

parameters will produce more precise results. In this way,

our approach assumes that architects or experts are able to

specify these initial parameters. This requirement may

represent the main limitation of our approach because this

information may not always be available. However, specific

information can be estimated from historical data, similar

SOA projects, expert judgment, etc. As the current status of

E-DEVSML is still in a static-structure phase, our future

work also includes description of DEVS dynamic-structure,

which permits the structure of the coupled model to change

over time.

8. ACKNOWLEDGMENT
The work described in this paper was supported by the

National Natural Science Foundation of China under Grant

No. 61232007, 91118004 and the Innovation Program of

Shanghai Municipal Education Commission (No. 13ZZ023).

9. REFERENCES
Service oriented architecture Modeling Language (SoaML), Version 1.0.

Object Management Group, Document ptc/2009-12-10 (2009).

http://www.omg.org/spec/SoaML/

Ardagna, Claudio A., Ernesto Damiani, & Kouessi AR Sagbo (2013). Early

assessment of service performance based on simulation, Proceedings of the

2013 IEEE International Conference on Services Computing (SCC 2013),

Santa Clara, CA, USA, 2013, pp. 33-40.

Ligang He, Kewei Duan, Xueguang Chen, Deqing Zou, Zongfen Han, Ali

Fadavinia, & Stephen A Jarvis (2011). Modelling workflow executions

under role-based authorisation control. Proceedings of the 2011 IEEE

International Conference on Services Computing (SCC 2011), Washiogton,

DC, USA, 2011, pp.200-208.

Vangheluwe, & Hans LM (2000). DEVS as a common denominator for

multi-formalism hybrid systems modelling. Computer-Aided Control

System Design, 2000. CACSD 2000. IEEE International Symposium on.

Anchorage, AK, 2000. pp. 129-134.

Sarjoughian HS, Kim S, Ramaswamy M, & Yau SS. A simulation

framework for service-oriented computing systems(2008). Simulation

Conference, 2008. WSE 2008. Austin, TX, 2008, pp. 845–853.

Muqsith MA, Sarjoughian HS, Huang D, & Yau SS(2010). Simulating

adaptive service-oriented software systems. Simulation 2010. 87(11), pp.

915-931.

Madhoun R. Web service-based distributed simulation of discrete event

models. Canada: Carleton University, 2006.

Wainer GA, Madhoun R, &Al-Zoubi K. Distributed simulation of DEVS

and Cell-DEVS models in CD++ using Web-Services(2008). Simulation

Modelling Practice and Theory. 16(9), pp.1266–1292.

Tsai WT, Fan C, Chen Y, & Paul R (2006). A service-oriented modeling

and simulation framework for rapid development of distributed

applications. Simulation Modelling Practice and Theory. 14(6), pp.725–

739.

Tsai WT, Wei X, Cao Z, Paul R, Chen Y, &Xu J(2007). Process

specification and modeling language for service-oriented software

development. In: 11th IEEE International Workshop on Future Trends of

Distributed Computing Systems (FTDCS ’07). Sedona, AZ, 2007, pp.181–

188.

Jia L and Zhang HM. Research on service oriented distributed M&S

framework. J Syst Simul 2007; 19: 4680–4684.

Narayanan S, &Mcilraith S(2003). Analysis and simulation of web services.

Computer Networks. 42(5). pp. 675–693.

Mittal S, Risco-Martin JL, &Zeigler BP. DEVS/SOA: A Cross-platform

framework for net-centric modeling and simulation in DEVS unified

process. Simul Trans 2009; 85: 419–450.

Jianpeng Hu, Linpeng Huang, Bei Cao, &Xuling Chang(2014). Executable

Modeling Approach to Service Oriented Architecture Using SoaML in

Conjunction with Extended DEVSML. SCC 2014 – Proceedings of the

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July – Sept.2014

29
http://hipore.com/ijsc

11th IEEE International Conference on Services Computing, Anchorage,

AK, 2014, pp.243-250.

