
Hybrid Cloudification of Legacy Software for
Efficient Simulation of Gas Turbine Designs
Fozail Ahmad∗, Maruthi Rangappa∗, Neeraj Katiyar∗, Martin Staniszewski† and Dániel Varró∗‡

∗Department of Electrical and Computer Engineering, McGill University, Montreal, Canada
Email: {fozail.ahmad, maruthi.rangappa, neeraj.katiyar}@mail.mcgill.ca, daniel.varro@mcgill.ca

†Aeroderivative Gas Turbines, Siemens Energy, Montreal, Canada
Email: martin.staniszewski@siemens-energy.com

‡Department of Computer and Information Science, Linköping University, Sweden

Abstract—When developing aeroderivative gas turbines at
Siemens Energy, engine models are subject to complex simulation
campaigns for finite element analysis carried out by a legacy sim-
ulation tool. This paper presents results of a multi-year software
modernization project to provide a software-as-a-service (SaaS)
framework that enables the distributed and automated execution
of simulation jobs over a hybrid cloud platform containing both
private cloud and public cloud nodes. Our framework allows
to significantly reduce the net time required for completing
complex simulation campaigns, thus increasing the effectiveness
of engineers. The performance of our framework is evaluated in
various cloud configurations with complex simulation campaigns
performed in the context of a real simulation task.

Index Terms—cloud computing, software modernization, au-
tomation, simulation as a service

I. INTRODUCTION

Industrial relevance: The design of aeroderivative gas tur-
bines (AGTs) is a complex multi-disciplinary engineering
process, which involves various domain experts. Improving
the performance of AGTs is an iterative process spread over
many years, where new AGT models are repeatedly designed
and analyzed to determine if their performance has improved.

Since building physical prototypes is very costly, a variety
of software tools are used to develop AGT engine models as
digital twins which are then analyzed by simulation to assess
and optimize mechanical performance [1], [2], [3], [4], [5], [6],
[7], [8]. As a critical design step, finite element analysis (FEA)
is performed by large-scale simulation campaigns on ther-
momechanical AGT models to validate new designs against
performance requirements and objectives [9], [10], [11].

Existing industrial practice at Siemens Energy uses a legacy
software tool for FEA deployed on desktop computers of
engineers. For a complex simulation campaign (covering hun-
dreds of analysis points), engineers need to manually invoke
the tool to run the simulation of each analysis point. The
analysis runtime for a single analysis point takes over 2-12
hours depending on model granularity and the type of FEA.

Objectives: This paper summarizes results of a multi-year
software modernization project that enables the automated
execution of entire simulation campaigns over a hybrid cloud
platform while using the existing legacy FEA tool. Simula-
tion Software as a Service (SaaS) is a hybrid cloud based
framework which can flexibly provision computing nodes with

automated job scheduling from on-premise servers (private
cloud) as well as from Amazon Web Services (AWS) resources
(public cloud). Simulation SaaS is available for front-end
design tools and analysis scripts via RESTful APIs.

Contributions: Compared to past engineering practice and
tools at at Siemens Energy for FEA in AGT design, the specific
innovations reported in the paper include the following:

• We migrate a legacy FEA simulation software into a con-
tainer architecture to enable machine-agnostic execution.

• We integrate cloud-based object storage to reduce data
transmission and handle input/output artifacts for simulation.

• We provide a software-as-a-service solution to access the
cloud-based simulation software over the internet from
various frontends without installation needs.

• We offer a hybrid cloud architecture and software service for
automated distributed execution of simulation campaigns.

• We carry out an extensive experimental evaluation of the
performance of the proposed architecture in the context of
a complex simulation task provided by Siemens engineers.

Benefits: The main business added value that the Simulation
SaaS framework provides is significant time reductions on
multiple levels. As the primary effect, the speed-up gained
by distributed execution enables the completion of complex
simulation campaigns in significantly less amount of time,
thus flaws are identified and corrected earlier by engineers.
As a secondary effect of our SaaS solution, no time is spent
on installing the legacy FEA simulation tool on individual
desktop computers of engineers. Finally, our SaaS solution
also enables the seamless integration of FEA simulation into
complex engineering tool chains used by various design teams.

More efficient FEA by the Simulation SaaS enables better
utilization of engineers’ time and workload. Since the hourly
rate of engineers is significantly higher than the hourly rate
of cloud computing resources, the increased costs required for
provisioning AWS resources are counterbalanced by efficiency
gains. Moreover, with automated execution of FEA tasks,
engineers can investigate more analysis points, resulting in
higher performing and sustainable AGT products. Thanks to
its flexible deployment capabilities, the use of Simulation SaaS
can be limited to certain geographical regions or user groups
in order to comply with strict export control regulations.

384

2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)

2832-7659/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-SEIP58684.2023.00041

20
23

 IE
EE

/A
C

M
 4

5t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g:

 S
of

tw
ar

e
En

gi
ne

er
in

g
in

 P
ra

ct
ic

e
(I

C
SE

-S
EI

P)
 |

97
9-

8-
35

03
-0

03
7-

6/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SE
-S

EI
P5

86
84

.2
02

3.
00

04
1

Authorized licensed use limited to: Carleton University. Downloaded on August 23,2023 at 19:02:18 UTC from IEEE Xplore. Restrictions apply.

II. MOTIVATION AND INDUSTRIAL CONTEXT

Aeroderivative gas turbines (AGTs) are mechanical power
generation products built using aircraft turbine engines. Air-
craft turbine engines are designed to ramp up and down
very quickly for effective flight control which enables AGTs
to dynamically change their power output based on demand
variations in the power grid. The ability of AGTs to rapidly
adapt to grid conditions makes them well suited to efficiently
fill demand peaks in the electrical grid as traditional power
generation technologies, such as hydroelectric dams, cannot
be brought online or offline as quickly. Siemens Energy man-
ufacturers AGTs of various capacity to offer a flexible option
alongside their traditional offerings of large gas turbines.

A. Finite Element Analysis for AGTs

To avoid building costly physical prototypes whenever pos-
sible, an AGT engine model is built as a digital twin of a real
AGT engine. It contains various components such as blades
and shafts which are then combined into configurations to
create sections of the AGT such as the compressor, combustion
chamber and turbine. AGTs have specifications for operating
condition ranges that need to be met such as intake air
pressure and ambient temperature. In order to evaluate and
improve the performance of AGTs, finite element analysis
(FEA) has to be performed under varying operating conditions
on different engine models with unique and experimental
component designs and placement.

The iterative process of improving an AGT necessitates
performing FEA multiple times in complex simulation cam-
paigns as the performance of an AGT has to be evaluated
for various engine models and operating conditions to ensure
robust design. A simulation job is defined as one configuration
of an AGT engine model under a specific operating condition
for which FEA has to be performed using a simulation tool to
evaluate its performance. When analyzing a real AGT engine
at Siemens Energy, hundreds of different operating conditions
need to be evaluated by engineers via simulation.

B. Legacy Simulation Tool

Mechanical engineers at Siemens Energy have been using
a legacy (in-house) simulation software tool for FEA of
AGT designs for several decades (see Figure 1). This legacy
simulation tool is preferred by engineers as they have a clear
understanding of the capabilities and limitations of the tool,
which helps them provide faithful and reliable estimates of
real engine parameters by extensive simulation campaigns.

Fig. 1: Existing engineering practice for simulation based FEA

In existing practice, the legacy simulation tool has been used
by engineers in accordance with the following workflow:
1) Engineers provide the search space definition in a local

file by listing the various AGT engine models and oper-
ating conditions for FEA to be carried out by simulation.
Engineers need to ensure that (a) all engine models are
available locally on their desktop computer, and (b) the
legacy simulation tool is properly installed.

2) Then the search space definition file, engine model loca-
tions, and legacy software location are passed as inputs to
the simulation tool launcher. The simulation tool launcher
will then create all the possible combinations of the engine
models and operating conditions (i.e. analysis points) and
programmatically generate a simulation campaign.

