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Abstract—Cyber-physical systems like cars, mobile agriculture
machines, or duty vehicles are increasingly connected to public
networks. Thus, in addition to their inherent fault-tolerance
requirements, there is a pressing need to design these systems
cost-effectively to withstand cyber-attacks, i.e., to ensure cyber
resiliency. This paper implements a cyber-resilient clock syn-
chronization architecture that features fault-tolerant dependent
clocks and a fault-tolerant average (FTA) using standardized
protocols (e.g., IEEE 802.1AS) and open-source software (e.g.,
ACRN hypervisor). Our experiments show how OS diversification
can improve the cyber resiliency of the FTA. Furthermore, our
24h fault injection experiment demonstrates the robustness of
the architecture against fail-silent grandmaster clocks and clock
synchronization virtual machines. Therefore our architecture can
serve as proof of concept to extend commercial offerings.

Index Terms—Cyber-Physical Systems, Virtualization, Clock
Synchronization, Fault-Tolerant Average, Distributed Real-Time
Systems, Fault Tolerance, Cyber-Resilience

I. INTRODUCTION

Today’s cyber-physical systems (CPS) are becoming in-
creasingly connected to meet the advanced requirements of
modern applications. Fault-tolerant clock synchronization acts
as the heartbeat of many CPS by enabling software and
hardware components to have a consistent time view of their
environment represented by sensor inputs and the internal state
of the CPS. Moreover, for CPS following the time-triggered
paradigm, fault-tolerant clock synchronization actively drives
the operation of the distributed real-time system. Fault-tolerant
clock synchronization is a well-understood problem, both
theoretically and practically, that has been investigated for
decades [1]–[5]. However, the growing complexity and con-
nectivity of CPS challenges established fault hypotheses as
it raises the risk of security hazards that mitigate the safe
operation of clock synchronization protocols highlighting the
need for cyber-resilient clock synchronization architectures.

Treytl et al. [6] provide an overview of attacks on the PTP
protocol family, including message manipulation, message
delay, message insertion, and Byzantine grandmasters (GMs).
Various authors demonstrated attacks on PTP and how to
detect and mitigate these attacks [7]–[9]. Furthermore, the
current IEEE 1588-2019 [10] standard proposes using a vot-
ing algorithm to detect faulty GM clocks if more than two
redundant time sources are available, such as GPS or multiple
PTP domains. Both IEEE 1588-2019 and IEEE 802.1AS [11]

emphasize using hot-standby GM clocks to prevent single
points of failure. However, the standards do not detail the
implementation or configuration of redundancy mechanisms.

As a result, Kyriakakis et al. [12] introduce a high-
level fault-tolerant PTP end-system architecture that allows
for multi-domain aggregation using the fault-tolerant aver-
age (FTA) algorithm. They evaluate their fault-tolerant PTP
end-systems for different network topologies utilizing OM-
NeT++ [13]. Their results indicate that operating PTP with
FTA multi-domain aggregation enables the Byzantine fault
tolerance of GM clocks. However, the authors’ end-system
design has drawbacks concerning real-world applicability.
Most importantly, they conceptually neglect the problem of
(initially) synchronizing GM clocks of different domains with
each other. As a result, they limit the use of their multi-domain
end-system architecture to PTP clients only. In practice, this
limitation prohibits locating PTP GM clocks on physically
separated nodes that do not share a common time source, thus
breaking the Byzantine fault tolerance of their architecture in
real-world systems.

Our work investigates a cyber-resilient clock synchro-
nization architecture that implements the fault-tolerant aver-
age (FTA) for IEEE 802.1AS and fail-silent dependent clocks
for the ACRN hypervisor. Furthermore, we argue that using
feature-rich and accessible operating systems (OSs), such as
GNU/Linux, executing on virtualized multicore hardware plat-
forms allows for robustness against random hardware faults
and design faults materializing in software vulnerabilities.

