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ABSTRACT

Behaviors of many engineering systems are described by
lumped parameter models that encapsulate the spatially dis-
tributed nature of the system into networks of lumped elements;
the dynamics of such a network is governed by a system of ordi-
nary differential and algebraic equations. Languages and simu-
lation tools for modeling such systems differ in syntax, informal
semantics, and in the methods by which such systems of equa-
tions are generated and simulated, leading to numerous interop-
erability challenges.

We propose to unify semantics of all such systems using
standard notions from algebraic topology. In particular, Tonti
diagrams classify all physical theories in terms of physical laws
(topological and constitutive) defined over a pair of dual cochain
complexes and may be used to describe different types of lumped
parameter systems. We show that all possible methods for gen-
erating the corresponding state equations within each physical
domain correspond to paths over Tonti diagrams. We further
propose a generalization of Tonti diagram that captures the be-
havior and supports canonical generation of state equations for
multi-domain lumped parameter systems. The unified semantics
provides a basis for greater interoperability in systems modeling,
supporting automated translation, integration, reuse, and numer-
ical simulation of models created in different authoring systems
and applications. Notably, the proposed algebraic topological
semantics is also compatible with spatially and temporally dis-
tributed models that are at the core of modern CAD and CAE
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systems.

1 INTRODUCTION
1.1 Motivation

Lumped parameter models are commonly used to describe
behaviors of many engineering systems [1]. In such systems,
spatially and temporally distributed physical phenomena are ap-
proximated by a finite network of abstract components that store,
dissipate, or transform energy; the phenomena-specific constitu-
tive properties of the components (e.g. generalized impedances)
are estimated by domain integrals from the actual system by a
process of “reticulation” [2]. Bond graphs [2], linear graphs [3],
Modelica [4] and Simulink/Simscape [5] are commonly used
physical modeling languages for creating, editing, and simu-
lating lumped parameter models. These languages may differ
widely in their syntax, but have similar (though not identical) se-
mantics that specifies interconnectivity and constitutive relations
of individual components in a system; the resulting model of a
system created in such languages is then compiled into a system
of state equations, a set of ordinary differential equations (ODEs)
or differential algebraic equations (DAESs), that may be numeri-
cally solved to simulate the system’s dynamic response.

Generally speaking, all modeling languages can handle the
same broad class of problems but with non-trivial differences in
system types, representations, state equation derivation and sim-
ulation mechanisms [3, 6, 7]. These differences in syntax and se-
mantics of system modeling languages lead to challenges in ex-
change, translation, and composition of models created in these
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languages. Such interoperability difficulties are only likely to in-
crease due to ubiquitous and growing adoption of physical mod-
eling languages by industry and standards organizations.

Conceptually, there are two possible approaches to deal-
ing with semantic interoperability issues: “point-to-point” cor-
respondence! between models created in different languages, or
standardization on a single neutral format that can be translated
to/from models in any such languages. The first approach is more
practical but is problematic because it requires O(n?) such trans-
lators, which is not only expensive, but discourages development
of new languages and simulation solutions. The second approach
is similar in spirit to STEP for product models, which requires the
neutral format to be formally defined and include the superset of
models present in any such language. These difficulties can be
observed in a recent effort to extend System Modeling Language
(SysML) with packages for direct communication with multi-
ple simulation tools [8]. Recently proposed Functional Mockup
Interface (FMI) [9] attempts to sidestep the semantic interoper-
ability issues by supporting model exchange and integration via
standardized XML and C-code interfaces; this approach simply
shifts the responsibility for semantic correctness of these tasks to
the authoring systems and users.

Irrespectively of the selected approach, semantic interoper-
ability requires establishing formal correspondence between con-
cepts and constructs in distinct modeling languages. This is the
main goal of this paper. Our approach relies on tools from alge-
braic topology and well known classification of physical theories
developed over the years by Tonti [10], Roth [11], Branin [12],
Kron [13], and others. Importantly, this classification gener-
alizes to higher-dimensional physical models, suggesting that
the proposed framework may be extended to include spatially-
distributed models represented by three-dimensional solid mod-
els, partial differential equations and finite element methods.