3) For executing each simulation job in the campaign (i.e.
for a particular engine model and operating condition), the
engineer needs to manually invoke the simulation tool to
carry out FEA for this analysis point. While some engineers
may partially automate this step by developing ad hoc
scripts, no robust and fully automated solution has been
available, and constant supervision of the simulation is
required by the engineers.

4) The simulation runtime takes approximately 2-12 hours
depending on the complexity of the model (e.g. 2D vs 3D)
and the analysis (e.g. temperature vs. vibrations). If the
execution of a simulation job has successfully completed,
the results are available locally on the machine of the
engineer. If the simulation job fails, the engineer needs
to manually re-run the simulation tool for the designated
analysis point. For certification and quality assurance of
key engine models, the engineer needs to manually upload
the simulation results to the product lifecycle management
tool used by Siemens Energy.

Technological constraints:
The legacy simulation tool was designed for a single

computer deployment, and requires direct access to a license
management server. The simulation tool is an executable
that can be invoked on any computer running the Windows
operating system, and requires certain (3rd party) libraries to
be installed locally. However, such local deployments do not
natively provide any mechanisms for scaling horizontally with
a dynamic pool of host computers.

Moreover, on startup, the simulation software needs to
access a proprietary license management server as required
by the original FEA tool vendor. The license management
service is deployed on premise at Siemens Energy in a secure
network to restrict its usage to authorized users. Therefore,
any computer running the software must also have access to
the secure network where the license server is available.

Finally, the code base of the legacy simulation tool is not
managed by Siemens Energy, and no changes can be requested
or made to the original software.

Process and business constraints: Using a legacy simu-
lation tool that is no longer upgraded in the context of
ongoing initiatives at Siemens Energy such as digitalization
and increased use of machine learning initiatives has its own

385

Authorized licensed use limited to: Carleton University. Downloaded on August 23,2023 at 19:02:18 UTC from IEEE Xplore. Restrictions apply.

drawbacks. The high simulation runtimes and the high degree
of manual supervision required currently limits FEA to stable
engine designs. As a consequence, engineers simply lack
time to run FEA simulations for novel, unconventional engine
designs. Moreover, the existing engineering practice is unable
to generate sufficient amount of FEA simulation data to train
surrogate machine learning models (unlike in case of [12]).

Finally, AGT design needs to comply with export control
regulations imposed by various countries. Thus one needs to
guarantee that (i) only restricted personnel has access to certain
engine designs, and (ii) data required for FEA simulations
continuously stays withing a certain geographic region.

C. Objectives

Our research collaboration with Siemens Energy aimed
to address the following objectives as part of a software
modernization work package in a 5-year multi-disciplinary
project on design optimization.
O1 Simulation software as a service. Provide seamless access

to the legacy FEA tool in the form of a software as a
service (SaaS) solution from various front-ends (GUI,
Python programs) via standard interfaces without any
further local installation needs.

O2 Automated execution of simulation campaigns. Enable the
automated execution of large simulation campaigns with-
out any invocation or supervision of individual simulation
jobs by human experts.

O3 Decrease total simulation time required for complex sim-
ulation campaigns by allowing the parallel computation
of simulation jobs (horizontal scaling).

O4 Distributed execution over hybrid cloud platform. Enable
the seamless distributed execution of simulation jobs over
a hybrid cloud platform with a configurable mix of both
on-premise servers and public cloud servers on AWS.

O5 Geographically restricted simulation data and execution.
Ensure compliance with export control regulations of
intellectual property of designated countries while sup-
porting collaboration of engineering units. In such a case,
FEA simulation data and task execution must not leave
the servers of a specific region.

Constraints: The main technical constraint for this software
modernization project is that the legacy FEA simulation tool
cannot be modified. Therefore our approach needs to transpar-
ently adhere to the usage requirements of the legacy simulation
software; namely (1) it must have network access to the license
management server (even outside of the Siemens network) and
(2) all input/output files must be available locally.

III. APPROACH

A. High-level Software Architecture

Our Simulation SaaS (see Figure 2) provides engineers the
ability to perform FEA as simulation jobs on a hybrid cloud
platform without the need to install or run the simulation
software on their local computer. The service implements a
standardized way for users to structure, package and submit
simulation jobs which can then be executed in an automated

way. The Simulation SaaS is built using a distributed mi-
croservice architecture that allows the service to be deployed
flexibly across different computers, networks and geographic
regions. The service uses a configurable pool of heterogeneous
(public and private) computation nodes to concurrently execute
simulations jobs in order to speed up the computation time for
users running large complex simulation campaigns.

1) Servicification strategies: On a high-level, our simula-
tion as a service challenge can be formalized as a function
analyze(M,Func, Params) where M represents a hierar-
chical engine design model (with components and their de-
pendencies) to be analyzed by using a designated functionality
Func along a set of operating conditions Params.

For related analysis challenges, cloud-based servificiation
can possibly be carried out on different levels of granularity.

1) Entire model, entire tool, all params: As the lowest
granularity solution, one can execute an entire simulation
campaign on the cloud by invoking the tool on the entire
model for all the operating conditions as a single service.

2) Entire model, entire tool, specific params: Alterna-
tively, a simulation campaign can be divided into analysis
points (one for each operating condition) and the tools is
invoked on the entire model for each point separately.

3) Entire model, specific function, specific params: At a
next level of granularity, a simulation campaign can be
performed over an entire model by invoking a designated
analysis function (instead of invoking the entire tool).

4) Partial model, specific function, specific params: Fi-
nally, the most fine-grained solution could carry out
analysis on selected components of the engine model.

As the legacy simulation software cannot be modified we
could not provide a centralized cloud repository for managing
hierarchical engine models. Neither could the individual FEA
functions within the tool (such as thermal, structural and fluid
analysis) be exposed as standalone services.

In our servicification strategy of the legacy FEA simulation
tool, we decided to (1) define the boundaries of a transparent
simulation job to use the entire tool on entire engine models for
specific analysis points and (2) use a cloud based file storage
to transfer input and output data for each simulation job.

The main benefit of our servicification strategy is that it
can be adapted to incorporate other simulation tools used
at Siemens Energy with only minor modifications. As a
limitation, there is a likely performance loss compared to a
more fine-grained servicification option, which exploits inter-
model dependencies or individual tool functions.

2) Key components: The Simulation SaaS contains three
core components; the Manager, the Worker and the Executor.
• The Manager is responsible for serving the service to users

and essentially operates as its primary endpoint.
• The Worker is an agent responsible for pulling Simulation

Jobs from the Job Repository and launching Executors.
• The Executor is an ephemeral container which will actually

performs the FEA for a simulation job.
There are also external third party services that the core

components of the Simulation SaaS depend upon, such as the

386

Authorized licensed use limited to: Carleton University. Downloaded on August 23,2023 at 19:02:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Architecture for Simulation SaaS over a hybrid cloud platform

Job Repository (as a service), the File Storage Service and the
License Management Service. Each component is built and
packaged in such a way that it can be deployed independently
of each other and across different environments, enabling the
service to be fully distributed in a hybrid deployment.

B. Simulation Job

A simulation job is the primary resource of the Simulation
SaaS that users interact with. In order to perform FEA using
our service users must create and manage simulation jobs. A
simulation job contains all the data and functionality required
for a single self-contained simulation execution. A high-level
overview of its detailed contents is provided in Figure 3, while
its lifecycle is detailed in Figure 4.

Fig. 3: Simulation job definition

1) Taxonomy: Every simulation job has a unique identifier
(jobID) which enables the users and the service to monitor
and manipulate a task from creation to completion. Moreover,
to ensure that the Simulation SaaS is being used effectively by
users within Siemens Energy, every simulation job is tied to an
employee (owner). A simulation job has various metadata (job
metrics) which consists of the number of execution attempts,
the queue time, the start time, the execution start & end time,
the end time and the complete time.

