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Abstract

Simulation model validation is an important part of simulation development

and use. An emerging challenge is the examination of functional data systems

and the validation of the simulations built to represent them. While validation

methods do exist, there is a gap in the engineering and statistical approaches

used for functional model validation. This case study demonstrates the use of

recently developed methods based on the use of wavelets to bridge the

engineering‐statistical gap in functional simulation model validation. Two

methods are used to provide insight regarding model validity, and a third

method is used to identify areas of system‐simulation disagreement when

model validity fails to hold.
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1 | INTRODUCTION

It is an exciting time to be involved in quantitative ana-
lytics. Statistical analyses have seen a tremendous growth
in appreciation under newer labels such as “machine
learning” or “statistical learning.” Increasingly complex
optimization problems are being tackled through the
use of heuristics and large‐scale or super computing.
Bayesian methods are increasingly in use and are
transforming how test and analysis results obtained
throughout the product life cycle can be brought into
use for decision making later in that product life cycle.
A final example, and our particular focus, is the use
of rigorous and sometimes detailed simulations, or
models, currently used in a wide variety of domains and
envisioned to eventually help design new systems in
silico, thereby avoiding costly physical prototype and test
cycles. For such virtual design to occur, however, there is
a crucial characteristic these simulations or models must
have. These models must be deemed valid for their
- - - - - - - - - - - - - - - - - - - - - - - - - -

ork and is in the public domain in
intended purpose before they can be used with any
reasonable confidence. The focus of this case study is
the validation of these types of important engineering
models and simulations.

Simulation and model validation is a fairly new tech-
nology because computer simulations are really not that
old either. However, the simulation validation literature
is quite well developed but does appear to fall into two
nondistinct ways of thinking about the topic. One way
of thinking is the engineering perspective whereby
the methods are sometimes quite subjective, based on
graphical outputs or on numerical measures of agreement
between a model and a system output. Another way,
which we label here as the operations research perspec-
tive, casts the validation problem into a statistical frame-
work within which one can construct and test statistical
hypotheses of model to system agreement. Our methods,
demonstrated in this case study, bridges these perspec-
tives, providing an engineering look using statistical prin-
ciples. Simulation and model validation is a fairly new
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

the USA.
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process because computer simulations are a relatively
new development. Despite being fairly new, the simula-
tion validation literature is quite well developed and
comprises two nondistinct ways of considering the topic.
One viewpoint is the engineering perspective whereby
the methods are sometimes quite subjective, based on
graphical outputs or on numerical measures of agreement
between a model and a system output. Another approach,
which we label here as the operations research perspec-
tive, casts the validation problem into a statistical
framework within which one can construct and test sta-
tistical hypotheses of simulation‐to‐system agreement.
Our methods, demonstrated in this case study, bridge
these perspectives by synthesizing the engineering per-
spective with statistical principles.

This paper is organized as follows. In the next section,
we provide a brief review of the model validation field
particularly emphasizing the two perspectives of valida-
tion. We then set the context for the validation case study
scenario in Section 3 and describe the new wavelet‐based
validation approach in Section 4. The case study results
are provided in Section 5, and we close with a summary
and concluding remarks in Section 6.
2 | LITERATURE REVIEW

Computer simulations are powerful tools for system
design. Simulations are used in all aspects of system
design. Simulations also hold promise for eventually
developing and testing new systems in a fully virtual envi-
ronment. However, the use of simulations for this design
task, actually for any specific task, comes with an impor-
tant condition; simulation verification and validation
(V&V).

Validation is arguably the more difficult (and more
crucial) aspect of V&V and is our focus. Validation ensures
the simulation suitably represents the system it is meant to
represent. Verification ensures the simulation is built as
designed. In validation, the focus is whether or not the
simulation output suitably represents (or matches) the
corresponding system output. Simulation output comes
in either discrete or functional (continuous) form, and
validation methods vary according to the output form.

Validation methodologies are a relatively new field,
with computer simulation emerging in the late 1960s.1

However, the use of computer simulation has exploded,
a growth that correlates quite well with the exponential
growth in computing power. Simulation validation meth-
odology is fairly well established although there are some
critical gaps. A gap of particular interest involves the use
of statistical methods for functional output validation.
Further, simulation validation methods fall into what
we see as two nondistinct schools of thought, the opera-
tions research approach and the engineering approach,
but by recognizing these approaches, one can devise
new methods to fill the methodological gaps and bridge
the validation approaches.