II. CYBER-RESILIENT CLOCK SYNCHRONIZATION

We propose a two-part architecture to achieve cyber-resilient
clock synchronization using commonly available software
components. Firstly, we provide n = f + 1 redundant clock
synchronization virtual machines (VMs) to extend the depen-
dent clock architecture implemented in previous work [14]
to tolerate f fail-silent clock synchronization VM without
losing synchronization. Furthermore, we present an extension
to IEEE 802.1AS that enables multi-domain aggregation based
on the FTA enabling Byzantine fault tolerance against mali-
cious GM clocks. The combination of fault-tolerant dependent
clocks, IEEE 802.1AS multi-domain aggregation, and virtual-
ized GM clocks with diversified OSs aids the cyber resiliency
of our clock synchronization architecture.
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A. A Fail-Silent Dependent Clock

The dependent clock paradigm [15] utilizes a dedicated VM
per node, the so-called clock synchronization VM [14], that ex-
ecutes a clock synchronization protocol and shares the derived
synchronized time with co-located VMs via a shared memory
region. However, previous work did not consider the impli-
cations of the dependent clock paradigm for fault tolerance
or cyber resiliency. In previous work [14], we implemented
a dependent clock for the ACRN hypervisor that exports a
synchronized time shared memory STSHMEM via a virtual
PCI device to co-located VMs. The virtual machine interfaces
with virtual PCI device in the hypervisor via a device driver.
The driver initializes the STSHMEM mapping and derives the
synchronized time as a POSIX clock CLOCK_SYNCTIME
from the shared clock parameters. The clock synchronization
achieves a sub-microsecond precision using IEEE 802.1AS.

In an idealized setting, i.e., when the hypervisor and the
hardware platform are design fault-free, ACRN’s use of the
memory management unit (MMU) to setup the shared memory
ensures that all co-located VMs always observe the same
clock parameters yielding fail-consistent failure of a dependent
clock. In an industrial implementation certified and/or diverse
hardware and hypervisors could be used to ensure the isolation
property of the hypervisor. Therefore, to tolerate f consis-
tently failing clock synchronization VMs, we require 2f + 1
redundant clock synchronization VMs. To that end, we extend
the dependent clock by introducing a periodically executing
monitor in ACRN implementing a voting algorithm to detect
clock synchronization VMs providing faulty clock parameters.
If the monitor detects a faulty clock synchronization VM,
the STSHMEM virtual PCI device injects an interrupt into the
redundant clock synchronization VMs that is about to take
over maintaining the synchronized time.

However, the fail-consistent fault hypothesis is often not
feasible since clock synchronization VMs rely on passthrough
network interface cards (NICs) to guarantee a reasonably
low clock synchronization precision [14] by utilizing HW
timestamping. Unfortunately, many modern HW platforms,
including those available to us, do not provide the number
of NICs needed to host 2fdes + 1 ≥ 3 redundant clock
synchronization VMs. Therefore, for our experiments, we
assume fail-silent clock synchronization VMs reducing the
number of required NICs to fdes + 1 ≥ 2. Nevertheless, it
is straightforward to realize fail-consistent behavior by adding
more NICs.

B. Shared Memory-based gPTP Multi-Domain Aggregation

The LinuxPTP tool set for clock synchronization in
GNU/Linux OS includes two applications. Firstly, the ptp4l
application executes the actual clock synchronization pro-
tocol (e.g., IEEE 1588 or IEEE 802.1AS) synchronizing the
NIC’s internal clock using Sync and FollowUp messages.
Secondly, the phc2sys application synchronizes the Linux
kernel’s system clock to the NIC.

