

ABSTRACT
 ATLAS is a modeling language that permits defining a
static view of a city section for simulating traffic in an area.
The models are formally specified, avoiding a high number of
errors in the application, thus reducing the problem solving
time. The system required the manual generation of ATLAS
files, a tedious process that did not lend itself for rapid changes
to the system input. The output of the system also suffered from
a non-user friendly interface. The solutions to these problems
were addressed in two parts: a front-end system allowing the
user to draw city sections (and then parse the drawing to create
a valid ATLAS file), and an output subsystem permitting show-
ing cars with realistic 3D graphics.

1. INTRODUCTION

 Urban traffic analysis and control is a problem of such a
complexity that it is difficult to be analyzed with traditional
analytical methods. Modeling and simulation techniques, in-
stead, have shown a certain degree of success, and they have
been gaining popularity as an analysis tool. Simulation permits
studying particular problems using virtual experimentation.

We have developed a toolkit for modeling and simulation

of traffic in urban centers. This project followed a rigorous ap-
proach that we introduce here. The first stage was devoted to
define and validate a high level specification language repre-
senting city sections [1]. This language, called ATLAS (Ad-
vanced Traffic LAnguage Specifications) focuses on the de-
tailed specification of traffic behavior. The models are
represented as cell spaces, allowing elaborate study of traffic
flow according to the shape of a city section and its transit at-
tributes. A static view of the city section can be easily de-
scribed, including definitions for traffic signs, traffic lights, etc.
A modeler can concentrate in the problem to solve, instead of
being in charge of defining a complex simulation.

The constructions defined in this language are mapped

into DEVS [2] and Cell-DEVS models [3]. DEVS provides
high performance for discrete-event systems simulation [4].
Similar results were obtained for Cell-DEVS models [5]. It also
provides a formal framework that can be used to validate and
verify the models. This approach permits us to reuse the models
created and integrate with others using different formalisms
(for instance, using Petri Nets or Finite State Machines to spec-
ify the behavior of traffic lights or railway controllers).

A real system modeled using the DEVS formalism can be

described as being composed of several submodels. Each of
them can be behavioral (atomic) or structural (coupled). A
DEVS atomic model is described as:

M = < X, S, Y, δint, δext, λ, D >

Here, X is the input events set, S is the state set, and Y is
the output events set. We also use four functions: δδδδint manages
internal transitions, δδδδext external transitions, λλλλ the outputs, and
D, the lifetime of a state. The interface is composed of input
and output ports to communicate with other models. Each port
is defined as a pair, including a port name and its type. The in-
put external events (those coming from other models) are re-
ceived in input ports.

A DEVS coupled model is defined as:

CM = < I, X, Y, D, {Mi}, {Ii}, {Zij} >

Here, I is the model interface, X is the set of input events,
and Y is the set of output events. D is an index of components,
and for each i ∈ D, Mi is a basic DEVS model (atomic or cou-
pled). Ii is the set of influencees of model i. For each j ∈ Ii, Zij
is the i to j translation function. Each coupled model consists of
a set of basic models connected through the input/output ports.
The influencees of a model will determine to which models one
send the outputs. The translation function is in charge of trans-
lating outputs of a model into inputs for the others. To do so, an
index of influencees is created for each model (Ii). For every j
in this index, outputs of the model Mi are connected to inputs in
the model Mj.

The Cell-DEVS formalism was proposed as an extension

to DEVS permitting to describe cellular models. Cell-DEVS
allows the definition of complex cellular models that can be
integrated with other DEVS. Here, each cell of a space is de-
fined as an atomic DEVS with explicit timing delays. Transport
and inertial delays define the timing behaviors of each cell in an
explicit and simple fashion. A transport delay allows us to
model a variable response time for each cell. Instead, inertial
delays are preemptive: a scheduled event is executed only if the
delay is consumed.

Figure 1: Informal Definition of Cell-DEVS.