The operations research approaches are best repre-
sented by the work of Balci,2 Sargent,3 and Kleijnen.4 A
comprehensive historical account is given in Sargent.5

These approaches combine the use of informal methods,
such as graphical comparisons and expert opinion, with
more formal, statistically‐based methods. These methods
are generally applied to discrete output simulations.
These simulations tend to focus on processes; process
improvement; and large scale, system‐of‐systems models.
Applicable examples include manufacturing plant design,
distribution planning, or aircraft repair processes.6 The
formal methods used to compare the simulation output
to the corresponding system output include hypothesis
testing, confidence interval comparisons, and various
multivariate tests. Atkinson7 provides a comprehensive
summary of these approaches.

The engineering approaches are generally more
focused on system, and subsystem, modeling and design,
and thus, the engineering simulations tend to produce
continuous output. Such systems are also called dynamical
or functional systems. Thus, the engineering approach is
more focused on the physical systems functioning within
the higher level process or system of systems examined
than found in the operations research simulations. Lead-
ing work in this area is found in Oberkampf and Barone8

as well as in Oberkampf and Trucano.9 The methods in
the engineering approach focus on the use of informal
methods of comparing simulation and system output and
the use of metrics of agreement between the simulation
and system output streams. Again, Atkinson7 provides a
thorough summary of the various metrics proposed and
in use.

What is needed for engineering validation are methods
that combine useful aspects of each of the operations
research and engineering approaches. To characterize,
the operations research approaches provide the statistical
framework but do not adequately address functional
output, while the engineering approaches accommodate
the functional output but do not provide the full statistical
basis of comparison. The approach we have developed in
other works and demonstrate in this case study accommo-
dates the functional output, yields metrics of agreement
between the simulation and system output, and provides
a statistical basis for the validation decision. Specifically,
wavelet decomposition of both the simulation and the
system signals, and subsequent comparisons of those
decompositions, serves as a recently developed means to
meet this simulation validation need (Atkinson et al10-12).
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3 | WAVELET ANALYSIS

Wavelets are a relatively recent development in the field
of mathematics but have had a significant impact thus
far.13,14 Wavelets apply in a variety of situations, and
there is potential for the use of wavelets as a method for
simulation model validation. Wavelet analysis is a power-
ful tool for evaluating data signals by transforming them
from the time domain to the time‐frequency or wavelet
domain. This enables the denoising of a signal via a pro-
cess called wavelet thresholding. It is also possible to per-
form statistical inference on high‐dimensional data by
implementing wavelet analysis of variance (WANOVA).15

These capabilities allow the analyst to more accurately
compare functional system and simulation data to per-
form a validity assessment.

This validation capability comes with certain assump-
tions: The system and simulation output are generated
under comparable conditions; the signals being compared
occur over similar time ranges; and the collection times
in each signal align. These assumptions are quite reason-
able in practice.

Wavelets transform signals or functions using a
mother wavelet (ψ) and father wavelet (ϕ). These are used
to generate a family of wavelets through dilations (j) and
translations (k), so that a function may be expressed as

f ðtÞ ¼ ∑
k
cj0;kϕj0;k

þ ∑
j ≥ j0

∑
k
dj;kψj;k ; (1)

where cj,k and dj,k are wavelet coefficients. The discrete
wavelet transform (DWT) calculates the inner products
of the signal and wavelet functions and is used to
estimate the wavelet coefficients. Wavelets are able to
transform nonstationary data and offer increased
computational efficiency. For additional information
regarding wavelets, see Burrus et al,13 Ogden,14 and
Girimurugan et al.16

As alluded to previously, wavelet thresholding is the
process for denoising a signal. This was first explored
by Donoho and Johnstone17 who define a universal
threshold,

λ ¼ σ̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðnÞ

p
; (2)

where σ̂ is an estimate of the standard deviation of the
noise and n is the sample size. Wavelet coefficients are
modified according to the threshold, and the resulting
signal represents the denoised signal.