1.2 Outline

Section 2 briefly surveys the related works. In Section 3, we
summarize the well-known algebraic topological model of phys-
ical systems, which serves as the basis for Tonti diagrams that
classify physical variables, laws, and theories [10]. Tonti’s clas-
sification is a starting point for the unified semantics proposed in
this paper. The main results of the paper are contained in Section
4 and Section 5. We conclude in Section 6 with consequences of
the proposed semantic unification, discussion of practical appli-
cations and and possible extensions.

2 RELATED WORKS

Broadly speaking, interoperability subsumes the problems
of exchange and integration of simulation models created in dif-
ferent systems. The latter often manifests itself as the need for

I'Such correspondence may take a form of direct translation or using APIs.

co-simulation [14] and/or for executable semantics in system
modeling tools. For example, system engineering languages,
such as SysML [15] needs to integrate with simulation mod-
els in order to predict the modelled system behavior; however,
each specific tool needs a different interface, as proposed in [16]
for Matlab/Simulink, in [17] for Modelica, and for bond graph
in [18]. An effort to overcome these challenges was recently
described in [8], where a SysML extension is proposed specifi-
cally for the purpose of generating such interfaces automatically.
One of our goals in this effort is to provide formal semantics
for this and other interoperability efforts. Without such formal
semantics, integration of distinct simulation tools requires a non-
trivial software development effort that must resolve individual
assumptions and differences of distinct models. The purpose of
the recently proposed FMI standard [19] is to streamline and sim-
plify such efforts through generation of uniform C code. Unify-
ing semantics of distinct models would support automatic gener-
ation of such FMI interfaces.

Model-to-model conversion is an effective method for
achieving interoperability between different modeling lan-
guages. The conversion between the bond graph and linear graph
models has been studied in the 70’s. Ort and Martens proposed
a topological procedure for converting the bond graph to the
linear graph by identifying the correspondence of bonds in a
bond graph and edges of a linear graph [20]. While theoreti-
cally not every bond graph has a corresponding linear graph [21],
Birkett gave a deterministic cut-and-paste method for convert-
ing any physical bond graph to the corresponding linear graph
model [22]. Bond graphs can also be converted to equivalent
models in Simulink or Modelica. Specifically, [23] used bond
graphs through Simulink to analyze dynamic systems by trans-
forming bond graphs to equivalent block diagrams; researchers
in [24] observed that translating non-causal bond graph mod-
els to Modelica is in principle a straightforward process, even
if causal assignment cannot be specified in Modelica. The re-
verse conversion from Modelica to bond graphs has been stud-
ied in [25]. Strictly speaking, not every Modelica model can
be translated into a bond graph, because power continuity (the
energy balance) is strictly enforced by the junction structure of
bond graph but does not have to be enforced by interconnec-
tion of components in Modelica [26]. Similarly, not all Simulink
models may be translated into Modelica models, but translation
of selective Simulink models to equivalent Modelica models was
considered in [27]. Our goal is to identify a subset of physical
models that is supported by all of these languages and provide
unified semantics that would remove any ambiguities in such
conversions and other interoperability tasks.
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3 ALGEBRAIC TOPOLOGICAL MODELS OF LUMPED

PARAMETER SYSTEMS
3.1 Lumped parameter models as cochains

In algebraic topological view of physics, physical properties
are distributed in spacetime over finite chunks of space called
p-cells, (p =0,1,2...) that fit together to form a cell complex
that decomposes the undelying physical space [28]. All cells are
endowed with orientation, or sense of direction, which becomes
important in order to properly assign signs to physical properties
associated with cells.

All lumped parameter models can be formulated by using
2-dimensional cells complexes: 0-cells (nodes), 1-cells (edges),
and 2-cells (cycles or “meshes”). These complexes are abstract
in the sense that geometric coordinates or shapes of the cells are
immaterial; only their connectivity carries important physical in-
formation.” The distribution of physical properties is described
by assigning their types and quantities to the individual cells in
this complex. The formal mechanism for doing so requires dis-
cretizing the property g over p-cells €5 as a p-cochain CP, a for-

n

P
mal sum C? = ¥ gqeh.