We extended ptp4l so that multiple ptp4l instances
aggregate the master offsets from M different GM clocks or

domains using the FTA. The aggregation of master offsets
derived in separate ptp4l instances requires a well-defined
communication channel between the processes. Therefore,
we introduce a user-space shared memory region FTSHMEM
between the M ptp4l instances. Note the difference between
the STSHMEM and FTSHMEM shared memory regions. The
guest OS establishes the FTSTHMEM between M processes
in user space of a VM whereas the hypervisor shares the
STSHMEM between co-located VMs. Now, the FTSHMEM
shared memory holds the latest M GM offsets, an array of
M booleans indicating whether the corresponding GM clock’s
offset from the remaining GM clocks is within a configurable
threshold, a timestamp adjust_last providing when we
have last adjusted the NIC’s clock frequency, and the state
variables of a proportional integral (PI) controller used in
LinuxPTP to derive the frequency offsets.

Furthermore, for the FTA algorithm we assume that the
M GM clocks of the domains are initially synchronized
with a precision Π [17]. We presume the absence of faults
for initial synchronization since it represents a separate hard
problem [18] that is out of the scope of this work. Therefore,
during start-up the nodes of M − 1 domains synchronize to
an initial domain’s GM until their GM offsets fall below a
configurable threshold. Once the M − 1 GM clocks’ offset to
the initial domain falls below the threshold, the system starts
fault-tolerant operation using the FTA to aggregate master
offsets.

Next, we must guarantee that each GM clock sends its
Sync message at approximately the same time bounded
by the clock synchronization precision Π. We implement
synchronous transmission of Sync messages using Linux
Earliest-Time-First (ETF) queuing discipline and utilizing the
launch time feature supported by some NICs1.

The M ptp4l instances on a node process the time
packets their respective gPTP domain received on the NIC.
When an ptp4l instance i on a node n receives a Sync
message from GM clock gi ∈ GM = {g0, ..., gM−1} during
synchronization interval s ∈ N0, it retrieves the reception
timestamp tnn(Synci

s) from the NIC and uses the precise
origin timestamp tngi (Synci

s), the correction field egi,ns , and
the rate ratio Rgi,n received in the FollowUp message to
calculate the GM offset. The ptp4l instances store the M
offsets cgi,ns for i = 0, ...,M−1 to the gPTP GMs g0 to gM−1
in the FTSHMEM region. In synchronization interval s+ 1, the
first ptp4l instance on time-aware system n, for which it is

adjust_last + sync_interval ≤ tnn(now) (2.1)

with tnn(now) being the current time in node n, sorts the
master offsets cgi,ns for i = 0, ...,M − 1 in ascending order
and calculates the FTA master offset [3]. After aggregation,
the ptp4l instance updates adjust_last with the current
time and passes the aggregated master offset cs together with
the aggregated precise origin timestamp to the PI controller
to derive the frequency offset that the NIC driver uses to

1For example the Intel i210 Ethernet Controller [19].
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Fig. 1. Showing the design of a gPTP multi-domain aggregation using
a fault tolerance shared memory (FTSHMEM) region between M ptp4l
instances. Each ptp4l instance receives Sync and FollowUp messages
of a distinctive gPTP domain, calculates the GM master offset, and stores it
in the FTSHMEM. Given the synchronization period S, the first domain for
which it is now + S ≥ adjust_last passes the aggregated GM offset to
the shared PI controller and forwards the frequency offset to the kernel that
adjusts the NIC’s clock frequency.

correct the NIC’s clock frequency. Figure 1 illustrate the
design of our multi-domain aggregation using ptp4l in a
single synchronization VM where the overall system consists
of multiple physical nodes with multiple VMs as shown in Fig-
ure 2. Finally, we use LinuxPTP’s phc2sys to synchronize
CLOCK_SYNCTIME to the NIC’s fault-tolerant global time
by deriving the relevant clock parameters and updating the
STSHMEM of the dependent clock.