The use of wavelets led to two new validation
approaches, a metric approach11 and a WANOVA
approach,12 each of which are described next and
demonstrated in our subsequent case study. Additionally,
if either approach indicates a failure to declare the
simulation valid, a search method called the wavelet
bisection method should be employed. This method is
also described below and demonstrated in the case study.
3.1 | Validation metric of thresholded
signals

Validation metrics18,19 are a common and effective
method for assessing functional model data, such as
time‐series data. However, when analyzing extremely
noisy data, the results from using a model validation met-
ric may be skewed and inaccurate. This is because the sig-
nal noise may increase the estimated discrepancy
between the system and model data, incorrectly resulting
in an invalid model assessment. The signal noise may be
due to pure error encountered during system observa-
tions and therefore does not represent true model bias.
Accordingly, Atkinson et al11 propose a dynamic model
validation metric based on wavelet thresholded signals.
In this approach, the system and model data signals are
denoised using wavelet thresholding and then compared
using a model validation metric. The model validation
metric assesses the shape, phase, and magnitude errors
to produce a comprehensive validation metric, R∗. This
metric is calculated as

R∗ ¼ α1
1 − ρxy

2

� �
þ α2

τ
T

��� ���þ α3ðmÞ ; (3)

where ρxy is the correlation coefficient, τ is the lag, T is
the signal length, m is the magnitude error component,
and αi represents weighting coefficients. This method is
very effective at removing the signal noise prior to calcu-
lating a validation metric value. However, this technique
does require that the analyst specify an “acceptable vali-
dation metric value” to judge whether the model is valid
or invalid. As with other validation metrics, there is no
specific value, or range of values, for the cutoff. Values
used are based on best practice or expert opinion. We
have future work planned to focus on more rigorous def-
inition of these cutoff values. This designation currently
requires subjective input and is therefore a limitation of
the current method.
3.2 | Wavelet analysis of variance

WANOVA performs statistical inference in the wavelet
domain. Girimurugan et al15 present a WANOVA meth-
odology that tests for statistical differences among func-
tional data. They adapt a functional analysis of variance
(FANOVA) model with response Yijk, for case, i=1, 2,…,
t; replicate, j=1, 2,…,ri; and response, k=1, 2,…,n, while
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assuming multivariate normal noise. The wavelet repre-
sentation yields a test statistic,

κη ¼ ∑
t

i¼1
∑
n

k¼1

~θ2ik: (4)

In Equation 4, ~θik represents the thresholded wavelet
coefficients associated with case i. The κη test statistic is
compared with a critical value to test the null hypothesis
that the t sets of functional data are statistically
equivalent.

Atkinson et al12 extend WANOVA for use in model
validation assessments. The WANOVA method compares
the system data signal, s, to the simulation data signal, m,
and tests the hypotheses that

H0 :s ¼ m;

H1 :s ≠ m:

This hypothesis assumes a valid model data signal should
be statistically equivalent to the system data. If the test
statistic exceeds a critical value, the null hypothesis is
rejected, and the model is deemed invalid.
3.3 | WANOVA bisection method

Most model validation methods conclude upon assessing
whether a model is valid or invalid. However, for the
engineer or simulation model developer seeking to build
and improve the simulation model, this approach is
incomplete. If the model is deemed invalid, the developer
has no further information on the nature of the discrep-
ancy. It would be valuable to know if the discrepancy is
located over a particular range in the functional data.
Similarly, it would be worthwhile to know if some inter-
vals of the model data show strong agreement with the
system data. Atkinson et al10 present a WANOVA Bisec-
tion method that identifies a range in the functional data
over which the model is most biased in relation to the
system. The approach employed in this paper uses
WANOVA and the bisection method to demonstrate
how such an approach aids developers in correcting the
necessary elements of the simulation.

Thus, given an invalid model, the WANOVA bisection
method bisects the system and model data signals and
performs WANOVA on each half of the signal. The two
test statistics are compared, and the half with the larger
statistic value is the half containing the greater model
bias. These steps are repeated until the desired interval
length is reached. The resulting interval represents the
region over which the the model data differ most from
the system data.This technique may also be used to deter-
mine over what region the model data are least biased
and more elaborate search processes could find multiple
regions of model disagreement. This is discussed further
in Atkinson et al.10
4 | MODEL VALIDATION
SCENARIO CONSIDERED

Modern military aircrafts are extremely capable in terms
of their military power and, as a result, are very complex
systems. Next generation aircraft will be even more capa-
ble and even more complex. One cost for this increase in
system capability is an increased reliance on electronic
systems. This increases not only the power demands of
the system but also the heat generated by the system
and the heat used within the system. Consequently, there
will be tremendous demands on thermal management
systems (TMS) within these future aircraft weapon
systems.