=1

The relatio% between physical properties is governed by two
types of fundamental laws: metric laws and topological laws.
Metric laws usually involve measurement while topological laws
relate physical properties associated with space and its boundary.
Topological laws can be formulated using formal linear cobound-
ary & operations on cochains. Specifically, coboundary &, oper-
ating on a p-cochain produces a (p + 1)-cochain by transferring
and adding the coefficient of the p-cochain to its cofaces (Eq.1).
Formally,

p Npt1 np
8p(C") =5y (Zwﬁ) =) (Z haﬁ'gtx) et ()
a=1

p=1 \a=1

where n,, represents the number of cells in the p-cochain. The
incidence coefficient 2,5 = [eﬁ,e§+l} € {0,£1} is determined
by relative orientation of p-cell ef, and it cofaces (p + 1)-cell

egH [10]. If egﬂ is not a coface of e}, then hgp = 0; otherwise,

if the orientations of e5, and eﬁ“ are consistent, then /i, = +1,
otherwise, hqg = —1. If we denote the usual p-incidence matrix
as A = [hﬁa], then the coboundary operator §, is commonly
represented by its transpose A .

3.2 Physical theories as Tonti diagrams

Every physical theory is conceptualized in terms of rela-
tionships between two types of dual physical quantities that
are referred to by various authors as configuration/source [10],

2This is in stark contrast to spatially distributed physical phenomena governed
by partial differential equation where geometry of cells becomes critical.

through/across [12], or effort/flow [6]. In what follows we will
adopt Tonti’s convention and distinguish between configuration
type variables, that are modeled as cochains on primary cell com-
plex decomposition of space, and source variables that are mod-
eled as cochains on the dual cell complex decomposition of the
same space.

Physical laws (topological and metric) relate different types
of variables within each physical theory. Tonti proposed a sys-
tematic method for representing these laws using a diagram
that can be considered an evolved combination of the so-called
Roth diagrams [29] in terms of cochain sequences and “Maxwell
house” diagram to represent all topological and metric relation-
ships in electromagnetism [30]. A simple example of such a di-
agram is the Tonti diagram of static electrical network theory
shown in (Figure 1). It describes the network systems that sat-
isfy Kirchhoff Current Law (KCL) and Kirchhoff Voltage Law
(KVL) using a pair of cochains complexes dual to each other.

Network theory [ELE10]

FIGURE 1: Tonti Diagram of network theory - constitutive equa-
tions are modified to account for voltage and current sources

The diagram consists of two vertical sequences correspond-
ing to the primal (left) and dual (right) cochain complexes, or-
dered by dimension. The vertical arrows correspond to the
coboundary operations, going down for primal cochains and go-
ing up for dual cochains. Formally, the two sequences are exact
(the cochain sequence is exact if it satisfies 8,0 0,—1 =0 (p > 1))
and form two dual cochain complexes:

. 1
primal : e’ & v 2502

%

_ ~ 2
dual: 0% 2§l & 0

The measured relationships between dual quantities are rep-
resented by the horizontal links in the diagram. In the case of
network theory shown in Figure 1, the primal variable are node
potentials e associated with O-cells, voltage drops v and sources
associated with 1-cells, and voltage drops associated with 2-cells
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(meshes or cycles) that are identically 0 as the consequence of
KVL. The cochains of adjacent dimensions satisfy topological
laws expressed by the corresponding coboundary operations de-
picted as down-facing vertical arrows. Thus, 1-cochain of volt-
age drops v! = ATe? is implied by the coboundary operation &
on 0-cochain of node potentials €”; and KVL is just a restate-
ment of the Poincaré lemma. Similarly, the dual source (current)
variables: 0O-cochain i, 1-cochains j, and 2-cochain 0 are indi-
cated in the right branch of the diagram, related by the sequence
of two coboundary operations, indicated as arrows going up and
expressing KCL.

The reader will notice that the configuration and source vari-
ables in Figure 1 are associated with time elements: primal time
element for source variables and dual time element for config-
uration variables. This distinction becomes critical in dynamic
physical models [10]. For each type of spatial variable, we can
also consider its behavior in time which is represented by a pair
of dual 1-dimensional time complexes by respectively using 0-
cells I and 1-cells T to represent primal time instances and inter-
vals and O-cells 7 and 1-cells T to respectively represent the dual
time.

