
 http://hfs.sagepub.com/
Ergonomics Society

of the Human Factors and 
Human Factors: The Journal

 http://hfs.sagepub.com/content/56/6/1093
The online version of this article can be found at:

 
DOI: 10.1177/0018720814525629

published online 5 March 2014
 2014 56: 1093 originallyHuman Factors: The Journal of the Human Factors and Ergonomics Society

Samuel D. Hannah and Andrew Neal
Values

On-the-Fly Scheduling as a Manifestation of Partial-Order Planning and Dynamic Task
 
 

Published by:

 http://www.sagepublications.com

On behalf of:
 

 
 Human Factors and Ergonomics Society

 can be found at:Society
Human Factors: The Journal of the Human Factors and ErgonomicsAdditional services and information for 

 
 
 

 
 http://hfs.sagepub.com/cgi/alertsEmail Alerts: 

 

 http://hfs.sagepub.com/subscriptionsSubscriptions:  

 http://www.sagepub.com/journalsReprints.navReprints: 
 

 http://www.sagepub.com/journalsPermissions.navPermissions: 
 

 What is This?
 

- Mar 5, 2014OnlineFirst Version of Record 
 

- Aug 12, 2014Version of Record >> 

 by guest on September 8, 2014hfs.sagepub.comDownloaded from  by guest on September 8, 2014hfs.sagepub.comDownloaded from 

http://hfs.sagepub.com/
http://hfs.sagepub.com/content/56/6/1093
http://www.sagepublications.com
http://www.hfes.org
http://hfs.sagepub.com/cgi/alerts
http://hfs.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://hfs.sagepub.com/content/56/6/1093.full.pdf
http://hfs.sagepub.com/content/early/2014/03/04/0018720814525629.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://hfs.sagepub.com/
http://hfs.sagepub.com/


Objective: The aim of this study was to develop a 
computational account of the spontaneous task order-
ing that occurs within jobs as work unfolds (“on-the-fly 
task scheduling”).

Background: Air traffic control is an example of 
work in which operators have to schedule their tasks 
as a partially predictable work flow emerges. To date, 
little attention has been paid to such on-the-fly schedul-
ing situations.

Method: We present a series of discrete-event 
models fit to conflict resolution decision data collected 
from experienced controllers operating in a high- 
fidelity simulation.

Results: Our simulations reveal air traffic control-
lers’ scheduling decisions as examples of the partial-
order planning approach of Hayes-Roth and Hayes-
Roth. The most successful model uses opportunistic 
first-come-first-served scheduling to select tasks from 
a queue. Tasks with short deadlines are executed 
immediately. Tasks with long deadlines are evaluated 
to assess whether they need to be executed immedi-
ately or deferred.

Conclusion: On-the-fly task scheduling is compu-
tationally tractable despite its surface complexity and 
understandable as an example of both the partial-order 
planning strategy and the dynamic-value approach to 
prioritization.

Keywords: decision making, scheduling, planning, air 
traffic control, temporal discounting

IntroductIon
A common decision-making problem in most 

jobs concerns the need to schedule tasks. This 
problem is particularly acute for jobs in which 
the flow of tasks is only partially predictable. 
Paramedic response crews, for example, do not 
know when the next call will come in, what 
the problem will be, or how urgent the job will 
be, and thus what deadline will accompany 
it. Such unpredictable demands and deadlines 
are typically mixed in with a number of regu-
lar tasks with known deadlines—equipment 
inventory must be taken at regular intervals, 
supplies ordered within administrative dead-
lines, monthly work schedules submitted, and 
so on. The unpredictable nature of work flow 
in these environments, however, means that the 
scheduling of even these stable tasks must be 
done provisionally and often on an ad hoc basis. 
Such on-the-fly task scheduling—the schedul-
ing of tasks in the course of conducting other 
tasks—thus poses an interesting set of cognitive 
demands, the mastery of which is a necessity 
for developing expertise within dynamic and 
uncertain work environments, particularly when 
human life is at risk. The human factors litera-
ture, however, has relatively little to say regard-
ing the psychological mechanisms responsible 
for task scheduling, and to the best of our 
knowledge, formal psychological models of this 
process have not yet been developed.

In this paper, we develop a series of formal 
models that describe some of the mechanisms 
by which people may carry out on-the-fly task 
scheduling. We examine whether these models 
are capable of explaining the scheduling behav-
ior of experts performing a complex task, with 
and without the assistance of automation. The 
specific context in which we test the models  
is air traffic control. We fit the model to data 
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generated by two expert air traffic controllers 
performing a series of demanding exercises in a 
training simulator. The air traffic controllers per-
formed the exercises with and without the assis-
tance of an automated conflict detection tool. 
The simulations demonstrate that the order and 
timing of the controllers’ actions can be 
accounted for by a model that incorporates 
dynamic task values (e.g., Vancouver, Wein-
hardt, & Schmidt, 2010) and what Ratterman, 
Spector, Grafman, Levin, and Harward (2001) 
called “partial-order” planning (e.g., Hayes-
Roth & Hayes-Roth, 1979).

Despite the small number of participants gen-
erating the original data, the value of this work 
lies as a proof of principle. It is proof that despite 
the complex, dynamic, and uncertain environ-
ment in which people perform on-the-fly task 
scheduling, the issue is computationally tracta-
ble. There has been very little progress made on 
the study of the way that humans schedule tasks 
in the past 25 years, at least in part because it is 
seen as a complex and intractable problem. 
Scheduling is seen as an engineering problem 
rather than a psychological problem. The work 
presented in the current paper demonstrates not 
only that this process can be formally defined 
psychologically, but that it can be done so using 
relatively simple models. As we discuss at 
greater length in the General Discussion, the 
strategy of testing a formal model on a small 
number of participants is well established in 
cognitive science, especially when the work rep-
resents an initial exploration of a phenomenon.

In the next sections, we first explain why we 
chose air traffic control as an environment to 
study on-the-fly task scheduling, then describe 
the existing state of psychological research on 
task scheduling, and develop a series of formal 
models. We then report the results of a series of 
simulations designed to test those models and 
discuss the implications.

Air traffic control
Air traffic control is a useful environment to 

study on-the-fly scheduling, because air traffic 
controllers need to manage conflicting deadlines 
in a dynamic and uncertain environment (Durso 
& Manning, 2008). En route air traffic control-
lers are responsible for establishing the safe, 

orderly, and expeditious flow of traffic through 
their sector. A sector is a three-dimensional 
volume of airspace with a boundary around it. 
For any given aircraft, the typical sequence of 
activity starts as the aircraft approaches the sec-
tor (see Figure 1). The controller will check the 
trajectory to establish that the aircraft will be 
legally separated from other aircraft before it 
enters the sector. Depending on the technology 
that is in place, this check may be done manu-
ally by the controller or may be done with the 
assistance of automation (Rovira & Parasura-
man, 2010). When the aircraft enters the sector, 
the controller and pilot complete a handover 
sequence. Once the aircraft is under jurisdic-
tion, the controller will periodically check the 
trajectory of the aircraft, perform routine data 
management tasks, and respond to problems 
or issues as they arise. As the aircraft leaves 
the sector, the controller may coordinate the 
handover of the aircraft to the downstream 
sector. A controller may have up to 10 or 20 
aircraft at various stages in this sequence at any 
point in time, which means that there can be a 
large number of tasks that have to be completed 
within a given time interval. One of the most 
challenging aspects of the controller’s job is 
ensuring that all tasks are completed by their 
respective deadlines.

The scheduling problem is complex because 
tasks can vary in importance and deadline 
(Averty, Collet, Dittmar, Vernet-Maury, & 
Athenes, 2004). Separation assurance is the 
most important task that a controller has to per-
form. If the controller cannot be assured that  
an aircraft will meet the applicable separation 
standards as it flies through the sector, then the 

Figure 1. Aircraft approaching, flying through, and 
exiting an en route sector.
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controller needs to intervene (Loft, Bolland, 
Humphreys, & Neal, 2009). A controller typi-
cally intervenes by changing the route or level of 
one of the aircraft. However, the controller may 
not have to act immediately.