Every simulation job is ultimately executed in a unique sim-
ulation environment, which is isolated and can be configured

to the needs of the simulation job. In order to meet geographic
and technical requirements, a simulation job can specify which
type of node they want their simulation environment to exist
within (nodeRestriction).

Each simulation job has a job folder to store all the job
files necessary for their simulation. Simulation jobs should
only rely on files within their job folder except for standard
libraries which are available at predefined paths within the
simulation environment. All references between files in a job
folder must be relative as the simulation environment that
ultimately executes the job is not transparent to the user.
Technically, a job folder cannot contain empty sub folders,
however the FEA simulation software may need to write to
such a location. Thus, the simulation environment can be
configured to create empty folders within its local job folder
clone (foldersToCreate). Before a simulation job executes, its
job folder is copied into its simulation environment and it
becomes the working directory during the execution.

Each simulation job has an an entry point specified as an
execution script (executionScript). It should be located in the
job folder and its location is passed to the FEA simulation soft-
ware during execution. Moreover, the FEA simulation software
version to use for the job execution can also be configured
within the simulation environment (toolVersion). At the end of
the execution the simulation environment can be configured to
only synchronize back a subset of the folders within the local
job folder clone instead of everything (foldersToUpload).

During job execution, the FEA simulation software may
load engine models from the local execution environment as
specified by the execution script. Models are generally large
files that contain the mechanical mesh data on which FEA
is performed. As such, the same engine model can be reused
by multiple simulation jobs (with each performing a specific
FEA function at a particular analysis point). Simulation jobs
can specify which models need to be accessed in their local
execution environment by a modelID. Due to the large size and
repetitive use of models, the Simulation SaaS maintains a file

387

Authorized licensed use limited to: Carleton University. Downloaded on August 23,2023 at 19:02:18 UTC from IEEE Xplore. Restrictions apply.

repository for models, which makes them locally available for
individual simulation jobs. This approach enables to reduce
overall data transfer and storage costs and time required for
using the Simulation SaaS, especially for hybrid deployments
where data transfer costs within the cloud are much lower.

2) Lifecycle: A simulation job has a total of six possible
states which each representing a different point in the lifecycle
of a simulation as shown in Figure 4. Each state transition can
be triggered either by the user or by various components in
the Simulation SaaS based on certain events and rules.

Fig. 4: Simulation job lifecycle

• Created: This state indicates that the simulation job has
been created within the Job Repository along with all its
configuration parameters, and is ready to accept job files in
its job folder at the File Storage Service.

• Queued: This state indicates that the simulation job is ready
to be taken by a Worker for execution, and it expects that
all the job files have been uploaded to its job folder at the
File Storage Service.

• Executing: In this state, the simulation job has been taken
by a Worker and it is being executed by an Executor.

• Executed: This state shows that the execution script of the
simulation job has successfully exited the FEA simulation
software and the resulting files are available in the job folder
at the File Storage Service. The Executor has terminated,
and it is awaiting cleanup by the Worker.

• Completed: This state indicates that the Executor of the
simulation job was successfully cleaned up by the Worker
and the job is completed; all job data is ready for retrieval.

• Failed: The failed state indicates that the simulation job was
unable to complete for some reason.

C. Manager

The Manager allows to create simulation jobs, queue those
jobs, and get job information when needed. The Manager
focuses only on handling the simulation jobs without actu-
ally executing them. The Manager exposes its service via a
RESTful API which users can access using HTTP requests
using the simulation job as the primary resource (see Table I).

TABLE I: REST API for Simulation SaaS Manager

Action HTTP Method URI
Create Job POST /jobs
Queue Job PUT /jobs/<job-id>
Get Job GET /jobs/<job-id>

• To create a job, a POST request is submitted for a simu-
lation job together with its configuration details as query
parameters. The Manager verifies each creation request and
returns a job ID which is then used to track and manipulate
the job throughout its lifecycle.

• When a simulation job is ready to queued, a PUT request
needs to be issued together with the designated queued state.

• A simulation job can be retrieved from the task collection
along a GET request by specifying the job ID in the URI.
As the primary function of the Manager is a service access

point of the Simulation SaaS for end users, it does not directly
interact with other core components. It only connects to the
Job Repository to create, queue and retrieve simulation jobs.
Furthermore, the Manager is packaged in a Docker container
so that it can be deployed on any computer and built such
that multiple instances of it can be deployed simultaneously
for horizontal scaling and hybrid deployments.

D. Worker

The Worker is an agent that runs on a node in the Simulation
SaaS. It is responsible for pulling queued jobs from the Job
Repository and launching and managing Executors on the node
to execute the simulation jobs. The Worker acts as a local job
manager for a node, ensuring that jobs are properly processed.
The Worker is packaged in a Docker container and hence
can be deployed on any computer to make it into a node in
the Simulation SaaS. The number of concurrent simulation
jobs (Executors) allowed by the Worker on its node can be
configured (capacity). Moreover, a node type can be set for
each Worker such that jobs with a matching node restriction
can be executed by that specific Worker.

Once deployed, launching Executors for simulation jobs is
the primary function of the Worker. It periodically polls the Job
Repository for queued jobs and reserves a job for execution
based on a FIFO order. To allow for the distributed execution
of simulation jobs, there is no limit on the number Workers that
can be deployed. Consequently, the job reservation process is
designed in a way such that only one Worker can secure any
given job from the Job Repository. For every job secured, a
corresponding Executor is launched, the start time and attempt
counter is updated for the job in the Job Repository.

Further responsibilities of the Worker includes the manage-
ment of Executors such as simulation job timeout and cleanup.
The Worker periodically check points each Executor, and if
the run time exceeds a maximum threshold, the Executor
is terminated, and the corresponding job is requeued for
another worker to eventually execute. Once a certain requeue
limit is reached, the job will transition to a fail state. Upon
termination, log files generated by the Executor are uploaded
to the corresponding job folder at File Storage Service and the
job state and complete time are updated in the Job Repository.

E. Executor

The Executor is a temporal container that provides an
simulation environment where the actual FEA is performed
using the legacy FEA software. The Executor provides an

388

Authorized licensed use limited to: Carleton University. Downloaded on August 23,2023 at 19:02:18 UTC from IEEE Xplore. Restrictions apply.

isolated environment for the execution of each simulation
job, and it is responsible for their successful execution. An
Executor is launched by a Worker for every simulation job
that it secures by passing the simulation job ID and other
relevant configuration data. The lifecycle of an Executor has
three distinct phases: initialization, execution and wrap-up.
• Initialization: A local copy of the job folder and its job

files is made in the simulation environment which is then
initialized by creating the required empty folders.

• Execution: The requested version of the FEA simulation
software (toolVersion) is launched with the execution script
as its input. The execution start time is updated in the Job
Repository. This phase continues until the FEA simulation
software terminates at which point the execution end time
is updated in the Job Repository.

• Wrap-up: Analysis results and log files generated during
execution are synchronized back to the job folder and the
end time is updated in the Job Repository.

F. Client-side Components

The Simulation SaaS is made available via a RESTful API
which can be accessed by end users and client-side (front-end)
tools by HTTP requests. To assist those mechanical engineers
who are not skilled in API programming, we developed two
front-end components that hide the technicalities of API calls.
• Service Wrapper helps engineers execute simulation cam-

paigns on the SaaS. Engineers prepare jobs on their local
machine and then use scripts of the Service Wrapper to
create the simulation jobs, upload the job files, queue their
campaign jobs and monitor the progress of a campaign.

• Job Manager enables engineers to define a search space
(e.g. temperature, air pressure, etc.) to perform FEA on the
engine models. Given such search space definitions as input,
the Job Manager generates the required simulation jobs and
automatically executes them using the Simulation SaaS.
The Simulation SaaS combined with client-side compo-

nents enables the end users to perform complex simulation
campaigns for FEA powered by an existing (trusted) legacy
simulation software as automated jobs instead of manually
invoking the software. Providing a transparent and simple
service to use the legacy simulation software and manage its
input/output data empowers the practitioners to produce better
mechanical designs by more extensive simulations.

