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Hybrid data‑driven resilience 
assessment and enhancement 
of distribution system for cyclone 
susceptible zones
Sonal* & Debomita Ghosh

The sprawl of distribution system towards the need of smart grid, demands better sustenance and 
adaptation strategies to deal with high‑impact low‑frequency (HILF) events. One of the predominant 
causes of HILF events are natural calamities. Therefore, the resilience assessment of the distribution 
system is inevitable. The contributions majorly focuses on hybrid data driven approach using 
micro‑phasor measurement unit (μ‑PMU), for dynamic voltage, current phasors monitoring, and 
unmanned aerial vehicle (UAV) confirms structural vulnerability of nodes within network. Mesh grid 
approach, which analyses cyclone trajectory affecting the network, supplemented identification 
of most vulnerable part within network. However, priorities of vulnerable nodes are corroborated 
using complex network (CN) theory. This hybrid data driven approach and spatial parameters are 
used to estimate appropriate mitigation strategies against HILF scenarios. Hence, resilience analysis 
based on location parameters and dynamic network conditions are further analyzed based on degree 
of correlation of location dependent resilience with latitude, elevation, and probable water level. 
Based on susceptible vulnerable nodes, identification of optimum alleviation schemes is adopted 
and justified using resilience trapezoid. To validate efficacy of the proposed approach, the analysis is 
tested on IEEE 33‑bus distribution network subjected to 5 cyclone prone geographical coordinates for 
20 years cyclone data.

Abbreviations
SMs  Smart cities
HILF  High-impact low-frequency
GPS  Global positioning system
μ-PMU  Micro-phasor measurement unit
UAV  Unmanned aerial vehicle
SA  Situational awareness
DG  Distributed generation
LOS  Line-of-sight links
CN  Complex network
LOR  Level of resilience
kPCA  Kernel principal component analysis
V

j
min  Minimum voltage at bus j

V
j
max  Maximum voltage at bus j

Vj  Actual voltage at bus j
Ijk  Branch current between bus j and k
Cj  Loading limit of bus j
maxO(L)  Maximum observability of network
wj  Relative weight of bus j
Lj  μ-PMUs status at bus j
Vrated  Rated voltage of bus
ε  Tolerance limit of bus voltage
ιij  Connectivity of bus by distribution line i and j
�Vj  Change in nodal voltage at bus j
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�Ijk  Change in branch current between buses j and k
VBE
j   Voltage at bus j before the event

IBEJk   Branch current between buses j and k before the event

VAE
j   Voltage at bus j after the event

IAEJk   Branch current between buses j and k after the event
np  Number of poles that are shaking or vibrating
θ  Angle at which wind force acts on pole surface
ς  Stress on poles due to wind force
wpole  Wind force on pole surface
Apole  Cross-section area of pole
wline  Wind force on overhead line
Aline  Cross-section area of overhead line
Mpole  Moment of pole due to wind force w
M⊥

g   Moment of pole due to gravitational force
F⊥g   Force due to gravity
dg  Distance of pole from the ground
M⊥

w  Moment of pole due to wind force
F⊥w   Wind force exerted on pole surface
dw  Distance of pole from the point of striking of wind force
M⊥

ln  Moment of overhead line due to wind force
Fln  Force exerted on line due to wind
dln  Distance of overhead line from the point of striking of wind force
ςrupture  Pole rupture stress
dia  Diameter of pole
rmax  Radius of maximum wind speed of cyclone
Vm  Maximum wind speed of cyclone
ϕ  Latitude of the considered region
n  Regression coefficient
Z  Height of the considered location
Y1  Exponential wind decay regression relation
no  Number of observable nodes in graph v
nt  Total number of nodes in graph v
ℵrank  Rank of critical components on a priority basis
ℵe
ranknew

  Updated new rank of critical components on a priority basis
Nc  Node capacity
Ncnew  Updated new node capacity
Dn  Node centrality degree
Dnnew  Updated new node centrality degree
CI  Connectivity impact
CInew  Updated new connectivity impact
δ  Distribution line safety margin
lc  Initial load of node c
pde  Probability of connection between nodes d and e
Ta  Number of connected nodes after the disruptive event
y
j
l  Representation of line L as first-order polynomial

a  Slope of line L
b  Intercept of line L
�l  Slope of distribution lines
h1l   Height of pole 1
h2l   Height of pole 2
Z1,2
l   Span between pole 1 and 2

C  General catenary curve of overhead distribution line
RNP  Resilient network parameters
MRNP  Moderately resilient network parameters
NRNP  Non-resilient network parameters
Ri(τ )  Resilience of system at any location i, at time τ
LOR0  Network’s normal level of performance
LOR  Network performance in the degraded state
LOR2  Network performance in the post-degraded state
t0  Initial time of pre-disturbance phase
te  Time at which wind related event impacts the network
tpr  Time for restoration progress
tr  Time at which network restoration begins
tn  Time at which network acquires its normal state
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φ  Location parameter of latitude
ℏ  Location parameter of mean elevation
̟  Location parameter of probable water level
R  Expected resilience value of the network
crR,ϕ  Correlation of latitude with structural resilience
crR,ℏ  Correlation of elevation with structural resilience
crR,̟  Correlation of water level with structural resilience
p  Degree of correlation
CC(∀)  Connected components with nodes e for topology mapping ∀
Min T  Minimum trajectory based on cyclone disturbance
Intr T  Intermediate trajectory based on cyclone disturbance
Max T  Maximum trajectory based on cyclone disturbance
tndp  Disturbance progress time for without any mitigation
tndg1  Degradation start time for without any mitigation
tndg2  Degradation end time for without any mitigation
tnrp  Restoration progress time for without any mitigation
tnres  Recovery time for without any mitigation case
trdp  Disturbance progress time for reconfiguration case
trdg1  Degradation start time for reconfiguration case
trdg2  Degradation end time for reconfiguration case
trrp  Restoration progress time for reconfiguration case
trres  Recovery time for reconfiguration case
tsdp  Disturbance progress time for splitting case
tsdg1  Degradation start time for splitting case
tsdg2  Degradation end time for splitting case
tsrp  Restoration progress time for splitting case
tsres  Recovery time for splitting case
tpdp  Disturbance progress time for pole reinforcement case
tpdg1  Degradation start time for pole reinforcement case
tpdg2  Degradation end time for pole reinforcement case
tprp  Restoration progress time for pole reinforcement case
tpres  Recovery time for pole reinforcement case
pd  Pre-disturbance state of resilience trapezoid
dp  Disturbance progress rate of resilience trapezoid
dg  Degraded state of resilience trapezoid
rp  Restoration progress rate of resilience trapezoid
pres  Partially restored state of resilience trapezoid
res  Restored state of resilience trapezoid

The rapid urbanization, deployment of SCs, and ever-increasing demand of quality power has led to the sprawl 
of distribution system towards the pre-requisites of smart grid. The distribution system being critical infrastruc-
ture of the power system is required to be resilient enough to provide power to the priority customers without 
 interruption1,2. Hence, planning of resilient distribution system is significant, also keeping into the perspective of 
HILF events, caused majorly due to the natural calamities. The impact of cyclones worldwide causes significant 
damage to infrastructure, with adverse consequences, leading to HILF  event7. Prompted with the need to cope 
with the growing cyclone frequencies, sustained power supply in the face of these events require smarter grid-
related equipments, that are capable of perceiving real-time system information for monitoring and  control3–5. 
In Ref.6, power system susceptibility and its planning measures to reduce the impact of extreme wind forces are 
discussed. In Refs.8,9, the quantification of weather severity and its effect on the network is presented in mesh-
grid form. Mesh-grid method plays a significant role to transform multi-dimensional HILF event impacting 
the network, into 2-dimension to analyse the effect of wind trajectory on the network. But, most of the planned 
management measures are patchy, particularly in the developing nations, due to lack of weather hazard resilient 
designed networks and non-availability of adequate asset redundancy.