The study reported in the current paper was 
conducted in an oceanic sector, in which control-
lers are often able to detect potential breakdowns 
of separation between 1 and 2 hr in advance. In 
this situation, there is a cost associated with 
intervening too early. Changes to the trajectories 
of aircraft are disruptive because they can create 
workload for pilots and controllers and increase 
fuel burn. Furthermore, an intervention on one 
aircraft may make the resolution of subsequent 
separation problems more difficult because it 
limits the degrees of freedom available to the 
controller. Finally, given the inherent uncertain-
ties associated with flight, many separation 
problems resolve themselves without the need 
for intervention. There is, therefore, a trade-off 
between acting early to assure separation and 
delaying intervention to reduce uncertainty and 
thereby minimize workload and disruption 
(Averty et al., 2004). These decisions need to be 
made in the context of more immediate demands, 
such as the need to respond to pilot requests and 
to complete outstanding handovers and data 
management tasks.

An additional factor that needs to be taken 
into account when scheduling tasks is the need 
for flexibility. Unexpected events can occur that 
disrupt existing plans. For example, a wave of 
incoming traffic may cause a surge in workload, 
which means that it is no longer safe to delay 
intervention. Alternatively, additional aircraft 
may appear that block the expected solution to 
the problem or create new problems that need to 
be solved urgently. For these reasons, the sched-
uling strategies that controllers use have to be 
sufficiently flexible to accommodate unexpected 
changes in the environment.

task Scheduling
The cognitive literature has little to say about 

on-the-fly task scheduling. Although there is 
a large literature on task switching (e.g., Rog-
ers & Monsell, 1995; Wylie & Allport, 2000; 
see Kiesel et al., 2010, for a recent review), 
voluntary switching has only recently become 

a recent topic of investigation (e.g., Arrington, 
2008; Arrington & Logan, 2004; Arrington, 
Weaver, & Parker, 2010; Mayr & Bell, 2006). In 
voluntary task-switching experiments, however, 
participants are typically allowed to switch only 
between two tasks, usually with the constraint 
that they maintain an approximately even split 
across the two tasks. No rewards or penalties 
are provided for satisfactory or unsatisfactory 
performance, and tasks do not vary in either dif-
ficulty or deadlines. The organization of tasks is 
not the subject of attention so much as the costs 
of switching and the mechanisms underlying a 
switch decision.

There is, however, a body of scheduling 
research within the human factors literature 
(e.g., Dessouky, Moray, & Kijowski, 1995; 
Moray, Dessouky, Kijowski, & Adapathya, 
1991). Most of the research on human schedul-
ing has been carried out within manufacturing, 
where workers make decisions regarding the 
allocation of work to machines (see Sanderson, 
1989, for a review). This body of research 
suggests that a wide range of scheduling rules 
can be used in different settings. For example, 
workers can use simple priority rules, such as 
“first-come-first-served,” “earliest due date,” or 
“highest dollar cost” (Sanderson, 1989). First-
come-first-served involves performing tasks or 
operations in the order they arrive, whereas ear-
liest due date involves performing tasks or oper-
ations in the order that they must be completed. 
Highest dollar cost involves performing tasks in 
order of importance. The advantage of simple 
priority rules is that they require relatively 
little in the way of cognitive effort to apply. 
However, workers may also use more complex 
rules involving a number of simple priority rules 
or a weighted combination of different factors  
(Sanderson, 1989). Although these strategies 
are more complex and require more cognitive 
effort to apply, they are also more flexible, 
because they take into account a broader range 
of considerations.

Although the scheduling literature may pro-
vide insights into the different strategies that 
workers might use when making scheduling 
decisions, the research is mostly descriptive and 
says little regarding the psychological mecha-
nisms responsible for scheduling (Fransoo & 
Wiers, 2006; Sanderson, 1989). Furthermore, 
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the scheduling literature largely deals with man-
ufacturing and other systems in which the timing 
of events is predictable. Air traffic controllers, 
by contrast, need to be able to change the order 
in which they do things as events unfold, and 
they need to ensure that prior decisions do not 
unnecessarily constrain future choices.

The planning research inspired by Hayes-
Roth and Hayes-Roth (1979) may provide 
insight into the strategies that people use in a 
more dynamic and uncertain environment. 
Hayes-Roth and Hayes-Roth used errand run-
ning as their paradigm. They found that their 
participants were highly opportunistic. Their 
participants typically created a general plan 
consisting of a series of clusters of errands 
needing to be connected, which they did as they 
went along, reorganizing the plan to accom-
modate unexpected opportunities or problems 
offered by the environment. This so-called par-
tial-order planning approach has been popular 
in route-planning research (Ettema, Borgers, & 
Timmermans, 1993; Gärling, Säisä, Böök, & 
Lindberg, 1986), and Fransoo and Wiers (2006) 
have applied it to an order-filling problem. 
Partial-order planning is appropriate in a dynamic 
and uncertain environment, such as air traffic 
control, because it minimizes cognitive effort 
while also providing the flexibility to respond to 
opportunities as they occur.

Partial-order Planning in Air traffic 
control

In the current section, we present a series of 
models of on-the-fly task scheduling based on 
the partial-order planning approach, featuring a 
mix of simple priority rules and more flexible, 
but complex, strategies. These models all share 
the assumption that outstanding tasks are stored 
in a queue—in other words, that controllers have 
a memory. They assume that the order in which 
tasks are done is an emergent property of the 
way that the queue is managed, that is, of the 
moment-to-moment decisions that are taken as 
events unfold dynamically over time. The mod-
els vary on two dimensions, namely, how tasks 
are selected from the queue and whether tasks 
can be deferred once they are selected.

Selection from the queue. Turning to the first 
dimension, we assume that controllers select the 
task with the greatest value to act on. However, 

there are a number of ways in which the value of a 
task may be assessed. The simplest approach is to 
use first-come-first-served. Under this approach, 
the tasks in the queue are ordered according to the 
time they arrive, and the value of task i at a given 
point in time (Vt) is equal to the order of the task 
in the queue (Qi):

V
t
 = Q

i
.                               (1)

An alternative approach is to select the most 
important task from the queue. The importance of 
a task is the perceived impact of success or fail-
ure, regardless of context. For example, separa-
tion assurance is more important than transferring 
jurisdiction in air traffic control, all else being 
equal, because a violation of the separation stan-
dards has more serious consequences than a fail-
ure to complete a handover. Under this approach, 
the value of task i is equal to its importance (I

i
):

V
t
 = I

i
.                               (2)

Both of these approaches assume that value is 
static. However, research in the motivation lit-
erature suggests that value may be dynamic 
(Kernan & Lord, 1990; Schmidt & DeShon, 
2007; Vancouver et al. 2010). Prior research 
suggests at least two ways in which the value of 
completing a task may change over time. The 
first is in response to the level of workload that 
the person has to deal with, and the second is in 
response to the deadline for the task.

Raby and Wickens (1994) examined the effect 
of workload on task prioritization among pilots. 
Raby and Wickens had pilots perform a series of 
tasks in flight under different levels of workload. 
A group of subject matter experts rated the 
importance of the different tasks prior to the 
experiment. The key result was that pilots were 
more likely to carry out tasks in order of impor-
tance as workload increased. These results sug-
gest that importance may interact with workload. 
According to this account, V

t
 is a multiplicative 

function of I
i
 and the current workload (W

t
):

V
t
 = I

i
 × W

t
.                               (3)

We define workload as a hypothetical con-
struct that represents the level of demand that a 

 by guest on September 8, 2014hfs.sagepub.comDownloaded from 

http://hfs.sagepub.com/


On-the-Fly Scheduling 1097

person experiences while performing a task 
(Rouse, Edwards, & Hammer, 1993). Following 
Rouse et al. (1993), we assume that workload is 
a dynamic variable that is subject to inertia, 
meaning an individual’s perception of workload 
is in part a function of its previous level; that is, 
workload is characterized by “hysteresis” (Mor-
gan & Hancock, 2011). We also assume such 
inertia is asymmetrical, such that workload 
drops more slowly than it rises; this assumption 
is broadly consistent with Morgan and Han-
cock’s (2011) findings. The perceived workload 
at a given point in time is, therefore, the sum of 
two components, the momentary workload (W

M
) 

and a dynamic baseline (W
B
). The momentary 

workload (W
M

) represents the current level of 
demand. In contrast, the dynamic baseline (W

B
) 

represents the residual effect of past demands. 
Because it is dynamic, the baseline responds at a 
certain rate to changes in demand from the pre-
vious point in time to the current point in time, 
capturing the inertial properties of workload. 
Together, the momentary and baseline compo-
nents combine to determine the level of work-
load experienced at any given time t. More for-
mally, W

t
 = W

M
 + W

B
.