G. Export Control Considerations

As the Simulation SaaS needs to process simulation jobs
which may involve engine models and data under export
control regulations, we have also developed a mechanism
to restrict where simulation jobs can be executed. This is
achieved by a tagging strategy where Workers deployed on a
certain node type (i.e. the region, OP/AWS) can be tagged with
a unique identifier. Consequently, jobs which must execute on
certain node type can be tagged with the appropriate identifier
(nodeRestriction - represented symbolically by flag icons in
Figure 2) in their configuration, ensuring that they will be
executed in compliance with export control.

Export control restrictions for data to reside in a particular
region can be fulfilled with the public cloud as they offer
various regions in which Workers can be deployed to meet
geographic requirements. Moreover, access to public cloud
resources where confidential data may reside can be strictly
controlled and secured using the comprehensive set of identity
and access management tools provided by the cloud platforms.

IV. EVALUATION

In order to evaluate the performance of our Simulation SaaS,
we have conducted an extensive set of experiments to address
the following research questions:
• RQ1: What is the runtime overhead of executing a simula-

tion job using the Simulation SaaS?
• RQ2: What is the wait time of simulation jobs in a simula-

tion campaign on AWS vs. on-premise servers?
• RQ3: What is the performance of a realistic hybrid con-

figuration for a complex simulation campaign compared to
existing engineering practice at the industrial partner?

A. General Measurement Setup

Motivation: We carry out an extensive performance eval-
uation of our Simulation SaaS by running a specific real
simulation job for FEA of a real world gas turbine com-
ponent developed by Siemens Energy. In our measurements,
campaigns of simulation jobs will be executed on different
configurations of the Simulation SaaS consisting of on-premise
(OP) and/or Amazon Web Services (AWS) public cloud nodes.

Measured performance parameters: In order to evaluate
the performance and effectiveness of the Simulation SaaS, we
measure various execution times related to a simulation job in
accordance with its lifecycle Figure 4 defined as follows:
• Wait time tw: The time period from the moment a simulation

Job is queued by the user to the moment a Worker secures
the simulation job from the job repository.

• Setup time ts: The time period from the moment a Worker
has secured a simulation job, launched an Executor until
the moment the Executor is up and running has finished
preparing the simulation environment for the execution.

• Runtime tr: The time period from the moment the Executor
launches the FEA simulation software until it has completed
execution and exits.

• Wrap-up time tu: The time period from the moment the FEA
simulation software terminates until the Executor wraps up
the simulation environment and exits itself.

• Cleanup time tc: The time period from the moment the
Executor exits until the Worker cleans up the Executor.

• Execution time te: The execution time for a simulation job
is the sum of all four previous items except for the wait
time, i.e. te = ts + tr + tu + tc.

• Total time tt: The total completion time for a simulation job
includes wait time and execution time: tt = tw + te.
Each of these time periods are computed from timestamps

that are captured by the different components of the Simulation
SaaS as they interact with any simulation job, and were
previously defined in Figure 3 (see Job Metrics).

389

Authorized licensed use limited to: Carleton University. Downloaded on August 23,2023 at 19:02:18 UTC from IEEE Xplore. Restrictions apply.

Configurations of Simulation SaaS: The Simulation SaaS
can be configured in various ways to meet different needs. The
type of node(s) that the Worker(s) are deployed on is part of the
configuration of the SaaS, as adjusting the number of workers
and the type of the their underlying node can affect the overall
performance of the SaaS. To ensure the underlying node
hardware is not overloaded, we need to set the the maximum
number of concurrent simulation jobs (capacity) for each
Worker. In our performance evaluation, various Simulation
SaaS configurations are investigated (with varied number of
Workers and different simulation job capacity):
• AWS-SEQ: single worker running on a AWS type node,

with a capacity of one simulation job.
• AWS-PAR: two workers running on a AWS type node, each

with a capacity of two simulation jobs.
• OP-SEQ: single worker running on a OP type node, with a

capacity of one simulation job.
• OP-PAR: single worker running on a OP type node, with a

capacity of four simulation jobs.
• HYB: three workers running, two on a AWS type node and

one on a OP type node each with a capacity of two.
Since limited available resources may influence the runtime

of simulation jobs, every Worker can be configured to allocate
certain amount of RAM to each Executor it launches for the
simulation jobs it secures. In our performance evaluation, the
RAM allocated by all Workers in the SaaS to Executors can
be either 1GB or 8GB.

B. RQ1: Runtime Overhead

Rationale: In addition to the runtime of the FEA simulation
software, the Simulation SaaS introduces a measurable over-
head during the lifecycle of simulation jobs. By exploring the
typical overhead of a simulation job, we evaluate the efficiency
of the Simulation SaaS with respect to the computational
capacity being deployed.

1) Measurement setup: The overhead of a single job to is
defined as the sum of the setup, wrap-up and cleanup time:
to = ts+tu+tc. We measure these time periods and compare it
against the actual runtime tr of the FEA simulation software to
assess the overhead of executing a simulation job when using
the Simulation SaaS. As wait time tw depends on the actual
SaaS configuration, it will be assessed as part of RQ2.

To accurately determine these time periods we execute a
campaign with 30 identical simulation jobs on eight different
Simulation SaaS configurations: (1) AWS-SEQ with 1GB; (2)
AWS-PAR with 1GB; (3) AWS-SEQ with 8GB; (4) AWS-
PAR with 8GB; (5)OP-SEQ with 1GB; (6) OP-PAR with
1GB; (7) OP-SEQ with 8GB; (8) OP-PAR with 8GB.

Results: The medians of overhead times in various configu-
rations of Simulation SaaS are plotted in Figure 5 (centre). We
also present the simulation runtime tr for different configura-
tions (right), and depict the percentage breakdown of the task
execution time in respective configurations (left). Based on the
measurement results, we make the following observations on
certain characteristics of the Simulation SaaS.

O1.1: When the SaaS is configured as AWS-PAR or AWS-
SEQ, the overhead of the jobs is significantly smaller than
OP-PAR or OP-SEQ, both in time and percentage. Part of
this can be explained by the fact that AWS based File Storage
Service offers better network performance on AWS type nodes
in the AWS-PAR/AWS-SEQ SaaS configurations.

O1.2: Given same RAM allocation, the parallel execution
of jobs results in increased overhead time to and simulation
runtime tr, which is attributed to the overhead of resource
constrained multitasking in the underlying hardware.

O1.3: We observe that increased RAM allocation signifi-
cantly decreases overhead time to, and runtime tr with on-
premise configurations (OP-SEQ/OP-PAR). Moreover, with
1GB we experienced a major increase in runtime likely at-
tributed to thrashing. However, RAM allocation did not really
influence runtime on AWS configurations.

RQ1: The overhead imposed by the Simulation SaaS
takes 5-12 minutes, which is less than 8% of the overall
execution time of a typical simulation job. For simulation
jobs executed within AWS, the overhead is less than 4%.

With comparable network setup, the absolute overhead time
(required for instantiating and managing a simulation job) is
expected to stay within the same range for other simulation
jobs. However, the overhead percentage with respect to exe-
cution time may change for longer simulation jobs.

C. RQ2: Job Wait times

1) Rationale: The Simulation SaaS is designed to process
simulation jobs in parallel to enable lower overall (end-to-
end) execution time for simulation campaigns. By exploring
the wait times of simulation jobs in campaigns launched on
different Simulation SaaS configurations, we can assess the
performance and potential speedup of using the SaaS.

Measurement setup: The wait time of single task tw is
defined as the time period between the moment a job gets
queued by a user to when it is selected for execution by a
Worker. Wait time tw depends on the configuration of the
Simulation SaaS; mainly the number of Workers deployed
within the SaaS, the node type the Workers are deployed on,
and the combined capacity of all the Workers (i.e. the sum of
concurrent simulation jobs executable by each Worker).

