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The paper introduces a new idea of using spreadsheets for teaching basics of the discipline called
requirements engineering. The discipline is familiar to those dealing with design of complex
systems. To this purpose, the authors propose utilizing a specific spreadsheet-based logical
simulator. For simulating a computer system on the level of its initial specifications the authors
developed a dedicated so-called requirements simulator (RS). For building the simulator, students
have to separate the system requirements into a number of abstraction levels. The paper presents a
real example of designing RS for the control part of the well-known PARWAN microprocessor
using a spreadsheet.

INTRODUCTION

THE PRESENT DECADE may be characterized
as a period of triumph for the spreadsheet tech-
nology in education. While ten years ago a spread-
sheet was perceived just as one of the possible
calculation means, and only a small group of
enthusiasts believed in its educational potential,
currently it goes without saying that spreadsheets
have turned into a classic learning environment for
exploring the idea of simulation.

On the one hand, it is still too early to sum-
marize the role of spreadsheets in education,
because new concepts, ideas and applications
continue appearing both in the technological and
in the pedagogical arenas. On the other hand, some
subject matters and applications have acquired
sufficient experience that permits us not only to
give practical recommendations but also to formu-
late some conceptual ideas.

One such field is computer design, which is
genetically predestined for simulation. A widely
used hardware description language, VHDL, is an
example of a tool used for simulation of computer
systems operation.

The simulation-based techniques offer a very
promising direction from both the practical and
the research points of view. It is enough to mention
works [1, 2] that study various methods for
constructing the simulation-based learning envir-
onments. In [3, 4] the authors investigate specific
human-machine interaction issues in simulation-
based learning, while [5±7] focus on computer
architecture. The most interesting works in the
context of our paper are [8±11]. They study the
use of spreadsheet simulations for teaching compu-
ter architecture and other similar subjects.

Advantages of using spreadsheet simulations for
teaching microprocessors are well recognized in
the field, especially by experts in engineering
education. We are not re-inventing the wheel by
convincing the reader that spreadsheet simulation
can be successfully used in a computer architecture
class. We have a different goal. To the best of our
knowledge, in all the above-mentioned works the
authors present simulations of the processor
(computer) structure. They never discuss or
develop simulations of requirements (specifica-
tions) by using spreadsheets. We propose develop-
ing a spreadsheet simulation of a microprocessor
(computer) at the level of requirements, which
would allow verification of internal logic of the
requirements before designing and even simulating
the microprocessor structure. We address the
present paper precisely to this issue.

REQUIREMENTS ENGINEERING

Requirement specifications provide textual
models of system components. The traditional
scope of requirements engineering (RE) is
concerned with the real-world goals for functions
of and constraints on systems [13] as has been
specified by clients, customers and users. On the
other hand, the definition of [14], `Requirements
engineering maps problems from a problem
domain into a proposed solution from the solution
domain', implies that RE is applicable to any level
of abstraction. The broader definition of require-
ments is not limited by the role of the person who
introduced it or who can comprehend it; the
specifications of a particular function or compo-
nent, at any abstraction level, are that function's or
component's requirements.
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for communicating goals and constraints, because
they reflect, to a reasonable extent, the writer's
mental model. For that reason, student-written
specifications provide teachers with a tool to
evaluate their students' comprehension of that
object's functionality, and enable students to
carry out reflection on their own understanding.

Although students learn an important system
design tool, teachers should be careful to ensure
that students do not confuse the technique of
design documentation with the art of designing.
Design is a creative process, inventing new speci-
fications at a certain abstraction level, with the aim
to fulfill the requirement specifications laid down
at a higher abstraction level. The learning activity
in this paper does not require students to invent
controllers, but to learn from a text-book the
functionality of a specific controller design, and
to apply state-of-the-art requirements engineering
techniques to document its specifications.

Next, we present the significance of positioning
requirements within the context of abstraction
levels, and the significance of atomizing them.

Abstraction levels
Abstraction is a functional specification of

something, corresponding to many different, alter-
native implementations [15, 16]. Abstraction levels
are the, sometimes arbitrary, layers in a hierarchy
of functional specifications. Looking from a higher
abstraction level down at a lower one, the latter
abstracts away any particular implementation
detail. Looking from a lower abstraction level
up, the higher abstraction level provides high-
level requirement specifications that the lower
one is expected to implement. Consequently,
every specification statement is a requirement
specification (`what') relative to the abstraction
level with which it is associated, and in the same
time it is also the specific internal design specifica-
tion (`how') of a higher abstraction level [16±18, 19
(pp. 161±162)]. Because of this duality, all
specifications are called in this paperÐrequire-
ment specifications.

