
32-Bit Risc Processor For Computer Architecture

 Bighneswar Panda. B. Vijay Bhaskar R. Surya Prakash

 M.Tech student HOD, Dept. ECE Asst. Prof., Dept. ECE

Avanti’s St. Theressa Institute Engg & Tech, Chipurupally, Vizianagaram(Dist), AP

Abstract:
 Now a days computers are used

everywhere in our day to day lives ranging

from electronics instruments to industrial

process automation. Due to complexity of new

applications computer engineers use embedded

systems to develop high performance

technological systems which can achieve high

speed processing while used as hardware

resources efficiently. To develop embedded

systems, it is necessary to know the basic

operation of a computer system, which is

generally composed of memory, a peripheral

controller and a microprocessor. This work

presents the design and implementation of a 32

bit RISC processor intended for computer

architecture. This RISC processor should

support a specific instruction set and its own

assembly code with proper instruction format.

The instruction set should have simplicity and

robustness features. It is considered to be an

effective solution for computer compression.

Final circuit can be used as a soft core for

FPGA embedded designs to control and

automation applications.

Keywords: Harvard architecture, PC, Subroutine,

Digital Logic, Microprocessor, ALU, Computer

Architecture, Programmable Logic, Opcode.

I. INTRODUCTION

 A digital system was developed by using a

set of interconnected digital integrated circuits like

counters, buffers, logic gates and memory. It

requires lots of analysis, testing and to adapt the

design metrics like speed, response time, power

consumption etc. which resulted very difficult for

development. Also every design change implied a

whole analysis and most times expensive to

upgrade.

 Now-a-days, advanced technologies like

programmable logic as Complex Programmable

Logic Devices (CPLD) or Field Programmable

Gate Arrays (FPGA) with more sophisticated

simulation and design verification environments

enable engineers to reach new levels of

complexity and robustness, while greatly reducing

the time between development and

implementation. This way, one can develop a

system which can be optimised for manufacturing

on a single chip, with the capacity to add or

remove modules according to the requirements in

the future. Modern processor design sometimes

reduce the implementation effort by acquiring

some of these elements as Intellectual Property

(IP) or through implementation techniques to

build the other components, like VHDL or Verilog

language and a proprietary synthesizer depending

on each hardware vendor.

 There exist different approaches to obtain

high comprehension when explaining computer

architecture. One approach uses FPGA devices

and VHDL language to construct a simple

computer, but there is disadvantage that by

programming there is a lack of understanding in

dataflow. Another approach uses MSI digital

components such as TTL to construct a computer

by interconnecting the components but sometimes

using wires to build those connections is time-

consuming.

 The design of a 32-bit data width Reduced

Set Instruction Computer (RISC) processor was

developed with simplicity and implementation

efficiency. It has a complete instruction set,

program and data memories, general purpose

registers and a simple arithmetic logical unit

(ALU) for basic operations. It operates following

a multi-cycle execution nature and is implemented

on a XILINX Spartan-3e FPGA.

II. CPU ARCHITECTURE

 The processor is based on the Harvard

architecture that any instruction occupies

separated positions of program memory and data

memory. Thus obtaining greater speed and a

minor program length, also, the access time to the

instructions can be superposed with one of the

data, obtaining a greater speed in each operation.

 The processor includes a RISC instruction

set and uses a Single Instruction – Single Data

(SISD) execution order. Its main characteristics

are:

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

www.ijert.org

 Eight 32 – bit general purpose registers.

 256 allocation of 32-bit wide ROM

Program memory

 256 allocations of 32-bit wide RAM data

memory

 ALU with basic arithmetic and logical

operations.

`Fig 1: The Harvard computer architecture

composed of: Program and Data memories and

the CPU interconnected by buses.

III. INSTRUCTION SET

 To design a CPU, a specific RISC

instruction set and its own assembly code with its

proper instruction format is necessary. The

instruction set should have two objectives:

simplicity and robustness, i.e. using the simplest

instructions that make the processor capable of

executing complex operations. The instructions

are classified into three groups:

 Operations(Arithmetic and Logical)

 Program Control(Jumps)

 Data Manipulation (Load and Storage)

 The arithmetic operations are addition and

subtraction, because it is possible to perform any

other operation with just these two. These

operations can be performed between two

registers and between one register and an

immediate data.

 The logical operations are AND, OR,

NOT, Shift Right and Shift Left. The first two

operations are executed between two registers,

while the other operations are applied to only one

register called source register.

The branch instructions include

 An immediate jump, a jump to a value

contained in a register and

 Conditional branches

The execution of conditional branches depends on

the status of the proper flag in the status register.

 The load and storage instructions required

must address different data sources on an

immediate, direct to data memory and indirect to

data memory, addressing modes. Following table

describes the complete instruction set, showing the

mnemonic, description, syntax and micro-

operation done for every instruction.

 The instruction format was developed

considering many factors like the CPU

architecture, the number of instructions and

operands involved. Each instruction has its own

OPCODE (Operation Code), which is analogy to

the assembly mnemonic in machine language.