To accurately assess the performance of the Simulation
SaaS, we execute a campaign with 30 identical simulation jobs
on four different configurations with the following parameters:
(1) AWS-PAR with 1GB; (2) AWS-PAR with 8GB; (3) OP-
PAR with 1GB; (4) OP-PAR with 8GB. All SaaS configu-
rations have the same combined capacity of four jobs (i.e. at
most four jobs can be executed at a time across the SaaS).

Tracking the wait time tw of every job in a campaign allow
us to assess the performance of the Simulation SaaS compared
to a theoretical minimum wait time tmin

w . The formula to cal-
culate the minimum wait time tmin

w of a simulation campaign
of size k is defined as follows:

tmin
w (k) = (

⌈
k∑N

i=1 Ci

⌉
− 1)× tmin

390

Authorized licensed use limited to: Carleton University. Downloaded on August 23,2023 at 19:02:18 UTC from IEEE Xplore. Restrictions apply.

0%

20%

40%

60%

80%

100%

AWS

SEQ

1GB

AWS

SEQ

8GB

AWS

PAR

1GB

AWS

PAR

8GB

OP

SEQ

1GB

OP

SEQ

8GB

OP

PAR

1GB

OP

PAR

8GB

Job Execution Time Breakdown

0

200

400

600

800

AWS

SEQ

1GB

AWS

SEQ

8GB

AWS

PAR

1GB

AWS

PAR

8GB

OP

SEQ

1GB

OP

SEQ

8GB

OP

PAR

1GB

OP

PAR

8GB

S
ec

o
d
n
s

(s
)

Job Overhead Times

0

4000

8000

12000

16000

AWS

SEQ

1GB

AWS

SEQ

8GB

AWS

PAR

1GB

AWS

PAR

8GB

OP

SEQ

1GB

OP

SEQ

8GB

OP

PAR

1GB

OP

PAR

8GB

S
ec

o
n
d
s

(s
)

Job Runtimes

Setup time Wrapup time Cleanup time Runtime

Fig. 5: Left: Percentage breakdown of total times (tt) Centre: Median overhead time for simulation jobs for various Simulation
SaaS configurations (to) Right: Median runtime of simulation jobs (tr)

• N : The number of nodes in the SaaS configuration
• Ci : Capacity, i.e. the maximum number of concurrent

simulation jobs on a node
• k : The size of the simulation campaign
• tmin : The (reference) execution runtime of a simulation

job, i.e. the median job execution time te of the best SaaS
configuration observed in RQ1 (6,555.5 seconds).

0

20000

40000

60000

80000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

S
ec

o
n

d
s

(s
)

Simulation Job Wait Times

AWS PAR 1GB

AWS PAR 8GB

OP PAR 1GB

OP PAR 8GB

Theoretical

Fig. 6: Simulation job wait times tw for various configurations

Results: The wait time tw for each simulation job within
each Simulation SaaS configuration is plotted in Figure 6, and
the theoretical tmin

w (k) is also plotted for reference. Based on
the measurement results, we make the following observations
on the simulation job wait times and of the Simulation SaaS.

O2.1: In all Simulation SaaS configurations, the wait time
for all simulation jobs follows a step function: four (identical)
jobs execute almost simultaneously at a time until all jobs
within the campaign are finished.

O2.2: When the SaaS is configured as AWS-PAR, increas-
ing the RAM allocation from 1GB to 8GB does not provide
substantial reduction in job wait times, hence, the wait times
under both configurations is nearly identical. Real job wait
times for AWS-PAR-1GB deviate 29%-44% and AWS-PAR-
8GB deviate 39%-44% from the theoretical tmin

w .
O2.3: When the SaaS is configured as OP-PAR, increasing

the RAM allocation from 1GB to 8GB results in significant
reduction in job wait times. With 1GB, the job wait times are
the largest observed (due to thrashing issues explored in RQ1),
deviating between 80%-135% from the theoretical tmin

w . For

8GB configurations, the job wait times are the smallest ob-
served deviating only 15%-24% from the theoretical tmin

w .

RQ2: With sufficient resources, the job wait times in a sim-
ulation campaign vary from the theoretical minimum up to
44% and 24% in AWS and OP configurations, respectively.
Moreover, in resource constrained environments, the wait
time can deviate by as much as 135%.

D. RQ3: Speed-up of Hybrid Configuration

1) Rationale: The Simulation SaaS is designed to be de-
ployed in a heterogeneous configuration with different node
types. Besides enabling the parallel execution of simulation
jobs, the hybrid configuration of the Simulation SaaS also
enables Siemens Energy to leverage existing on-premise re-
sources while taking advantage of the flexibility offered by
public cloud providers such as AWS. By measuring the total
execution time of a realistic simulation campaign on a typical
hybrid SaaS configuration, we can gain a better understanding
of the performance of our framework, and compare it to the
existing engineering practice using the legacy setup.

Measurement setup: For this RQ, we measure the total (end-
to-end) completion time tt of each job from the moment it
is queued until it has been cleaned up after completing its
execution. Consequently, the total execution time tt(k) of a
simulation campaign (with k jobs) is the time period from the
moment the first simulation job is queued until the last job has
been cleaned up. To effectively measure the performance of
the Simulation SaaS, we run a campaign with k = 30 identical
simulation jobs and we execute this measurement three times.

The simulation campaign is executed on a hybrid cloud
configuration (HYB with 8GB) which represents a typical
SaaS configuration to be used at Siemens Energy. This SaaS
configuration has a combined job capacity of six, which allows
the concurrent execution of six simulation jobs.

We compare the total execution time of each simulation
campaign thybt (k) to three baselines to evaluate the perfor-
mance of hybrid deployment of the Simulation SaaS.
• Theoretical minimum: Given the theoretical minimum ex-

ecution time of a single job tmin (as defined in RQ2 as
6,555.5 seconds), we define the theoretical minimum total
execution time for a simulation campaign of size k with a

391

Authorized licensed use limited to: Carleton University. Downloaded on August 23,2023 at 19:02:18 UTC from IEEE Xplore. Restrictions apply.

SaaS capacity of 6 (like our HYB configuration) as follows:
tmin
t (k) =

⌈
k
6

⌉
× tmin.

• Sequential execution: The estimated time tseqt of executing
a campaign of size k sequentially in the Simulation SaaS is
calculated as follows: tseqt (k) = tmin × k.

• Legacy practice: We measured the execution time tlegr of
one simulation job in the legacy setup (i.e. on a desktop
computer). We carried out thirty measurements with a me-
dian execution time of 5,502 seconds. As a further reference
value, we compute the estimated total execution time tlegt

for a simulation campaign of size k in the legacy setting
as tlegt (k) = tlegr × k. Note that this value is likely a lower
bound for the real total execution time of a campaign in a
legacy setting as the actual creation, setup and wrap-up time
of a simulation job is excluded.
Results: The complete execution time for each simulation

job within each campaign for a HYB SaaS configuration is
plotted in Figure 7, and the theoretical tmin

t (k) and legacy
tlegt (k) is also plotted for reference. Based on the measurement
results, we make the following observations on the total
execution time of the simulation campaigns.

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

S
ec

o
n

d
s

(s
)

Simulation Campaign Total Execution Time w.r.t No. of Jobs

HYB 8GB #1

HYB 8GB #2

HYB 8GB #3

Theoretical

Legacy

Fig. 7: Total execution time of simulation campaign execution
times with an increasing number of simulation jobs

O3.1: The total execution time of some jobs gets very close
to the theoretical minimum as they are executed on OP nodes
which generally have faster execution times. However, jobs
executed on AWS nodes have longer execution times and made
the total execution time of the simulation campaigns 39%
higher on average when compared to the theoretical minimum.

For our simulation campaigns with k = 30 jobs each, the
theoretical minimum total execution time of a campaign on
our SaaS configuration is tmin

t (k). Moreover, the estimated
time of executing such a campaign sequentially on the SaaS is
tseqt (k). Therefore, the theoretical maximum speedup offered
by our HYB SaaS configuration is smax =

tseqt (k)

tmin
t (k)

. Finally,
the expected total execution time of our our campaign in a
legacy setting would be tlegt (k).