We assume that the momentary workload is 
determined by the number and importance of the 
tasks in the queue. This value is obtained by 
summing the importance of each task i of the j

tasks in the queue (W IM i
i

j

=
=
∑
1

). This is, of course,

a simplification, as there are many factors that 
contribute to the current level of demand that an 
air traffic controller experiences. However, the 
number and importance of tasks is a reasonable 
proxy for current purposes (Loft, Sanderson, 
Neal, & Mooij, 2007). The dynamic baseline 
depends upon the previous time point’s baseline 
level (WB[t–1]) and the change between the previ-
ous actual workload (W

t–1
) and the momentary 

workload. The change between the actual work-
load of the previous time point and the momen-
tary workload (W

∆
) is scaled by multiplying it by 

a weight (s) between zero and one, where s rep-
resents the sensitivity to changes in workload:

W
∆
 = s(W

M
 – W

t–1
).                    (4) 

Equation 4’s difference operation yields a 
positively signed difference if workload is 

increasing and a negatively signed difference if it 
is decreasing. The value of s in Equation 4 is 
smaller for a negatively signed difference (s–) than 
for a positively signed difference (s+), so that 
workload declines are smaller than workload 
gains—implementing asymmetric inertia. That is,

if WM – Wt–1 < 0, then s = s–,
if WM – Wt–1 > 0, then s = s+,

0 < s– < s+ < 1.                   (5)

The scaled difference is added to the previous 
value of the baseline to give the current value of 
the baseline at time t,

W
B(t)

 = W
B(t–1)

 + W
∆
.                  (6)

The updated baseline is then added to the 
momentary workload to produce the full equa-
tion defining workload at time t:

W
t
 = W

M
 + [W

B(t–1)
 + s(W

M
 – W

t–1
)].     (7)

An alternative way to conceptualize the selec-
tion of tasks from a queue is in terms of temporal 
discounting. Temporal discounting refers to the 
robust finding that the subjective values of 
rewards and penalties reduce as the delay to 
obtain them increases (e.g., Caruso, Gilbert, & 
Wilson, 2008; Chapman, 1996; Grace, 1999; 
Mazur & Biondi, 2009; Myerson & Green, 
1995; Rachlin & Green, 1972; Rachlin, Raineri, 
& Cross, 1991). Steel and König (2006) have 
recently produced an account of choice decision 
making that incorporates temporal discounting. 
Temporal discounting allows tasks to be reval-
ued based on the time remaining to deadline—
the further in time a task can be deferred, the 
lower the task’s perceived failure cost.

Most models of temporal discounting use a 
hyperbolic discounting function (Green, Fry, & 
Myerson, 1994; Myerson & Green, 1995; Simp-
son & Vuchinich, 2000). Under hyperbolic 
discounting (we are here collapsing several 
variants of the basic hyperbolic discounting 
function, some of which add more parameters to 
the basic function used in this report), V

t
 for task 

i is a function of the importance and the recipro-
cal of the time to deadline for the task (D

i
), 

weighted by a subject-dependent weight (k):
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The k parameter scales the sensitivity to dis-
counting: The larger k is, the steeper and less 
linear is the discounting (see Figure 2), so that 
higher values of k lead to a greater willingness to 
ignore tasks with long deadlines. Incorporating 
hyperbolic discounting into the assessment of 
value ensures that tasks with shorter deadlines 
tend to get selected before tasks with longer 
deadlines.

Deferral. Turning to the second dimension, 
the simplest way to schedule a set of tasks is to 
act on each task immediately, once it is selected 
from the queue. A worker using this strategy will 
complete all tasks in the queue in order of prior-
ity, until there is nothing left in the queue. If 
there is a task with a long deadline, then it will 
be completed once it reaches the top of the 
queue, regardless of how much time remains 
before it has to be completed. A more flexible 
approach is to defer tasks with long deadlines. 
As noted earlier, air traffic controllers in oceanic 
sectors may detect conflicts up to 2 hr in advance. 
Deferring intervention can be beneficial, because 
it gives the controller more flexibility. The con-
troller can reassess the conflict in the future, 
when there is less uncertainty regarding the tra-
jectories of the aircraft, and the controller can 
assess how those aircraft interact with other traf-
fic in the area. The models that incorporate 

deferral add an additional step after a conflict is 
selected from the queue. These models assume 
that when controllers select a conflict from the 
queue, they assess the value of resolving that 
conflict (V

R
) at the current point in time.

There are a number of ways that the value of 
resolving a conflict immediately may be 
assessed. The simplest model assumes that the 
value of resolving a conflict immediately is a 
function of the amount of time that has elapsed 
since the conflict was detected (termed “conflict 
duration” [CD]), and airspace complexity. Both 
of these factors are relevant, because resolving 
outstanding conflicts immediately eliminates 
the need for ongoing monitoring and helps to 
reduce complexity (Loft et al., 2007). A com-
monly used measure of complexity is the num-
ber of conflicts in a given region of airspace 
(Durso & Manning, 2008; Loft et al., 2007). We 
approximate complexity, therefore, by using  
the mean number of conflicts that each pair 
member has been in (C

–
), including the current 

conflict. The basic algorithm for calculating the 
value of resolving conflict i immediately is 
given by

V
R(i)

 = I
R
 × CD

i
 × Ci

–
,          (9)

where I
R
 is the importance of resolving a con-

flict and, thus, like all forms of task importance 
in our approach, is a constant (see the discussion 
introducing Equation 2).

Figure 2. Changes in task value (V
i
) with increases in time to deadline (D) as a function of 

hyperbolic discounting for different values of k.

V
I

kDt
i

i

=
+1

(8)
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The first alternative to the model described in 
Equation 9 incorporates workload. Controllers 
report that they prefer to intervene early when 
workload is heavy, because it minimizes the risk 
of a breakdown in separation and helps to man-
age their workload (Kallus, Van Damme, & Dit-
tman, 1999; Loft et al., 2009). According to this 
model, the value of resolving a conflict immedi-
ately is

V
R(i)

 = I
R
 × CDi × Ci

–
 × W

t
.          (10)

The second alternative to the model described 
in Equation 9 incorporates temporal discount-
ing. According to this account, the value of 
resolving a conflict immediately is dependent 
upon time to deadline and sensitivity to dis-
counting:

the data Set: Air traffic control 
Exercises

We tested the competing models described in 
the preceding section on four archival data sets 
derived from a series of exercises conducted in 
the training simulator at Brisbane Air Traffic 
Services Centre. The simulator is a fully func-
tional air traffic management system. The hard-
ware and software are identical to those used in 
the operations center, and the simulator consoles 
can provide operational air traffic control on an 
emergency basis.

The exercises were conducted in an oceanic 
sector, without radar coverage. Approximately 
40% of aircraft were equipped with technology 
enabling satellite-based surveillance (Automatic 
Dependent Surveillance, Broadcast [ADS-B]). 
ADS-B enables the position and level of the air-
craft to be displayed on the controller’s air situ-
ation display with a high level of accuracy. Air-
craft without ADS-B are required to provide 
position reports to controllers as they cross way-
points. Controllers enter these position reports 
into an electronic flight data record. The system 
extrapolates the likely position and level of the 
aircraft from the information contained in the 
flight data record.

Two licensed air traffic controllers (1 male 
and 1 female, ages 40 and 43, respectively, with 
6 and 12 years experience, respectively) com-
pleted the exercises, both of whom held an 
endorsement for the sector being simulated. 
Each controller completed one exercise with the 
assistance of an automated conflict detection 
tool and one exercise without the assistance of 
the automated conflict detection tool. The auto-
mated conflict detection tool was new for con-
trollers, with each controller having received 5 
days training in the use of the tool prior to the 
exercises. Each exercise lasted 2 hr; workload 
peaked twice during each exercise. The first 
peak occurred approximately 30 min into the 
exercise, as a wave of inbound traffic entered the 
sector from the east. The second peak occurred 
approximately 1 hr later when a wave of inbound 
traffic entered the sector from the west, crossing 
the earlier wave of traffic from the east, which 
was now approaching the western boundary of 
the sector. Subject matter experts were consulted 
with regard to timing and all other exercise 
details.