Thermal efficiency is maintained by an aircraft TMS
since thermal loads through the aircraft affect all aspects
of aircraft performance. The next generation military air-
craft requires an accurate design of not only the TMS but
also all those systems that use the thermal energy in the
aircraft. Advanced modeling and simulation tools can
provide the capability required to investigate and assess
the thermal loads expected. Specifically, these models will
comprise a suite of models examining subsystems
through system performance. Not only is building the
models a challenge but validating these models for spe-
cific use presents a challenge as well.

One component of the TMS is an air cycle machine
(ACM). The ACM handles air flowing through an aircraft
system, such as avionics components or turbines. In the
ACM, “air is compressed and then routed through a heat
exchanger or series ofheat exchangers before being
expanded again by a turbine, which provides the mechan-
ical work for the compressor.”20

The ACM in the current setting mimics a reverse
Brayton cycle where air is cooled using turbomachinery.
For an ACM, the main stream air is taken in and heated.
The heated air is pressure controlled using a regulating
valve. The air is compressed and then cooled using a heat
exchanger. This heat exchanger has ambient air blown
over it. The cooled air is expanded again in the turbine
after which the air exits the system through an expanding
duct. Figure 1 is an abstracted version of the ACM built
and modeled in Bracey's research.20

Bracey20 developed a bench‐top experimental version
of an ACM along with a simulation model of that ACM
unit in a MATLAB‐Simulink code. Specific details on
the experimental unit and the model are found in
Bracey's thesis.20 Our focus is on the validation of the



FIGURE 1 Diagram of abstracted air

cycle machine modeled and tested20

[Colour figure can be viewed at
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model against the bench‐top experimental unit. Data
samples from the bench‐top unit were available. The spe-
cific data examined are the temperature and pressure
readings just after the compressor but before the tur-
bine (see red triangle in Figure 1).
FIGURE 2 Sample 19, temperature measurement results, system

versus simulation output [Colour figure can be viewed at

wileyonlinelibrary.com]
5 | VALIDATION CASE STUDY
RESULTS

The new validation methods described in section 3.1 are
applied to the functional data generated during system
and simulation model testing of the ACM component of
the TMS. For this analysis, there are 44 samples each
for the system at a common configuration, with measures
on both temperature (T) and pressure (P). Simulations are
run to collect temperature and pressure data to compare
with the system data. Therefore, we conduct a total of
88 validity assessments to evaluate the ACM model. We
compare a system data signal and a simulation data sig-
nal each for a single variable, temperature, and pressure,
over all 44 cases. These system data signals have a length
of 3751 data points with a simulation model sampling
rate of 25 samples per second for the time required to
obtain a sufficient sample to compare with the system
sample.

These data signals lend themselves perfectly to analy-
sis via our new model validation methods. The noise in
the functional data is well evaluated and accounted for
by the process of wavelet thresholding. Then, the model
data are evaluated using the model validation metric to
assess the sources of error between the system and model
data. Additionally, WANOVA provides an objective and
statistically based evaluation of the model data. Finally,
in cases where the methods deem the model invalid, the
WANOVA bisection method is used to locate the inter-
val(s) of model discrepancy so that developers can make
the necessary corrections and improvements. Thus, this
application serves as an effective case study through
which to employ and evaluate the efficacy of wavelet‐
based validation techniques in modeling and simulation
validation.

The wavelet threshold method requires a critical
value choice for the metric. This choice is based on
domain knowledge. For this case, a value of 0.001 was
selected. Although all cases were examined, only two
cases are presented in detail here. The two discussed, case
19 for temperature and pressure, were selected to demon-
strate the use of our wavelet analysis methodology for
functional system validation. The narrative provided on
the two selected cases applies equally as well to the other
44. The appendix contains the WANOVA validation
results for all the cases considered.

Figure 2 presents the plots associated with sample 19
and the temperature reading associated with that sample.
Sample 19 was selected for discussion, as it is a compre-
hensive representation of the results across all the sam-
ples, and it provides applicable visualization results to

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 4 Sample 19, pressure measurement results, system

versus simulation output [Colour figure can be viewed at

wileyonlinelibrary.com]
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support the method components we highlight. The vali-
dation metric value was calculated as 0.0021, which leads
to rejection of the model as valid. The WANOVA method
was then applied yielding a measure of 16 154, which is
far greater than the critical value of 1870. The critical
value used in this WANOVA hypothesis test is based on
the denoised WANOVA statistic. Specifically, the theoret-
ical distribution of this statistic along with the defined
level of significance is used to calculate the critical value.
Details are in Atkinson et al.10 This result also provides
agreement with an invalid model conclusion.