In Ref.10, modern technologies such as wide-area monitoring through μ-PMUs are explored to enable faster 
restoration of the system network. In Ref.11, various suggestions and challenges for hardening and operational 
system restoration models are provided. A range of electrical and topological factors influencing the system’s sus-
ceptibility during disasters in a particular region are presented. In Ref.12, impacts caused by wind-related events 
on the distribution system are scrutinized by transforming a large amount of μ-PMU data for feature extraction. 
The goal is to enhance situational awareness (SA) in the distribution side by monitoring the equipment, distrib-
uted energy resources (DERs), and customers being served. In Ref.13, voltage and current synchrophasor that 
are captured by μ-PMUs are used to analyse the damage and assess appropriate restoration techniques. In Ref.14, 
μ-PMU information is co-ordinated with local communication for the post-event restoration of the network. A 
two-stage problem is formulated to quantify the network parameters. It uses stochastic program for hardening 
and mixed-integer linear programming method to model the system operability. The sequencing and hardening 
aspects are unified to form a resilient framework. In Refs.15–17, synchronized voltage and current phasors from 
dispersed locations are considered for pre-storm network assessment. This posed the possibility to improve the 
power system’s reliability and resiliency, which is presented through a case study. The results show that with 
μ-PMU, the duration of unplanned outages can be reduced to 51.7%. In Ref.18, the pre-event mitigation strategy 
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of reconfiguration is estimated based on the statistical method, with shift and shed load technique using μ-PMU 
measurements. In Ref.19, a kernel principal component analysis (kPCA) is adopted to build the data-driven event 
detection framework. In Ref.20, the greater demand for resilience is achieved by formulating hardening problems 
into a combinatorial optimization. The operational problems are solved using repeated mixed-integer linear 
programming formulations and a single crew approximation method. Thus, μ-PMU data provides a structured 
description of operational parameters. In Refs.21,22, the need for optimal hardening and operationally fit distri-
bution networks, resilient to natural disaster is addressed. Though the μ-PMU data provides SA and considers 
inaccuracies in system-related parameters, but measurement of network parameters with only μ-PMU is unable 
to provide the component damage status. The physical bending of components like distribution poles and damage 
of overhead lines are difficult to monitor and analyse for post-disruption management. So, a method is required 
for monitoring the status of components during such events.

In Ref.23, the application of aerial systems for disaster recovery and relief activities in the power sector are 
explored. UAV has been promising device for meteorological measurements. In Ref.24, pole infrastructure dam-
age assessment through UAV-based inspection of line video is detailed. In Refs.25,26, for cyclone Harvey, a case 
study is illustrated, where SA is improved by collecting and analysing quantitative datas. These datas provide SA 
for extreme event response and also for maintenance purposes. In Ref.27, method of optical imaging is used as 
the primary data for power line inspection and deep learning technique for data analysis. However, the lack of 
training data is its main challenge. In Refs.28,29, automatic pole angles analysis by deep learning technique and 
computer vision method is determined. In Ref.27, the resilience of pole by the application of big data technology 
for fast image recognition of unhealthy towers is researched. In Ref.30, aerial remote sensing based on UAV is 
operated alongside wireless systems. This increased the number of users to establish a line-of-sight links (LOS) 
for communication. In Refs.31,32, artificial vision technique for the exploitation of information provided from 
different sensors are applied. Although, the use of UAV ensures investigation of damaged poles and lines, but 
it cannot provide the information about the interconnection of physical infrastructure and smart technologies. 
Both μ-PMU and UAV are individually utilized for damage assessment of distribution network during HILF 
events. However, integration of both the technologies guarantee fast, time-synchronized data monitoring and 
control of both physical infrastructure and network operation, at the same time.

In Ref.33, the concept of CN as a set of connected nodes representing real interconnected systems is explained. 
In Refs.34–36, the CN concept for power grids is demonstrated, in which generators and loads are considered as 
nodes. It aids to identify central components with the maximum influence on the desired system performance. 
Both μ-PMU data and UAV can collect information but, have drawbacks in providing prioritising the vulnerable 
nodes of network, which is a gap for further research. The identification of vital nodes is important for decision-
making by the network operators aiming for a desired level of system performance. Therefore, combining CN 
with μ-PMU data and UAV can be an effective strategy in increasing resilience by first identifying the vulner-
able points of the network for node prioritization. Along with it, the mesh-grid approach aids in improving the 
visualization owing to wind-related events by examining the relatively better controllable portion of a network.

Different resilience enhancement measures are effective for different locations as per the geographic and 
topological aspects. Also, the loss of resilience is not always linearly associated with network parameters, but is 
associated with the location aspects i.e., latitude, elevation, and water level. In Ref.37, the mitigation measures of 
power system due to abnormal events ranging from minor to major outages are discussed. The planning alterna-
tives of different systems for resilience and its related indices are compared. In Ref.40, the degree of association 
between topological features and their expected resilience under extreme weather conditions are estimated by 
using the Pearson correlations. In Refs.41,42, the correlation between wind speed and load, for planning and reli-
ability analysis are discussed. However, the correlation or dependency analysis has not been applied for relating 
the extent of impact of weather-related uncertainties on network recovery. Therefore, a data-driven approach 
for finding the association between the network’s features and location-dependent resilience indices must be 
explored. In addition, location-dependent correlation can have a significant impact for the best possible recovery 
response to wind-related events. The major objectives of the present research are therefore as follows:

(1) Mesh-grid approach to transform the multi-dimension impact of cyclone trajectory on the distribution 
network to 2-dimensional form for appropriate identification of vulnerable part within the network.

(2) Hybrid data driven approach based on μ-PMU and UAV aided monitoring, combined with CN, to identify 
and prioritize the vulnerable nodes within the distribution network.

(3) Estimation of degree of correlation hinged on topographic conditions of node bringing out the importance 
of latitude, elevation, and probable water level, which may encumber the resilience of distribution system 
planning.

(4) Identification of optimum mitigation strategies for enhancement of network resilience based on minimum, 
intermediate, and maximum cyclone trajectory and its verification using resilience trapezoid.

(5) Testing the potency of the proposed methodology using IEEE 33-bus distribution system subjugated to 
five cyclone susceptible geographical emplacement (18.7669° S, 46.8691° E), (27.717573° N, − 80.40344° 
W), (14.519780° N, 120.98969° E), (51.561705° N, 0.829468° W), and (− 25.33223° S, 113.8864° E) based 
on historical 20 years cyclone data.