The duality of abstraction (`what'), on the one
hand, and the selected implementation (`how'), on
the other hand, can materialize in any number of
abstraction levels in a system's specification hier-
archy. Classic user requirements are associated
with the highest abstraction levelÐthe system.
Usually, four levels of abstraction are of interest
for computer architecture courses to describe the
behavior of digital computers. Going from a high
abstraction level to the lower one, they are [2]:

. assembly language;

. binary-code instruction set;

. state transitions and micro-instructions;

. the micro-operations.

A micro-instruction is the output of a state transi-
tion. A micro-operation is a single variable in the
transition output, that is, a micro-instruction is
comprised of one or more micro-operations.

A specification is of any meaning only when it is
associated with a system-function, with a system
component, or with both, at a certain abstraction
level.

Atomic requirements (ATRs)
The notion of atomic requirement (ATR) speci-

fication [20] extends the definition of a well-formed
requirement [21]. An ATR is defined as a require-
ment or design specification that is:

(a) associated with a system functionality or
component;

(b) is well formed;
(c) consists of a condition and of a corresponding

operation;
(d) the condition and the operation are indivisible

(atomic) at the abstraction level at which the
specification is being considered.

No standard languages with precise semantics exist
for specifying requirements; hence mainstream
industrial RE practice still uses natural language
descriptions for requirements [22]. In [23] and
elsewhere, there is a reluctance and inability of
practitioners to use formal methods on formal
specifications or to master the skills of their use.
The high cost of training is one reason. Unlike a
formal specification, an ATR's formalism is not in
its language but in its atomicity and in its associa-
tion with a single abstraction level.

Three rules of thumb may help students in
composing ATRs:

. First, the specification must be associated with a
known abstraction level. It may only use the
lexicon of that abstraction level or higher ones.
For example, the specifications of an assembly
instruction may not refer to the data bus.

. Second, in a conditional specification, the con-
dition must be indivisible. For example, the
specification starting with the phrase `when the
instruction is either LDA, or ADD or AND or
SUB . . . ' is not atomic; it must be split into four.

. Third, the operation must be indivisible in such
a way that when the implementation is tested
against the ATR, only two results are possibleÐ
either the implementation has completely passed
the test, or it has completely failed it [20].

The contribution of atomicity to facilitating com-
munication of intent between people has been
reported in [20]. We expect to find similar benefits
in written and oral communication using ATRs
within the educational context.

ATRs of standards
The notion ATRs of standards and the method

for their use has been introduced in [20]. The set of
ATRs that are common to several constituents of
an abstraction level comprise that abstraction
level's standards.

For example, the two ATRs shown below are
common to all state transitions in the PARWAN
microprocessor's controller. Therefore these ATRs
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are listed at the micro-instruction abstraction
level; consequently, there is no need to repeat
them for every state transition. Note that combin-
ing the two into a single specification would violate
atomization.

. Change state at every falling edge of the clock.

. Change state only at the falling edge of the
clock.

SPECIFYING THE MICROPROCESSOR
CONTROLLER

This section provides example ATRs, regular
and standard, at three different abstraction levels
of the PARWAN controllerÐassembly language,
micro-instruction and micro-operation.

The students need to be advised that any ATR at
a certain abstraction level could be the subject of
decomposition into several ATRs at a lower
abstraction level. Each ATR is atomic only in
respect to the abstraction level with which it is
associated, but not in respect to lower levels. This
process of successive decomposition introduces at
each level a wave of new information that was not

specified at the higher abstraction level; hence,
decomposition itself is the creative process of
design.

In this activity the students extract from [12] or
from an equivalent source the PARWAN control-
ler's specifications. They concentrate on identify-
ing abstraction levels of interest and on atomizing
the requirements. Specifying requirements from de
novo, that is, inventing a controller, is beyond this
paper's scope.

Specifying the abstraction level of assembly
At the assembly abstraction level a portion of

the Von Neumann model's schematic structure is
introduced. The lexicon of this level includes the
accumulator, the status register and the memory
array. Other components, such as buses, are
hidden in lower abstraction levels.

This abstraction level's specifications are the
collection of all assembly instructions' functional
specifications. Figure 1 lists a few examples.