We used electronic data records from the sim-
ulator to reconstruct the timing of the appear-
ance of aircraft in each exercise, along with 
deadlines for aircraft entering or leaving the sec-
tor, conflict start times, and resolution deadlines. 
A conflict resolution deadline is the time at 
which a pair of aircraft would breach the appli-
cable separation standard if no resolution were 
implemented. We coded the timing of control-
lers’ resolutions by viewing video of the simula-
tion sessions and identifying the point when they 
intervened to assure separation by changing the 
route or level of an aircraft or by placing a 
requirement on an aircraft.

Model fitting: Data and methods. Models 
were fit separately to each exercise for each con-
troller. The number of conflicts varied from 12 
to 22 across the four sets. Our main goal was to 
model the timing of conflict resolutions, but we 
also had information about the order of resolu-
tions. To constrain the model fitting to maximize 
the generalizability of parameter estimates and 
model behavior, we found parameter estimates 
that optimized the fit to both the timing and 
order information. Models containing no more 
than one free parameter are thus fit to data 

V
I CD C

kDi
R i i

i
R( ) =

× ×
+1

� (11).
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consisting of 24 to 44 data points generated by 
individual subjects, as each conflict has one tim-
ing and one order data point.

Given that there are two data points for each 
conflict, overall goodness-of-fit estimates are 
based on a mixture of two different measures, 
timing and order, and thus not readily interpreta-
ble. After finding parameters maximizing overall 
fit, we separately calculated goodness-of-fit mea-
sures for timing and order data; both timing and 
order fits are reported, along with parameter esti-
mates when models contain free parameters. We 
evaluated goodness of fit using both the root 
mean square deviation (RMSD) and r2, where r2 
is calculated as 1.0 – (SSerror / SStotal; SS = sum of 
squares), rather than the squared Pearson correla-
tion coefficient. (Although both forms of r2 are 
usually very close, r2 based on the SS ratio is 
slightly more conservative, being sensitive not 
only to differences in the relations between two 
sets of values but also to the absolute offset 
between them.)

We used the Nelder-Mead simplex algorithm 
(Nelder & Mead, 1965) to find optimal parame-
ter estimates, using the initialization and fitting 
algorithms found in Press, Teukolsky, Vetter-
ling, and Flannery (1992). The Nelder-Mead 
simplex is a widely used algorithm that finds 
parameters minimizing some function. When 
the function is an error function, such as RMSD, 
the Nelder-Mead simplex usually finds parame-
ters that yield the best fit.

SEctIon 1: SElEctIon From thE 
QuEuE

In the first section, we tested four models 
that describe different ways of selecting tasks 
from the queue. All of these models assume that 
the controller acts on each task immediately, 
once it is selected from the queue. In subse-
quent sections, we allow conflict resolution to 
be deferred. We tested competing models that 
describe different ways in which the control-
ler may make this deferral decision and assess 
whether these models produce a better fit to the 
data than the models that do not allow deferral. 
In the final section, we combine the features 
of all models. (Fortran code for the models 
described in this paper can be obtained from the 
first author upon request.)

discrete-Event Simulation details
We implemented all models as discrete-event 

simulations (e.g., Wainer, 2009). Discrete-event 
simulations define a system as a sequence of 
chronological actions or events performed on 
some entities, each of which takes a certain 
amount of time to complete. Our simulations 
describe the way that tasks are added and 
removed from a queue, and executed. At the 
beginning of each cycle, the model consults the 
task queue. If the queue is empty, the model 
will scan the airspace to identify any new tasks 
that need to be performed. If the queue is not 
empty, the model selects the task with the great-
est value to act on, using one of the algorithms 
described earlier (Equations 1 through 3 and 
8). We assumed that task values are fuzzy and 
implement fuzziness by truncating task values 
prior to selection by rounding them down to the 
nearest integer or taking the floor of the func-
tions in Equations 1 through 3 and 8. All models 
revert to first-come-first-served to resolve ties.

Completion times for each task are deter-
mined by randomly drawing from a Gaussian 
distribution defined by a mean and standard 
deviation (see Appendix A). The task is removed 
from the queue once it has been completed. 
Depending on the situation, a new task may be 
added to the queue at this point. The workload 
level is also updated, as are the deadlines for any 
outstanding tasks. The model then consults the 
task queue again and either scans the airspace or 
selects the next task to complete. The model 
continues in this manner until the end of the sim-
ulation (120 min).

Figure 3 illustrates how tasks are added and 
removed from the queue. The tasks are grouped 
into three broad activities: scan airspace, check 
trajectories, and do task. When the queue is 
empty, the model scans the airspace to identify 
new aircraft approaching the sector, aircraft that 
are entering the sector, aircraft that are passing 
waypoints, and aircraft that are leaving the sec-
tor. If a new aircraft is identified, a new task 
(check-trajectory) is added to the queue (see 
Task 1 in Figure 3). At some point, the controller 
may subsequently select this task from the queue 
and carry it out. This activity removes check-
trajectory from the queue. If the check reveals 
that separation is not assured, a new task 
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(resolve-conflict) is added to the queue (see Task 
2 in Figure 3).

At some point, the aircraft will enter the sector, 
and a new task (accept-handover) will be added to 
the queue (see Task 3 in Figure 3). The controller 
may select this task from the queue and complete 
the handover sequence, removing accept-
handover from the queue. If the aircraft is in con-
flict, the controller will act to resolve the conflict 
while the aircraft is flying through the sector. 
Doing so removes resolve-conflict from the queue.

As the aircraft flies through the sector, it will 
pass a series of waypoints before leaving the 
sector. When the aircraft passes a waypoint, a 
new task (check-position-report) is added to the 
queue (see Task 4 in Figure 3). At some point, 
the controller may select this task from the queue 
and check the position report. This activity 
removes check-position-report from the queue. 
As aircraft leaves the sector, another task (offer-
handover) is added to the queue (see Task 5 in 
Figure 3). The controller may select this task 
from the queue and complete the transfer of 
jurisdiction to the next sector. This activity 
removes offer-handover from the queue.

The values for I for the different tasks are 
listed in Appendix A. We estimated I

i
 for each of 

i tasks by doing an initial fit of the data to each 
of our four data sets, treating I

i
 as a free param-

eter. We then averaged the resulting four sets of 
I

i
, using these averaged estimates to fix I

i
 for all 

models.
The temporal discounting model assumes 

that task values change as a function of the time 
remaining until deadline for each task. The 
deadlines for accept-handover, offer-handover 

were set at 4 min. The deadline for resolve- 
conflict was the point at which the aircraft would 
violate the applicable separation standard. The 
deadline for check-trajectory is based on the 
deadline of the most immediate conflict. Aircraft 
that are not involved in conflicts are given a 
deadline of 180 min, as the simulation is only 
120 min. For check-position-report, an arbitrary 
long deadline of 60 min is given when the task is 
initially entered into the task queue.

results and discussion
The first-come-first-served model accounted 

for roughly half of the variance in the timing of 
conflict resolutions for all of the data sets, as 
Table 1 reveals (see Model 1.1). None of the 
other models seemed to provide any substantial 
improvement in fit for the timing data. The only 
exception is the temporal discounting model’s 
reproduction of Controller 1’s data when the 
exercise was conducted without the assistance 
of automated conflict detection (see Model 1.4). 
The temporal discounting model produced a 
better fit for timing data, and a nearly identical 
fit to the ordinal data, in this exercise. All mod-
els fit Controller 2’s timing data better than they 
fit Controller 1’s timing data.

All models produced better fits for the exer-
cise without the automated conflict detection 
tool. All of the models examined in this section 
assume that controllers act on tasks immediately 
upon selection from the queue. One of the ben-
efits of automated conflict detection is that it 
provides the controller with a list of ongoing 
conflicts. This characteristic is likely to reduce 
the memory load for the controller and may 

Figure 3. Addition and deletion of tasks from the task queue. Each activity can amend the task 
queue by writing a new task to it (black arrows) or by deleting an existing task (gray arrows).
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make it easier to defer intervention. It is possible 
that this may explain the poor fit of the models 
to the data when controllers had the benefit of 
automated conflict detection. In the next section, 
we report the results of models incorporating a 
deferral mechanism, both when automated con-
flict detection is present and when it is absent.