RLC circuit [ELE11]

. constiuutive equation o

o= LI

dissipative
constiuiive equation ,.«++**

LVERI

- V'“:“‘lQ
L ¢

constitutive equation

FIGURE 2: Tonti diagram of RLC circuit - only voltage sources
are included

The introduction of cell complexes in time has two conse-
quences. First, it identifies the usual time derivative with the cor-
responding coboundary operator 6°. Secondly, all space Tonti di-
agrams now acquire an additional time dimension, giving rise to
horizontal sections of the diagram. One such section is shown in
Figure 2, which corresponds to the Tonti diagram of RLC circuit
systems [10]. Two new constitutive equations describe the capac-
itance relation between electric charge Q and voltage drop v and
the inductance relation between magnetic flow ® and currents j.
Finally, we note that the vertical space diagram in Figure 1 and
the horizontal time diagram in Figure 2 can be combined into a
single three-dimensional diagram, as described in Section 4 and
shown in Figure 4a. In addition to physical quantities in Figure 1
and 2, the diagram in Figure 4a includes magnetic flux potential
¥ and mesh electric charge g that are related by coboundary op-
erators to magnetic flux @ and electric charge Q respectively. In
other words, the extended Tonti diagram includes two additional

cochain complexes defined by the two sequences:

primal : ¥° i ! i> ?
3)

dual : 0% <6—1Q1 &qo

3.3 Dual cochain complexes on a single cell complex

In lumped parameter models, dual discretizations are partic-
ularly counter-intuitive, since all spatially distributed properties
have already been integrated (lumped) and only connectivity of
the underlying cell complex remains visible. That connectivity
often directly corresponds to the physical embedding; for exam-
ple, a single electrical network carries both voltage and current
information. Similarly, general network model is a single cell
complex where primal and dual cochains are represented. The
mapping of dual cochains on the primal cell complex is straight-
forward and is accomplished by mapping the dual (n — p)-cells
to their corresponding primal p-cells, as shown in Figure 3.

!
()
L&/
- M Vi(a)
A Y Yo Yo
{ ( (
N F — T N— Tym
- —>
mI AR T S e
t (
NP AN — Y

FIGURE 3: Dual cochain complexes on a single cell complex

With this mapping, all (n — p)-coboundary operations in
dual cell complexes would become the p-boundary operations
d in the primal cochain complex, which operate on a p-cochains
and produce a (p — 1)-cochains:

()= (Y. gach) = Y. (Z hap -ga> g @
a=1

p=1 \a=1

which is similar to Eq.1, except that the coefficients are trans-
ferred from p-cells to their (p — 1)-faces. This implies that the
coboundary operation 8,_,, on the dual cells complex is mapped
into the boundary operation d,, on the primal cell complex,’ i.e.,

=0 S)

The single complex network model is summarized by a new
type of Tonti diagram shown in Figure 4b. Here the dual (source)

3This observation also justifies use of d), operator, usually reserved for p-
chains, on p-cochains
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cochains have been mapped to the corresponding cochains on
the primal cell complex to form the dual cochain complex with
boundary d, operators replacing the original dual J,—, cobound-
ary operators. In other words, the dual cochain sequences in (2)
and (3) become respectively

(6)

[T.P]¥ 0[T.P]
(r)/
0 )
[LP|e u|IT\‘?' j
® T.L] ¥
) AL
0 8 /,/R'/ Togt
Loy, %"l ¢ Q
—" i
0 ST
— i[T.S]
& L8] b
J
ILS]0 qlLS)

(b) Topological and constitutive
relationships on a single cell com-
plex

(a) Matrix operators on dual cell
complexes

FIGURE 4: Extended Tonti diagram for RLC network system -
with voltage and current sources

In the rest of the paper, we will assume that an algebraic
topological model of a lumped parameter system is described by
such single (primal) cell complex and a corresponding Tonti di-
agram with four cochain complexes (corresponding to the four
vertical “legs” of the diagram) and all relationships between
them.*

4 SINGLE-DOMAIN LUMPED PARAMETER SYSTEMS

In this section, we will show how to use Tonti diagrams to
describe lumped parameter systems and introduce an automated
method of generating system state equations. We will focus on
lumped parameter models of a single physical domain, exempli-
fied by classical RLC electrical circuit systems. Application to
other physical domains is immediate, since all such models are
isomorphic.