 TABLE 1: INSTRUCTION SET

Mnem

onic
Description Syntax Micro-operation

ADD Addition ADD Rd, Rs Rd←Rd + Rs

SUB Subtraction SUB Rd, Rs Rd←Rd – Rs

ADDI
Immediate

addition
ADDI Rd, k Rd←Rd + k

SUBI
Immediate

Subtraction
SUBI Rd, k Rd←Rd – k

AND Logic AND AND Rd, Rs Rd←Rd . Rs

OR Logic OR OR Rd, Rs Rd←Rd OR Rs

NOT Logic NOT NOT Rd Rd←NOT(Rd)

SHL
Shift register

left
SHL Rd

Rd(n+1) ←Rd(n),

Rd(0) ←0

SHR
Shift register

right
SHR Rd

Rd(n) ←Rd(n+1),

Rd(7) ←0

JMP
Immediate

Jump
 PC ← PC + k

JMR
Jump to

register
JMR Rd PC ← Rd

BRC
Branch if

carry
BRC k

if (c=1) then

PC ← PC + k

BRZ
Branch if

zero
BRZ k

if (c=1) then

PC ← PC + k

BRH
Branch if

half-carry
BRH k

if (c=1) then

 PC ← PC + k

LDI
Load

immediate
LDI Rd, k Rd ← k

LDD

Direct load

from

memory

LDD Rd,[A] Rd ← [A]

LDX

Indirect load

from

memory

LDX Rd,[Rs] Rd ← [Rs]

STD

Direct

storage to

memory

STD [A],Rd [A] ← Rs

STX

Indirect

storage to

memory

STX [Rd],Rd [Rd] ← Rs

LDP
Load from

PC
LDP Rd Rd ← PC

CPU

 Data

Memory

Program

Memory

Registers

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

www.ijert.org

Rd: Destination Register; Rs: Source Register;

k: Constant; PC : Program Counter; A : address

 Instructions are reclassified according to

type of operands as follows:

 Type J (Jumps): only use the OPCODE

and a constant value (k);

 Type I (Immediate data): use the

OPCODE, a density (Rd) or source (Rs)

register and a constant value(k);

 Type R (Register operation): require a

single destination register or both:

destination and source register.

Type J:

OPCODE Not Used K

Type I:

OPCODE Rd k/A

Type R:

OPCODE Rd Rs Not Used

 Fig 2. Instruction format per instruction type.

 To specify a register (source or

destination) 3 bits are used since the CPU has 8

general purpose registers. To specify a constant

value, 8 bits are used. Instruction format is

standardized to 32 bits. Fig. 2 shows the

instruction format for each type.

IV. HARDWARE IMPLEMENTATION

 Program Counter (PC)

 The program counter produces the address

to read instruction from the program memory. It

can load a random address if the program requires

loops or branches.

 ROM Program Memory

 The program memory stores the

instructions to be executed. It is to be non-volatile

and fast. It uses internal ROM as program

memory, because it was the fastest option and

eliminated the need for external storage. This

memory was built with 256x1 bit ROM blocks,

with a total of 32 blocks to store 256 32-bit

instructions.

 Instruction Register and Decoder

 Instruction registers stores the instructions

read from the program memory and keep it as an

output for the decoder, which separates the

operation code and operands to execute the

command. Two 32-bit registers (D-type flip-flops)

were used, one for the higher word and one for the

lower word (32-bit instruction). The instruction

decoder deal with the raw data stored in the

instruction registers and separates it in parts:

Operation code (OPCODE), Rd, Rs and A/K, so

that these values can be sent to the corresponding

component, like the ALU, General Purpose

register block etc. This is achieved simply by

using a set of buffers inside a block to sort the

signals to separate buses.

 General Purpose Resisters (GPR)

 GPRs store and save operands and results

during program execution. ALU and memories

must be able to write/read those registers, so a set

of eight 8-bit registers were used, along with

multiplexers and a decoders to control which

register is read or written. Two registers can be

written at a time.

Fig 3. General Purpose Registers Block

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

www.ijert.org

 Arithmetic Logic Unit (ALU)

 The ALU has 8 operations; each one of

them was created and converted into a symbol,

then a multiplexer was placed to a obtain a 3-bit

selector. Also it has 3 Flags: carry (C), half carry

(H) and zero (Z), which indicate whether there is a

carry, a half carry or a zero after any ALU

operation.

 RAM Data Memory

 The RAM memory is a data storage block,

there the stack is handled and other data are kept

as variables. It is built with 32 memory blocks of

32 bits each one. The address input is divided in 2

parts. The first part has 3 bits select the memory

block to read or write using a decoder. The second

has 5 bits that select the memory location between

0 and 31.

 Fig 4. ALU block

 Control Unit

 The control unit operates as a state

machine. In general, it follows the state diagram

shown in Fig 5. States 0, 1 and 3 remain equal ,

whereas the second state can change depending on

the instruction read by the decoder. In this way:

state 0 represents the fetch/write back stage and

finally during state 3 the program counter is

incremented.

Fig. 5. Control Unit States Diagram

V. RESULTS

(a) Development Tools

 For designing the CPU, Modelsim tool is

used. Simulation is performed on Modelsim

simulator, designed to work with files generated

by Modelsim.