SEctIon 2: dEFErrAl modElS
In the current section, we tested a series 

of models that allow conflict resolution to be 
deferred. The models all assume that when a 
conflict is selected from the queue, the control-
ler assesses the value of resolving that conflict 
immediately (VR). The resolution task value 
for a given conflict is compared to a threshold 
arbitrarily set to 10.0. Any resolve-conflict task 
with a V

R
 below threshold is dropped from the 

task queue—that is, deferred—until the model 
identifies the conflict during the next scan of 
the airspace. The models differ in the way that 
V

R
 is assessed. The first model assumes that the 

value of resolving a conflict immediately is a 
function of conflict duration and airspace com-
plexity (Equation 9). The second model incor-
porates workload (Equation 10), and the third 
incorporates temporal discounting (Equation 
11). For all models, selection of tasks from the 
queue is based on task value, V

t
. The simplest 

form of task value outside of task order is based 
on a task’s importance. The importance model 

from Section 1, therefore, provides the baseline 
against which improvements in model fit can 
be judged.

results and discussion
The introduction of a mechanism to allow 

deferral produced an overall improvement in fit 
across most scenarios, as Table 2 makes clear. 
The most substantial gains were obtained for 
the deferral model that incorporates discount-
ing (see Model 2.3). The deferral discounting 
model yields the best fit for the timing data for 
all four data sets, and the fits are substantially 
better than the relevant benchmark from Section 
1 (see Model 1.2). The worst fit of this model 
accounts for nearly 70% of the variance in tim-
ing data, compared to just under 50% of timing 
variance for the importance model in Section 1. 
In all other simulations, the deferral discounting 
model accounted for over 80% of the variance 
in the timing data. The same model, moreover, 
provides fits to the order data that are either the 
best fit or close to the best fit. As in the previous 
section, the fits for Controller 2’s timing data are 
generally better than for Controller 1.

SEctIon 3: combInIng SElEctIon 
And dEFErrAl

The results from Section 2 suggest that defer-
ral plays an important role in scheduling. The 

TAble 1: Fit Statistics and Parameter Estimates Across the Four Exercises for the Models Describing 
Different Ways of Selecting Tasks From the Queue, Assuming Each Task Is Acted on Immediately

Controller 1 Controller 2

 
Without  

Detection Tool
With  

Detection Tool
Without  

Detection Tool
With  

Detection Tool

Model Timing Ordinal k Timing Ordinal k Timing Ordinal k Timing Ordinal k

1.1 First-come- 
first-served

0.554 
(23.83)

0.873 
(1.77)

NA 0.480 
(27.70)

0.194 
(5.66)

NA 0.743 
(23.23)

0.710 
(2.23)

NA 0.586 
(29.98)

0.553 
(2.37)

NA

1.2 Importance 0.556 
(23.77)

0.815 
(2.14)

NA 0.476 
(27.80)

0.195 
(5.65)

NA 0.729 
(23.84)

0.711 
(2.23)

NA 0.583 
(30.11)

0.553 
(2.37)

NA

1.3 Workload 0.585 
(22.98)

0.866 
(1.82)

NA 0.478 
(27.75)

0.194 
(5.66)

NA 0.728 
(23.87)

0.710 
(2.23)

NA 0.583 
(30.10)

0.555 
(2.37)

NA

1.4 Temporal 
discounting

0.682 
(20.10)

0.870 
(1.79)

0.001 0.483 
(27.67)

0.301 
(5.27)

2.14 0.744 
(23.17)

0.712 
(2.22)

0.07 0.593 
(29.74)

0.575 
(2.31)

10.1

Note. Root mean square deviation is shown in parentheses underneath r2; r2 is calculated as (1 – SS
error

 / SS
total

). k = 
estimated value of discounting parameter.
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best-fitting model suggests that the value of 
resolving a conflict immediately is a product of 
importance, conflict duration, and airspace com-
plexity and that this value is subject to hyper-
bolic discounting. However, it is possible that a 
model combining both sources of dynamics—
discounting and workload—may perform even 
better. In Section 3, therefore, we extended the 
flexible discounting model to include workload 
in the V

R
 function, yielding the full dynamic 

model for selection and deferral:

However, one final assumption built into all 
models remains to be tested. All models but the 
pure first-come-first-served model have a mech-
anism for selecting tasks from the queue that 
combines both importance and first-come-first-
served selection. The need for importance has 
not been demonstrated. Eliminating importance 
would simplify the mechanism for selecting 
tasks from the queue, reducing it to a pure first-
come-first-served algorithm. In Section 3, there-
fore, we tested another version of the full 
dynamic model for selection and deferral, in 
which the importance of all tasks was set to 1.0, 
yielding the reduced dynamic model. The 
reduced dynamic model uses first-come-first-
served to select tasks from the queue and uses 
hyperbolic discounting, with workload, to assess 
the value of immediately resolving conflicts.

results and discussion
As can be seen in Table 3, the addition of 

workload to the V
R
 function of the deferral dis-

counting model improved the fit to most data 
sets without any increase in the number of free 
parameters, although gains were quite modest 
(see Model 3.1 vs. Model 2.3). The elimination 
of importance in the reduced dynamic model 
had some slight effect on fits, but its effects 
were inconsistent (see Model 3.1 vs. Model 
3.2). For two simulations, eliminating impor-
tance slightly lowered the fit to both timing and 
order data compared to the full dynamic model. 
For one simulation (Controller 2, without auto-
mated conflict detection), eliminating impor-
tance slightly improved the fit to both the timing 
and order data; for a second simulation (Con-
troller 2, with automated conflict detection), the 
changes were mixed, with a slight improvement 
in fit to the timing data and a slight decrement 
in fit to the order data. Overall, it appears that 
importance does not play an important role in 
the selection of tasks from the queue. However, 
to obtain a more precise description of the 
relative performance of these models, we can 
compute the corrected Akaike information cri-
terion (AIC

C
; Hurvich & Tsai, 1989), a variant 

of the AIC. AIC
C
 corrects for small data size, a 

reasonable precaution given that the number of 
observations for each exercise ranges from 12 to 
22. If data size is not a problem, then the AIC

C
 

and AIC values will be identical.

TAble 2: Fit Statistics and Parameter Estimates for Timing and Order Data Across the Four Exercises 
for the Models Allowing Deferral

Controller 1 Controller 2

 Without Detection Tool With Detection Tool Without Detection Tool With Detection Tool

Model Timing Ordinal k Timing Ordinal k Timing Ordinal k Timing Ordinal k

2.1 Duration and 
complexity

0.592 
(22.79)

0.865 
(1.82)

NA 0.602 
(24.23)

0.356 
(5.06)

NA 0.734 
(23.64)

0.709 
(2.24)

NA 0.671 
(26.74)

0.591 
(2.27)

NA

2.2 Deferral 
workload

0.565 
(23.53)

0.884 
(1.70)

NA 0.495 
(27.30)

0.354 
(5.06)

NA 0.735 
(23.56)

0.733 
(2.14)

NA 0.604 
(29.33)

0.576 
(2.31)

NA

2.3 Deferral 
discounting

0.847 
(13.93)

0.884 
(1.69)

5.46 0.679 
(21.75)

0.504 
(4.44)

0.02 0.827 
(19.07)

0.695 
(2.29)

0.04 0.816 
(20.01)

0.741 
(1.81)

0.08

Note. Root mean square deviation is shown in parentheses underneath r2; r2 is calculated as (1 – SS
error

 / SS
total

).  
k = estimated value of discounting parameter. All models assume that selection of tasks from the queue is based 
on importance.