Specifying the abstraction level of micro-
instructions

The micro-instruction abstraction level reveals
the controller's interface: the input and output

Fig. 1. Example ATRs at the assembly abstraction level.
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signals [12 (p. 281)], and the rules governing its
behavior as seen from the outside, while hiding its
internal construction [24]. Indeed, this is the
controller's behavioral design. We recommend
discussing with the students that the design of the
registers, memory and buses is at the same abstrac-
tion level as the design of the controller.

The full extent of the Von Neumann model
is revealed at this abstraction level. The appro-
priate lexicon includes all registers, the register's

operations repertoire and the buses as well as the
memory array, but not the bus gates. Accordingly,
the ATRs at this level refer to data moved between
components, but do not mention the controller
signals involved.

The controller is modeled as a finite state
machine (FSM); therefore it is appropriate to
describe its functionality with a state transition
diagram, as in Fig. 2, or with a state transition
table (STT), as it is constructed in the spreadsheet

Fig. 2. State transition diagram of the PARWAN controller; edge weights are not presented.

Fig. 3. The PARWAN controller's main states.
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simulator in Fig. 6 and Fig. 7. The diagram follows
the State Chart conventions [25]. The eight main
states preserve the numbering of the eight states in
[12 (pp. 300±308)]. The state transition diagram's
purpose is to provide a high-level visual aid while
working with the fully detailed state transition
table.

Figure 4 lists example ATRs for a few state
transitions to illustrate the micro-instruction
abstraction level. In a STT, the current state is
one of the conditions for a transition to take place,
and the target state is one of the operations. We
reduce the complexity of the ATRs' text con-
siderably by moving the references to the current
and target states into internal headers, as shown in
Fig. 4.

Specifying the abstraction level of micro-
operations

The controller's micro-operations are its output
binary signals. This is the lowest abstraction level
with which we deal in this paper.

The lexicon of the micro-operations abstraction
level includes the gates on the buses and the three
bits that code the arithmetic logic unit (ALU)
operations. The signals that affect the other
registers (e.g., load_ir) are not new to this
abstraction level because the natural language of
ATRs refers to them in the same way in both
abstraction levelsÐthe micro-instruction and the
micro-operation.

At this abstraction level each micro-operation is
an independent component that is specified separ-
ately from the other micro-operations. For this
reason, the specifications at this level are simply a
list of the signals, each one specified by a rather
banal ATR. Figure 5 shows a few examples.

CONSTRUCTING THE CONTROLLER
SIMULATOR

We propose to construct the requirement simu-
lator of the microprocessor controller as program-
mable logical array (PLA) described in [26]. There
are three spreadsheets that have the same number
of rows and columns, taking advantage of the
software's capability to directly reference from a
cell in one spreadsheet the cell located in the same
row and column of another spreadsheet.

One spreadsheet comprises a state transition
table, with the columns on the left side represent-
ing the current state and the conditions for input
signals, and the columns on the right representing
the next state and the output signals corresponding
to the conditions. The students fill in this spread-
sheet with a combination of 1s, 0s and spaces. The
second spreadsheet translates the 1s and 0s in the
first spreadsheet to � true and � false functions,
respectively, in the second one.

The third spreadsheet accepts the controller
input signals (in row number 2) and generates the

Fig. 4. Example ATRs for the micro-instruction abstraction level.

Fig. 5. Example ATRs for the controller output signals (micro-operations).
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output signals (in the bottom row). This spread-
sheet contains the mechanism that fits the input
signals to a row of conditions. If the first spread-
sheet is correctly set up, that is, all conditions are
orthogonal and together they are complete, then
any input will fit to one, and only one, row of
conditions. The output generated at the bottom
row is a set of cells, each one simulates an output
signal having the value of either � true or � false.

Once the students have filled in the first spread-
sheet, the running simulator does not change this
spreadsheet or the second one. Of course, the
students are encouraged to keep modifying the
first spreadsheet as part of the learning activity.
By that they can experiment with alternative
control logic designs and can debug their design.

Students can follow this simulator's behavior at
a resolution of single clock ticks. Each press on the
Step button advances the process one tick of the
clock. Before another press on the Step button the
student may journey around the workbook's
spreadsheets and examine the input and output
signals (FALSE or TRUE) and the state of the
controller (state number). If the rest of the simu-
lator (all registers, buses, and the memory) are
included in the setup then they can be examined
as well.