The second section presents the brief review on resilient planning and operation of distribution systems. 
It proposes method for resilience planning and operation using hybrid data-driven approach to identify the 
optimum mitigation strategy and enhance the network resilience during cyclone. The third section analyses the 
case study and results. The last section concludes the research.
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Brief review on resilient planning and operation of distribution systems
The expansion of SCs, increasing demand of power, and growing urbanization challenges are the need for resilient 
planning of the smart distribution systems. Increased frequency of extreme events has motivated to study the 
detailed methodology and effectiveness of resilient planning and operation of distribution systems.

Mesh‑grid representation to estimate the impact of cyclone on network. The mesh-grid 
approach depicts the interaction of the cyclone with network, considering location variation which can be 
framed as two-dimensional  representation41,42. This approach can be applied across any region with differing 
trajectories, as per the historical data of the site. This transformation into two-dimension aids in efficient mod-
elling and rendering of muti-dimensional cyclone track impact on the network operation. The superposition 
of geographical location with physical network can be employed to find the impact of line outages in extreme 
 events14,54. The lateral, transverse, and combined cyclone trajectories on network, is shown in Fig. 1. Here, the 
IEEE 33-bus system is illustrated in a mesh-grid with f  rows and g columns, represented as f × g cells. Each cell 
on the mesh can be represented by its coordinates such as cell (f 1, g1) . The lateral, transverse, and combination 
of trajectories are used to interpret the network outages as per the paths of cyclones. The portion lying on the 
trajectory plotted may trip with a high probability.

The duration of time for which a location is exposed to wind storm depends mainly on its size and speed. 
Algebraic relations between speed Vm , coefficient n, height of the location, Z and latitude ϕ , are derived by fitting 
power-law expression of sites, as in Eqs. (1) and (2)  respectively10.

Outside the eye of cyclone, the wind decays exponentially, that is estimated by regression relation, Y1 as in 
Eq. (3)14.

For cyclone trajectory, the radius of maximum wind speed, rmax concept is used. The parameterized formula 
for calculating rmax according to the maximum wind speed, Vm and the latitude, ϕ is as in Eq. (4)10.

The deployment of SCs require intricate planning owing to increase in demand. At these hubs of urbanization, 
the distribution side caters to satisfy the increasing demands of the customers. The mesh-grid representation of 
IEEE 33-bus distribution network is superimposed at these hubs to analyse the impact of system operation due 
to geographical features. The same network is placed at all five major cyclone prone zones. The same concept can 
be applied to any network. According to world meteorological organization, five major tropical cyclone formation 

(1)Vm = 2.20(
√
Z)

(2)n = 0.431+ 0.136Vm − 0.006ϕ

(3)Y1 = 270.5− 4.78Vm + 6.17ϕ

(4)rmax = 46.4exp(−0.01555Vm + 0.0169ϕ)

Figure 1.  Cyclone trajectory extrapolation on mesh-grid for IEEE 33-bus network.
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zones of the world identified are South-west Indian Ocean, Arabian Sea and Bay of Bengal, North Pacific, North 
Atlantic and North-east Pacific, and South-west Pacific and South-east Indian Ocean  region40. Based on 20 years 
of cyclone data of these 5 zones, 5 most cyclone-prone regions are selected with coordinates [(18.7669° S, 46.8691° 
E), (27.717573° N, − 80.40344° W), (14.519780° N, 120.98969° E), (51.561705° N, 0.829468° W), and (− 25.33223° 
S, 113.8864° E)], which are used for analysis in the subsequent sections.

Micro‑PMU based network dynamism monitoring. μ-PMUs provide real-time voltage and cur-
rent data with high accuracy. It confers network observability considering the minimal number of required 
μ-PMUs to monitor overall system status. The number of μ-PMUs providing maximum observability of net-
work, maxO(L) is given as in Eq. (5).7,43,45

where, wj represents relative weight of bus j, Lj represents the μ-PMUs status. Value 1 denotes presence of 
μ-PMU at bus j, else 0, means μ-PMUs are not installed at that particular bus.

μ-PMUs are capable of precisely measuring time synchronized data leading to enhanced SA of the network. 
The overall network monitoring using data obtained by the μ-PMUs check the bus voltage Vj and branch current 
Ijk for each node j of a distribution system, as in Eqs. (6) and (7)6.

Due to the HILF event, some lines get disrupted and are needed to be repaired. The μ-PMU shows status of 
nodes connected to it. To check the interconnection of buses by distribution lines Eq. (8) is used. In this case, 
signals received at the bays of μ-PMU determines if buses i and j are connected or not.

HILF events lead to degraded power quality. During such events, voltage sags are the most common power 
quality disturbance usually associated with network disturbances. The actual voltage at node j, Vj is rechecked 
to observe if its value lies within a range set by rated voltage Vrated and the corresponding tolerance ε as given 
by Eq. (9) from the observable μ-PMUs.

The changes of the nodal voltages �Vj and branch currents �Ijk due to the HILF event is analysed. It is rep-
resented in terms of voltage and branch current before the event VBE

j  and IBEJk  , and after the event VAE
j  and IAEjk  , 

respectively, as shown in Eqs. (10) and (11).

Thus, though the μ-PMU data provides enhanced SA and identifies the inaccuracies in system related param-
eters, but the physical bending of components like distribution poles and damage of overhead lines are difficult to 
monitor. The pole tilt and line disruption are not observable by μ-PMUs, so a method is required for monitoring 
the status of components during such HILF events.

UAV based location dependent structural surveillance of the network. The UAVs are equipped 
with global positioning system (GPS), that can record location information of unhealthy components for timely 
repair. Images depict the impact of wind storm on electric distribution systems. Free body diagram of poles and 
lines under the influence of wind event is represented in Fig. 2. It depicts the three major types of forces acting 
on poles and lines, that are gravitational force, wind force on pole and wind force on overhead lines.

From Fig. 2, the force on overhead lines and poles and their respective areas are considered for evaluation of 
stress. If the image and GPS details obtained from UAV has ‘np’ number of poles that are shaking or vibrating, 
then based on Eq. (12) stress on poles, ς can be estimated.

The moment of a pole, Mpole depends on component of gravitational force M⊥
g  , component of wind force on 

pole, M⊥
w , and component of wind force on overhead line, M⊥

ln , as obtained by Eq. (13).

Mpole is used to assess the pole rupture stress ςrupture , represented in terms of its diameter dia, as shown in 
Eq. (14).

(5)maxO(L) =
∑

jǫL

wjLj , with,Ljǫ{0, 1},

(6)V
j
min ≤

∣

∣Vj
∣

∣ ≤ V
j
max

(7)Ijk ≤ Cj

(8)ιij = {0, 1}, ∀(i, j)ǫι

(9)Vrated − εVrated ≤ Vj ≤ Vrated + εVrated

(10)�Vj = VAE
j − VBE

J

(11)�Ijk = IAEjk − IBEJk

(12)ς =
wpolecosθ

Apole
+

wlinecosθ

Aline

(13)Mpole = M⊥
g +M⊥

w +M⊥
ln =

{(

F⊥g × dg

)

+
(

F⊥w × dw

)

+ (Fln × dln)
}
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Based on the values of Mpole , the infrastructural resilience can thus be classified based on the health of poles 
as given by Eq. (15)21.

To analyse the effect of cyclonic storm on lines, firstly the line can be represented as first-order polynomial 
y
j
l , with slope a and intercept b, given in Eq. (16)27.

