
 

ABSTRACT 
 ATLAS is a modeling language that permits defining a 
static view of a city section for simulating traffic in an area. 
The models are formally specified, avoiding a high number of 
errors in the application, thus reducing the problem solving 
time. The system required the manual generation of ATLAS 
files, a tedious process that did not lend itself for rapid changes 
to the system input.  The output of the system also suffered from 
a non-user friendly interface. The solutions to these problems 
were addressed in two parts: a front-end system allowing the 
user to draw city sections (and then parse the drawing to create 
a valid ATLAS file), and an output subsystem permitting show-
ing cars with realistic 3D graphics.  

 
1. INTRODUCTION 
 
 Urban traffic analysis and control is a problem of such a 
complexity that it is difficult to be analyzed with traditional 
analytical methods. Modeling and simulation techniques, in-
stead, have shown a certain degree of success, and they have 
been gaining popularity as an analysis tool. Simulation permits 
studying particular problems using virtual experimentation.  

 
We have developed a toolkit for modeling and simulation 

of traffic in urban centers. This project followed a rigorous ap-
proach that we introduce here. The first stage was devoted to 
define and validate a high level specification language repre-
senting city sections [1]. This language, called ATLAS (Ad-
vanced Traffic LAnguage Specifications) focuses on the de-
tailed specification of traffic behavior. The models are 
represented as cell spaces, allowing elaborate study of traffic 
flow according to the shape of a city section and its transit at-
tributes. A static view of the city section can be easily de-
scribed, including definitions for traffic signs, traffic lights, etc. 
A modeler can concentrate in the problem to solve, instead of 
being in charge of defining a complex simulation.  

 
The constructions defined in this language are mapped 

into DEVS [2] and Cell-DEVS models [3]. DEVS provides 
high performance for discrete-event systems simulation [4]. 
Similar results were obtained for Cell-DEVS models [5]. It also 
provides a formal framework that can be used to validate and 
verify the models. This approach permits us to reuse the models 
created and integrate with others using different formalisms 
(for instance, using Petri Nets or Finite State Machines to spec-
ify the behavior of traffic lights or railway controllers). 

 
A real system modeled using the DEVS formalism can be 

described as being composed of several submodels. Each of 
them can be behavioral (atomic) or structural (coupled). A 
DEVS atomic model is described as: 

M = < X, S, Y, δint, δext, λ, D > 

Here, X is the input events set, S is the state set, and Y is 
the output events set. We also use four functions: δδδδint manages 
internal transitions, δδδδext external transitions, λλλλ the outputs, and 
D, the lifetime of a state. The interface is composed of input 
and output ports to communicate with other models. Each port 
is defined as a pair, including a port name and its type. The in-
put external events (those coming from other models) are re-
ceived in input ports.  

 
A DEVS coupled model is defined as: 

CM = < I, X, Y, D, {Mi}, {Ii}, {Zij} > 
 

Here, I is the model interface, X is the set of input events, 
and Y is the set of output events. D is an index of components, 
and for each i ∈ D, Mi is a basic DEVS model (atomic or cou-
pled). Ii is the set of influencees of model i. For each j ∈ Ii, Zij 
is the i to j translation function. Each coupled model consists of 
a set of basic models connected through the input/output ports. 
The influencees of a model will determine to which models one 
send the outputs. The translation function is in charge of trans-
lating outputs of a model into inputs for the others. To do so, an 
index of influencees is created for each model (Ii). For every j 
in this index, outputs of the model Mi are connected to inputs in 
the model Mj.  

 
The Cell-DEVS formalism was proposed as an extension 

to DEVS permitting to describe cellular models. Cell-DEVS 
allows the definition of complex cellular models that can be 
integrated with other DEVS. Here, each cell of a space is de-
fined as an atomic DEVS with explicit timing delays. Transport 
and inertial delays define the timing behaviors of each cell in an 
explicit and simple fashion. A transport delay allows us to 
model a variable response time for each cell. Instead, inertial 
delays are preemptive: a scheduled event is executed only if the 
delay is consumed.  