Cell-DEVS atomic models can be formally specified as:

DEFINING AND VISUALIZING MODELS OF URBAN TRAFFIC

Shannon Borho, Jan Pittner, Gabriel Wainer
Department of Systems and Computer Engineering

Carleton University
4456 Mackenzie Building. 1125 Colonel By Drive

Ottawa, ON. K1S 5B6. CANADA
gwainer@sce.carleton.ca

TDC = < X, Y, I, S, N, delay, d, δint, δext, τ, λ, D >

where X represents the external input events, Y the exter-

nal outputs, and I is the interface of the model. S is the cell
state definition, and N is the set of input events. Delay defines
the kind of delay for the cell, and d its duration. Each cell uses
a set of N input values to compute the future state using the
function ττττ. These values come from the neighborhood or other
DEVS models, and they are received through the model inter-
face. A delay function can be associated with each cell, allow-
ing deferred the outputs. Therefore, the outputs of a cell are not
transmitted instantaneously, but after the consumption of the
delay. The outputs usually include the execution results of the
local computing functions. This behavior is defined by the δδδδint,
δδδδext, λλλλ and D functions.

A Cell-DEVS coupled model is defined by:

GCC=<Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z>

Here, Ylist is an output coupling list, Xlist is an input cou-
pling list and I represents the interface of the model. X are the
external input events and Y the external outputs. The n value
defines the dimension of the cell space, {t1,...,tn} is the number
of cells in each dimension, and N is the neighborhood set. C is
the cell space, B is the set of border cells and Z the translation
function. The cell space defined by this specification is a cou-
pled model composed of an array of atomic cells. Each of them
is connected to the cells defined by the neighborhood. As the
cell space is finite, the borders should have a different behavior
than the remaining cells. Otherwise, the space is wrapped,
meaning that cells in a border are connected with those in the
opposite one. Finally, the Z function allows one to define the
internal and external coupling of cells in the model. This func-
tion translates the outputs of m-eth output port in cell Cij into
values for the m-eth input port of cell Ckl. The input/output
coupling lists can be used to transfer data with other models.

The formal specifications for DEVS and Cell-DEVS were

used to build the CD++ tool [6]. This tool provides a specifica-
tion language following the formal specifications described in
this section. ATLAS was formally defined as a set of construc-
tions, which were mapped into DEVS and Cell-DEVS models
[7, 8]. The behavior for each of the constructions presented in
this language was validated in terms of their correctness when
built as Cell-DEVS models. Then, a compiler was built follow-
ing the specifications [9]. The compiler, called ATLAS TSC
(Traffic Simulator Compiler), generates code by using a set of
templates that can be redefined by the user. In this way,
ATLAS specifications can be translated into different tools
with facilities to define cellular models. It also avoids version
problems if the underlying tools are modified.

Figure 2: Structure of the software platform to develop ATLAS

models

In ATLAS, a modeler can easily describe a city section,
including traffic signs, traffic lights, etc. A modeler can con-
centrate on the problem to solve, instead of being in charge of
defining a complex simulation or defining the models using a
simulation package. Until now, the definition of models of ur-
ban traffic required the manual generation of text files defining
city section using ATLAS constructions. This is a tedious proc-
ess that does not lend itself for rapid changes to the system in-
put. The output of the system also suffered from a non-user
friendly interface. The simulation output was converted into
different file types with primitive ASCII drawings of the simu-
lation results. Thus, it was not easy for a user to define the input
for the system, or easily absorb the simulation results. The solu-
tions to these problems were addressed in two parts. A front-
end program allows the user to draw a small city section com-
plete with roads, intersections, and decorations, and then parse
the drawing to create a valid ATLAS file.

Likewise, the output went from a single segment of road

with blocks as cars to a full-blown city section with realistic 3D
graphics. Parsing the ATLAS file, building the city section in a
VRML world and then mapping the simulation output results
onto the system accomplished this result. We will discuss the
details of these enhanced facilities in the following sections.