Classical single-domain RLC electrical circuits consist of
five types of physical elements: resistors, capacitors, inductors,

4Strictly speaking, using d), operators give rise to chain complexes, but it
should be clear that these chain complexes on the primal cell complex are iso-
morphic to the cochain complexes over the dual cell complex.

voltage sources and current sources. The algebraic topological
structure of dynamic electrical circuits relies on cochains from all
four cochain complexes modeled over a single cell complex. The
topological and constitutive relations between these cochains are
given by the diagram in Figure 4b and one method® of gener-
ating the state equations is indicated by paths in the diagrams
shown in Figure 5. Each path is a sequence of the arrows in-
dicating composition of the corresponding physical laws. The
middle horizontal section of the diagram allows three alterna-
tive (pink, purple and blue) paths relating the primal 1-cochain
of voltage drops v! and the dual 1-cochain of branch currents j'
corresponding to capacitance, resistance, and inductance consti-
tutive relationship respectively. The presence of alternative paths
indicate superposition of the corresponding equations generated
by each path.

[LPle

J[T.L)

Hi
\ o
) s <
(R B
\
\
\
\
\
\
\
\
\
\
\
\

——————=(QIIL]

[LS10 q[LS]

FIGURE 5: State equation generation paths on the extended Tonti
diagram with the selected state variable: g0

The paths in Figure 5 select 0-cochain PO as the state vari-
able. The system state equation can be generated by composi-
tion of five physical laws (two topological and three constitutive)
starting with a O-cochain %0, First, coboundary operator in space
do applied to potential magnetic fluxes PO in order to generate
magnetic fluxes ®'. Now the path splits in two: the blue arrow
corresponds to constitutive law L' (of the inductor) that relates
the magnetic fluxes to branch currents of inductors; the pink ar-
row takes the magnetic fluxes to generate voltage drops v! via the
boundary operator in time d]. From here the path splits in two
again: the purple arrow corresponds to the constitutive Ohm’s
law G that relates the voltage drops to branch currents of resis-
tors; continuing along the pink path, the constitutive capacitance
law C relates the voltage drops to electric charges Q' of capac-
itors is followed by the time coboundary operator & applied to
electric charges of capacitors to generate branch currents of ca-
pacitors. Note that the three paths corresponding to the three

5Other methods to generate the state equations refer to our technical report
(31]
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constitutive laws merge into a single 1-cochain of branch cur-
rents j', which is then transformed one more time by the upward
green arrow corresponding to KCL d;j' = 0. Taking into ac-
count the voltage and current sources and collecting them to the
right hand side of the equation, above processes results in state
equations Eq.7.

o1 | 8,CA ¥+ R 19ISP’ + LW’ | =
——

currents of C currents of R currents of L

(7

o it —(SC+R L) v¢
~—

current sources

equivalent current sources
generated from
voltage sources

In lumped parameter systems, space and time are treated
separately, and discretization of time is often delayed until a
particular numerical integration scheme is chosen. In this case,
viewing boundary d] and coboundary d) operations as differen-
tiation in time syntactically transforms Eq.7 to a more familiar
form:

| ca¥ +RrR 18 L 8w | =
—— —— ——

currents of C  currents of R currents of L

®)

) it
~—~

current sources

- <Cv} SR 4L /v}dz)

equivalent current sources
generated from
voltage sources

5 MULTI-DOMAIN LUMPED PARAMETER SYSTEMS
5.1 Interactions of single-domain models

Engineering systems are usually constructed as composi-
tions of single-domain subsystems in order to perform com-
plex engineering tasks. We will refer to such systems as multi-
domain systems, where lumped-parameter behavior of each
single-domain is governed by an extended Tonti diagram as de-
scribed in the previous section. Composition of two single-
domain systems is associated with the process of energy con-
version between the two systems, also called transduction [6].
Devices used to couple the same type variables of different phys-
ical domains are usually called transformers, while devices cou-

pling the dual type variables are called gyrators. Transformers
and gyrators with no energy loss are called ideal transformers
and gyrators [6].

In our proposed combinatorial model of lumped parameter
systems, physical transducer devices can be abstracted by addi-
tional relations between primal and dual variables in each of the
subsystems; such relations may be governed by additional con-
stitutive, interaction, or conservation constrains imposed on the
multi-domain system [32]. In principle, such a representation is
sufficient for capturing the behavior of a multi-domain system.
Each Tonti diagram corresponds to a system of ordinary differ-
ential equations that are coupled by the transducer constraints.
However, this representation neither recognizes nor takes advan-
tage of the fact that all single-domain behaviors are isomorphic,
which allows to treat the whole multi-domain system as a col-
lection of four constrained cochain complexes on a single cell
complex model. Below we will define such a model, which takes
a form of a generalized Tonti diagram. We then show that, in
the presence of two most common transducers: ideal transform-
ers and gyrators, the governing equations for such a model may
be generated by following the paths on the generalized Tonti dia-
gram. This results extends the result of Section 4 to multi-domain
lumped parameter systems.