Table II summarizes speed-up results for all three simulation
campaigns executed on our HYB SaaS configuration;
1) The speedup with respect to sequential execution on the

SaaS: sseq =
tseqt (k)

thyb
t (k)

.

2) The percentage of speedup achieved w.r.t. the theoretical
maximum speedup smax is: pseq = sseq

smax =
tmin
t (k)

thyb
t (k)

.

3) The speedup with respect to legacy setting (with sequential
execution): sleg =

tlegt (k)

thyb
t (k)

.

4) The percentage reduction of the total execution time of the
simulation campaign compared to a legacy setting: pleg =

1− thyb
t (k)

tlegt (k)
.

TABLE II: Speedup of HYB SaaS campaigns compared to
sequential execution and legacy practice

HYB 8GB Run # 1 2 3
Speedup w.r.t sequential 4.40 4.29 4.31
Percentage w.r.t theoretical (%) 73.35 71.47 71.78
Speedup w.r.t. to legacy 3.73 3.60 3.61
Percentage reduction w.r.t. legacy (%) 72.93 72.22 72.33

O3.2: The HYB configuration of the SaaS achieves a
speedup of at least 4.29 when compared to sequential execu-
tion on the SaaS whilst also being very close to the theoretical
maximum speedup (71%). The HYB speedup is lower than the
theoretical maximum which is calculated using tmin, whereas
the average job execution time te used for the HYB speedup
is generally higher. As such, tmin was achieved exclusively
with OP type nodes in RQ1 while the HYB configuration of
the SaaS also contains AWS type nodes as well.

O3.3: The HYB configuration of the SaaS achieves a
speedup of at least 3.30 when compared to sequential exe-
cution in a legacy setting, and the total execution time of
simulation campaigns on our HYB configured SaaS are at least
72% faster. Although the concurrent capacity is 6, our speedup
is less since the SaaS measurements include all overhead while
in a legacy setting only the bare metal execution time of the
FEA simulation software is considered with no overheads.

O3.4: The median runtime tr of a single job in a legacy
setting 5,502 sec is considerably better then the best median
tr recorded in RQ2 6,028 sec. This can be explained by the
fact that all simulation jobs in the SaaS run within an isolated
container environment which increases the overhead, while in
the legacy setting the FEA simulation software runs directly
on a desktop computer (i.e. bare metal execution).

RQ3: The Simulation SaaS deployed over a hybrid cloud
platform with a 6 job capacity offers 3-4 times speedup for
complex simulation campaigns compared to legacy settings
while introducing negligible service overhead.

E. Threats to Validity

Internal validity: We applied several techniques in order to
increase the internal validity of our experimental results. (1)
All timestamps within the SaaS relied upon the Network Time
Protocol (NTP) to generate universally accurate time data. (2)
Moreover, large simulations campaigns have been executed to
identify and mitigate any transient effects of the underlying
infrastructure. (3) Finally, all SaaS configurations have been
chosen in a way to ensure that sufficient amount of resources
(CPU, memory) are available (expect for one configuration
which highlights the effects when simulations are run with
insufficient amount of memory).

392

Authorized licensed use limited to: Carleton University. Downloaded on August 23,2023 at 19:02:18 UTC from IEEE Xplore. Restrictions apply.

Our experimental evaluation is carried out on sample con-
figurations that are expected to be used at Siemens Energy to
maximize the use of existing resources. However, we did not
investigate how to obtain the best configuration for a given
simulation campaign, which may reduce simulation job wait
times compared to results reported in Figure 6.

There are also certain limitations concerning the internal
validity of the reported results. (i) The accuracy of timestamp
generation was ~1 second while overall accuracy was ±5
seconds. (ii) Our measurements exclusively report execution
times for successful simulation runs, hence no component
failures have been incorporated. The execution time of a failing
simulation run has not been reported. Since the overall failure
rate was well below 3%, the overall effect is quite negligible.

External validity: We have applied various steps to in-
crease the generalizability of our results. (1) Performance
measurements of the SaaS were taken on different configura-
tions including exclusively on-premise and public cloud based
infrastructure, and a hybrid setup. (2) Our Simulation SaaS
has been evaluated using a real engineering simulation job to
determine real world performance.

Nevertheless, the generalizability of our results is also lim-
ited by various factors. (i) A specific type of public cloud and
private cloud node instance has been used exclusively, thus one
might experience a different simulation runtime when using
other types of nodes. (ii) The network performance of any node
may vary on the external or the cloud environment, which may
influence the absolute overhead by increasing or decreasing
file transfer time. (iii) The same (real) simulation job has been
used for all performance evaluations while engineers may use
more varied and complex jobs for their analysis. (iv) We have
not evaluated the scale out of SaaS by using hundreds of nodes.
While such scaling options are offered by AWS, they are not
explored by Siemens Energy at the moment as their current
focus is to maximize the usage of existing resources.

Construct validity: We have been measuring and evaluating
standard performance metrics such as execution time (end-
to-end as well as for individual phases), and speed-up with
respect to runtime of reference configurations.

V. RELATED WORK

Existing research related to our Simulation SaaS focuses
on three main areas: simulation as a service, legacy software
modernisation and hybrid cloud computing.

A. Simulation as a Service

Digital simulation is a computationally intensive process
that requires high performance computers. Traditional simula-
tion software is installed and run on the users local computer,
which are configured to handle such workloads [13]. The
major drawback of such an approach would be a fragmented
deployment of the simulation software in any organization,
with the computational resources being split unevenly amongst
the users and not being fully utilized. Most importantly it
would limit the execution of the simulation software to a
single computer, making it difficult to execute large complex

simulations or simulation campaigns. In order to address these
challenges there has been research in the area of modelling
and simulation as a service (MSaaS) which have two major
components; the service and the infrastructure.

1) Service: Existing MSaaS approaches [14], [15], [16],
[17], [18] expose modelling and simulation functions, frame-
works, data and other related resources as services in a uniform
and domain agnostic way. MSaaS is typically accessible via
web-based communication standard such as HTTP using a
RESTful API interface [16], [14], [18], [15] or web service
protocols such as SOAP [19], [20].

While there are several frameworks that address some
security aspects (e.g. privacy, trust, accountability) related to
handling restricted data (see [21] for a survey), our Simulation
SaaS is the first framework explicitly designed for handling
export control regulations.

2) Infrastructure: Concerning underlying infrastructure,
few recent frameworks [16] use a monolith tightly coupled
architecture. Most existing approaches [15], [14], [17] offer a
layered middleware architecture which decouples the service
from the infrastructure (computation platform), thus simulation
services can be executed on heterogeneous computing units.
Such a middleware enables scaling the infrastructure based on
actual demand in a flexible way.

Our Simulation SaaS further increases flexibility by decou-
ple the service from the operating system by using Docker
containers (instead of virtual machines used by others).

B. Modernizing Legacy Software

While legacy software has been causing engineering chal-
lenges for decades, deploying legacy software to public cloud,
or turning it into a service is a typical path to take in software
modernization research.

1) Migrating to public cloud: Migrating legacy software
deployments to the public cloud requires a thorough and
systematic analysis of the application and the purpose of the
migration [22], [23], [24], [25]. It can be summarized in a
three step process; (1) the migration is planned by modelling
the application functionality and its requirements, (2) the
migration is designed and implemented based on stakeholder
goals and cloud capability, (3) the cloud deployment is tested
for validation. The goal of most cloud migrations is to improve
reliability and scalability while controlling costs [23].

2) Migrating to Service Oriented Architecture: The service
oriented architecture (SOA) model is a modern approach for
software design while legacy software generally has a tightly
coupled monolith design. Migrating to a SOA is the process of
adapting and mapping the functionality provided by the legacy
software into service units and resources [26], [27], [28], [29].
Furthermore, the internal application architecture is redesigned
into smaller units (microservices) to improve scalability and
maintainability [30], [31], [32], [33], [34].