2. ATLAS CONSTRUCTIONS

 ATLAS allows representing the structure of a city section
defined by a set of streets connected by crossings. The language
constructions define a static view of the model, which is con-
sidered to be built as grids composed of cells [1]. ATLAS for-
mal specifications were used to build the ATLAS TSC com-
piler and the syntax for its language sentences. Following, we
present the main constructions of ATLAS and its syntax.

a) Segments: they represent sections of a street between
two corners. Every lane in a given segment has the same direc-
tion (one way segments) and a maximum speed. They are
specified as: Segments = { (p1, p2, n, a, dir, max) / p1, p2 ∈
City ∧ n, max ∈ � ∧ a, dir ∈ {0,1} }, where p1 and p2 repre-
sent the boundaries of the segment (City = { (x,y) / x, y ∈ R }),
n is the number of lanes, and dir represents the vehicle direc-
tion. The a parameter defines the shape of the segment (straight
or curve, allowing to define the city shape more precisely, in-
cluding the exact number of cells), and max is the maximum
speed allowed in the segment.

This constraint was included in ATLAS TSC. The com-
piler permits defining the segments by delimiting them using
the sentences begin segments and end segments. At least
one segment must be defined, using the following syntax:

id = p1, p2, lanes, shape, direction, speed,
parkType

These values map the parameters mentioned previously,

with shape: [curve|straight] and direction:
[go|back]. Finally, parkType is used to define parking
constructions, formally specified in the following paragraphs.

b) Parking: border cells in a segment can be used for

parking. They are formally defined as: Parking = { (s, n1) / s ∈
Segments ∧ n1 ∈ {0,1} ∧ s = (c1, c2, n, a, dir, max) ∧ n > 1 }.
Every pair (s, n1) identifies the segment and the lane where car

parking is allowed. If n1 = 0, the cars park on the left; if n1 = 1,
on the right (lane n-1).

If we review the construction used for Segments in
ATLAS TSC also includes information for the parking seg-
ments. In this case,

parkType: [parkNone | parkLeft | parkRight |
parkBoth]

defines in which area of the segment a car can park.

c) Crossings: these constructions are used to represent the
places where more than one segment intersects. They are speci-
fied as: Crossings = { (c, max) / c ∈ City ∧ max ∈ � ∧ ∃ s, s’
∈ Segments ∧ s = (p1, p2, n, a, dir, max) ∧ s’ = (p1’, p2’, n’, a’,
dir’, max’) ∧ s ≠ s’ ∧ (p1 = c ∨ p2 = c) ∧ (p1’ = c ∨ p2’ = c) }.
Crossings are built as rings of cells with moving vehicles fol-
lowing the ideas presented in [10]. A car in the crossing has
higher priority to obtain the next position in the ring than the
cars outside the crossing. In ATLAS TSC, the definitions for
crossings are delimited by the separators begin crossings
and end crossings. Each sentence defines a crossing using
the following syntax:

id = p, speed, tLight, crossHole, pout

Parameters p and speed represent (p1,p2) and max of the

formal specification. Pout defines the probability of a vehicle
to abandon the crossing, used to simulate random routing of
different vehicles. The remaining parameters are related with
specific types of crossings, and will be explained in the follow-
ing paragraphs.

d) Traffic lights: crossings with traffic lights are formally

defined as: TLCrossings = { c / c ∈ Crossings }. Here, c ∈
TLCrossings defines a set of models representing the traffic
lights in a corner and the corresponding controller. Each of
these models is associated with a crossing input. The model
sends a value representing the color of the traffic light to a cell
in the intersection corresponding to the input segment affected
by the traffic light. The following qualifier is added to a stan-
dard crossing definition in ATLAS TSC for crossings with traf-
fic lights: tLight: [withTL|withoutTL].

e) Railways: they are built as a sequence of level cross-

ings overlapped with the city segments. The railway network is
defined by: RailNet = { (Station, Rail) / Station is a model, Rail
∈ RailTrack }, where RailTrack = { (s, δ, seq) / s ∈ Segments
∧ δ ∈ � ∧ seq ∈ � }. RailNet represents a set of stations con-
nected to railways, thus defining a part of the railway network.
Railtrack associates a level crossing with other existing con-
structions in the city section. Each element identifies the seg-
ment that is crossed (s) and the distance to the railway from the
beginning of the section (δδδδ). Finally, a sequence number (seq)
is assigned to each level crossing, defining its position in the
RailTrack. When a railway is defined in ATLAS, the begin
railnets and end railnets act as separators. Each RailNet
is defined using the following syntax:

id = (s1, d1) {,(si, di)}

where si defines an identifier of a segment crossed by the rail-
way, and di defines the distance between the beginning of the

segment si and the railway. The compiler automatically gener-
ates the sequence number.