 

 
Figure 1: Informal Definition of Cell-DEVS. 

 
Cell-DEVS atomic models can be formally specified as: 
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TDC = < X, Y, I, S, N, delay, d, δint, δext, τ, λ, D > 
 
where X represents the external input events, Y the exter-

nal outputs, and I is the interface of the model. S is the cell 
state definition, and N is the set of input events. Delay defines 
the kind of delay for the cell, and d its duration. Each cell uses 
a set of N input values to compute the future state using the 
function ττττ. These values come from the neighborhood or other 
DEVS models, and they are received through the model inter-
face. A delay function can be associated with each cell, allow-
ing deferred the outputs. Therefore, the outputs of a cell are not 
transmitted instantaneously, but after the consumption of the 
delay. The outputs usually include the execution results of the 
local computing functions. This behavior is defined by the δδδδint, 
δδδδext, λλλλ and D functions. 

 
A Cell-DEVS coupled model is defined by: 

GCC=<Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z> 
 

Here, Ylist is an output coupling list, Xlist is an input cou-
pling list and I represents the interface of the model. X are the 
external input events and Y the external outputs. The n value 
defines the dimension of the cell space, {t1,...,tn} is the number 
of cells in each dimension, and N is the neighborhood set. C is 
the cell space, B is the set of border cells and Z the translation 
function. The cell space defined by this specification is a cou-
pled model composed of an array of atomic cells. Each of them 
is connected to the cells defined by the neighborhood. As the 
cell space is finite, the borders should have a different behavior 
than the remaining cells. Otherwise, the space is wrapped, 
meaning that cells in a border are connected with those in the 
opposite one. Finally, the Z function allows one to define the 
internal and external coupling of cells in the model. This func-
tion translates the outputs of m-eth output port in cell Cij into 
values for the m-eth input port of cell Ckl. The input/output 
coupling lists can be used to transfer data with other models. 

 
The formal specifications for DEVS and Cell-DEVS were 

used to build the CD++ tool [6]. This tool provides a specifica-
tion language following the formal specifications described in 
this section. ATLAS was formally defined as a set of construc-
tions, which were mapped into DEVS and Cell-DEVS models 
[7, 8]. The behavior for each of the constructions presented in 
this language was validated in terms of their correctness when 
built as Cell-DEVS models. Then, a compiler was built follow-
ing the specifications [9]. The compiler, called ATLAS TSC 
(Traffic Simulator Compiler), generates code by using a set of 
templates that can be redefined by the user. In this way, 
ATLAS specifications can be translated into different tools 
with facilities to define cellular models. It also avoids version 
problems if the underlying tools are modified.  

 

 
Figure 2: Structure of the software platform to develop ATLAS 

models 

In ATLAS, a modeler can easily describe a city section, 
including traffic signs, traffic lights, etc. A modeler can con-
centrate on the problem to solve, instead of being in charge of 
defining a complex simulation or defining the models using a 
simulation package. Until now, the definition of models of ur-
ban traffic required the manual generation of text files defining 
city section using ATLAS constructions. This is a tedious proc-
ess that does not lend itself for rapid changes to the system in-
put. The output of the system also suffered from a non-user 
friendly interface. The simulation output was converted into 
different file types with primitive ASCII drawings of the simu-
lation results. Thus, it was not easy for a user to define the input 
for the system, or easily absorb the simulation results. The solu-
tions to these problems were addressed in two parts. A front-
end program allows the user to draw a small city section com-
plete with roads, intersections, and decorations, and then parse 
the drawing to create a valid ATLAS file.  

 
Likewise, the output went from a single segment of road 

with blocks as cars to a full-blown city section with realistic 3D 
graphics. Parsing the ATLAS file, building the city section in a 
VRML world and then mapping the simulation output results 
onto the system accomplished this result. We will discuss the 
details of these enhanced facilities in the following sections.  