 To simplify the conversion of CPU test

programs, a specific translator is designed in

Verilog HDL language. It is reads .V files which

contains the program in assembly language, and

translates it to machine code, giving the proper

format to load the instructions to the program

memory.

(b) Test Application
 This program is used to evaluate the

performance of the CPU by using all types of

instructions to execute the subroutines, access RAM

and manipulate the stack.

0

1

2

3

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

www.ijert.org

Table II : TRUTH TABLE FOR CONTROL

UNIT STATE MACHINE

S
T

A
T

E

P
C

_
L

O
A

D

P
C

_
C

L
O

C
K

P
C

 S
O

U
R

C
E

IR
_
L

O
A

D

ID
R

_
L

O
A

D

G
P

R
_
W

R
IT

E

G
P

R
_
S

O
U

R
C

E
1

G
P

R
_
S

O
U

R
C

E
0

A
L

U
_
S

O
U

R
C

E

R
A

M
_
W

R
IT

E

R
A

M
 S

O
U

R
C

E

IN
S

T
R

U
C

T
IO

N
S

0 0 0 0 0 0 0 0 0 0 0 0 Reset

1 0 0 0 1 1 0 0 0 0 0 0 Fetch

2 1 0 0 0 0 0 0 0 0 0 0

JMP,

BRC,

BRZ,

 BRH

3 0 1 0 0 0 0 0 0 0 0 0 Inc. PC

2 0 0 0 0 0 1 0 0 0 0 0 LDI

2 0 0 0 0 0 1 0 1 0 0 0 LDD

2 0 0 0 0 0 0 0 0 0 1 0 STD

2 0 0 0 0 0 1 1 0 1 0 0
ADDI,

SUBI

2 0 0 0 0 0 1 1 0 0 0 0

ADD,

SUB,

AND,

OR, NOT,

SHL,

SHR

2 0 0 0 0 0 1 0 1 0 0 1 LDX

2 0 0 0 0 0 0 0 0 0 1 1 STX

2 0 0 0 0 0 1 1 1 0 0 0 LDP

2 1 0 1 0 0 0 0 0 0 0 0 JMR

Fig. 6 shows the jump to the subroutine which is

executed when the PC changes from one value to

another value.

Fig 6. Simulation of an applicationI (Subroutine jump)

Fig 7. Simulation of a test application (Storage in RAM)

IV. CONCLUSION

 From this task we can observe that

flexibility of a design, which supports a great

modification and improvement of the design. The

simplicity of the design-based on functional blocks

make understanding of each part of a modern

computer works.

 The circuit which is obtained can be used as

soft core processor for FPGA designs that would like

to add a CPU to handle other peripheral devices.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

www.ijert.org

References:

[1] W. Stallings, “Organización y Arhitecture

 Computadoras,” 7ªEditión, Pearson, 2006.

[2] M. Mano, “Arquitectura de computadoras,”

 3ª Editión, Pearson, 1994.

[3] A.K.Ray, “Advanced Microprocessor And

 Peripherals”, 2nd Edition, Tata McGraw-

 Hill,2008

[4] D.V.Hall,“Microprocessor And Interfacing”,

 2nd Edition, Tata McGraw-Hill,2006

[5] D. Mandalidis, P. Kenterlis, J. Ellinas, “A

 computer architecture educational system

 based on a 32-bit RISC processor,”

 International Review on computers and

 Software, pp. 114-119, 2008.

[6] Tocci, Widmer, Moss, “Sistemas Digitales,

 Principios y aplicaciones,” 10ª Editión,Pearson,

 2007.

[7] Antonio H. Zavala, Jorge Avante R.,”RISC-

 Based Architecture for computer Hardware

 Introduction”

[8] M. Jaumain, M. Osee, A. Richard, A. Vander

 Biest, P. Mathys, “Educational simulation of

 the RiSC processor,” ICEE International

 Conference on Engineering Education, 2007.

[9] P. Verplaetse, J. Campenhout, “ESCAPE:

 Environment for the Simulation of Computer

 Architecture for the Purpose of Education,”

 IEEE TCCA Newsletter, February, pp. 57-59,

 1999.

[10] G. Wainer, S. Daicz, L. De Simoni, D.

 Wassermann, Using the Alfa-1 simulated

 processor for educational purposes,” Journal

 on Educational Resources in Computing, vol.1,

 Issue 4, pp.111–151, 2001

[11] J. Djordjevic, A. Milenkovic, N. Grbanovic,

 “An Integrated Environment for Teaching

 Computer Architecture,” IEEE Micro vol.20,

 Issue 3, pp. 66–74, 2000.

[12] M. Becvar, A. Pluhacek, J. Danecek, “DOP: a

 CPU core for teaching basics of computer

 architecture,” Workshop on Computer

 architecture education, Article No. 4, 2003.

[13] H. Elaarag, “A complete design of a RISC

 processor for pedagogical purposes,” Journal

 of Computing Sciences in Colleges, vol. 25,

 Issue 2, pp. 205-213, 2009.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

www.ijert.org