f) Men at work: the construction defining men at work is
specified by: Jobsite = { (s, ni, δ, #n) / s ∈ Segments ∧ s = (c1,
c2, n, a, dir, max) ∧ ni ∈ [0, n-1] ∧ δ ∈ � ∧ #n ∈ [1, n+1-ni] ∧
#n ≡ 1 mod 2 }. Here, each (s, ni, δ, #n) ∈ Jobsite is related
with a segment where the construction works are being done. It
includes the first lane affected (ni), the distance between the
center of the jobsite and the beginning of the segment (δδδδ), and
the number of lanes occupied by the work (#n). These values
are used to define an area over the segment where vehicles can-
not advance. In ATLAS TSC, the begin jobsites and end
jobsites separators define the jobsites to be used. Each job-
site is defined as:

in t : firstlane, distance, lanes

In this case, firstlane defines the first lane affected by the
jobsite, distance is the distance between the center of the job-
site and the beginning of the segment, and lanes is the number
of lanes occupied.

g) Traffic signs: they are defined by: Control = { (s, t, δ) /

s∈Segments ∧ δ∈� ∧ t∈{bump, depression, pedestrian cross-
ing, saw, stop, school} }. Each tuple here identifies the segment
where the traffic sign is used, the type of sign, and the distance
from the beginning of the segment up to the sign. In ATLAS
TSC, the begin ctrElements and end ctrElements de-
limiters define all the control elements, with:

in t : ctrType, distance

being the definition for each sign. Here, ctrType: [bump |
depression | intersection | saw | stop | school]
defines the different signs. The distance parameter defines
the distance to the beginning of the segment. An extension of
this construction allows us to define potholes, whose size is one
cell. The definition of these elements is done using the begin
holes and end holes separators. Each hole is defined as:

in t : lane, distance

A pothole can also be included in a crossing. Previously

defined in the Crossings paragraphs, crossHole: [with-
Hole|withoutHole] defines if a crossing contains a pothole
or not.

h) Experimental frameworks: experimental framework

constructions permit build experiments on a city section by
providing inputs and outputs to the area to be studied. They are
associated with segments receiving inputs, or those used as out-
puts, and are defined as:

InputSegments = { s / s = (p1, p2, n, a, dir, max) ∧ s ∈ Seg-
ments ∧ [(dir = 0 ∧ (∃ v ∈ � : (p2,v) ∈ Crossings)) ∨ (dir = 1
∧ (∃ v ∈ � : (p1,v) ∈ Crossings))] }
OutputSegments = { s / s = (p1, p2, n, a, dir, max) ∧ s ∈ Seg-
ments ∧ [(dir = 0 ∧ (∃ v ∈ � : (p1,v) ∈ Crossings)) ∨ (dir =1
∧ (∃ v ∈ �: (p2,v) ∈ Crossings))] }

In the following figure we show the specification of a

simple city section including 17 segments and 3 crossings.

begin segments
BankGOS1=(0,0),(5,0),1,straight,go,60,0,parkNone
BankGOS2=(5,0),(6,0),1,straight,go,60,0,parkNone
BankB1=(0,0),(5,0),1,straight,back,60,0,parkNone
BankB2=(5,0),(6,0),1,straight,back,60,0,parkNone
LibraryG1=(5,0),(5,2),2,straight,go,55,0,parkNone
LibraryGOS2=(5,2),(5,5),2,straight,go,55,0,parkNone
LibraryBS1=(5,0),(5,2),2,straight,B,55,0,parkNone
LibraryBS2=(5,2),(5,5),2,straight,B,55,0,parkNone
AltaVistaGOS1=(0,5),(5,5),1,straight,go,40,0,parkNone
AltaVistaGOS2=(5,5),(6,5),1,straight,go,40,0,parkNone
AltaVistaBS1=(0,5),(1,5),1,straight,B,40,0,parkNone
AltaVistaBS2=(1,5),(4,5),1,straight,B,40,45,parkLeft
AltaVistaBS3=(4,5),(5,5),1,straight,B,40,0,parkNone
AltaVistaBS4=(5,5),(6,5),1,straight,B,40,0,parkNone
BronsonGOS1=(2,2),(5,2),1,straight,go,75,0,parkNone
BronsonGOS2=(5,2),(12,2),1,straight,go,75,0,parkNone
end segments