For our research prototype, we use diverse Linux kernel ver-
sions to prevent a single kernel vulnerability affecting multiple
GM clocks. However, for a production system, the degree of
diversification has to be justifiable concerning implementation
cost and gained cyber resiliency so that in some industries, it
is beneficial to use entirely distinct OSs. In fact, a previous
study [20] on shared vulnerabilities in OSs, including the
BSD, Linux, Solaris, and Windows OS families, suggests
that the number of shared vulnerabilities between two OSs is
significantly lower than the number of total vulnerabilities of
the individual OS. Moreover, their study indicates that even the
number of shared vulnerabilities between Linux distributions
is considerably smaller than the number of total vulnerabilities
in individual distributions.

III. EVALUATION

We performed two experiments to demonstrate the fault
tolerance and cyber-resilience capabilities of our proposed
clock synchronization architecture. Firstly, we demonstrate
how reusing the same clock synchronization stack for redun-
dant GM clocks breaks Byzantine fault tolerance. Therefore,
we intentionally used an exploitable kernel version on all GM
clocks enabling an attacker to take control of more than one
GM clocks and to execute a timing attack on the clock syn-
chronization despite the presence of multi-domain aggregation,

causing the clock synchronization precision to violate its upper
bound. In a second experiment, we validate the robustness of
the fault-tolerant clock synchronization against a single fail-
silent GM clock and fail-silent clock synchronization VMs by
injecting clock synchronization VM faults during a continuous
24h experiment. Note that there is never more than one faulty
clock synchronization VM per node since since this would
violate our fail-silent fault assumption. However, it is possible
for multiple clock synchronization VMs to fail at the same
time across nodes.

A. Methodology

1) Experimental Setup: We ran the experiments on a net-
work of four identical edge computing devices (ECDs), each
equipped with an Intel Atom E3950 multicore processor with
four cores at 1.594GHz, 8GB main memory and two Intel
I210 NICs. We denote the ECDs with dev1 to dev4 and the
NICs of devx with NICx

1 and NICx
2 . Each device’s NIC2

is wired to an integrated Linux-based TSN switch with four
external ports. All nodes, including the TSN switches sw1 to
sw4, executed IEEE 802.1AS using OpenIL’s LinuxPTP2 v1.8
with our multi-domain aggregation feature and external port
configuration enabled, meaning that there is no best master
clock algorithm (BMCA) picking GM clocks. Instead, we
configured four distinct gPTP domains dom1, ..dom4 with
spatially separated GM clocks.

Each ECD utilized the ACRN hypervisor [21] v2.4 with
the fault-tolerant dependent clock to run a privileged service
VM and two clock synchronization VMs with a single vCPU
and 1GB of main memory each. The hypervisor-native task
monitoring the clock synchronization VMs executed with a
period of 125ms. We pinned the vCPUs of each VM to a
dedicated processor core. We denote clock synchronization
VM i that was running on devx with cxi and the set of all clock
synchronization VMs with C. Note that clock synchronization
requires access to a dedicated physical NIC to minimize
timestamping jitter [16]. As a result, our configuration is
limited to two clock synchronization VMs per ECD, restricting
the failure assumption of the dependent clock to be fail-silent.
We illustrate the network topology in Figure 2. We configured
clock synchronization VMs GM := {c11, ..., c41} to act as GM
clocks for gPTP domains dom1, ..., dom4 respectively. We
provided a static port configuration for all gPTP domains that
allow for a redundant path between all virtual and physical
nodes of the test network.

2) Clock Synchronization Precision Measurement: We
measured clock synchronization precision by sending a mul-
ticast measurement packet ps every second s ∈ N from a
dedicated clock synchronization VM cmeasure, which acted as
a measurement VM, to the remaining clock synchronization
VMs cxi ∈ C \ {cmeasure}. The measurement VM sent
the multicast packet on a specified virtual LAN (VLAN) to
enforce that the packets take known paths from the source node
to the destination nodes in the mesh network. Upon reception

2https://github.com/openil/linuxptp

72

Authorized licensed use limited to: Carleton University. Downloaded on August 17,2023 at 19:51:31 UTC from IEEE Xplore.  Restrictions apply. 