Also, availability of both the left as well as right sides of images for the affected distribution lines during the 
inspection is required. Usually, 100 pixels from the left as well as right sides of the distribution line are captured 
instead of the entire image. The slope of distribution lines, �l is measured in terms pole heights h1l  and h2l  , with 
Z1,2
l  as the span between them, as shown in Eq. (17)27.

This approach is convenient and logical because the lines appear straight in inspection images. The narrow 
field of view of the overhead lines by the UAV camera conforms to the general catenary curve, C shown as in 
equation, for, α = 1,C2 = 1, dx = 1anddy = sinh(t) ,  respectively28.

If the horizontal length in a recorded, image is approximately 3.5 m for an 8° horizontal angle of view, when 
the UAV camera is 25 m away from the distribution lines, then the �l measured should lie within the ranges as 
shown in Eq. (19)23.

The UAVs especially when the μ-PMUs fail can assist in enhancing resilience by collecting images of dam-
aged lines and poles during the wind storm. In this inspection, images depend on the specifications of the UAV 
camera and also the distance between the camera and the distribution lines. Utilizing UAV-based imagery for 
storm damage collection is significant. However, the ability to monitor physical pole bending does not provide 
overall information of all storm related operational malfunction within the network. Thus, this methodology 
when integrated with μ-PMU data provides better observation into any malfunction induced due to cyclone. Fur-
ther prioritizing strategy of affected nodes within a network to enhance resilience is detailed in the next section.

(14)ςrupture =
32Mpole

πdia3

(15)ifMpole =







ζ ≤ 55.16× 106N/m2 − resilient
55.16× 106 < ζ < 70.26× 106N/m2 −moderatelyresilient

70.26× 106N/m2 ≤ ζ − nonresilient

(16)y
j
l = ax

j
l + b

(17)�l = arctan

(

h1l − h2l

Z1,2
l

)

(18)
y
2αj
l

1+ y′2l
=

y
2αj
l dx2

dx2 + dy2
= C2

(19)−15
◦ < �l < 15

◦

Figure 2.  Free body diagram of poles and lines under the influence of wind event.
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Hybrid μ‑PMU, UAV and CN based approach for network node prioritization strategy . The 
detailed methodology and the effectiveness of data driven approach using μ-PMU and UAV for resilience esti-
mation of the distribution system by CN are presented in this section. Historical cyclone data are used to esti-
mate cyclone trajectory based on the mesh-grid structure. The corresponding dynamism of network parameters 
at each node and aerial surveillance is monitored using μ-PMU and UAV. The implementation of CN is exam-
ined based on the topographic conditions of the nodes (buses) and connectivity of edges (distribution lines).

The CN-based resilience framework ranks critical components on a priority basis, ℵrank with respect to node 
capacity Nc , node centrality degree Dn , and connectivity impact CI. This assists in carrying out timely recovery 
of network damage condition owing to a severe cyclonic storm as in Eq. (20)9,54.

Slow moving cyclones may take long hours to move past a particular location. This may lead to extreme 
winds and rain that lasts up to 12 h. It can be time consuming to randomly select location that will be impacted 
in the system due to cyclone. Therefore, node ranking based on priority using CN approach on mesh-grid rep-
resentation is used to study the cyclone trajectory. It prioritizes the nodes of a distribution network based on 
CN parameters and accordingly analyse the vulnerable points. The nodes previously unobservable by μ-PMUs 
are considered to be re-ranked using UAV by application of CN based parameters. The implementation of node 
prioritization using hybrid μ-PMU, UAV and CN based approach is presented in Algorithm 1. In this, node 
prioritization of network, assessing the topographic conditions of the nodes (buses) and connectivity of edges 
(distribution lines) are analysed to re-rank the unobservable nodes.

Thus, node ranking using hybrid μ-PMU, UAV and CN of distribution system provides suggestions on node-
wise priority classification. It is a useful method to set out network connectivity benchmarks during HILF events.

Resilience enhancement using location‑dependent correlation analysis for network mitiga‑
tion strategy . The location dependent analysis helps to compare network resilience under similar cyclonic 
conditions and varied geographic location. Correlation between the location parameters i.e., latitude, mean ele-
vation, and probable water level are utilized to find out the most appropriate mitigation strategy for a network 
located at 5 cyclone prone geographical coordinates based on 20 years of cyclone data. So, this estimation helps 
in streamlining adequate network mitigation techniques for different regions under a similar set of events. To 
describe distribution system performance characteristics in terms of resilience metrics due to cyclone, the resil-
ience trapezoid curve is  used38. The representation of the level of resilience (LOR) is shown in Fig. 3.

The normal level of performance is denoted by LOR0 . te is the time at which wind related event impacts the 
network. Thus, the network performance changes from LOR0 to LOR1 in the degraded state and LOR1 to LOR2 
if appropriate mitigation strategy is not provided on time. The recovery capabilities of a network are limited 
by the available restoration resources. Therefore, the recovery rate and duration of resilience trapezoid curve 
would be different. The use of appropriate mitigation technique is initiated at tr . After this, the network returns 

(20)ℵrank =







ifNc = (1+ δ)lc = 1, and
Dn :

�nt
j=1 pde = 1, and

CI : 1− Ta
nt

= 1
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to almost its original performance level. The resilience of system Ri(τ ) , at any location i, with respect to time 
τ , is obtained using Eq. (21)39.

Here, LOR0 = 1 > LOR1 > LOR2

The cyclonic regions are classified based on latitude, longitude, elevation, and probable water level features 
because these parameters vary with varied geographical location. The location-dependent resilience variation 
with latitude, elevation, and probable water level represented by crR,ϕ , crR,ℏ, andcrR,̟ , respectively, forms the 
resilience metrics, as given by Eq. (22).

The correlation between the location parameters of latitude φ, or mean elevation ℏ , or of probable water level 
̟ with expected resilience aspect R , with parameters of reconfiguration, splitting, and pole reinforcement, can 
be expressed as given in Eqs. (23)–(25)7.

where,

Using correlation analysis of crR,ϕ , crR,ℏ, crR,̟ , it is observed that the degree of correlation, p value varies 
from − 1 to + 1 as reflected in Eq. (25). There is no evidence of correlation if crR,ϕ , crR,ℏ, crR,̟ , is a value close 
to 0. A positive association of linear correlation exists if rR,ϕ , rR,ℏ, rR,̟ is positive and is closer to 1, and a 
negative linear correlation exists if crR,ϕ , crR,ℏ, crR,̟ , is negative and is closer to -1. These crR,ϕ , crR,ℏ, crR,̟ , 
values are used to check whether the resilience planning is suitable and the type of resilience-based planning 
necessary for each scenario. If p > 0.5, then the value is statistically significant. If p < 0.5, then the value is weakly 
correlated. The correlation values of latitude, longitude, elevation, and probable water level features with the 
expected resilience level of a region is estimated. These parameters vary with varied geographical location so, 
with the failure of nodes within the cyclone trajectory and the degree of dependency varies.