begin crossings
Bank&Library = (5,0),60,withoutTL,withoutHole,0,0.5
Library&AltaVista =
(5,5),55,withoutTL,withoutHole,0,0.5
Library&Bronson = (5,2),55,withoutTL,withoutHole,0,0.5
end crossings

Figure 3: Specifying a city section in ATLAS TSC

As we can see, even this specification is simple (and it will
generate 2400 lines of Cell-DEVS specifications to be simu-
lated), the creation of complex city sections can be tedious. The
goal of MAPS interface (as shown in Figure 2) is to provide a
visual front-end for ATLAS. MAPS allows users to draw small
city sections which are then automatically parsed into ATLAS
files. Users can quickly and easily change the layout of the city
section, as well as ATLAS specific parameters. MAPS elimi-
nates the need to know the ATLAS language, and it dramati-
cally reduces the time it takes to create ATLAS files. This al-
lows for rapid simulation of urban traffic, which in term tests
the Cell-DEVS engine. Likewise, an output interface in VRML
enhances the visualization of the simulation results. The follow-
ing sections will describe the main features of MAPS in detail.

3. CREATING INPUT MAPS

 As mentioned in the previous section, the goal of our input
maps is to provide a visual front-end for ATLAS. The follow-
ing list introduces the key features of MAPS:

- Intuitive interface allows user to quickly draw streets.
- Intersections are automatically generated for the user.
- Roads, instead of segments, allow the user to ignore

ATLAS abstractions.
- Decorations can be easily added, changed, or removed.
- ATLAS parameters can be easily modified to change

simulation parameters.
- Parses user's drawing into ATLAS format.
The parser first removes and stores crossings to preserve

their settings (such as pout). City level decorations are then
stored (e.g. rail-nets). The parser then loops through each road
to see if it intersects with other roads. If a previously generated
crossing exists at the intersection point it is used. If it isn't, a
new intersection is created. The parser also checks to see if the
road contains a rail-net. If it does, a Boolean value is set to in-
form the parser to check which segment the rail-net belongs to
as the segments are created. A new list of breakpoints (a simple
class that stores the location of the cut, and the type – e.g., start
of the road, end of the road, intersection, parking start, parking
end) will determine how to cut up the road into segments. This
list does not contain intersections that do not form segments
(e.g., at the start and end of the road being segmented). Break-

points can also be created by parking, as the parking can be on
only certain parts of the road.

Figure 4: Describing a city section in MAPS.

The parser loops through the parking decorations of that

road for each lane to create breakpoints for that lane. Each lane
is its own segment, which can be further segmented by parking
decorations on that lane. Each segment must have a unique
identifier. This unique identifier is tagged to other decorations
that that lane is affected by (e.g., roadwork spanning multiple
lanes, potholes, etc).

Figure 5: RoadView: parking, stop sign, and roadwork

The lane breakpoints are then sorted and the segments are

created, named and decorated. The process repeats for as many
lanes and as many roads. The creation of segments from lanes
is discussed further below. The segments and decorations are
stored in vectors for each. The parser goes through the vectors
for the segments and various decorations. The crossings are
parsed and their ATLAS code is added to the vector which will
then be looped through to generate the ATLAS file.