Integrated Switch sw1

ACRN

ECD1

VM 0

Clock

Sync.

VM 1

Clock

Sync.

VM 1

Clock

Sync.

VM 2

Clock

Sync.

VM 2

VM 3VM 3

P4 P3 P2 P1 P0

P5

Integrated Switch sw1

ACRN

ECD1

VM 0

Clock

Sync.

VM 1

Clock

Sync.

VM 2

VM 3

P4 P3 P2 P1 P0

P5

Integrated Switch sw2

ACRN

ECD2

VM 0

Clock

Sync.

VM 1

Clock

Sync.

VM 1

Clock

Sync.

VM 2

Clock

Sync.

VM 2

VM 3VM 3

P4 P3 P2 P1 P0

P5

Integrated Switch sw2

ACRN

ECD2

VM 0

Clock

Sync.

VM 1

Clock

Sync.

VM 2

VM 3

P4 P3 P2 P1 P0

P5

Integrated Switch sw3

ACRN

ECD3

VM 0

Clock

Sync.

VM 1

Clock

Sync.

VM 1

Clock

Sync.

VM 2

Clock

Sync.

VM 2

VM 3VM 3

P4 P3 P2 P1 P0

P5

Integrated Switch sw3

ACRN

ECD3

VM 0

Clock

Sync.

VM 1

Clock

Sync.

VM 2

VM 3

P4 P3 P2 P1 P0

P5

Integrated Switch sw4

ACRN

ECD4

VM 0

Clock

Sync.

VM 1

Clock

Sync.

VM 1

Clock

Sync.

VM 2

Clock

Sync.

VM 2

VM 3VM 3

P4 P3 P2 P1 P0

P5

Integrated Switch sw4

ACRN

ECD4

VM 0

Clock

Sync.

VM 1

Clock

Sync.

VM 2

VM 3

P4 P3 P2 P1 P0

P5

gPTP domain 1gPTP domain 1 gPTP domain 2gPTP domain 2 gPTP domain 3gPTP domain 3 gPTP domain 4gPTP domain 4gPTP domain 1 gPTP domain 2 gPTP domain 3 gPTP domain 4

Fig. 2. Showing the network topology and node setup of our experimental
virtualized distributed real-time system. The switches of the four devices
form a mesh network ensuring redundant data paths. Each device hosts
the GM clock of one gPTP domain and a redundant clock synchronization
VM. The network ports of each gPTP domain are configured statically with
IEEE 802.1AS external port configuration.
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Fig. 3. Showing the measured clock synchronization precision for the 1h
cyber-resilience experiment. The attacker executed a root exploit in virtual
GMs c14 (in color blue) and c11 (in color yellow) at times 00:21:42 h and
00:31:52 h as indicated by the dashed lines.

the clock synchronization VMs serving measurement requests
created timestamps tnc

x
i (rxps

) using CLOCK_SYNCTIME and
returned them to the measurement VM. From the reception
timestamps, we calculated the measured precision during

measurement interval s as:

Π∗s = max
∀c,c′∈C\{cm1 ,cm2 }

(|tnc(rxps
)− tnc

′
(rxps

)|) (3.1)

In our setup, a clock synchronization VM cm2 acts as the
measurement VM. Therefore, the number of hops to the
remaining clock synchronization VMs C equals three except
for the path to clock synchronization VM cm1 , which equals
two, as packets only had to pass the internal TSN switch
swm of ECD devm to reach cm1 . Asymmetric paths result in
an increased measurement error γ [14]. Therefore, we omit-
ted clock synchronization VM cm1 for clock synchronization
precision measurement resulting in symmetric path latencies
from the measurement VM to all remaining destination clock
synchronization VMs CS := C \ {cm1 }, thus minimizing the
measurement error.