The Simulation SaaS creates a simulation job as a service
resource which users can then use to perform analysis. All the
functionality of the FEA software is mapped to the configu-
ration of the simulation job resource. Moreover, the service is

393

Authorized licensed use limited to: Carleton University. Downloaded on August 23,2023 at 19:02:18 UTC from IEEE Xplore. Restrictions apply.

designed using a microservice architecture for scalability when
deployed on the cloud instead of exclusively on-premise.

C. Hybrid Cloud Computing

Hybrid cloud computing consists of using cloud infrastruc-
ture composed of multiple distinct clouds (such as as private
and public) which are then connected so that data can flow
between them in a secure and seamless manner [35]. Research
in the area indicates that potential cost savings and scalability
as the two primary motivators for such deployments.

1) Cost Savings: Hybrid cloud computing can help users
avoid vendor lock by making them deploy their applications in
a platform agnostic manner [36]. More significant cost savings
are possible as hybrid deployments can leverage existing on
premise resources which are already payed for while also
taking advantage of the flexible usage based pricing offered
by public cloud providers [37]. Furthermore, the spare compu-
tational capacity of public clouds that is offered at significant
discounts enables non critical applications to execute for a
fraction of the cost anywhere else [38], [39], [40].

2) Scaling: Scaling possibilities with hybrid cloud comput-
ing are unique. Users can design and benefit from their private
cloud to meet baseline computational demand. However during
peak demand events when they rapidly require more resources
they can cloud burst into the public cloud and provision
more resources as needed. Cloud bursting is the main scaling
advantage offered by hybrid cloud setups and allows users to
meet spikes in demand in a timely manner [41], [42] or to
manage resource intensive workloads [43].

As shown in Section IV, a unique aspect of cost reduction
in Simulation SaaS (which is not mentioned in existing papers)
is to minimize the net amount of time an engineer at Siemens
Energy spends on a complex simulation campaign.

VI. CONCLUSION & FUTURE WORK

This paper reported on our software modernization initiative
in a multi-disciplinary project aiming to run a legacy sim-
ulation tool used for finite element analysis in gas turbine
engine design in a cloud-based setting. To assist engineers
at Siemens Energy, we developed a Simulation Software-
as-a-Service framework for automating FEA in a standards-
compliant and transparent way, deployed over a hybrid cloud
execution platform using a combination of public and on-
premise nodes while complying to export control regulations.

An extensive performance evaluation highlights that our
Simulation SaaS framework introduces negligible runtime
overhead (in the range of 5-12 minutes attributing only to 4-8%
of total execution time). Moreover, a hybrid SaaS configuration
with a combined job capacity of 6 already provides 3-4
times speed-up when executing complex simulation campaigns
compared to the legacy environment used at Siemens Energy.

The hybrid deployment of the Simulation SaaS enables
FEA as a service for Siemens Energy without large upfront
investments in high-performance computing hardware, as such
using (i) existing on-premise computers which have minimal
operating costs and (ii) AWS servers with large discounts.

The main industrial benefit of our Simulation SaaS is
increased productivity. Compared to legacy practice, Siemens
engineers need to spend less time with installing and configur-
ing the simulation tool, and can spend more time with actually
using the tool for FEA. Decreased execution time of simulation
campaigns also increases product quality, as engineers can
now investigate more analysis points with the same amount of
(net) engineering time. Furthermore, engineers are now able
to run campaigns with hundreds of jobs in a matter of days
which used to take weeks, which will decrease time-to-market
for new (upcoming) aeroderivative gas turbine engines.

Our future work will aim to provide support for automated
scaling. Based on engineering priorities (cost model) and the
needs of the simulation campaign, the Simulation SaaS will
be able to determine the optimal number of computing nodes,
and provision those nodes in a dynamic manner. Moreover,
the existing fault tolerance mechanisms for simulation jobs
are planned to be complemented by providing improved fault
tolerance for Worker nodes. This further enhances robustness
when running complex large-scale simulation campaigns po-
tentially involving multiple design candidates. We also plan
to design a more intelligent job scheduler which can optimize
for cost, priority and security when assigning simulation jobs
across the nodes in the service. Finally, we aim to further
increase the robustness of our export control functionality by
incorporating comprehensive control over data storage regions
and user access to simulation job data.

Acknowledgements: This work was partially supported
by the Digital Multidisciplinary Analysis and Design Opti-
mization Platform for Aeroderivative Gas Turbines project
(Siemens Ca CRDPJ 513922-17 X-247371 and NSERC
CRDPJ 513922-17 X-247323 funds). The last author was
supported in part by the Wallenberg AI, Autonomous Systems
and Software Program (WASP), Sweden.

The authors would like to express their gratitude to nu-
merous engineers at Siemens Energy and graduate students at
McGill University and École de technologie supérieure (ÉTS)
who provided assistance during the collaboration. Specifically,
I would like to extend my appreciation my colleagues Faiq
Khalid, Ali Mortada, Omotayo Bankole, Dirk Zimmermann
and Stefan Hertel who supported me through this research.
Finally, the authors are also grateful for the insightful com-
ments of the anonymous reviewers of the paper.

394

Authorized licensed use limited to: Carleton University. Downloaded on August 23,2023 at 19:02:18 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] I. Ibrahem, O. Akhrif, H. Moustapha, and M. Staniszewski, “An ensem-
ble of recurrent neural networks for real time performance modeling of
three-spool aero-derivative gas turbine engine,” Journal of Engineering
for Gas Turbines and Power, vol. 143, no. 10, 2021.

[2] H. Hanachi, C. Mechefske, J. Liu, A. Banerjee, and Y. Chen,
“Performance-based gas turbine health monitoring, diagnostics, and
prognostics: A survey,” IEEE Transactions on Reliability, vol. 67, no. 3,
pp. 1340–1363, 2018.

[3] E. Tsoutsanis, N. Meskin, M. Benammar, and K. Khorasani, “Dynamic
performance simulation of an aeroderivative gas turbine using the matlab
simulink environment,” in ASME International Mechanical Engineering
Congress and Exposition, vol. 56246. American Society of Mechanical
Engineers, 2013, p. V04AT04A050.

[4] A. Benato, A. Stoppato, and A. Mirandola, “Dynamic behaviour analysis
of a three pressure level heat recovery steam generator during transient
operation,” Energy, vol. 90, pp. 1595–1605, 2015.

[5] S. K. Yee, J. V. Milanović, and F. M. Hughes, “Validated models for
gas turbines based on thermodynamic relationships,” IEEE transactions
on power systems, vol. 26, no. 1, pp. 270–281, 2010.

[6] F. Haglind and B. Elmegaard, “Methodologies for predicting the part-
load performance of aero-derivative gas turbines,” Energy, vol. 34,
no. 10, pp. 1484–1492, 2009.

[7] J. Martinsson, M. Panarotto, M. Kokkolaras, and O. Isaksson, “Exploring
the potential of digital twin-driven design of aero-engine structures,”
Proceedings of the Design Society, vol. 1, p. 1521–1528, 2021.

[8] P. Timothé, B. Ahmed, S. Martı́n, Moustapha, Hany, K. Michael, and
G. L. Francois, “Integration of secondary air system for multidisciplinary
design optimization of gas turbines,” 2019.

[9] G.-x. Chen and C.-y. Liu, “Cyclic plastic deformation behavior of tc4
titanium alloy under different microstructures and load conditions using
finite element method,” Journal of Failure Analysis and Prevention,
vol. 21, no. 2, pp. 678–688, 2021.

[10] S. Sanaye and S. Hosseini, “Prediction of blade life cycle for an indus-
trial gas turbine at off-design conditions by applying thermodynamics,
turbo-machinery and artificial neural network models,” Energy Reports,
vol. 6, pp. 1268–1285, 2020.

[11] H. Taplak and M. Parlak, “Evaluation of gas turbine rotor dynamic
analysis using the finite element method,” Measurement, vol. 45, no. 5,
pp. 1089–1097, 2012.