A road may have multiple lanes, multiple intersections, and

multiple places to park each with different parameters. Addi-
tionally each part of the road can have other decorations like
potholes and stop signs. The process of portioning a road is de-
scribed above. This section describes how the segments them-
selves are created from a lane. Note the above figure contains
four ATLAS segments – one lane with the direction “go”, and
three with reverse. Two of the “reverse” segments have no
parking, while one (the part of the lane that is colored blue)
does. The user need not worry about creating the segments,
naming them, and ensuring the decorations are attached to the
correct segment. This is all done automatically by MAPS.

To parse the lane valid intersections found for the road are
added to the lane's breakpoints. Next, breakpoints are created
from parking. The breakpoints are then sorted to be in ascend-
ing order (from the start of the road to the end). The following
rules apply to parsing a lane's decorations:

- There is no parking available at the start and end of a lane
(the first and last grid units may not have parking)

- Parking objects may not overlap.
- Parking objects may not be intersected by another road –

that is, there is no parking allowed in an intersection.
- Segments with parking may not contain a rail-net.

Figure 6: MAPS graphical interface.

These rules were formed by looking at typical rules for real
life streets, as well as make parking parsing logic simpler. The
user is informed if any decorations violate the rules, and the
locations of the invalid objects are displayed. The segments are
created if the parking decorations are valid. The segments are
then decorated by looping through the decorations for that lane
and checking to see if the decoration (such as potholes, stop
signs, etc) lay on that particular segment. If the user created a
decoration that has a length of more than one grid size, then
multiple decorations are added as many times as the length re-
quires. The decorations differ in their position from the start of
the road.

Figure 6 presents a screenshot of a more detailed city sec-

tion using MAPS. Note the presence of railnets (black rectangle
with white line), crossings (yellow circles, automatically gener-
ated), roadwork (yellow squares), stop signs (red squares),
parking sections (blue rectangles), multiple and bidirectional
roads, ready access to ATLAS parameters such as speed, curva-
ture of the road, etc. Figure 7 shows the ATLAS TSC specifica-
tions generated by the tool. As we can see, the new representa-
tion of the model is more intuitive, simpler to modify and faster
to understand and run experiments.

Figure 7: Resulting specification in ATLAS TSC

4. VISUALIZING OUTPUTS IN 3D

MAPS also includes a graphical user interface that shows
traffic flowing through a predefined city based on the results of
a simulation. MAPS uses the created plan file to determine a
static view of the city without cars present, showing the user
the various segments and crossings involved in the ATLAS city
section. The GUI uses the results file from a previous simula-
tion by the CD++ simulator, and determines the location and
direction of specific cars at a particular point in time using a log
file generated by the simulator. A car shape will be displayed
on the screen in the appropriate cell on a segment for the
amount of time specified in the log file. When that time expires,
the car will move to a new cell as per the results file.

The entire city will operate in this manner with cars moving

within segments and from segment to segment. The user will
be able navigate around the city as they wish using any tool ca-
pable of running VRML files, watching cars pass through the
various segments. The time will be displayed as it changes ac-
cording to the log file so the user has an idea of the time as cars
are moving. This will allow the user to see the buildup of traf-
fic on different segments graphically as time passes, instead of
having to interpret the results using each segment’s automati-
cally created text file or the log file generated by the simulator.

(a) (b)

(c)

Figure 8: Segment, crossing and car VRML objects.

In order for the system to achieve these goals, it was essen-

tial to find or create VRML objects that represent cars, seg-
ments and crossings. The first issue is that a static view of the
city should first be shown from the plan file with the segments
and crossings displayed to the user. Figure 8.a) shows the road
shape as simply two squares, one overlapping the other such
that a lane is defined for the segment where the cars will travel.
One road shape is displayed in the VRML GUI for every cell in
the segment. If a segment is five cells long with three lanes,
then 15 VRML road shapes will be displayed on the screen in
the direction specified by the coordinates in the plan file. Simi-
larly, a crossing shape was created that represents an ATLAS
crossing as shown in figure 8.b). Again, the crossing is simply
two squares, one larger than the other corresponding to a real
life road crossing.

Another requirement of this project was to show the traffic

flowing throughout the city section according to a log file pro-
vided by the simulator. In order to make the output look realis-
tic, the car shapes we sought after that look like real cars. The
car shape shown in figure 8.c) was used to represent traffic
flowing through a city. This car shape is a slightly modified
version of a shape found on [11].