Figure 4 represents the proposed flowchart for resilience assessment and enhancement using hybrid data 
driven approach. The impact of cyclone trajectory on network is represented as 2-dimension using mesh-grid 
approach. For analysis due to impact of cyclone on the network, μ-PMUs and UAV assisted monitoring is done. 
Further, to prioritize the nodes according to its importance, CN is also integrated. Resilience based on complex 
network and correlation value sets benchmark to update the node-wise prioritization of load capabilities during 

(21)Ri(τ ) =

tn
∫

τ=t0

LORi(τ )dτ

tn
∫

τ=t0

LOR0dτ

(22)R = {crR,ϕ , crR,ℏ, crR,̟ }

(23)

crR,ϕ =
∑m

c=1(ϕ − ϕ)(R−R)
√

∑m
c=1 (ϕ − ϕ)2(R−R)

2
orcrR,ℏ =

∑m
c=1(ℏ− ℏ)(R−R)

√

∑m
c=1 (ℏ− ℏ)

2
(R−R)

2
, orcrR,̟ =

∑m
c=1(̟ −̟)(R−R)

√

∑m
c=1 (̟ −̟)2(R−R)

2

(24)
ϕ =

ϕ1 + ϕ2 + ϕ3 + · · · + ϕm

m
,R =

R1 +R2 +R3 + · · · +Rm

m
,

ℏ =
ℏ1 + ℏ2 + ℏ3 + · · · + ℏm

m
and̟ =

̟1 + ,̟ 2 +̟3 + · · · +̟m

m
,

(25)−1 ≤ p ≤ 1

Figure 3.  Resilience trapezoid for different level of resilience (LOR).
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HILF events. Therefore, the location-dependent updating of node includes the geographical location of the 
network, cyclone intensity, and the properties of node capacity Nc , node centrality degree Dn , and connectivity 
impact CI . For estimating appropriate mitigation measures reflecting location dependency, the concept of cor-
relation is applied. It assesses the resilience of network with respect to location parameters of latitude, longitude, 

Figure 4.  Proposed flowchart for hybrid data-driven resilience assessment and enhancement of distribution 
system.

Content courtesy of Springer Nature, terms of use apply. Rights reserved



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9492  | https://doi.org/10.1038/s41598-022-13311-0

www.nature.com/scientificreports/

elevation, and probable water level. The value of positive, negative or no correlation, with respect to trajectory 
gives the suitable mitigation strategy to be adopted. Finally, resilience trapezoid is used to depict the enhance-
ment of network resilience with suitable mitigation strategies, thus leading to a self-sustained distribution system.

Analysis of results and discussion
In this section, distribution system planning based on location-dependent structural resilience parameters by 
utilizing μ-PMU and UAV is applied on the IEEE 33-bus system. The optimal DG size are 913.05 kW, 882.86 kW, 
and 1079.05 kW at bus no. 12, 24, and 30  respectively14,54. The μ-PMUs are installed at the buses. Several litera-
tures are available for μ-PMU location determination based on multiple  constraints43–53. The optimal μ-PMU 
locations at the buses, with maximum weight, as per the connectivity are 32, 11, 13, 15, 18 and 31, for overall 
network  observability43,45.

For the case study of location dependent resilience, 5 cyclone prone geographical co-ordinates (18.7669° S, 
46.8691° E), (27.717573° N, − 80.40344° W), (14.519780° N, 120.98969° E), (51.561705° N, 0.829468° W), and 
(− 25.33223° S, 113.8864° E) of America, Africa, Asia, Europe, and Australia are chosen. So, considering the 
length and width of the 33-bus network, at every 0.1° latitude variation, the elevation, and probable water level 
are taken. Using mesh-grid representation as in Fig. 1, the 2-dimension transformation considering 0.1° = 11.1 km 
are taken at every 3  km2 area. This mesh-grid cell granularity is sufficient to capture the change in latitude, eleva-
tion, and probable water level of a distribution system.

The worldwide representation of average windspeed during cyclones and number of samples considered 
per year for sustained windspeed of 10-min, 3-min, and less than 3-min data are collected for the year 2000 to 
2020. Based on the historical data for 21 years, the average wind speed (in kmph) is compiled, for each latitude 
considered. These datas are beneficial for finding out the rmax range using Eqs. (1)–(4), and are compared with 
the network length. The rmax affecting the line disruption of IEEE 33-bus network are estimated by extrapolation. 
Based on the respective range of rmax , the trajectory wise disturbances are classified as minimum, intermediate, 
and maximum. It indicates the distribution system, line disruption on mesh-grid enclosed within the radius of 
maximum wind speed. The computation of rmax leading to corresponding results for cyclone trajectories of min 
T, intr T, and max T, wise line disruption, are summarized in Table 1. The location with higher possibility of rmax 
tends to have a greater number of line disruptions due to larger part of the network being enclosed within the 
range of rmax , as observed with the case of cyclone region 5. Similarly, cyclone region 1 has lower rmax , leading 
to a smaller number of lines being disrupted because a smaller part of the network lies within the range of rmax.

To validate the effect of cyclone trajectories leading to possible disruptions, the network needs to be moni-
tored. The cyclone trajectories are hence referred to find out the corresponding vulnerable node, firstly based 
on only μ-PMU and then by only UAV. The trajectory wise network parameters of Vj , and Ijk  for all the nodes 
are calculated. For analysing the observation based on only μ-PMU, Vj , and Ijk are calculated for each node of 
IEEE 33-bus system using Eqs. (6)–(7). The nodes which are falling within the range of rmax , for min T, intr T, 
and max T, shows a value of zero as there are no outputs due to the failure of multiple nodes, and loss of observ-
ability during HILF events. The distribution line operational parameter limits are checked using Eqs. (9)–(11), 
and results for network disturbance output using only μ-PMU are tabulated in Table 2, under the column of 
network disturbance output using only μ-PMU. Again, application of only UAV based status tracking of dis-
tribution line and poles are presented in Table 2, under the column of line slope estimation, �l and trajectory 
wise stress, ςj , respectively. In such case, pole and distribution line fault diagnosis is performed conveniently for 
difficult to reach locations by capturing images. For computing the output using only UAV,  ςrupture is calculated 
using Eqs. (12)–(14), that is considered for classification of  Mpole using Eq. (15). For min T, intr T, and max 
T. The distribution line slope �l exceeding the normal range of ± 15°, is determined using Eqs. (16)–(18). This 
reflects candidate location for line disruption, with values of 15.03° (line connecting bus 15 and 16) and 15.05° 
(line connecting bus 16 and 17) for min T. 15.36° (line connecting bus 17 and 18) and 15.73° (line connecting 
bus 18 and 19) for intr T. 15.3693° (line connecting bus 27 and 28) and 15.62289° (line connecting bus 28 and 
29) for max T. It highlights that the distribution lines between two towers having large altitude differences lead 
to a larger range of �l values. The nodes satisfying both the conditions of Vj , and Ijk datas being available, in 
addition to line slope estimation of −15◦ < �l < 15◦ , combined with ς ≤ 55.16× 106N/m2 , are considered 

Table 1.  Results based on mesh-grid to determine the probable trajectory of cyclone affecting ieee 33-bus 
system for 5 cyclone prone regions.