 
2. ATLAS CONSTRUCTIONS 

 
 ATLAS allows representing the structure of a city section 
defined by a set of streets connected by crossings. The language 
constructions define a static view of the model, which is con-
sidered to be built as grids composed of cells [1]. ATLAS for-
mal specifications were used to build the ATLAS TSC com-
piler and the syntax for its language sentences. Following, we 
present the main constructions of ATLAS and its syntax. 
 

a) Segments: they represent sections of a street between 
two corners. Every lane in a given segment has the same direc-
tion (one way segments) and a maximum speed. They are 
specified as: Segments = { (p1, p2, n, a, dir, max) / p1, p2 ∈ 
City ∧ n, max ∈ � ∧ a, dir ∈ {0,1} }, where p1 and p2 repre-
sent the boundaries of the segment (City = { (x,y) / x, y ∈ R }), 
n is the number of lanes, and dir represents the vehicle direc-
tion. The a parameter defines the shape of the segment (straight 
or curve, allowing to define the city shape more precisely, in-
cluding the exact number of cells), and max is the maximum 
speed allowed in the segment. 

This constraint was included in ATLAS TSC. The com-
piler permits defining the segments by delimiting them using 
the sentences begin segments and end segments. At least 
one segment must be defined, using the following syntax: 
 

id = p1, p2, lanes, shape, direction, speed, 
parkType 

 
These values map the parameters mentioned previously, 

with shape: [curve|straight] and direction: 
[go|back]. Finally, parkType is used to define parking 
constructions, formally specified in the following paragraphs. 

 
b) Parking: border cells in a segment can be used for 

parking. They are formally defined as: Parking = { (s, n1) / s ∈ 
Segments ∧ n1 ∈ {0,1} ∧ s = (c1, c2, n, a, dir, max) ∧ n > 1 }. 
Every pair (s, n1) identifies the segment and the lane where car 



parking is allowed. If n1 = 0, the cars park on the left; if n1 = 1, 
on the right (lane n-1).  

If we review the construction used for Segments in 
ATLAS TSC also includes information for the parking seg-
ments. In this case,  

 
parkType: [parkNone | parkLeft | parkRight | 
parkBoth]  

 
defines in which area of the segment a car can park. 
 

c) Crossings: these constructions are used to represent the 
places where more than one segment intersects. They are speci-
fied as: Crossings = { (c, max) / c ∈ City ∧ max ∈ � ∧ ∃ s, s’ 
∈ Segments ∧ s = (p1, p2, n, a, dir, max) ∧ s’ = (p1’, p2’, n’, a’, 
dir’, max’) ∧ s ≠ s’ ∧ (p1 = c ∨ p2 = c) ∧ (p1’ = c ∨ p2’ = c) }. 
Crossings are built as rings of cells with moving vehicles fol-
lowing the ideas presented in [10]. A car in the crossing has 
higher priority to obtain the next position in the ring than the 
cars outside the crossing. In ATLAS TSC, the definitions for 
crossings are delimited by the separators begin crossings 
and end crossings. Each sentence defines a crossing using 
the following syntax: 

 
id = p, speed, tLight, crossHole, pout 

 
Parameters p and speed represent (p1,p2) and max of the 

formal specification. Pout defines the probability of a vehicle 
to abandon the crossing, used to simulate random routing of 
different vehicles. The remaining parameters are related with 
specific types of crossings, and will be explained in the follow-
ing paragraphs. 

 
d) Traffic lights: crossings with traffic lights are formally 

defined as: TLCrossings = { c / c ∈ Crossings }. Here, c ∈ 
TLCrossings defines a set of models representing the traffic 
lights in a corner and the corresponding controller. Each of 
these models is associated with a crossing input. The model 
sends a value representing the color of the traffic light to a cell 
in the intersection corresponding to the input segment affected 
by the traffic light. The following qualifier is added to a stan-
dard crossing definition in ATLAS TSC for crossings with traf-
fic lights: tLight: [withTL|withoutTL]. 