[12] S. Pilarski, M. Staniszewski, M. Bryan, F. Villeneuve, and D. Varró,
“Predictions-on-chip: model-based training and automated deployment
of machine learning models at runtime,” Softw. Syst. Model., vol. 20,
no. 3, pp. 685–709, 2021.

[13] S. Guo, F. Bai, and X. Hu, “Simulation software as a service and service-
oriented simulation experiment,” in 2011 IEEE International Conference
on Information Reuse & Integration, 2011, pp. 113–116.

[14] S. Wang and G. Wainer, “Modeling and simulation as a service archi-
tecture for deploying resources in the cloud,” Int. Journal of Modeling,
Simulation, and Scientific Computing, vol. 07, no. 01, p. 1641002, 2016.

[15] K. Al-Zoubi and G. Wainer, “RISE: A general simulation interoperability
middleware container,” Journal of Parallel and Distributed Computing,
vol. 73, no. 5, pp. 580–594, 2013.

[16] T. Treichel, P. O. Antonino, F. S. Santos, and L. S. Rosa, “Simulation-
as-a-Service: a simulation platform for cyber-physical systems,” in
2021 IEEE 18th International Conference on Software Architecture
Companion (ICSA-C), 2021, pp. 155–161.

[17] W.-T. Tsai, W. Li, H. Sarjoughian, and Q. Shao, “SimSaaS: Simulation
software-as-a-service,” in Proc. of the 44th Annual Simulation Sympo-
sium. Society for Computer Simulation International, 2011, p. 77–86.

[18] S. Wang and G. Wainer, “A simulation as a service methodology
with application for crowd modeling, simulation and visualization,”
SIMULATION, vol. 91, no. 1, pp. 71–95, 2015.

[19] C. Seo and B. P. Zeigler, “Automating the DEVS modeling and
simulation interface to web services,” in Proceedings of the 2009
Spring Simulation Multiconference. Society for Computer Simulation
International, 2009.

[20] J. B. Fitzgibbons, R. M. Fujimoto, D. Fellig, S. D. Kleban, and A. J.
Scholand, “IDSim: an extensible framework for interoperable distributed
simulation,” in Proceedings of the 2004 IEEE International Conference
on Web Services. IEEE Computer Society, 2004, pp. 532–539.

[21] E. Cayirci, “Modeling and simulation as a cloud service: A survey,” in
2013 Winter Simulations Conference (WSC), 2013, pp. 389–400.

[22] A. Bergmayr, H. Brunelière, J. L. C. Izquierdo, J. Gorroñogoitia,
G. Kousiouris, D. Kyriazis, P. Langer, A. Menychtas, L. Orue-
Echevarria, C. Pezuela, and M. Wimmer, “Migrating legacy software to
the cloud with ARTIST,” in 2013 17th European Conference on Software
Maintenance and Reengineering, 2013, pp. 465–468.

[23] M. F. Gholami, F. Daneshgar, G. Beydoun, and F. Rabhi, “Challenges in
migrating legacy software systems to the cloud — an empirical study,”
Information Systems, vol. 67, pp. 100–113, 2017.

[24] O. Bushehrian and S. Y. Nabavi, “A new method for migrating legacy
applications to the cloud: a finite state process approach,” in 2017 In-
ternational Symposium on Computer Science and Software Engineering
Conference (CSSE), 2017, pp. 86–91.

[25] A. L. Shastry, D. S. Nair, B. Prathima, C. P. Ramya, and P. Hallymysore,
“Approaches for migrating non cloud-native applications to the cloud,”
in 2022 IEEE 12th Annual Computing and Communication Workshop
and Conference (CCWC), 2022, pp. 0632–0638.

[26] H. M. Sneed, “Integrating legacy software into a service oriented
architecture,” in 10th European Conf. on Software Maintenance and
Reengineering (CSMR 2006). IEEE Computer Society, 2006, pp. 3–14.

[27] H. M. Sneed and H. M. Sneed, “Wrapping legacy software for reuse in
a SOA,” 2005.

[28] S. Rochimah and A. Sheku, “Migration of existing or legacy software
systems into web service-based architectures (reengineering process):
A systematic literature review,” International Journal of Computer
Applications, vol. 133, pp. 43–54, 01 2016.

[29] K. Garcés, R. Casallas, C. Álvarez, E. Sandoval, A. Salamanca, F. Viera,
F. Melo, and J. M. Soto, “White-box modernization of legacy applica-
tions: The oracle forms case study,” Computer Standards & Interfaces,
vol. 57, pp. 110–122, 2018.

[30] S. Frey and W. Hasselbring, “Model-based migration of legacy software
systems to scalable and resource-efficient cloud-based applications: The
cloudmig approach,” in Proc. of the First Int. Conf. on Cloud Computing,
GRIDs, and Virtualization, Lisbon, Portugal, 2010, pp. 155–158.

[31] M. A. A. Sheikh, H. A. Aboalsamh, and A. Albarrak, “Migration of
legacy applications and services to service-oriented architecture (SOA),”
in The 2011 International Conference and Workshop on Current Trends
in Information Technology (CTIT 11), 2011, pp. 137–142.

[32] J. Kazanavičius and D. Mažeika, “Migrating legacy software to mi-
croservices architecture,” in 2019 Open Conference of Electrical, Elec-
tronic and Information Sciences (eStream), 2019, pp. 1–5.

[33] H. Knoche and W. Hasselbring, “Using microservices for legacy soft-
ware modernization,” IEEE Software, vol. 35, no. 3, pp. 44–49, 2018.

[34] S. G. Haugeland, P. H. Nguyen, H. Song, and F. Chauvel, “Migrat-
ing monoliths to microservices-based customizable multi-tenant cloud-
native apps,” in 2021 47th Euromicro Conference on Software Engineer-
ing and Advanced Applications (SEAA), 2021, pp. 170–177.

[35] P. Mell, T. Grance et al., “The NIST definition of cloud computing,”
2011.

[36] K. Kritikos, P. Skrzypek, A. Moga, and O. Matei, “Towards the
modelling of hybrid cloud applications,” in 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD), 2019, pp. 291–295.

[37] T. Guo, U. Sharma, P. Shenoy, T. Wood, and S. Sahu, “Cost-aware cloud
bursting for enterprise applications,” ACM Transactions on Internet
Technology, vol. 13, no. 3, May 2014.

[38] I. Menache, O. Shamir, and N. Jain, “On-demand, spot, or both:
Dynamic resource allocation for executing batch jobs in the cloud,”
in 11th International Conference on Autonomic Computing (ICAC 14).
USENIX Association, June 2014, pp. 177–187.

[39] K. Tamrakar, A. Yazidi, and H. Haugerud, “Cost efficient batch pro-
cessing in amazon cloud with deadline awareness,” in 2017 IEEE 31st

International Conference on Advanced Information Networking and
Applications (AINA), 2017, pp. 963–971.

[40] S. G. Domanal and G. R. M. Reddy, “An efficient cost optimized
scheduling for spot instances in heterogeneous cloud environment,”
Future Generation Computer Systems, vol. 84, pp. 11–21, 2018.

[41] M. Mattess, C. Vecchiola, S. Garg, and R. Buyya, “Cloud bursting: Man-
aging peak loads by leasing public cloud services,” Cloud Computing:
Methodology, Systems, and Applications, 01 2017.

[42] H. Zhang, G. Jiang, K. Yoshihira, and H. Chen, “Proactive workload
management in hybrid cloud computing,” IEEE Transactions on Network
and Service Management, vol. 11, no. 1, pp. 90–100, 2014.

[43] T. Bicer, D. Chiu, and G. Agrawal, “A framework for data-intensive
computing with cloud bursting,” in 2011 IEEE International Conference
on Cluster Computing, 2011, pp. 169–177.

395

Authorized licensed use limited to: Carleton University. Downloaded on August 23,2023 at 19:02:18 UTC from IEEE Xplore. Restrictions apply.