Cyclone region Co-ordinates
No. of samples/
year

Avg. windspeed 
range (kmph)

Avg. rmax range 
(km)

Cyclone trajectory wise line 
disruption

Min T Intr T Max T

1 18.76691° S, 
46.86913° E 49 (205.3, 207.4) (1.14, 1.34) 16–17 2–19 27–31, 7–11

2 27.71757° N, 
− 80.4034° W 42 (238.5, 240.5) (1.58, 1.76) 16–17 2–19 28–33, 8–13

3 14.519780° N, 
120.9897° E 50 (240.1, 242.1) (1.21, 1.40) 16–17 19–20 27–30, 7–10

4 51.561705° N, 
0.82947° W 29 (195.4, 197.4) (1.17, 1.42) 16–17 19–20 27–31, 7–11

5 − 25.33223° S, 
113.8864° E 23 (161.2, 163.3) (4.96, 5.18) 13–14 12–13 5–6, 26–33, 14–15
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to be resilient network parameters (RNP). The range for moderately resilient network parameters (MRNP) are 
55.16× 106 < ζ < 70.26× 106N/m2 . Else, the violation of operational parameters results in μ-PMU based 
potentially unsafe network, with stress 70.26× 106N/m2 ≤ ζ , leading to non-resilient network parameters 
(NRNP). For determining the resilience of a network using only μ-PMU and only UAV for IEEE 33-bus net-
work, subjected to region 1 are detailed, and is presented in Table 2. For rest four regions, similar observations 
are obtained.

From the results summarized in Table 2, it is observed that distribution lines are non-resilient for wind force 
exerted on pole at an angle of 0°, moderately-resilient for 15–45°, and resilient for 60–90° angle respectively. 
However, the application of either μ-PMU or UAV alone is not sufficient to provide the needful information and 
identify the priority nodes for required mitigation strategies to be adopted for enhancing the network resilience. 
Combining CN with μ-PMU data and UAV pinpoints the prioritized vulnerable nodes of the network for apply-
ing appropriate mitigation measures.

Table 3 thus summarizes the results of hybrid data driven approach for cyclone trajectories in region 1 
(18.7669°S, 46.8691°E). It considers the potentially unsafe network condition obtained from the observation of 
Table 2, and ranks the vulnerable nodes for min, intr and max T by hybrid data driven approach. The column 
in Table 3 for ranking based on μ-PMU data extraction uses the CN-based framework to rank the critical com-
ponents on a priority basis. Using Eq. (20), ℵrank is calculated with respect to Nc , Dn , and CI. For μ-PMU, UAV 
and CN oriented node ranking as in Table 3, node ranking is considered for all those nodes that were unobserv-
able by μ-PMU. By UAV the unobservable nodes are monitored, and CN is applied to re-rank the nodes for 
each trajectory to obtain ℵe

ranknew
 , using Algorithm 1 and Eq. (24). It is observed that if the affected node have 

Table 2.  Vulnerable node identification using only μ-PMU and only UAV based on cyclone trajectory for 
region 1.

Node

Network disturbance output using only μ-PMU Structural resilience output using only UAV

Observation based on 
only μ-PMU or only 
UAV output

Trajectory wise voltage,  
Vj (p.u.)

Trajectory wise current, 
Ijk (A)

Line slope estimation, 
�l (°)

Trajectory wise stress, ςj
(106N/m2)

j k Min T Intr T Max T Min T Intr T Max T Min T Intr T Max T Min T Intr T Max T

1 2 1.0000 1.0000 1.0000 5.46 5.46 5.66 0.126 0.043 0.158 15.2 15.0 43.1 RNP

2 3 0.9975 0.9976 0.9986 5.31 5.31 5.31 0.091 0.157 0.238 16.5 16.8 21.3 RNP

3 4 0.9857 0.9853 0.9930 4.43 4.43 4.46 0.130 0.007 0.078 15.1 23.9 51.9 RNP

4 5 0.9795 0.9788 0.9914 6.44 6.44 6.52 0.180 0.017 0.130 17.8 31.1 17.6 RNP

5 6 0.9735 0.9724 0.9901 2.98 2.97 3.03 0.107 0.212 0.079 18.5 30.1 40.1 RNP

6 7 0.9579 0.9559 0.9874 2.76 2.76 2.85 0.095 0.129 0.079 30.0 24.0 55.0 RNP

7 8 0.9553 0.9529 0.9868 9.74 9.72 10.1 0.241 0.221 15.62 31.0 43.1 69.7 MRNP

8 9 0.9518 0.9488 0.0000 9.71 9.67 0.00 0.077 0.154 15.73 10.9 20.1 84.1 UAV based NRNP

9 10 0.9475 0.9433 0.0000 2.73 2.72 0.00 0.130 0.077 0.180 10.8 15.1 65.9 UAV based NRNP

10 11 0.9437 0.9384 0.0000 2.72 2.71 0.00 0.050 0.119 0.134 11.5 28.7 86.7 UAV based NRNP

11 12 0.9431 0.9376 0.0000 2.33 2.31 0.00 0.119 0.164 0.022 13.8 43.2 65.8 μ-PMU based NRNP

12 13 0.9422 0.9363 0.0000 2.98 2.97 0.00 0.174 0.228 0.130 14.7 50.2 43.0 μ-PMU based NRNP

13 14 0.9387 0.9312 0.0000 2.97 2.95 0.00 0.138 0.131 0.106 43.1 39 50.0 μ-PMU based NRNP

14 15 0.9375 0.9293 0.0000 6.17 6.11 0.00 0.052 0.149 0.141 47.8 44.7 20.0 μ-PMU based NRNP

15 16 0.9370 0.9281 0.0000 2.60 2.57 0.00 15.03 0.093 0.083 55.8 43.1 25.9 μ-PMU based NRNP

16 17 0.9367 0.9269 0.0000 2.70 2.67 0.00 15.05 0.018 0.101 59.6 47.4 21.3 μ-PMU based NRNP

17 18 0.0000 0.9252 0.0000 0.00 2.67 0.00 0.145 15.36 0.124 75 53.1 51.5 UAV based NRNP

18 19 0.0000 0.9247 0.0000 0.00 4.15 0.00 0.079 15.73 0.130 67.1 65.2 70.2 UAV based NRNP

19 20 0.9970 0.0000 0.9981 4.48 0.00 4.48 0.104 0.075 0.109 20.9 81 43.7 UAV based NRNP

20 21 0.9935 0.0000 0.9946 4.46 0.00 4.47 0.131 0.128 0.0428 20.5 65.9 53.3 μ-PMU based NRNP

21 22 0.9928 0.0000 0.9939 4.46 0.00 4.46 0.25 0.119 0.106 19.6 44.5 46.5 μ-PMU based NRNP

22 23 0.9922 0.0000 0.9933 4.46 0.00 4.66 0.238 0.028 0.058 21.4 51.7 10.8 μ-PMU based NRNP

23 24 0.9823 0.9820 0.9895 4.61 4.61 4.65 0.089 0.15 0.073 22.5 57.5 32.1 RNP

24 25 0.9760 0.9757 0.9832 20.7 20.7 20.9 0.172 0.092 0.182 23.6 46.7 38.2 RNP

25 26 0.9729 0.9726 0.9801 20.6 20.6 20.8 0.101 0.225 0.183 23.1 23.7 12.8 RNP

26 27 0.9563 0.9543 0.9872 2.83 2.83 2.93 0.050 0.115 0.156 26.1 30.7 70.2 RNP

27 28 0.9541 0.9521 0.9871 2.83 2.82 2.93 0.107 0.173 15.36 24.7 29.9 64.2 MRNP

28 29 0.9443 0.9423 0.0000 2.72 2.72 0.00 0.116 0.081 15.62 26.3 33.9 83.1 UAV based NRNP

29 30 0.9369 0.9349 0.0000 5.94 5.92 0.00 0.084 0.113 0.175 28.6 31.6 63.4 UAV based NRNP

30 31 0.9338 0.9319 0.0000 26.9 26.9 0.00 0.151 0.221 0.032 28.4 43.4 77.1 UAV based NRNP

31 32 0.9303 0.9283 0.0000 7.02 7.01 0.00 0.091 0.111 0.103 27.5 42.9 57.9 μ-PMU based NRNP

32 33 0.9295 0.9276 0.0000 9.86 9.84 0.00 0.150 0.132 0.250 29.5 33.3 50.2 μ-PMU based NRNP

33 – 0.9293 0.9273 0.0000 3.06 3.05 0.00 – – – 31.4 31.8 46.4 μ-PMU based NRNP
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a comparatively high ranking, then it impacts the operation of the distribution system to a larger extent. These 
high-risk points of the network are further considered for correlation analysis with the location aspects. Similarly, 
for all other cyclone prone regions, the hybrid data driven ranking of nodes are computed, based on network 
impact as per min, intr and max T of cyclone.