 
e) Railways: they are built as a sequence of level cross-

ings overlapped with the city segments. The railway network is 
defined by: RailNet = { (Station, Rail) / Station is a model, Rail 
∈ RailTrack }, where RailTrack = { (s, δ, seq) / s ∈ Segments 
∧ δ ∈ � ∧ seq ∈ � }. RailNet represents a set of stations con-
nected to railways, thus defining a part of the railway network. 
Railtrack associates a level crossing with other existing con-
structions in the city section. Each element identifies the seg-
ment that is crossed (s) and the distance to the railway from the 
beginning of the section (δδδδ). Finally, a sequence number (seq) 
is assigned to each level crossing, defining its position in the 
RailTrack. When a railway is defined in ATLAS, the begin 
railnets and end railnets act as separators. Each RailNet 
is defined using the following syntax: 

 
id = (s1, d1) {,(si, di)} 

 
where si defines an identifier of a segment crossed by the rail-
way, and di defines the distance between the beginning of the 

segment si and the railway. The compiler automatically gener-
ates the sequence number. 
 

f) Men at work: the construction defining men at work is 
specified by: Jobsite = { (s, ni, δ, #n) / s ∈ Segments ∧ s = (c1, 
c2, n, a, dir, max) ∧ ni ∈ [0, n-1] ∧ δ ∈ � ∧ #n ∈ [1, n+1-ni] ∧ 
#n ≡ 1 mod 2 }. Here, each (s, ni, δ, #n) ∈ Jobsite is related 
with a segment where the construction works are being done. It 
includes the first lane affected (ni), the distance between the 
center of the jobsite and the beginning of the segment (δδδδ), and 
the number of lanes occupied by the work (#n). These values 
are used to define an area over the segment where vehicles can-
not advance. In ATLAS TSC, the begin jobsites and end 
jobsites separators define the jobsites to be used. Each job-
site is defined as: 

 
in t : firstlane, distance, lanes 

In this case, firstlane defines the first lane affected by the 
jobsite, distance is the distance between the center of the job-
site and the beginning of the segment, and lanes is the number 
of lanes occupied. 

 
g) Traffic signs: they are defined by: Control = { (s, t, δ) / 

s∈Segments ∧ δ∈� ∧ t∈{bump, depression, pedestrian cross-
ing, saw, stop, school} }. Each tuple here identifies the segment 
where the traffic sign is used, the type of sign, and the distance 
from the beginning of the segment up to the sign. In ATLAS 
TSC, the begin ctrElements and end ctrElements de-
limiters define all the control elements, with: 
 

in t : ctrType, distance 

 
being the definition for each sign. Here, ctrType: [bump | 
depression | intersection | saw | stop | school] 
defines the different signs. The distance parameter defines 
the distance to the beginning of the segment. An extension of 
this construction allows us to define potholes, whose size is one 
cell. The definition of these elements is done using the begin 
holes and end holes separators. Each hole is defined as: 

in t : lane, distance 

 
A pothole can also be included in a crossing. Previously 

defined in the Crossings paragraphs, crossHole: [with-
Hole|withoutHole] defines if a crossing contains a pothole 
or not. 

 
h) Experimental frameworks: experimental framework 

constructions permit build experiments on a city section by 
providing inputs and outputs to the area to be studied. They are 
associated with segments receiving inputs, or those used as out-
puts, and are defined as: 

 
InputSegments = { s / s = (p1, p2, n, a, dir, max) ∧ s ∈ Seg-
ments ∧ [ ( dir = 0 ∧ (∃ v ∈ � : (p2,v) ∈ Crossings) ) ∨ (dir = 1 
∧ (∃ v ∈ � : (p1,v) ∈ Crossings) ) ] } 
OutputSegments = { s / s = (p1, p2, n, a, dir, max) ∧ s ∈ Seg-
ments ∧ [ ( dir = 0 ∧ (∃ v ∈ � : (p1,v) ∈ Crossings)) ∨ (dir =1 
∧ (∃ v ∈ �: (p2,v) ∈ Crossings)) ] } 

 
In the following figure we show the specification of a 

simple city section including 17 segments and 3 crossings.  
 