Let En,n′ be a network path from node n to node n′ and
Ec12

the set of all paths from the measurement node c12 to
clock synchronization VMs c ∈ CS. For each experiment, we
determined the measurement error

γ = max
∀En,n′∈Ec12

(dn,n
′

max)− min
∀En,n′∈Ec12

(dn,n
′

min) (3.2)

utilizing data on the network latency between adjacent nodes
extracted from ptp4l.

We acknowledge that measured precision does not include
any clock synchronization VM hosted on devm due to our goal
of minimizing the measurement error γ when setting up the
measurement VLAN. However, we want to emphasize that the
device devm hosting the measurement VM cm2 has been chosen
arbitrarily so that our selection did not affect the measured
clock synchronization precision.

3) Upper Bound on Clock Synchronization Precision: We
calculated the upper bound on clock synchronization precision
by instantiating the convergence function Π(N, f, E ,Γ) =
u(N, f)(E+Γ) introduced by Kopetz and Ochsenreiter [3]. We
determined the drift offset Γ = 2rmax · S = 1.25µs by using
expected maximum drift rate rmax = 5 ppm referenced in the
literature [11] and the synchronization period S = 125ms.
The reading error E = dmax − dmin equals the difference
between the maximum dmax and minimum latency dmin of
any two nodes in the network. Therefore, for each experiment,
we measured the latency between all nodes in our network
using ptp4l to determine dmin and dmax and derive an
estimate of the reading error.

As a result, for our experiments with N = |GM | = 4, we
expect the following inequality to hold for f ≤ 1:

∀s : Π∗s − γ ≤ Π(N, f, E ,Γ) = 2(E + Γ) (3.3)

B. Cyber-Resilience Experiments

For our first experiment, we measured minimum and max-
imum path delays of dmin = 4120ns and dmax = 9188ns
yielding a reading error of E = 5068ns and with it an upper
bound of clock synchronization precision of Π = 2(E + Γ) =
12.636µs. Furthermore, we found a measurement error of
γ = 1313ns for the symmetric paths from the measurement
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error γ, and the upper bound of clock synchronization precision Π in the presence of faults over the course of 24h on a logarithmic scale. We measured the
clock synchronization precision once per second. We have aggregated intervals of 120 sec and plotted the average, the minimum, and the maximum of our
the data points. Figure 4b visualizes the corresponding distribution of the measured clock synchronization precision.
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Fig. 5. Showing the measured clock synchronization precision for an 1h
interval of the 24h fault injection experiment. Colored arrows with dashed
lines indicate GM clock and gray arrows with dashed lines redundant clock
synchronization VM failures. Furthermore, gray stars with a dashed line mark
a clock synchronization VM taking over maintaining CLOCK_SYNCTIME.
Grandmaster clock events are color-coded in accordance with the colors used
for gPTP domains in Figure 2. Therefore, GM clock events of dom1 are
encoded yellow, GM clock events of dom2 are encoded green, GM clock
events of dom3 are encoded turquois, and GM clock events of dom4 are
encoded blue.

node c12 to the remaining clock synchronization VMs CS.
Next, we configured all virtual GM clocks to use the same
exploitable Linux kernel v4.19.1. For our realistic attack
scenario, we presumed an attacker A that has restricted user
credentials for at least two virtual GM clocks ci1, c

j
1 ∈ GM of

our experimental virtualized distributed real-time system. The
attacker utilizes an exploit 3 for CVE-2018-18955 to gain root
access to two virtual GM clocks ci1 and cj1.

We decided to pick virtual GMs c11 and c14 as attack
targets for demonstration purposes. The attacker A executed
the root exploits in virtual GM c14 at time 00:21:42 h and
in virtual GM c11 at time 00:31:52 h into the experiment.
After gaining root access, the attacker replaced the benign
ptp4l instances with malicious instances for both vir-
tual GMs. The malicious ptp4l instances distribute faulty
preciseOriginTimestamps that are offset by −24µs for
gPTP domains dom1 and dom4. In Figure 3a, we illustrate
the measured clock synchronization precision in a setup that
used identical Linux kernel versions for the virtual GMs as

3The used exploit 47164 can be found at https://github.com/
offensive-security/exploitdb-bin-sploits/raw/master/bin-sploits/47164.zip

it faced an attacker A. We can see that the FTA successfully
masks the initial attack on virtual GM c14 that resulted in the
distribution of malicious preciseOriginTimestamps at
time 00:21:42 h. However, as soon as the attacker takes over
the second GM c11 at time 00:31:52 h, we can observe how
the measured clock synchronization precision violates the
calculated upper bound and the nodes lose synchronization.