Zeigler, B. P., T. G. Kim, and H. Praehofer. Theory of Modeling and

Simulation: Integrating Discrete Event and Continuous Complex Dynamic

Systems Second Edition: Academic Press. 2000.

Mittal, S, Zeigler, BP, &Hwang, MH (2013), XFDDEVS: XML-Based

Finite Deterministic DEVS, Retrieved Jan 2013 from

http://www.duniptechnologies.com/research/xfddevs/.

Hong. KJ, &Kim, TG (2006), DEVSpecL-DEVS specification language for

modeling, simulation and analysis of discrete event systems, Information

and Software Technology, 48(4), pp.221 - 234, Apr., 2006

Mittal, S., &S. A. Douglass (2012). DEVSML 2.0: The Language and the

Stack. Symposium on Theory of Modeling and Simulation, Spring

Simulation Multiconference. Orlando, FL: SCS. 2012.

Hwang, Moon Ho, & Bernard P. Zeigler(2009). Reachability graph of

finite and deterministic DEVS networks. Automation Science and

Engineering, IEEE Transactions on. 6(3), pp.468-478.

Elvesæter, B., Carrez, C., Mohagheghi, P., Berre, A. J., Johnsen, S. G., &

Solberg, A. (2011). Model-driven service engineering with SoaML. In

Service Engineering, Springer Vienna.pp.25-54.

The Arizona Center for Integrative Modeling and Simulation (ACIMS),

DEVS-Suite, Retrieved Jan 2014 from http://sourceforge.net/projects/devs-

suitesim/

Pasqua, Roberto, et al. FROM SEQUENCE DIAGRAMS UML 2. x TO

FD-DEVS BY MODEL TRANSFORMATION. European Simulation and

Modelling (2012).

Verónica Bogado, Silvio Gonnet, & Horacio Leone, Modeling and

simulation of software architecture in discrete event system specification

for quality evaluation [J], Simulation January 27, 2014.

Authors

Jianpeng Hu received his BS and MS

degrees from East China University of

Science and Technology (ECUST),
Donghua University(DHU) in 2003 and

2006, respectively. He is a lecturer of

computer science in the College of

Electrical and Electronic Engineering,

Shanghai University of Engineering

Science (SUES). Also, he is currently working toward the

PhD degree in the department of computer science and

engineering at the Shanghai Jiao Tong University (SJTU).

His research interests include software engineering, formal

verification techniques, modeling & simulation, software

architecture and system of systems.

Linpeng Huang received his MS and

PhD degrees in computer science from

Shanghai Jiao Tong University in 1989

and 1992, respectively. He is a

professor of computer science in the

department of computer science and

engineering, Shanghai Jiao Tong

University. His research interests lie in the area of

distributed systems, formal verification techniques,

architecture-driven software development, system of

systems, big data analysis and in-memory computing.

Renke Wu received the BS degree in

Software Engineering, the MS degree

in Computer Software and Theory from

the School of Computer at Hangzhou

Dianzi University (HDU), China, in

2011 and 2014, respectively. He is

currently working toward the PhD

degree in the department of computer

science and engineering at the Shanghai Jiao Tong

University (SJTU). His research interests include software

engineering, formal verification techniques, architecture-

driven software development, system modeling languages,

software architecture and system of systems.

Bei Cao received the BSc degree in

computer science and technology from

Huazhong University of Science and

Technology (HUST) in 2012. He is

currently working toward the master

degree with the Department of

Computer Science and Engineering at

Shanghai Jiao Tong University (SJTU).

His research interests include software engineering and

system of systems.

Xuling Chang received the BSc degree

in software engineering from Jilin

University (JLU) in 2012. He is

currently working toward the MSc

degree with the School of Electronic

Information and Electrical Engineering

at the Shanghai Jiao Tong University

(SJTU). His research interests include

software engineering, coloured petri nets, semantics and

verification of UML/SysML, transformation algorithms

between system modeling languages and system of systems

modeling and simulation.

http://sourceforge.net/projects/devs-suitesim/
http://sourceforge.net/projects/devs-suitesim/