 



 
begin segments 
BankGOS1=(0,0),(5,0),1,straight,go,60,0,parkNone 
BankGOS2=(5,0),(6,0),1,straight,go,60,0,parkNone 
BankB1=(0,0),(5,0),1,straight,back,60,0,parkNone 
BankB2=(5,0),(6,0),1,straight,back,60,0,parkNone 
LibraryG1=(5,0),(5,2),2,straight,go,55,0,parkNone 
LibraryGOS2=(5,2),(5,5),2,straight,go,55,0,parkNone 
LibraryBS1=(5,0),(5,2),2,straight,B,55,0,parkNone 
LibraryBS2=(5,2),(5,5),2,straight,B,55,0,parkNone 
AltaVistaGOS1=(0,5),(5,5),1,straight,go,40,0,parkNone 
AltaVistaGOS2=(5,5),(6,5),1,straight,go,40,0,parkNone 
AltaVistaBS1=(0,5),(1,5),1,straight,B,40,0,parkNone 
AltaVistaBS2=(1,5),(4,5),1,straight,B,40,45,parkLeft 
AltaVistaBS3=(4,5),(5,5),1,straight,B,40,0,parkNone 
AltaVistaBS4=(5,5),(6,5),1,straight,B,40,0,parkNone 
BronsonGOS1=(2,2),(5,2),1,straight,go,75,0,parkNone 
BronsonGOS2=(5,2),(12,2),1,straight,go,75,0,parkNone 
end segments 
 
begin crossings 
Bank&Library = (5,0),60,withoutTL,withoutHole,0,0.5 
Library&AltaVista = 
(5,5),55,withoutTL,withoutHole,0,0.5 
Library&Bronson = (5,2),55,withoutTL,withoutHole,0,0.5 
end crossings 

Figure 3: Specifying a city section in ATLAS TSC 
 

As we can see, even this specification is simple (and it will 
generate 2400 lines of Cell-DEVS specifications to be simu-
lated), the creation of complex city sections can be tedious. The 
goal of MAPS interface (as shown in Figure 2) is to provide a 
visual front-end for ATLAS. MAPS allows users to draw small 
city sections which are then automatically parsed into ATLAS 
files. Users can quickly and easily change the layout of the city 
section, as well as ATLAS specific parameters. MAPS elimi-
nates the need to know the ATLAS language, and it dramati-
cally reduces the time it takes to create ATLAS files. This al-
lows for rapid simulation of urban traffic, which in term tests 
the Cell-DEVS engine. Likewise, an output interface in VRML 
enhances the visualization of the simulation results. The follow-
ing sections will describe the main features of MAPS in detail. 

 
3. CREATING INPUT MAPS 
 
 As mentioned in the previous section, the goal of our input 
maps is to provide a visual front-end for ATLAS. The follow-
ing list introduces the key features of MAPS: 

- Intuitive interface allows user to quickly draw streets. 
- Intersections are automatically generated for the user.  
- Roads, instead of segments, allow the user to ignore 

ATLAS abstractions. 
- Decorations can be easily added, changed, or removed. 
- ATLAS parameters can be easily modified to change 

simulation parameters. 
- Parses user's drawing into ATLAS format. 
The parser first removes and stores crossings to preserve 

their settings (such as pout). City level decorations are then 
stored (e.g. rail-nets). The parser then loops through each road 
to see if it intersects with other roads. If a previously generated 
crossing exists at the intersection point it is used. If it isn't, a 
new intersection is created. The parser also checks to see if the 
road contains a rail-net. If it does, a Boolean value is set to in-
form the parser to check which segment the rail-net belongs to 
as the segments are created. A new list of breakpoints (a simple 
class that stores the location of the cut, and the type – e.g., start 
of the road, end of the road, intersection, parking start, parking 
end) will determine how to cut up the road into segments. This 
list does not contain intersections that do not form segments 
(e.g., at the start and end of the road being segmented). Break-

points can also be created by parking, as the parking can be on 
only certain parts of the road. 