V
I CD C W

kD
i i t

i
R

R=
× × ×

+
�

1
(12).
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Table 4 gives the AIC
C
 values for the fits to 

the timing data across each of the four scenarios 
for the following models: full dynamic (Model 
3.1), reduced dynamic (Model 3.2), deferral  
discounting (Model 2.3), and first-come, first-
served (Model 1.1)—the best performing zero-
parameter model. The AIC

C
 is similar to the 

RMSD in that the lower an AIC
C
 value, the bet-

ter the fit. Table 4 also provides a weight value, 
w

i
; this weight represents the likelihood that a 

given model, i, is the best-fitting model. The 
results show that the full dynamic and reduced 
dynamic models are the most likely models for 
two scenarios each. Augmenting the discounting 
model with a workload interaction term does 
seem to provide a better description of timing 
decisions, but task importance seems to add lit-
tle or nothing.

gEnErAl dIScuSSIon

We have shown that on-the-fly scheduling 
is in principle describable by relatively simple 
models that treat scheduling as an emergent 
property of the way that a task queue is man-
aged. Despite having only a single free param-
eter, the reduced dynamic model accounted for 
71% to 88% of the variance in the timing of air 
traffic controllers’ conflict resolutions and for 
60% to 88% of the variance in their ordering. 
This result marked a substantial improvement 
on a pure first-come-first-served model, which 
accounted for 48% to 74% of the variance in 
resolution timings and 19% to 87% in the order-
ing of resolutions. The results suggest that there 
is promise in treating on-the-fly scheduling as 
a psychological process involving the selection 

TAble 3: Fit Statistics and Parameter Estimates for Timing and Order Data Across the Four Exercises 
for the Full Dynamic Model and the Reduced Dynamic Model

Controller 1 Controller 2

 Without Detection Tool With Detection Tool Without Detection Tool With Detection Tool

Model Timing Ordinal k Timing Ordinal k Timing Ordinal k Timing Ordinal k

3.1 Full  
 dynamic

0.852 
(13.74)

0.883 
(1.70)

39.63 0.723 
(20.22)

0.623 
(3.87)

0.65 0.851 
(17.67)

0.731 
(2.15)

0.77 0.850 
(18.06)

0.730 
(1.84)

0.65

3.2 Reduced  
 dynamic

0.833 
(14.58)

0.879 
(1.73)

9.64 0.714 
(20.54)

0.599 
(3.99)

0.18 0.877 
(16.09)

0.758 
(2.04)

0.12 0.876 
(16.45)

0.717 
(1.8)

0.19

Note. Root mean square deviation is shown in parentheses underneath r2; r2 is calculated as (1 – SS
error

 / SS
total

). k = 
estimated value of discounting parameter.

TAble 4: AIC
C
 and w

i
 Values for Timing Data Across the Four Exercises for the First-Come, First-

Served, Deferral Discounting, Reduced Dynamic, and Full Dynamic Models

Controller 1 Controller 2

 

Without  
Detection  

Tool

With  
Detection  

Tool

Without  
Detection  

Tool

With  
Detection  

Tool

Model Parameters AIC
C

w
i

AIC
C

w
i

AIC
C

w
i

AIC
C

w
i

1.1 First-come, first-served 0 46.82 0.021 63.47 0.059 38.25 0.152 35.45 0.069
2.3 Deferral discounting 1 41.16 0.355 61.05 0.199 38.18 0.157 33.63 0.170
3.1 Full dynamic 1 40.96 0.392 59.65 0.399 37.26 0.250 32.56 0.290
3.2 Reduced dynamic 1 41.83 0.253 59.95 0.343 36.12 0.441 31.59 0.472

Note. AIC = Akaike information criterion; AIC
C
 = corrected AIC; w = weight.
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and deferral of tasks in a queue. Perhaps just 
as importantly, we found that some factors had 
little or no weight. Workload seemed to affect 
only the deferral of aircraft conflict resolutions, 
and intrinsic task importance had no effect at all.

The reduced dynamic model represents a 
form of partial-ordering planning using dynamic 
task values. According to this model, the selec-
tion of tasks from the queue is done opportunis-
tically, on a first-come-first-served basis. Tasks 
with a short deadline are executed as soon as 
they are selected. This strategy is a simple and 
efficient way of ensuring that routine tasks are 
completed quickly, without the need for com-
plex assessments of the value of competing 
tasks. Tasks with longer deadlines are evaluated 
to assess whether they need to be executed 
immediately or whether they can be deferred. 
The ability to defer intervention is important in a 
dynamic and uncertain environment because it 
provides flexibility. When a conflict needs to be 
resolved, there can be several options available, 
some of which may not be obvious and all of 
which may have uncertain consequences. Defer-
ral allows the decision maker to reassess the 
need for intervention when there is less uncer-
tainty regarding the need for that intervention 
and the consequences of the various options.

temporal discounting
In our most successful model, the reduced 

dynamic model, the value of acting immediately 
to resolve a particular conflict is dependent on 
airspace complexity, conflict duration, workload, 
and time to deadline. At first glance, it may 
appear surprising that so many factors are consid-
ered when deciding whether to defer intervention. 
However, conflict resolution is a complex prob-
lem (Durand & Alliot, 1997), and any decision 
to act now or defer involves a mix of risks and 
benefits. One of the primary benefits of acting 
early is to reduce workload and complexity, yet 
this may be offset by uncertainty regarding the 
trajectories of the aircraft (Averty et al., 2004). 
Our study provides evidence that the assessment 
of the value of acting immediately may change 
as the conditions of work and the worker change, 
validating recent approaches in the work motiva-
tion literature emphasizing the dynamic, tempo-
rally sensitive nature of task values (e.g., Steel & 
König, 2006; Vancouver et al., 2010).

Steel and König’s (2006) temporal motiva-
tion theory gives hyperbolic discounting an 
important place in the dynamics of motivation 
and decision making. To date, the predictions of 
temporal motivation theory have been tested 
only in simple laboratory tasks, in which partici-
pants have limited discretion regarding the tim-
ing and order of tasks and are given complete 
information regarding the consequences of their 
actions (Schmidt & DeShon, 2007). Our study 
provides evidence that hyperbolic discounting 
may shape decision making in a much more 
complex environment outside of the laboratory, 
when decision makers have considerable discre-
tion over the timing and order of the tasks that 
they perform.

The incorporation of hyperbolic discounting 
into models of task scheduling may also provide 
insight into individual differences and between 
experts and novices in particular. The larger the 
value of k, the larger the denominator of the dis-
counting function for a given deadline and the 
greater the reduction in a conflict’s perceived 
urgency. Thus, differences in k index the degree 
to which a controller is sensitive to deadlines 
when evaluating a task. Expert controllers seem 
to intervene more readily than novices with a 
year or less of training (Loft et al., 2009), sug-
gesting that experts are more sensitive to dead-
lines than are novices, discounting conflicts less 
than do novices for a given deadline. That is, we 
would predict systematically smaller values of k 
for experts than for novices. Understanding tem-
poral discounting may help in understanding the 
acquisition of expertise.

The value of k was generally quite low in the 
reduced dynamic models, except for Controller 
1 when there was no automated conflict detec-
tion to help reduce workload. Thus the degree of 
discounting was always rather moderate for our 
experts. The sharp reduction in k when Control-
ler 1 used a detection tool suggests that discount-
ing might be a strategy to help cope with work-
load and becomes less important when the work 
is made easier.

Workload
We were initially motivated to explore the 

effects of workload on scheduling because 
of the findings of Raby and Wickens (1994)  
that pilots adhered more closely to an a priori 
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rating of task importance as workload increased. 
However, workload appears to play a different 
role in the current study. The results suggest that 
workload influences the deferral of tasks with 
long deadlines rather than the selection of tasks 
from a queue. This finding may reflect differ-
ences in the work environment across the two 
studies. The pilots in Raby and Wickens’ (1994) 
study needed to make choices among tasks with 
relatively short deadlines, whereas the air traffic 
controllers in our study had a mix of tasks, some 
with short deadlines and some with deadlines 
of an hour or more. We suspect that a model in 
which workload and importance jointly influ-
ence the selection of tasks from the queue may 
provide a better fit in an environment in which 
the worker has to make choices among tasks 
with short deadlines and deferral is either not 
possible or has limited benefit.

The effect of workload in the current study is 
similar in some respects to that previously 
reported by Loft et al. (2009). Loft et al. presented 
controllers with a series of pairwise conflicts 
while instructing them to imagine that they were 
under high or low levels of workload. Controllers 
were asked to indicate whether they would inter-
vene to assure separation. Loft et al. found that 
controllers were more likely to intervene in the 
high-workload condition than in the low-work-
load condition and interpreted this as evidence 
that controllers were less tolerant of uncertainty 
and applied greater safety margins under high 
workload. The result was an elevated false alarm 
rate. However, the task used by Loft et al. was 
static rather than dynamic. It is possible that in a 
dynamic environment, the tendency to be less tol-
erant of uncertainty when workload increases 
may cause controllers to act earlier, rather than 
changing their criterion for intervention.