Constructing the spreadsheets
This section describes step-by-step the controller

construction in spreadsheets that simulate a state
transition table (STT). The STT covers two
abstraction levels in two spreadsheet dimensions;

the micro-instructions comprise the rows, and the
micro-operations the columns.

The STT is implemented within a set of three
MS Excel spreadsheets labeled `CU Code
(STT01)', `CU Translated Code (STT02)' and
`CU Display (STT03)', as shown in Fig. 6 and
Fig. 7. (CU stands for `control unit', which is
another term for `controller'.) The students start
off with three blank spreadsheets. They code the
controller by filling in data only in one sheet, `CU
Code (STT01)'. In the other two sheets they enter
only a few formulae.

Fill in the `CU Code (STT01)' worksheet cells as
follows:

. Cell A1 through H1: enter the text as shown in
Fig. 6.

. Cells I1 through V1: enter the names of the
controller's input signals.

. Cells W1 through AA1: enter the text as shown
in Fig. 6.

. Cells AB1 through BB1 enter the names of the
controller's output signals.

. Leave row 2 empty.

. Select the range A1:BB100, and define for it the
name STT01.

Enter the micro-instruction level ATRs into the
ATRs column (column A) of the `CU Code
(STT01)' worksheet, and fill in the source and
target states in the columns Current State and
Next State (columns B and C), respectively.
Define for each state a unique binary code. Enter
the binary codes for the current and next states
into columns D:H and W:AA, respectively. It is

Fig. 6. The spreadsheet `CU Code (STT01)' showing the input-signals' columns (D through V).

Fig. 7. The spreadsheet `CU Code (STT01)' showing the output-signals' columns (W through BB).
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not necessary to use up all the rows down to row
100; empty rows have no effect on the simulator.

For each row, examine the ATR, and enter the
input and output signals. For an input signal that
must be on: enter 1. For an input signal that must
be off: enter 0. Leave all the other input signals
blank. For an output signal that must be on: enter
1. Leave all the other output signals blank. Look at
the `CU Translated Code (STT02)' spreadsheet to
see that your codes have been translated to TRUEs
and FALSEs.

Add rows to ensure completeness of the STT
even where there is no such explicit ATR. For
example, the ATR `State 2.1 to 2.2: When the
instruction, which has been read from memory, is
available: put it into the ALU's A side' implies that
while the data is not available: do nothing. While
the implied specification is superfluous in the
ATRs' list, it is mandatory for the STT to be
complete; the STT must take care of every possible
combination of input signals.

Fill in the `CU Translated Code (STT02)' work-
sheet cells as follows:

. Cell A1: enter the formula � STT01. Copy the
formula from cell A1 to the ranges A1:BB1 and
A1:A100.

. Cell D3: enter the formula � IF(STT01�``,'',
IF(STT01�0,FALSE,TRUE) ). Copy cell D3 to
the range E3:BB100.

. Select the range A1:BB100, and define for it the
name STT02.

Fill in the `CU Display (STT03)' worksheet cells as
follows:

. Cell A1: enter the formula =STT01. Copy the
formula from cell A1 to the ranges A1:BB1 and
A1:A100.

. Cell C3: enter the formula �TRUE. Copy the
formula from cell C3 to the range C4:C100.

. Cell D3: enter the formula �AND(C3,
OR(STT02�``,STT02�D$2)). Copy cell D3 to
the range E3:V100. To ensure that relative cell
references are adjusted, first select the range
E3:V3, and press CTRL�R, and then, select
the range E3:V100, and press CTRL�D.

. Cell W2: enter the formula �FALSE. Copy the
formula from cell W2 to the range W2:BB2.

. Cell W3: enter the formula �OR(W2,AND
($V3,STT02�TRUE) ). Copy cell W3 to the
range W3:BB100. To ensure that relative cell
references are adjusted, first select the range
W3:BB3, and press CTRL�R, and then, select
the range W3:BB100, and press CTRL�D.

. Cell W101: enter the formula =W100. Copy
the formula from cell W101 to the range
W101:BB101. To ensure that relative cell refer-
ences are adjusted, select the range W101:BB101,
and press CTRL�R.

Fig. 8. Example input in the `CU Display (STT03)' worksheet.