5.2 Generalized Tonti diagram for multi-domain sys-
tems

Since lumped parameter models in different physical do-
main are isomorphic, so are their corresponding Tonti diagrams.
In this sense, a single Tonti diagram describes behavior of all
lumped parameter systems, provided that the variable of the same
space-time type are identified and generalized. Two most com-
mon generalizations are mechanical (generalized displacement-
force model) and electrical (generalized voltage-current model).
For the sake of consistency with the discussion in Section 4, we
will adopt the generalized electrical model. For example, the
electrical resistors, mechanical dampers and hydraulic resistors
are all identified as generalized resistors, and so on. In order to
emphasize the generalized nature of all physical quantities and
to distinguish them from the actual physical electrical network
model, we will choose a different set of symbols. Specifically,
the generalized Tonti diagram is defined by four exact cochain
sequences on a single cell complex:

primal : p° Dyl g2 )
4o oy gt 2 02 (10)

dual: 2 -2 ¢l 2 00 (11)
n2 %y m! 1, 0 (12)
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,where pO is a O-cochain generalized potentials, a! is a 1-cochain
generalized voltages, d° is a O-cochain generalized potential
magnetic fluxes, u'! is a 1-cochain generalized magnetic fluxes,
s? is a 2-cochain generalized mesh currents, t' is a 1-cochain
generalized currents, n is 2-cochain generalized mesh charges,
and m! is a 1-cochain generalized electric charges. There are
also four cochains that are always 0: 2-cochain of generalized
mesh magnetic fluxes, 2-cochain of generalized mesh voltages,
0-cochain of generalized node currents and O-cochain of gener-
alized node electric charges.

With such a generalization, all the physical variables of the
same space-time type are replaced by their generalized counter-
parts, effectively transforming model of the heterogeneous multi-
domain system in an abstract (generalized) homogeneous sys-
tem. The behavior of this system is governed by the generalized
Tonti diagram shown in Figure 6. As before, the generalized pri-
mal and dual cochains are related by (generalized) constitutive
relations: resistance Ry, capacitance Cg, and inductance L.

__ 9,
[LPIp [~ Tv ! t,
[T.L] F LI/
u 1 ’

[TSlo u [LB] IS0 n[iS]

(a) Matrix operators on dual cell (b) Topological operators on a sin-
complexes gle cell complex

FIGURE 6: Generalized extended Tonti diagram for generalized
RLC network system

Furthermore, since all physical quantities are generalized,
the actions of ideal transformers and gyrators can be modeled
simply as additional constraints on the cochains in the general-
ized Tonti diagram. Traditionally, a transformer is abstracted as
a linear transformation

[1 —kl]~[a| az]T:0

13
[l—kfl]'[lltz]T:() (13)

,where k; is the transformer’s modulus measuring the ratio be-
tween two (generalized) voltages a; and ay, as well as the recip-
rocal ratio between the generalized currents #; and #, in order to
enforce energy balance ajt; = ayt;. Generalizing, every ideal

transformer can be represented by a pair of linear constraints
k;a = 0 and k]t = 0 on cochains of generalized voltages a and
currents t. These constraints are indicated on the generalized
Tonti diagram in Figure 6 by two cycles. Similarly, the effect of
an abstract gyrator is usually described by a linear transformation

ap | 0 kg hH

o)=L 2] o
,where the modulus k, relates the dual quantities in two interact-
ing domains: generalized voltage a; of the first domain is pro-
portional to the generalized current #, of the second domain, and
vice versa, again satisfying the ideal energy balance law. Equiva-
lently, a generalized gyrator may be represented by a linear trans-
formation kg that relates the cochains of generalized voltages and

currents, as indicated by a dotted arrow in the Tonti diagram in
Figure 6.

5.3 System state equations of multi-domain systems

With all physical variables generalized, the heterogeneous
multi-domain system now becomes a homogeneous multi-
domain system in terms of generalized physical variables. In-
stead of multiple 2-cochain complexes associated with different
types of physical variables, the algebraic topological model of
the multi-domain system is now a set of 2-cochain complexes
associated with the same (generalized) type of physical variables
that are defined over a single cell complex and are constrained
by abstract transformers and gyrators.