 

 
Figure 4: Describing a city section in MAPS. 

 
The parser loops through the parking decorations of that 

road for each lane to create breakpoints for that lane. Each lane 
is its own segment, which can be further segmented by parking 
decorations on that lane. Each segment must have a unique 
identifier. This unique identifier is tagged to other decorations 
that that lane is affected by (e.g., roadwork spanning multiple 
lanes, potholes, etc). 

 

Figure 5: RoadView: parking, stop sign, and roadwork 

 
The lane breakpoints are then sorted and the segments are 

created, named and decorated. The process repeats for as many 
lanes and as many roads.  The creation of segments from lanes 
is discussed further below. The segments and decorations are 
stored in vectors for each. The parser goes through the vectors 
for the segments and various decorations. The crossings are 
parsed and their ATLAS code is added to the vector which will 
then be looped through to generate the ATLAS file. 

 
A road may have multiple lanes, multiple intersections, and 

multiple places to park each with different parameters. Addi-
tionally each part of the road can have other decorations like 
potholes and stop signs. The process of portioning a road is de-
scribed above. This section describes how the segments them-
selves are created from a lane. Note the above figure contains 
four ATLAS segments – one lane with the direction “go”, and 
three with reverse. Two of the “reverse” segments have no 
parking, while one (the part of the lane that is colored blue) 
does. The user need not worry about creating the segments, 
naming them, and ensuring the decorations are attached to the 
correct segment. This is all done automatically by MAPS.   

 



To parse the lane valid intersections found for the road are 
added to the lane's breakpoints. Next, breakpoints are created 
from parking. The breakpoints are then sorted to be in ascend-
ing order (from the start of the road to the end). The following 
rules apply to parsing a lane's decorations: 

- There is no parking available at the start and end of a lane 
(the first and last grid units may not have parking) 

- Parking objects may not overlap. 
- Parking objects may not be intersected by another road – 

that is, there is no parking allowed in an intersection. 
- Segments with parking may not contain a rail-net. 

 

 

Figure 6: MAPS graphical interface.

These rules were formed by looking at typical rules for real 
life streets, as well as make parking parsing logic simpler. The 
user is informed if any decorations violate the rules, and the 
locations of the invalid objects are displayed. The segments are 
created if the parking decorations are valid. The segments are 
then decorated by looping through the decorations for that lane 
and checking to see if the decoration (such as potholes, stop 
signs, etc) lay on that particular segment. If the user created a 
decoration that has a length of more than one grid size, then 
multiple decorations are added as many times as the length re-
quires. The decorations differ in their position from the start of 
the road. 

 
Figure 6 presents a screenshot of a more detailed city sec-

tion using MAPS. Note the presence of railnets (black rectangle 
with white line), crossings (yellow circles, automatically gener-
ated), roadwork (yellow squares), stop signs (red squares), 
parking sections (blue rectangles), multiple and bidirectional 
roads, ready access to ATLAS parameters such as speed, curva-
ture of the road, etc. Figure 7 shows the ATLAS TSC specifica-
tions generated by the tool. As we can see, the new representa-
tion of the model is more intuitive, simpler to modify and faster 
to understand and run experiments. 

 

 
Figure 7: Resulting specification in ATLAS TSC 

 



 
4. VISUALIZING OUTPUTS IN 3D 
 

MAPS also includes a graphical user interface that shows 
traffic flowing through a predefined city based on the results of 
a simulation. MAPS uses the created plan file to determine a 
static view of the city without cars present, showing the user 
the various segments and crossings involved in the ATLAS city 
section. The GUI uses the results file from a previous simula-
tion by the CD++ simulator, and determines the location and 
direction of specific cars at a particular point in time using a log 
file generated by the simulator. A car shape will be displayed 
on the screen in the appropriate cell on a segment for the 
amount of time specified in the log file. When that time expires, 
the car will move to a new cell as per the results file. 