Fig. 9. Example output in the `CU Display (STT03)' worksheet.
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At this time the spreadsheet-simulation of the
controller can be run manually, even without
connecting it to the spreadsheet-simulation of the
rest of the PARWAN microprocessor. Open the
`CU Display (STT03)' worksheet, and enter an
input of some combination of �TRUE and
�FALSE values into the input area at cells
D2:V2, as shown in Fig. 8. Go to the bottom-
right corner of the spreadsheet, and see the output
signals in cells W101:BB101, as shown in Fig. 9.

To run the simulated controller within the
environment of the simulated PARWAN micro-
processor, the students should download the Excel
workbook from [27]. Copy your three controller
worksheets (described above) into the downloaded
workbook and follow the instructions that accom-
pany the workbook to create the necessary con-
nections. Defining names for certain cells in the
`CU Display (STT03)' worksheet and copying
two buttons into it accomplish the necessary
connections.

Running the simulator
To program the microprocessor, enter a binary

code program into the `Memory' worksheet, such
as in Fig. 10.

To run the simulator, repeatedly press the Step
button, which is available at the top of most
spreadsheets. Each press on the Step button
advances the simulation by one tick of its internal
clock. The simulator has only one clock. You may
go at any time to any other worksheet, and
continue the process pressing the Step button on
that worksheet. This way, it is possible to examine
at any point of time the contents of all registers,
buses, memory, signals that enter the controller,
micro-commands, and a very detailed view of the
controller's internal state.

Press the Interrupt toggle-button to interrupt
the program. The PARWAN microprocessor
senses the interrupt when it reaches state 1.1.
Press again on the Interrupt toggle-button to let
the microprocessor run the program that starts at
memory address 0:000.

REQUIREMENTS VERIFICATION BY
STUDENTS

The requirements-based foundation of our
approach facilitates specification verification as
well as solid requirements-based verification. The
lattermeansthat foreachtest thestudentpredicts the

expected result from the ATR in question. Further-
more, the finite list of ATRs provides students and
teacher with an objective reference to determine at
any point of time what fraction of the specification
has been verified and what fraction of the function-
ality has been already covered by the tests. Students
should verify the correctness of their designs and the
correctness of their implementations, and they
should analyze and correct the discrepancies.

A good starting point is comparing the student'
implementation in the simulator's state transition
table (STT) against the ATRs of standards. For
example, they may verify all ATRs' compliance
with the ATR of this standard: `Only one gate may
be open on a bus at any point of time'.

An obvious test is the comparison of the
controller's behavior against the student-written
ATRs. In this kind of test exactly one STT row
in the spreadsheet is tested against the ATR
written in the first column of that row.

A test of a different scope verifies the correct
execution of each assembly instruction against the
ATRs that they wrote for these instructions. The
two tests test at two different abstraction levels.

The ease by which the 1s and 0s can be changed
in the STT is a fundamental characteristic of
spreadsheets. Students should be encouraged to
play around with different possibilities. However,
when identifying bugs, they should not hurry to
change the 1s and 0s in the STT. First they must
decide whether the bug has resulted from an
incorrect implementation of the said row's ATR,
or, maybe the ATR itself is incorrect. Bugs in
specifications are more frequent than many
people would like to believe [28]. For this reason,
and because it precisely zeroes in on the student's
misunderstanding, revealing a bug in an ATR has
great educational value.

CONCLUSION

Among numerous works in the field of spread-
sheet-based simulation of computer architecture,
none describe spreadsheet simulations on the level
of requirement specifications. We have proposed a
way to fill this vacuum.

In our paper, we presented a specific method for
the spreadsheet simulation of system requirements
(specifications). The method is based on two main
ideas:

1. Separating system specifications into a number
of levels of abstraction. Only when strictly
distinguishing different levels of abstraction
students are able to develop a proper require-
ment simulator (RS).

2. Using the matrix logical simulator [26] within
the spreadsheet as the core of RS. This specific
matrix logical simulator enables very simple
and flexible implementation of the computer
controller specifications by the students.

The paper demonstrates an RS implementation for
the PARWAN microprocessor [12] widely used forFig. 10. A section of the `Memory' worksheet.
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educational needs. First results of using this
method in the undergraduate computer architec-
ture class are promising.

The newly proposed simulation raises new ques-
tions, which are as follows.

. Does the spreadsheet provide an appropriate
environment for simulating requirements for a
computer system?

. Does this simulation allow verification of the
requirements more easily than by using a regular
VHDL-based simulation?

. Are there any advantages in performing the
spreadsheet simulation of the system require-
ments before the VHDL-based simulation?

These questions constitute our current research
agenda.
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