The ecological indicators of latitude, mean elevation, and probable water level are mathematical illustration 
of physical surface. The distribution system’s complexity, exposure, and geographic reach results in inherently 
greater vulnerability due to HILF events. Latitudes help to analyse temperature gradient of a location affecting 
wind trajectory. Historical data for HILF disturbances highlight the impact of alteration in geographical aspect 
of latitude and mean elevation. The potential intensity of cyclone at higher mean elevation leads to widespread 
disturbances to the structural part of network by increasing the failure probability. Hydrological feature of prob-
able water level indicates the probability of inundation and failure of distribution system components during 
cyclone. These non-climatic aspects impact extent of exposure to cyclones by curtailing resilience of the network. 
This study helps in proper decision making by providing an insightful understanding of a region’s distribution 
infrastructure planning and operation. It allows decision makers and electric operators to understand which 
location-based features should be focused to improve the performance of that region’s electric supply and there-
fore achieve a better overall resilience during cyclones.

Table 4 summarizes the result for degree of correlation for location dependent resilience, R and the possible 
mitigation strategies for min, intr and max T in the 5 cyclone regions. Using Eqs. (23)–(25), the correlation 

Table 3.  Results of hybrid data driven approach based vulnerable node Prioritization for cyclone trajectories 
in region 1 (18.7669°S, 46.8691°E).

Node
Ranking based on μ-PMU data 
extraction

μ-PMU, UAV and CN oriented 
node ranking

j k

Trajectory wise node ranking, 
ℵrank = { Nc ,Dn,CI}

Trajectory wise node ranking, 
ℵe

ranknew
 = { Ncnew ,Dnnew ,CInew}

Min T Intr T Max T Min T Intr T Max T

1 2 1 1 1 1 1 1

2 3 2 2 2 2 2 2

3 4 3 3 3 3 3 3

4 5 5 5 5 5 5 5

5 6 11 8 11 11 8 11

6 7 4 4 4 4 4 4

7 8 12 9 12 12 9 12

8 9 13 10 – 13 10 17

9 10 14 11 – 14 11 18

10 11 15 12 – 15 12 19

11 12 23 20 – 23 20 25

12 13 24 21 – 24 21 26

13 14 25 22 – 25 22 27

14 15 26 23 – 26 23 28

15 16 27 24 – 27 24 29

16 17 28 25 – 28 25 30

17 18 – 26 – 29 26 31

18 19 – 28 – 31 28 32

19 20 6 – 6 6 31 6

20 21 9 – 9 9 33 9

21 22 10 – 10 10 32 10

22 23 30 – 16 32 30 16

23 24 7 6 7 7 6 7

24 25 8 7 8 8 7 8

25 26 29 27 15 30 27 15

26 27 16 13 13 17 13 13

27 28 17 14 14 17 14 14

28 29 18 15 – 18 15 20

29 30 19 16 – 19 16 21

30 31 20 17 – 20 17 22

31 32 21 18 – 21 18 23

32 33 22 19 – 22 19 24

33 – 31 29 – 33 29 33
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factors crR,ϕ , crR,ℏ, crR,̟ with expected resilience aspect R , through parameters of reconfiguration, splitting, 
and pole reinforcement, are evaluated. The trajectory has strong dependence on the network connectivity, and 
correlation with location aspects indicate its significance of the extent of mitigation viability. For elevation & 
reconfiguration, p value is 0.17 for min T, 0.99 for intr T, and -0,24 for max T, for region 1. This implies that 
reconfiguration is less significant for min T, highly significant for intr T, while not desirable for max T case. This 
is due to the absence of the main branch in the network topology for min T and intrt T, where the majority power 
is flowing. The disruption of main branch leads to loss of connection between the lateral branches, making the 
entire segment unavailable. Thus, the probability of a network losing the main component that is responsible 
for serving priority customers becomes high. The correlation value of probable water level and reconfiguration 
has p value of 0.38 for min T, 0.46 for intr T, and 0.27 for max T case. This suggests it can be weakly viable for 
minimum and intermediate trajectory of cyclone disturbance.

For the second mitigation factor of splitting, its correlation with elevation for intr T has a high correlation 
value of 0.99, which can be considered as a good option. It is less impactful for splitting strategy for min T with 
p 0.11. The uncertainty between the connected nodes is responsible for low correlation values. However, for max 
T, the value of 0.45 can be considered as a weak option. For splitting and probable water level, p value is − 0.98 
for min T, 0.28 for intr T, and 0.65 for max T, for region 1. This implies that splitting is less significant for intr T, 
highly significant for max T, while not desirable for min T case. This is due to a smaller number of components 
impacted by water logging impact, therefore showing a weak positive correlation. Probable water level tends to 
increase the probability of inundation leading to increased chances of component failure.

For the third mitigation factor of pole reinforcement, the p value with probable water level is 0.82 and 0.89 for 
intr T and max T, respectively. The correlation between probable water level and pole reinforcement describes the 
effect of water level on pole failure and repair dynamics using pole reinforcement changes. It is impactful for intr 
T and max T cases having a significantly positive correlation of 0.82 and 0.89 respectively. However, min T has 
negative effect with p value of -0.08. This factor should be analysed with cost perspective due to the additional 
cost and resources required for pole reinforcement alteration. These positive values reflect the system’s readiness 
towards handling the HILF scenarios with an average loss of performance. Similar to region1, the results for 
other cyclone prone regions are analysed.

Table 5 summarizes the results for distribution system LOR for the most probable cyclone prone regions 
with different mitigation measures. It shows the results for LOR-oriented mitigation strategies based on different 
phases of pd, dp, dg, rp and pres presented through resilience trapezoid. Based on cyclone trajectory, resilience 
trapezoid graph for mitigation strategies of network i.e., reconfiguration, splitting, and pole reinforcement are 
assessed. For the first cyclone prone region (18.76691° S, 46.86913° E), without any mitigation technique, it is 
observed that any failure will immensely impact the functionality of components within the average rmax range 
of disturbance, as per LOR using Eq. (25). The resilience level drops to 0.34 during dp. The rp is 0.633, 0.655, 
and 0.756, for splitting and reinforcement scenarios. The pres value is 0.753 and 0.811, for reconfiguration and 
splitting, respectively. This partially restored state denotes that their quota of restoration depends on the techni-
cal constraints but reinforcement prevents further inclination or debasement of the poles. Pole reinforcement 
strategy during planning stage will not allow the system to succumb to degraded state. However, if temporary 
reinforcement is provided as a mitigation measure, then LOR is improved to reach to res of 0.894. The strategy 
of reconfiguration and splitting takes a shorter period to mitigate and also has a higher rate of recovery than the 
pole reinforcement technique. This is because it isolates the damaged components within the rmax and restores 
the power supply quickly in that area to serve the priority customers. Also, the opening and closing of tie switches 

Table 4.  Identification of the degree of correlation of location dependent resilience metrics and possible 
mitigation strategies for minimum, intermediate, and maximum cyclone trajectories.