 
The entire city will operate in this manner with cars moving 

within segments and from segment to segment.  The user will 
be able navigate around the city as they wish using any tool ca-
pable of running VRML files, watching cars pass through the 
various segments.  The time will be displayed as it changes ac-
cording to the log file so the user has an idea of the time as cars 
are moving.  This will allow the user to see the buildup of traf-
fic on different segments graphically as time passes, instead of 
having to interpret the results using each segment’s automati-
cally created text file or the log file generated by the simulator. 

 

             
(a)      (b) 

 
(c) 

Figure 8: Segment, crossing and car VRML objects. 
 
In order for the system to achieve these goals, it was essen-

tial to find or create VRML objects that represent cars, seg-
ments and crossings. The first issue is that a static view of the 
city should first be shown from the plan file with the segments 
and crossings displayed to the user. Figure 8.a) shows the road 
shape as simply two squares, one overlapping the other such 
that a lane is defined for the segment where the cars will travel.  
One road shape is displayed in the VRML GUI for every cell in 
the segment.  If a segment is five cells long with three lanes, 
then 15 VRML road shapes will be displayed on the screen in 
the direction specified by the coordinates in the plan file.  Simi-
larly, a crossing shape was created that represents an ATLAS 
crossing as shown in figure 8.b). Again, the crossing is simply 
two squares, one larger than the other corresponding to a real 
life road crossing. 

 
Another requirement of this project was to show the traffic 

flowing throughout the city section according to a log file pro-
vided by the simulator.  In order to make the output look realis-
tic, the car shapes we sought after that look like real cars.  The 
car shape shown in figure 8.c) was used to represent traffic 
flowing through a city.  This car shape is a slightly modified 
version of a shape found on [11]. 

 

    
(a)                                     (b) 

Figure 9: Crossings with stoplight and stop sign 
 
Some crossings in the plan file can be defined to have 

traffic lights or stop signs.  When the plan file is inputted 
into MAPS, the crossings are encapsulated in a Crossing 
object. There are attributes in this object indicating 
whether a crossing contains stop signs or traffic lights.  
To make the city section realistic, crossings have stop 
signs and traffic light shapes attached to them. Figure 9 
shows two crossings, one with a traffic light (figure 9.a) 
and the other with a stop sign (figure 9.b). 

 
The plan file describing the ATLAS specification 

contains many attributes for the segments and crossings 
but the most important attributes for MAPS are the start-
ing and ending points. Let us consider an example of two 
segments of a city section written in ATLAS TSC code, 
as shown in figure 10. 

 
A=(0,0),(10,10),1,straight,go,40,300,parkNone 
A1=(0,0),(10,10),1,straight,back,40,300,parkNone 

Figure 10: Representation of a two-way street 
 
From figure 10, there are two segments, one going from 

(0,0) to (10,10) and the other is going in the opposite direction 
from (10,10) to (0,0).  Each of the crossing, segment and cars 
are 1-by-1 VRML objects and the simulator considers 1-by-1 
cells also, so the mapping from the plan file to the VRML 
world is simple.  Each of the two segments in figure 10 will 
contain 14 consecutive segment objects from figure 8.a) using 
the following equation: ( ) ( )2
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If the segments do not run parallel to the x or y-axis, then 

the segment objects will have to be rotated to make them look 
consecutive.  The angle can be calculated as follows: 
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121tan . For instance, the segments in fig-

ure 10 will be rotated by an angle of 45 degrees.   
 



Once the angle and length have been calculated, the seg-
ments have to be translated to the appropriate position in the 
VRML world. The first step is to translate the segment object to 
the segment’s start point, and then rotate the objects appropri-
ately as calculated above, and finally scale the segment object 

to the calculated length.  This is done for every segment in the 
plan file until the static view of the city section is shown in the 
VRML world.  An example of a static view of a city is shown 
in figure 11. 

 
 

 
Figure 11: Static view of Carleton campus with segments and crossings. 