[T.P1d, 0[T.P]
[LP]
[LPlp 0 .
W30 '
iaa} === _IZf|vitn
ap - ==
/=
o 4= =l
[LL]
T3 T ,,
0y[T.8] S [TH]

[LS)0 n (L8]

FIGURE 7: State equation generation paths on the generalized
extended Tonti diagram with the selected state variable: n>

One method® of generating the state equations is indicated
by paths in the generalized Tonti diagram shown in Figure 7. The
paths select the 2-cochain n’ as the state variable. The system

Other methods to generate the state equations refer to our technical report
[31]
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state equation can be generated by composition of seven phys-
ical laws (two topological and five constitutive) starting with a
2-cochain n?. First, boundary operator in space ¢» applied to
generalized mesh electric charge n” in order to generate general-
ized electric charge m!. Now the path splits into two: the blue
arrow corresponds to constitutive law Cg_1 that relates general-
ized electric charge to generalized voltages of generalized ca-
pacitors; the pink arrow takes the generalized electric charge to
generate generalized current t! via the coboundary operator in
time §). From here the path splits into four: (1) the purple arrow
corresponds to the constitutive law R, that relates generalized
currents to generalized voltages of generalized resistors; (2) the
brown arrow corresponds to the constitutive law K, that relates
generalized currents to generalized voltages of gyrators; (3) the
red cyclic arrow on the right corresponds to constitutive law K|
that constrains the generalized currents of generalized transform-
ers; (4) the pink arrow takes the generalized currents to generate

S1 L, (921"12 + R, (921'12
N

generalized magnetic fluxes of generalized inductors by using
constitutive law L, followed by taking the generalized magnetic
fluxes to generate generalized voltages of generalized inductors
via the boundary operator in time d{. Note that these four paths
and the left red cyclic path corresponding to five constitutive laws
merge into a single 1-cochain of generalized voltages a!, which
is then transformed one more time by the downward green ar-
row corresponding to KCL §;a! = 0. Taking into account the
generalized sources, collecting the terms with known generalized
sources and moving them to the right hand side, and interpreting
boundary 9] and coboundary &) operations as differentiation in
time, above procedure results in the state equation’ Eq.15, with
K, (8,0.n*—t}) = 0 and k (a' —a]) = 0 being the constraint
equations.

+ Cjlom® 4+ ko' 4 a)
——

—— ~—~

generalized voltages  generalized voltages generalized voltages generalized voltages ~ generalized voltages
of transformers

of generalized L of generalized R

of generalized C

of gyrators

(15)

=8 —a} + L, +Rotf +kotp +C,' /t}dt
~

generalized voltages

sources equivalent generalized voltage
sources generated from
generalized current sources

Example 1. We will use an example of multi-domain electrical-
mechanical system in Figure 8a to illustrate the derivation of
Eq.15. The shown electrical-mechanical system contains two re-
sistors Ry, Ry, one capacitor Cy, one inductor Ly, one voltage
source Vs, one moment of inertia J, one external torque T, one
electrical transformer and one DC motor. The transformer be-
tween two electrical domains is an ideal electrical transformer
with turns ratio Ny /Ny; the gyrator between the electrical and
the mechanical domain is an ideal DC motor, where the ratio of
the voltage drop and the rotational velocity is ky. Topologically,
the system is a 2-cell complex shown in Figure 8b, and consisted
of nine O-cells P, (i =1 ~9), nine I-cells (Lg,,Lc,,Lr1,Lrr,
Lg,.L1,, Lor,LGr.Ly) and three 2-cells (M1,M2,M3). We use sym-
bol -TF- to represent the abstract transformer and a symbol -GY-
to represent the abstract gyrator. These two symbols identify the

"Note that the generalized voltages of transformers aIT cannot be directly ob-

tained from the generalized currents of transformers tIT, so we treat them as ad-
ditional unknown variables in the system state equation.