In contrast, Figure 3b shows the measured clock synchro-
nization precision of a second experiment using the same
attacker A but diversifying the used Linux kernel version so
only virtual GM c14 used the exploitable Linux kernel v4.19.1.
Again, we observe how the Byzantine fault tolerance success-
fully masks the initial attack on virtual GM c14. However, the
attacker’s attempt to also exploit GM c11 is unsuccessful, thus
demonstrating the effectiveness of explicitly identifying and
enforcing distinct software stacks to harden Byzantine fault
tolerance against cyber-attacks.

C. Fault Injection Experiments

In a second experiment, we ran fault injection experi-
ments for 24h to validate the robustness of our gPTP multi-
domain aggregation against fail-silent GM clocks and clock
synchronization VMs. To that end, we demonstrate how the
fault-tolerant dependent clock of the hypervisor prevents a
node from losing synchronization in case of a silent failure
of an active clock synchronization VM by issuing the re-
dundant clock synchronization VM to takeover maintaining
CLOCK_SYNCTIME.

For the fault injection, we ran a python tool in the service
VM of each ECD. The fault injection tool triggered periodic
sequential shutdowns of the GM clocks hosted on each ECD
with a period of 1h, i.e., 24 fail-silent GM clocks during the
experiment. In the case of redundant clock synchronization
VMs, which are not GM clocks, the fault injection tool
randomly triggered shutdowns with a minimum frequency
of one and a maximum frequency of 12 failures per hour
per node, i.e., at a maximum one fail-silent clock synchro-
nization VM that is not a GM clock every five minutes. In
summary, during our experiment, we observed 94 random
fail-silent clock synchronization VMs, 48 of which were
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grandmaster clock failures. Note that the fault injection tool
avoided injecting faults to both clock synchronization VMs
of a node simultaneously since this would have violated our
fault hypothesis. However, up to four clock synchronization
VMs can fail simultaneously on separate nodes. Finally, unin-
tended protocol or software faults resulting from the software
stack could occur independently at any time. For example,
we occasionally observed missed transmission deadlines of
Sync packets or timeouts when ptp4l attempted to retrieve
transmission timestamps from the Linux kernel.

In this setup we derived an upper bound of clock synchro-
nization precision of Π = 2(E+Γ) = 11.42µs and a measure-
ment error of γ = 856ns. Note, that differences in the upper
bound of clock synchronization precision between experiments
stem from varying minimum and maximum network latency
measurements.