An additional contribution of the current 
study lies in the treatment of workload as iner-
tial. Although not an entirely new idea, work-
load inertia has received limited attention. Mor-
ris and Rouse (1988) discussed it in a technical 
report commission for NASA, and Rouse et al. 
(1993) developed a dynamic model of workload 
to account for workload inertia but used a model 
that assumes symmetric changes in workload, 
unlike our asymmetric approach. There is 
research showing that workload rises faster than 
it falls (Morgan & Hancock, 2011), yet to our 

knowledge, computational models of workload 
do not yet incorporate this asymmetry.

Finally, we should note that our approach to 
workload ignores memory load, especially that 
prospective memory load that may arise from 
interrupted tasks (see Dismukes & Nowinski, 
2007, for a review). Such task interruptions are 
likely to be especially characteristic of the kind 
of open-ended work situations in which on-the-
fly scheduling is important. Indeed, a control-
ler’s decision to defer intervention can be seen 
as a task interruption. (We thank an anonymous 
reviewer for pointing out the relevance of task 
interruptions to on-the-fly scheduling.) For this 
reason, on-the-fly scheduling decisions may be 
an important contributor to prospective memory 
load.

limitations
There are a number of limitations of the 

current study. First, our simulations provide a 
highly simplified representation of the tasks 
that the controllers carry out. Most of the tasks 
involve a series of steps that are not represented 
in the model and involve interactions with 
other actors in the system. Furthermore, we 
have tried to fit only the timing of resolution 
decisions rather than the timing of all tasks. 
However, the level of abstraction that we have 
chosen is appropriate for the study of scheduling 
behavior, because our focus on the scheduling 
of conflict resolutions decisions requires only 
that the time taken for rival tasks be reasonably 
approximated so that the model blocks off an 
appropriate amount of time when “doing” any 
task. Although a more fine-grained task analy-
sis may yield more accurate timing estimates, 
the quality of the obtained fits suggests that our 
estimates are adequate.

A second limitation is that this model con-
fined scheduling to an immediate decision 
whether to act now or defer. Our approach did 
not allow for organizing sequences of actions. 
Hayes-Roth and Hayes-Roth (1979) originally 
conceived of partial-order planning as planning 
of tentative sequences of tasks that would be 
readily changed as events unfolded. Controllers, 
moreover, often speak of using lulls in activity 
to plan a sequence of actions. Such sequencing 
would require a more detailed set of decision 
data as well as a more complex model and a 
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deeper understanding of workload management 
by air traffic controllers. Vortac and colleagues 
have quantified activity sequences using multi-
variate and regression-based techniques (e.g., 
Edwards, Fuller, Vortac, & Manning, 1995; Vor-
tac, Edwards, & Manning, 1994). Whether such 
quantification of organization can be integrated 
with the current modeling approach, however, is 
currently unclear.

A third limitation is that the models have 
been tested using data from just two controllers. 
As a result, we do not know how well these 
models will generalize. However, the current 
paper represents an important first step in the 
development of formal models of human sched-
uling. We have demonstrated that the problem is 
tractable and that it is possible to develop mod-
els that are capable of explaining scheduling 
behavior in a complex environment. This 
approach is commonly used in cognitive science 
when fitting individual data, especially when 
the model is intended as an initial demonstration 
of some approach or existence of proof. For 
example, Nosofsky’s (1986) introduction of the 
generalized context model consisted of fits to 
individual data sets consisting of 16 data points 
produced by two subjects, fit by a model with 
three free parameters. Ratcliff, Van Zandt, and 
McKoon (1999) tested the diffusion model against 
connectionist models of response time using 
data from just 4 participants performing a signal 
detection task. In the current study, we fitted the 
models to individual data sets, with anywhere 
from 24 to 44 data points, and only a single free 
parameter to account for the considerable vari-
ance, all of which imposes tight constraints on 
overfitting.

Having developed the approach, the next step 
is to assess the generalizability of the models 
across people and across work environments. It 
is almost certainly the case that there are indi-
vidual differences in the way that people per-
form scheduling as well as differences across 
work environments. For example, air traffic con-
trollers managing tightly spaced arrival flows in 
a terminal area may be reluctant to defer inter-
vention because the deadlines for intervention 
are much shorter than in an oceanic environ-
ment. An objective for future research should be 
to identify the extent of variability in scheduling 
behavior across these dimensions and assess 

whether the same models are capable of account-
ing for this variability or whether different mod-
els are required for different people or different 
environments. This is a challenging problem and 
will most likely require the use of cutting-edge 
modeling techniques, such as hierarchical 
Bayesian modeling (e.g., Lee, 2011). Hierarchi-
cal Bayesian models enable researchers to 
examine how the parameters of a model (e.g., a 
model of decision making) vary across people 
and environments and to assess whether a mix-
ture of models is needed to explain the data from 
different individuals. It is difficult to make these 
kinds of inferences using conventional modeling 
techniques.

Last, this work does not address the question 
of optimality. Whether the mix of first-come-
first-served for routine tasks with short dead-
lines and possible deferral for longer-running 
tasks represents an optimal scheduling approach 
in an on-the-fly scheduling environment is unad-
dressed here. Air traffic is growing rapidly 
worldwide, and new capabilities are needed to 
meet projected growth (International Civil Avia-
tion Organization [ICAO], 2011). Capabilities 
such as integrated arrivals and departure man-
agement, which is intended to optimize the flow 
of traffic through the system as a whole, are cur-
rently under development. The ultimate goal is 
to enable the introduction of so-called trajec-
tory-based operations, in which airspace users 
negotiate and fly mutually agreed trajectories 
from departure to destination (ICAO, 2005). 
The effect of these changes will be to increase 
the complexity of traffic flows and make the 
system more tightly coupled and interdependent 
(Durso & Manning, 2008; Neal, Flach, Mooij, 
Lehmann, Stankovic, & Hasenbosch, 2011). As 
the system becomes more tightly coupled, it will 
become increasingly important for tasks to be 
scheduled optimally.

Applications and conclusions
There is growing interest in the human fac-

tors community in the use of formal models of 
human performance for the development and 
acquisition of systems, the redesign of equip-
ment and procedures, and the development 
of training simulators and decision support 
systems. However, there is recognition that the 
current generation of models lacks the flexiblity 
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and adpatability of human behavior and gener-
ates predictions that are brittle and unrealistic 
(Pew & Mavor, 1998, 2007). For this reason, 
there have been calls to incorporate higher-
fidelity models of human cognition into simula-
tions (Lotens et al., 2009).

Substantial progress has been made in the 
development of formal theories of decision 
making that are capable of accounting for a 
broad range of empirical phenomena in the labo-
ratory (e.g., Roe, Busemeyer, & Townsend, 
2001), and these approaches are starting to be 
applied in more complex environments, such as 
air traffic control (Neal & Kwantes, 2009; 
Vuckovic, Kwantes, Humphreys, & Neal, in 
press). The focus of this work has been on the 
way that people make choices among decision 
alternatives. However, much less is known about 
the way that people make decisions regarding 
the timing and order of tasks that they have to 
perform. Any attempt to simulate performance 
in a complex environment, like air traffic con-
trol, requires a theory that explains how people 
do this. The model of task selection and deferral 
developed in the current paper provides a way of 
approaching this problem.

A further potential application lies in the devel-
opment of predictive models of workload. There 
is a long history of research examining the causes 
and consequences of workload in military and 
industrial settings (e.g., see Durso & Manning, 
2008). However, it has proven to be extremely 
challenging to develop models that are capable of 
predicting the level of workload that an operator 
will experience in the future, given projected 
workflows (Neal et al., 2014). In principle, it 
should be possible to predict future workload, 
given knowledge of the tasks that have to be per-
formed and the time available to complete them 
(e.g., Hendy, Liao, & Milgram, 1997). However, 
operators frequently have discretion over the tim-
ing and order of the tasks they perform, making 
prediction difficult. Scheduling theory has been 
used as a normative model to determine the opti-
mal sequence in which to perform a set of tasks; 
however, humans do not schedule optimally, 
and knowing the optimal rule does not help to 
reduce operator workload (Moray et al., 1991). The 
development of a psychological theory that explains 

APPEndIx A
Importance Values and completion 
times

TAble A1: Importance Values for Five Tasks 
Across All Models

Task Importance

Check-position-report 0.708
Accept-handover 2.154
Offer-handover 1.729
Check-trajectory 3.223
Resolve-conflict 1.600

Note. “Accept-handover” = accept jurisdiction over 
new aircraft; “offer handover” = pass on jurisdiction to 
controller in adjacent sector. 