(a) (b)

Figure 9: Crossings with stoplight and stop sign

Some crossings in the plan file can be defined to have

traffic lights or stop signs. When the plan file is inputted
into MAPS, the crossings are encapsulated in a Crossing
object. There are attributes in this object indicating
whether a crossing contains stop signs or traffic lights.
To make the city section realistic, crossings have stop
signs and traffic light shapes attached to them. Figure 9
shows two crossings, one with a traffic light (figure 9.a)
and the other with a stop sign (figure 9.b).

The plan file describing the ATLAS specification

contains many attributes for the segments and crossings
but the most important attributes for MAPS are the start-
ing and ending points. Let us consider an example of two
segments of a city section written in ATLAS TSC code,
as shown in figure 10.

A=(0,0),(10,10),1,straight,go,40,300,parkNone
A1=(0,0),(10,10),1,straight,back,40,300,parkNone

Figure 10: Representation of a two-way street

From figure 10, there are two segments, one going from

(0,0) to (10,10) and the other is going in the opposite direction
from (10,10) to (0,0). Each of the crossing, segment and cars
are 1-by-1 VRML objects and the simulator considers 1-by-1
cells also, so the mapping from the plan file to the VRML
world is simple. Each of the two segments in figure 10 will
contain 14 consecutive segment objects from figure 8.a) using
the following equation: () ()2

21
2

21 xxyy PPPPlength −+−= .

If the segments do not run parallel to the x or y-axis, then

the segment objects will have to be rotated to make them look
consecutive. The angle can be calculated as follows:

��
�

�
��
�

�

−
−

= −

xx

yy

PP

PP
rotation

12

121tan . For instance, the segments in fig-

ure 10 will be rotated by an angle of 45 degrees.

Once the angle and length have been calculated, the seg-
ments have to be translated to the appropriate position in the
VRML world. The first step is to translate the segment object to
the segment’s start point, and then rotate the objects appropri-
ately as calculated above, and finally scale the segment object

to the calculated length. This is done for every segment in the
plan file until the static view of the city section is shown in the
VRML world. An example of a static view of a city is shown
in figure 11.

Figure 11: Static view of Carleton campus with segments and crossings.

The Crossings are added with little difficulty since

they do not have to be rotated or scaled. The only task is
to translate the crossing objects to their location defined
in the plan file. Once this is complete, the entire static
view of the city is shown for the user.

Once the static view has appeared, the user must in-

put a model file to MAPS to verify that each segment
and crossing from the plan file match up with a Cell-
DEVS model in the model file that the TSC outputs.
There must be a Cell-DEVS model in the TSC model file
with the same name, lanes and length for every segment
or crossing in the city section. Likewise, we verify every
segment and crossing from the plan file and only those
are included in the TSC model file and vice versa.

Finally, after the model file has been verified, the

user can get a log file of the ATLAS model outputted by
the CD++ simulator (following the steps in Figure 2) in
order to view the results of the simulation. MAPS parses
the log file for output messages such as the one shown in
figure 12.

Message Y/00:00:00:200/t1(0,0)/out/1 to t1

Figure 12: Output message indicating that a car has ap-
peared

This message indicates that a car has now appeared

(the 1) in the cell 0 of lane 0 (the 0, 0) of segment t1 at
time 200ms. When MAPS encounters this message, cre-
ates a VRML car object (figure 8.c)), then rotates it by

the same amount and translates it to the same location as
the segment object in lane 0, cell 0 of segment t1 as de-
termined when displaying the static view of the city.

Another type of output message of interest involves
cars leaving cells. These messages are very similar to the
one in figure 12, as shown in figure 13.

Message Y/00:00:00:400/t1(0,0)/out/0 to t1

Figure 13: Output message indicating that a car has left
the cell

In this case, the car that was present in cell 0 of lane 0

at time 200ms as shown in figure 12, has now left that
cell. When MAPS receives this message, it will look
ahead to the remainder of the messages for time 400ms
and look for a message indicating that a car is entering
cell 1 of any lane of segment t1. If it does in fact find
such a message, then the car that was present in cell 0,
lane 0 of t1 will be translated to its new position. If such
a message was not found which would happen when a
car leaves a segment, then the car object that was present
in the specific cell is removed from the VRML world.