S.no Factors of correlation
Trajectory wise 
correlation

p value

Region1 Region 2 Region 3 Region 4 Region 5

1 Elevation and reconfiguration

Min T 0.17 0.55 0.30 0.22 0.78

Intr T 0.99 0.99 0.99 0.96 0.99

Max T − 0.24 − 0.5 − 0.19 − 0.5 − 0.02

2 Probable water level and reconfigu-
ration

Min T 0.38 0.04 0.33 0.33 0.49

Intr T 0.46 0.73 0.82 0.99 0.99

Max T 0.27 0.26 − 0.13 − 0.57 − 0.84

3 Elevation and splitting

Min T 0.11 0.37 0.04 0.47 0.61

Intr T 0.99 0.98 0.99 0.97 0.99

Max T 0.45 0.01 0.39 0.38 0.37

4 Probable water level and splitting

Min T − 0.98 − 0.42 − 0.22 − 0.53 − 0.75

Intr T 0.28 0.87 0.88 0.95 0.98

Max T 0.65 − 0.02 0.42 0.15 0.39

5 Probable water level and pole rein-
forcement

Min T − 0.08 − 0.50 − 0.02 − 0.37 − 0.33

Intr T 0.82 0.94 0.95 0.99 0.97

Max T 0.89 0.90 0.56 0.78 − 0.15
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and sectionalizing require even less time. For both splitting and reconfiguration, DG back up is required to be 
provided to endorse power related issues. If optimum mitigation strategy of network, i.e., reconfiguration, split-
ting, and pole reinforcement are applied on time then the system regains its performance level to 0.753, 0.811, 
and 0.894, respectively.

However, considering values from both Tables 4 and 5, the best strategy suited for a specific region can be 
decided, as shown in Fig. 5. For region 1, from Table 4 it is observed that the correlation value is highly significant 
for pole reinforcement (0.82 and 0.89 respectively, for intermediate and maximum trajectory case). Also, from 
Table 5, the restorative stage of resilience trapezoid for mitigation strategy 3 i.e., pole reinforcement shows a 
higher value of 0.894 as compared to reconfiguration (0.733) and splitting (0.81). Based on both the tables, the 
appropriate strategy of pole reinforcement can be applied to region 1. However, the initial investments are high 
for pole reinforcement strategy, due to the additional cost and resources required for reinforcing the poles. This 
is a huge initial investment, comprising labour cost, land cost, transportation, raw material, and related taxes 
required for this strategy. The infrastructural facility provided for it also must be robust enough to sustain the 
wind speed. Sometimes the temporary alternative such as using support and suspension provided to suffice the 
mitigation might itself be prone to damage during the wind storm. Even though pole reinforcement shows the 
best results but depending upon the significance of load distorted, as well as high investments, the next best 
alternative can be adopted. Similarly, for the rest four regions the comparison of mitigation strategies are assessed. 
This analysis indicates how to frame out the resilience-based planning and expansion of the system for the future.

For region 2, the resilience values for restorative states using reconfiguration, splitting, and pole reinforce-
ment are almost the same showing 0.699, 0.616, and 0.679 respectively. This is due to the same number of nodes 
being taken as common for the three mitigation strategies. So, all measures lead to a similar restoration of the 
system and to improve the restoration of the system an immediate backup facility is required to serve the prior-
ity load locations. This makes the system available for a comparatively longer duration of time. Region 5, with 
average rmax range of (4.96, 5.18) km and average windspeed range of (161.2, 163.3) kmph, LOR reaches 0.578, 
0.501, and 0.600 for reconfiguration, splitting, and reinforcement respectively from its initial probability of 1 
in normal operation. The low values are due to the high radius of cyclone trajectory which damages the major 
distribution lines and DG serving the priority loads. In this case also immediate DG backup facility is needed 
to improve the operational status of the system. This improves the resilience trapezoid nature of the region by 
making its restorative state value better.

For region 3 and region 4, the restorative state values for pole reinforcement are 0.856 and 0.844 respectively. 
These values are again better than the restorative states for reconfiguration (0.756 and 0.740) and splitting (0.776 
and 0.766) for regions 3 and 4 respectively. Depending on the significance of distorted load and the total cost of 
pole reinforcement, the appropriate strategies can be adopted.

Conclusion
The rapid urbanization towards SCs are driven by the core need to handle increasing power demand and address-
ing climatic aided power hurdles by building maximum immunity to HILF events. Distribution system being 
the significant framework of power system must be resilient enough to supply power to the priority consumers 
beyond breach. The data-driven approach using combined feature extraction property of μ-PMU and UAV, along 
with node prioritization using CN enabled identification of vulnerable parts within IEEE 33-bus distribution 
network subjected to possible cyclone trajectories. The cyclone prone zones over the world are tested and the level 
of resilience are quantified with resilience-based correlation considering location-oriented variables of latitude, 
mean elevation, and probable water level. This justified the evidence of associations between geographical and 
distribution system features for prioritizing vulnerable nodes and its updation using CN theory. This study helped 
to analyse the optimal mitigation strategy for network and meet the power need of the consumers according to 
expected resilience value during extreme weather scenarios. This impact on network is validated using resilience 
trapezoid which assesses the transitions between the different phases in which the system resides when subjected 
to an HILF event. Resilience based planning is thus essential to estimate the long-term impact on the system 
owing to varied geographical and topological characteristics. It assists in indicating the resilience-based plan-
ning and expansion of the system network, its maintenance, and a better decision making with enhanced SA.

Table 5.  Resilience assessment and enhancement using optimum mitigation strategy in cyclone prone regions.

Cyclone 
prone 
region

Mitigation strategy 1: network reconfiguration Mitigation strategy 2: network splitting Mitigation strategy 3: pole reinforcement

Resilience trapezoid phases Resilience trapezoid phases Resilience trapezoid phases

pd dp dg rp pres pd dp dg rp pres pd dp dg rp res

1 1 0.184 0.475 0.633 0.753 1 0.204 0.655 0.702 0.811 1 0.226 0.736 0.756 0.894

2 1 0.671 0.361 0.557 0.699 1 0.745 0.498 0.561 0.616 1 0.822 0.559 0.542 0.679

3 1 0.680 0.455 0.601 0.756 1 0.755 0.627 0.617 0.776 1 0.834 0.704 0.625 0.856

4 1 0.541 0.448 0.592 0.740 1 0.599 0.618 0.645 0.766 1 0.662 0.695 0.639 0.844

5 1 0.711 0.123 0.190 0.578 1 0.789 0.170 0.210 0.501 1 0.871 0.191 0.232 0.600
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