demoor | )7

G

(a) A multi-domain electro-mechanical
system

P oLy P L, P LF: P,

! P,
(b) Topological structure
FIGURE 8: An electro-mechanical system and its topological

structure

cells where the energy transaction may occur.
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The algebraic topological model of the system contians:
primal O-cochain generalized potential magnetic fluxes (d° =
di-Pi+dy - Po+ds - Ps+dy-Py+ds-Ps+deg-Ps+dy- Pr+
dy - P +dy - Py), primal O-cochain generalized potentials ( p0 =
pr-Pitp-Po+p3s-Pys+ps-Pr+ps-Ps+pe-Ps+p7-Pr+
ps - Ps + po - Py), primal 1-cochain generalized magnetic fluxes
(' =uy - Lg, +us- Lo, +u3 - Ly +us - Lrg + us - Lg, + ug -
Ly, +u7-Lgp +ug-Lggr +ug - Ly), primal 1-cochain generalized
voltages (a1 =ay-Lg, +ay-Lc, +ary - Lty +arg - Lyr + as -
LR2 +ae - LL] +agr - Lgr +agr - Lgr + a9 - Ly), dual 1-cochain
generalized currents (=1 “Lg, +t-Le, +trp - Ly +trr -
Lrr+1ts-Lp, + 16 Ly, +t6L  LGL+1tGr - Lgr +19 - Ly), dual I-
cochain generalized electric charges ( m! =m, “Lg, +my-Lc, +
mry - Lyp +myg - Lrg +ms - Lg, +mg - L, +mgp - Lo +mgr -
Lggr+mg-Ly), dual 2-cochain generalized mesh electric charges
n2=n; -M|+ny-M, +n3 - Ms, dual 2-cochain generalized mesh
currents s> = sy - M| + 52 - My + 53 - M3 and four cochains that
are always 0: 2-cochain of generalized mesh magnetic fluxes,
2-cochain of generalized mesh voltages, 0-cochain of general-
ized node currents and 0-cochain of generalized node electric
charges. In order to obtain unique solution of the state equa-
tions, we consider O-cells P, P; and Py as the reference node.
Following the paths shown in Figure 7, generates the system state
equation as follows®

00 0 Ry, 0 0 C,' 00 ary
0Ly, O [ii°4+ | O Ry kg |8+ | O 00| n*+ |arg
0 0 L, 0 kg O 0 00 0
ary/ar, = Ni /N,
i) /ﬁ%z):zvz/zv1

(16)

6 CONCLUSION AND PROMISING DIRECTIONS

The difference in syntax and semantics of system modeling
languages results in many challenges in model exchange, trans-
lation, and composition. Standardizing on a semantics of these
languages is a key to solving such widespread interoperability
challenge that arise with rapid proliferation of model-based en-
gineering language and tools. Moreover, formal semantics of en-
gineering models is also a principal ingredient of rigorous and al-
gorithmic foundations for model-based systems engineering. In
this paper, we proposed a formal semantics for a large and impor-
tant class of lumped-parameter systems that are widely used for
systems engineering, physical modeling, and design activities.
The proposed semantics relies only on standard tools from alge-
braic topology and known results in classification of physical the-
ories and systems. The semantics is effectively “representation

8Refer to our technical report [31] for more detailed procedure of generating
this equation

free” in that it is independent of specific implementation assump-
tions, coordinates, linguistic constructs, or numerical simulation
schemes. We showed that (extended and generalized) Tonti di-
agrams provide a canonical method for representing behaviors
of lumped parameter systems computationally. Based on known
classification of physical theories, behavior of any lumped pa-
rameter system may be described either as a collection of inter-
acting single-domain Tonti diagrams or as a single generalized
Tonti diagram with energy transduction represented by additional
constraints. In other words, a Tonti diagram can be viewed as a
representation scheme and a data structure for representing most
known physical behaviors. We have also seen that this represen-
tation supports algorithmic generation of all possible forms of
the governing state equations as paths in the (collection of) Tonti
diagrams.

Treating the common semantic model and its representa-
tion by Tonti diagrams as the first class objects, that explicitly
represent physical behaviors, opens up a number of promising
and exciting opportunities in computational design and model-
based engineering. Algorithmic construction, editing, composi-
tion, and transformation of such models would support a broad
range of design engineering activities, from concept generation
to detailed system modeling. Because many such engineering
activities are performed using SysML, it may be reasonable to
expect that Tonti diagrams should appear as one of the standard
diagrams in SysML in the near future. Such a diagram would
pioviide immediate support for including physical behaviors and
tHeir simulation into a broad range of model-based systems engi-
nering activities.
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