MAPS will continue reading the log file and adding,

removing and translating car objects until the end of the
log file has been reached or the user requests that the
simulation be stopped. This let us achieve the main goal
of MAPS, namely to give the user the ability to evaluate
the city section as a whole. MAPS outputs were designed
to allow the user to view their city that was created using
ATLAS, and not have to sift through text or simulation

log files for answers as to how traffic flows through the
roads and crossings of their city section. It gives the user
the ability to run simulations on the same city but with
slightly different parameters, and see graphically how the
different parameters affect the traffic flow at certain loca-
tions. Figure 14 shows an example of the execution of
the model defined in Figure 3.

Figure 14: Dynamic behavior of cars moving within the city

5 CONCLUSION

 ATLAS allows defining a static view of a city section by
including different components. This approach provides an ap-
plication-oriented specification language, which allows the
definition of complex traffic behavior using simple rules for a
modeler. The models are formally specified, avoiding a high
number of errors in the application, thus reducing the problem
solving time.

Originally, the system required manual generation of
ATLAS files, a lengthy process and prone to error. The outputs
were simple text-based files that the user should interpret. We
built MAPS, a set of I/O graphical interfaces which permitted
us to address these problems, allowing the users to draw city
sections, and an output subsystem permitting showing cars to
with realistic 3D graphics.

The development of MAPS was successful. A static

view of the city can be inputted as in Figure 4, and the
execution results can be seen in a 3D visualization, as
shown in Figures 11 and 14. The system requires the user
to input the model file used for simulation to ensure that
the plan file matches up with the simulation performed.
Finally, the user can input the log results file from a pre-
vious simulation to view the city and see how the cars
proceeded throughout the segments and crossings.

REFERENCES

[1] Davidson, A.; Wainer, G. “ATLAS: a language to specify
traffic models using Cell-DEVS”. Technical Report 00-003,
Computer Science Dept. Universidad de Buenos Aires. Submit-
ted. 2002.

[2] Zeigler, B., Kim, T., Praehofer, H. “Theory of Modeling
and Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems”. Academic Press. 2000.

[3] Wainer, G., Giambiasi, N. “Timed Cell-DEVS: modeling
and simulation of cell spaces”. In Discrete Event Modeling &
Simulation: Enabling Future Technologies. Ed.: H. Sar-
joughian, F. Cellier. Springer-Verlag. 2001.

[4] Zeigler, B.; Moon, Y.; Kim, D.; Ball, G. "The DEVS envi-
ronment for high-performance modeling and simulation". IEEE
Computational Science and Engineering , Vol. 4, No. 3. 1997.

[5] Wainer, G., Giambiasi, N. “Application of the Cell-DEVS
paradigm for cell spaces modeling and simulation”. Simulation.
Vol. 76, No. 1. January 2001.

[7] Davidson, A., Wainer, G. “Specifying control signals in
traffic models”. In Proceedings of AI, Simulation and Planning
in High Autonomous Systems, AIS'2000. Tucson, Arizona.
U.S.A. 2000.

[8] Davidson, A., Wainer, G. “Specifying truck movement in
traffic models using Cell-DEVS”. In Proceedings of the 33rd
Annual Simulation Symposium. Washington, D.C. U.S.A. 2000.

[9] Torres, C.; Lo Tartaro, M.; Wainer, G. “Defining models of
urban traffic using the TSC tool”. Proceedings of the 2001 Win-
ter Simulation Conference. Washington, DC. USA. 2001.

[10] Chopard, B.; Queloz, P. A.; Luthi, P. “Cellular Automata
Model of Car Traffic in two-dimensional street networks”. J.
Phys. A, vol. 29, pp. 2325-2336, 1996.

[11] Ames, A.; Nadeau, D.; Moreland, J. “VRML 2.0 Source-
book”. John Wiley & Sons. 1996.