TAble A2: Mean Completion Times in Minutes 
for Each State

State Mean Completion Time

Scan airspace 0.10 (0.05*N)
Check trajectory 0.07 (0.07*N)
Decide resolve 0.20 (0.5*N)
Act  
 Check-position-report 0.5 (0.15)
 Accept-handover 0.25 (0.05)
 Offer-handover 0.25 (0.05)
 Resolve-conflict 1.5 (0.5)

Note. Standard deviations in parentheses. N = number 
of aircraft under jurisdiction. The Act state comprises 
four actions, each with its own mean completion 
time and standard deviation. The Check Trajectory 
activity is identical with a single task, check-trajectory, 
repeated across N aircraft trajectories. Values were 
derived by observation of and discussions with air 
traffic controllers.

how operators make scheduling decisions may 
enable more accurate prediction and management 
of workload. Ultimately, by understanding how 
operators make scheduling decisions, we should 
be able to design tools and processes that enhance 
the safety and effectvieness of the systems that 
they control.
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APPEndIx b
task Queue and Aircraft matrix

Task queue. The task queue is an n × 8 matrix, 
with eight columns describing the properties of 
each of n tasks. Columns 1 through 5 indicate the 
task; entries in these columns index craft by ref-
erence to their row number in the aircraft matrix. 
Column 6 indicates the conflict partner of a craft 
initiating a conflict, again via reference to its row 
number in the aircraft matrix. Column 7 indi-
cates time remaining to deadline for the task, and 
column 8 gives the task value for the task.

An example task queue is illustrated in Table 
B1. This task queue holds three tasks: handing 
off Aircraft 1, which must be done in 3 min; 
resolving a conflict between Aircraft 23 and Air-
craft 17, which has 54 min until loss of separa-
tion; and updating flight information for Aircraft 

18, which has a deadline of 60 min. The time to 
deadline for an uncompleted task is reduced 
whenever a model’s clock is updated.

Aircraft matrix. The aircraft matrix tracks 
aircraft states or what the controller has discov-
ered of those states. The matrix is an n × 9 × m 
matrix, where each of the n rows is a single craft 
defined along the nine properties composing the 
columns, such as time of appearance in the sim-
ulation or time until a jurisdiction change (enter 
or leave sector). The m pages replicate the craft 
information for each of the conflicts a craft is in. 
An aircraft that is not involved in any conflict 
has nonzero entries only in the first page. The 
matrices for simulations with and without  
use of an automated conflict detection tool dif-
fer slightly. Both are illustrated in Tables B2 
and B3.

TAble b1: Example of a Task Queue Used Across All Models and Simulations

Check Flight 
Report

Accept 
Handover

Offer 
Handover

Check 
Trajectory

Resolve 
Conflict

Conflict 
Partner

Time 
Remaining Task Value

1  3 18
 23 17 54  6
18 60  1
…  

Note. “Accept handover” is to accept an incoming aircraft as under jurisdiction; “offer handover” is to transfer 
jurisdiction to another controller for an exiting aircraft. Time is given in minutes. “Check flight report” is initially 
given an arbitrary deadline of 60 min and is added to the queue probabilistically during Scan Airspace.

TAble b2: Example Aircraft Matrix for Simulating a No-Tool Scenario

Time of 
Appearance

Status at 
Start of 
Scenario

Jurisdiction 1 
Deadline

Jurisdiction 
2 Deadline

Number of 
Conflicts

Trajectory 
Checked

Conflict 
Partner

Conflict 
Detected

Conflict 
Deadline

0.0 2.0 98.0 180.0 1 1.0 7 1.0 32.0
0.0 1.0 30.0 90.0 0.0 1.0 0.0 0.0 180.0
0.0 2.0 81.5 180.0 0.0 1.0 36 0.0 70.0
…  
87.0 0.0 113.0 180.0 0.0 0.0 0.0 0.0 180.0
90.0 0.0 115.0 180.0 0.0 0.0 12 0.0 105.0

Note. For Status, 2 = within sector, 1 = outside of sector, 0 = unannounced. Jurisdiction 1 Deadline and Jurisdiction 
2 Deadline indicate time to sector entry or exit from the start of the scenario. Number of Conflicts is a running 
total of detected conflicts. Trajectory Checked is a binary indicating whether a craft has had its trajectory checked 
for conflicts. Conflict Partner indicates the row corresponding to a conflict partner for a given craft. Detected 
Conflict is a binary indicating whether the conflict with the craft indexed in Conflict Partner has been detected. 
Conflict Deadline indicates the time from the start of the scenario for collision between the current craft and the 
craft indexed in Conflict Partner. All times are in minutes; times of 180 indicate events that never occur.
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For the no-tool simulations, the nine columns 
of the matrix specify the time in minutes that an 
aircraft appears within the simulation airspace 
(or “announced,” zero if present already), cur-
rent status (under controller’s jurisdiction, 
announced but not under jurisdiction, not yet 
announced, departed controller’s jurisdiction), 
time from start of scenario to initial jurisdiction 
change (entering or leaving sector) if any, time 
from start of scenario to second jurisdiction 
change if any, the number of conflicts the craft 
has been involved with so far, the row number 
(aircraft index) of the partner for the current 
(mth) conflict, whether this current (mth) con-
flict has been detected, time remaining to con-
flict, and whether the craft’s current trajectory is 
checked.

With the use of the conflict detection tool, 
conflict detection is identified as beginning with 
the registering of the conflict in the tool’s sector 
conflict window (SCW) rather than when the 
second aircraft of a conflict pair is announced. 
The use of the SCW requires an extra column to 
simulate the tool-use condition; however, the 
aircraft in this condition seem to engage in only 
one jurisdiction change, thus the total number of 
columns is unchanged at nine.
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kEy PoIntS
 • The spontaneous scheduling of tasks during the 

execution of work (“on-the-fly task scheduling”) 
is examined in the context of air traffic control.

 • Hypotheses regarding the control of on-the-fly 
scheduling are tested using a series of discrete-
event models.

 • The models are fit to conflict resolution decision 
data collected in a high-fidelity simulation involv-
ing two expert air traffic controllers.

 • The best-fitting models incorporate a mixture of 
opportunistic scheduling driven by task order and 
a more complex but flexible mechanism enabling 
deferral of tasks with long deadlines, consistent 
with the mixed planning approach of Hayes-Roth 
and Hayes-Roth (1979).

 • The deferral mechanism involves computing task 
values that vary with workload and time to dead-
line, where the time to deadline weights tasks fol-
lowing a hyperbolic discounting function.
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991–997.

TAble b3: Example Aircraft Matrix for Simulating a Conflict Detection Tool Scenario

Time of 
Appearance

Status at 
Start of 
Scenario

Jurisdiction 
Deadline

Number of 
Conflicts

Trajectory 
Checked

Conflict 
Partner

Conflict 
Detected

Conflict 
Deadline

Registered 
in SCW

0.0 2.0 89.0 1 1.0 3 1.0 32.0 18.0
0.0 1.0 25.0 0.0 1.0 0.0 0.0 180.0 180.0
0.0 2.0 81.5 0.0 1.0 38 1.0 78.0 43.0
…  
87.0 0.0 100.5 0.0 0.0 0.0 0.0 180.0 180.0
90.0 0.0 105.0 0.0 0.0 12 0.0 105.0 72.0
97.0 0.0 180.0 0.0 0.0 0.0 0.0 180.0 180.0

Note. SCW = sector conflict window. “Registered in SCW” indicates the time from the start of scenario when a 
conflict is “detected” by a model’s conflict detection tool. All times are in minutes; times of 180 indicate events 
that never occur.
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