Figures 4a and 4b show the results of the fault injection
experiment. For clarity, we aggregated and plotted the av-
erage (black line), minimum, and maximum (gray area) of
the measured clock synchronization precision for intervals
of 120 secs on a logarithmic scale. We achieve an average
clock synchronization precision of 322 ± 421ns throughout
24h. The measured clock synchronization precision depicts
frequent spikes with a maximum value of 10.08µs at time
06:45:49 h indicated by a red circle that lies within the
upper bound of precision Π and the measurement error
Π + γ = 12.28µs. The frequent spikes, despite remaining
within the bounds of clock synchronization precision and
the measurement error, raise the question of their origin and
accordingly means to eliminate them. Previous work on clock
synchronization using the ntpd [22] and the ptpd service
for Linux [23] emphasized their disposition to instability
due to the feedback control of the parameters of the Linux
kernel’s software clocks such as CLOCK_REALTIME or our
implementation of CLOCK_SYNCTIME. In [16], the author
utilized memory-mapped IO granting VMs direct access to
the clock register of a NIC to bypass the feedback control
of CLOCK_SYNCTIME. The author achieved an improved
robustness of the synchronized time in exchange for reduced
isolation due to the NIC’s internal state being exposed to co-
located VMs. Furthermore, Ridoux et al. [22], [23] proposed a
feed-forward robust absolute and difference clock (RADclock)
and demonstrated its advantages compared to the status quo.
Since then, the Linux kernel and PTP clock synchronization
protocol family evolved, and new implementations have been
published, such as LinuxPTP, including hardware timestamp
support. Nonetheless, we cannot rule out that measured pre-
cision’s instability stems from the feedback-based operation
of the clocks. Unfortunately, however, the RADclock never
found its way into the upstream Linux kernel impeding its use
as a dependent clock for our purposes. Therefore, to test the
hypothesis of a feed-forward CLOCK_SYNCTIME solving the
instability in measured clock synchronization using LinuxPTP
requires a from-scratch prototype implementation for a current
version of the Linux kernel, which was out-of-scope of this
work, leaving it to future work.

In Figure 5, we illustrate the time interval from 6:15:49 h to
7:15:49 h that includes the occurrence of the maximum mea-
sured clock synchronization precision indicated by a red circle.
Furthermore, we plotted the failure of clock synchronization
VMs, redundant clock synchronization VMs taking over main-
taining CLOCK_SYNCTIME, and ptp4l transient SW stack
faults. We represent clock synchronization VM failures as
triangles, redundant clock synchronization VMs taking over
maintaining CLOCK_SYNCTIME as stars, and ptp4l appli-
cation faults as crosses. We color-coded events corresponding
to a specific gPTP domain’s GM clock according to the colors
used in Figure 2. The transient application faults in the plot-
ted time interval include timeouts tx_timeout of ptp4l
attempting to retrieve the transmission hardware timestamp
from the Linux kernel, Sync packet transmission deadline
misses, and invalid Sync packet transmission deadlines passed
to the kernel. For all ptp4l instances throughout the 24h
experiment, we observed 2992 transmission timestamp timeout
faults and 347 transmission deadline misses in total. The
issue of transmission timestamp timeouts with the Intel i210
NIC used in our experiments, despite a sufficient configured
timeout of 5ms and alternating Linux kernel versions, seems
to originate in the Linux kernel’s igb driver. However, we
could not find the root cause of this fault. Note, that this issue
in the existing implementation does not limit the applicability
of our architecture yet it further demonstrates its effectiveness
in masking faulty behavior.

IV. CONCLUSION AND FUTURE WORK

We provided an implementation of our cyber-resilient ar-
chitecture utilizing open-source software. We implemented
a fault-tolerant dependent clock for the ACRN hypervisor,
enabling fail-silent clock synchronization VMs. Moreover, we
extended OpenIL’s LinuxPTP by multi-domain aggregation
utilizing an FTA. Finally, we evaluated our cyber-resilient
clock synchronization architecture by performing a simulated
cyber-attack and a 24h fault injection experiment. The simu-
lated cyber-attack on the fault-tolerant clock synchronization
conclusively demonstrated the problem of inadequate fault
containment units by reusing software stacks even in the
presence of an FTA and the 24h fault injection experiment
showed the robustness of the provided architecture against fail-
silent clock synchronization VMs.

However, relying on several feature-rich OS stack to imple-
ment cyber-resilient clock synchronization imposes significant
implementation overhead. Therefore, for future work, we iden-
tify unikernels, such as Unikraft [24], as an exciting extension
to our cyber-resilient clock synchronization architecture since
they enable simple, open-source software stacks that reduce
design faults due to their minimal code base. Additionally,
they combine predominant performance concerning runtime
overhead and boot times with a small memory footprint aiding
failure recovery.
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