 
The Crossings are added with little difficulty since 

they do not have to be rotated or scaled.  The only task is 
to translate the crossing objects to their location defined 
in the plan file.  Once this is complete, the entire static 
view of the city is shown for the user. 

 
Once the static view has appeared, the user must in-

put a model file to MAPS to verify that each segment 
and crossing from the plan file match up with a Cell-
DEVS model in the model file that the TSC outputs. 
There must be a Cell-DEVS model in the TSC model file 
with the same name, lanes and length for every segment 
or crossing in the city section. Likewise, we verify every 
segment and crossing from the plan file and only those 
are included in the TSC model file and vice versa. 

 
Finally, after the model file has been verified, the 

user can get a log file of the ATLAS model outputted by 
the CD++ simulator (following the steps in Figure 2) in 
order to view the results of the simulation. MAPS parses 
the log file for output messages such as the one shown in 
figure 12. 
 
Message Y/00:00:00:200/t1(0,0)/out/1 to t1 

Figure 12: Output message indicating that a car has ap-
peared 

 
This message indicates that a car has now appeared 

(the 1) in the cell 0 of lane 0 (the 0, 0) of segment t1 at 
time 200ms. When MAPS encounters this message, cre-
ates a VRML car object (figure 8.c)), then rotates it by 

the same amount and translates it to the same location as 
the segment object in lane 0, cell 0 of segment t1 as de-
termined when displaying the static view of the city.   

Another type of output message of interest involves 
cars leaving cells. These messages are very similar to the 
one in figure 12, as shown in figure 13.   
 
Message Y/00:00:00:400/t1(0,0)/out/0 to t1 

Figure 13: Output message indicating that a car has left 
the cell 

 
In this case, the car that was present in cell 0 of lane 0 

at time 200ms as shown in figure 12, has now left that 
cell. When MAPS receives this message, it will look 
ahead to the remainder of the messages for time 400ms 
and look for a message indicating that a car is entering 
cell 1 of any lane of segment t1. If it does in fact find 
such a message, then the car that was present in cell 0, 
lane 0 of t1 will be translated to its new position.  If such 
a message was not found which would happen when a 
car leaves a segment, then the car object that was present 
in the specific cell is removed from the VRML world.   

 
MAPS will continue reading the log file and adding, 

removing and translating car objects until the end of the 
log file has been reached or the user requests that the 
simulation be stopped. This let us achieve the main goal 
of MAPS, namely to give the user the ability to evaluate 
the city section as a whole. MAPS outputs were designed 
to allow the user to view their city that was created using 
ATLAS, and not have to sift through text or simulation 



log files for answers as to how traffic flows through the 
roads and crossings of their city section. It gives the user 
the ability to run simulations on the same city but with 
slightly different parameters, and see graphically how the 
different parameters affect the traffic flow at certain loca-
tions. Figure 14 shows an example of the execution of 
the model defined in Figure 3. 

 

 
Figure 14: Dynamic behavior of cars moving within the city 

 
5 CONCLUSION 

 
 ATLAS allows defining a static view of a city section by 
including different components. This approach provides an ap-
plication-oriented specification language, which allows the 
definition of complex traffic behavior using simple rules for a 
modeler. The models are formally specified, avoiding a high 
number of errors in the application, thus reducing the problem 
solving time.  

Originally, the system required manual generation of 
ATLAS files, a lengthy process and prone to error. The outputs 
were simple text-based files that the user should interpret. We 
built MAPS, a set of I/O graphical interfaces which permitted 
us to address these problems, allowing the users to draw city 
sections, and an output subsystem permitting showing cars to 
with realistic 3D graphics.  

 
The development of MAPS was successful.  A static 

view of the city can be inputted as in Figure 4, and the 
execution results can be seen in a 3D visualization, as 
shown in Figures 11 and 14. The system requires the user 
to input the model file used for simulation to ensure that 
the plan file matches up with the simulation performed. 
Finally, the user can input the log results file from a pre-
vious simulation to view the city and see how the cars 
proceeded throughout the segments and crossings.  
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