Figure 3 presents WANOVA bisection results. Note
how the method focused directly on that portion of the
model signal with the larger difference from the system
signal. The takeaway is that the use of an objective, quan-
titative approach to locating areas of system‐model out-
put disagreement provides a viable mechanism to help
engineers and modelers isolate the issues arising in model
validation efforts.

The second example demonstrates using the method
not only to isolate a problem but also to confirm the pos-
itive results of the corrective action taken with the model.
Figure 4 shows the results again from sample 19 but with
specific focus on the pressure reading. The validation
metric of 0.0016 and WANOVA value of 2889.7 both sup-
port an invalid model assessment.

In some instances, engineers report the need to adjust
the model pressure by a constant, such as in this case by
1.5035. Figure 5 adds the new functional line onto
Figure 4. Metrics for this new model are 0.0007 for the
validation metric and 165.5 for the WANOVA. Both mea-
sures now indicate that the model is valid, supporting the
positive results of the model changes.

Table A1 provides the results for all cases considered.
Note the multisample results help provide statistically sig-
nificant evidence of the validity of the simulation with
(A) First iteration

FIGURE 3 Sample 19, temperature wavelet analysis‐of‐variance bisec

right side the second iteration that hones in on where the problem exis
respect to the system. Across all 44 cases, 21 were deemed
not valid at temperature. This supports a multisample
conclusion that the simulation is not valid with respect
to its temperature results. Five of the pressure samples
were invalid, but none were invalid when the correction
was implemented. This suggest a multisample conclusion
that the simulation is valid with respect to pressure
results, especially when a small bias is present.

The two cases represent the use of a quantitative val-
idation method that bridges the operations research and
engineering approaches to model validation. The method
employs an engineering metric, a statistical hypothesis
test approach, and a search method to identify regions
of model disagreement. In the end, our results indicate
model validity for the temperature and pressure variables
considered individually, which presumably would also
(B) Second iteration

tion method results. The left side depicts the first iteration, and the

ts [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Sample 19, pressure measurement results, system

versus original and modified simulation results [Colour figure can

be viewed at wileyonlinelibrary.com]
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hold when considered simultaneously. Such multivariate
approaches to model validation are areas of future
research.
6 | SUMMARY AND CONCLUSION

This work demonstrates how newly developed methods
for functional data simulation validation can be applied
not only to assess simulation model validity but also to
pinpoint where the system and simulation disagree in
the time‐series, functional data output. The case study
used represents a single case that compares an engineer-
ing bench‐level model against a simulation of that
system, but provides a starting point for future extensions
of the methodology.

Future work on these validation methods involves
extending the family of wavelet functions considered,
possibly extending the work to multidimensional sur-
faces, developing an improved statistical basis for the val-
idation metric employed, and building computational
packages for implementing the validation methods
employed. These improvements will coincide with addi-
tional applications of the methods to actual system‐

simulation validation efforts.
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APPENDIX
TABLE A1 Results of WANOVA testing over all cases

Trial
Pressure,
Original

Pressure,
Corrected Temperature

1 832.8 46.5 1357.7

2 1704.8 94.5 3138.7

3 797.5 38.9 3072.9

4 7321.9 139.2 3135.5

5 188.5 23.4 714.2

6 521.5 39.2 782.3

7 721.3 61.5 7453.6

8 1355.0 210.8 9255.6

9 200.4 22.3 1016.0

10 422.9 60.3 211.8

11 7895.1 519.2 35 799.0

12 806.6 50.9 6818.1

13 1264.8 74.9 7054.9

14 1307.9 58.5 1355.4

15 586.3 45.8 2924.9

16 537.5 38.0 6012.2

17 517.5 26.5 1639.9

18 2254.9 211.2 17 253.0

19 2889.7 165.5 16 154.0

20 177.1 7.7 2640.8

21 893.4 95.0 8832.0

22 1059.3 41.4 4819.9

23 758.0 35.1 1020.0

24 170.1 18.9 842.4

25 104.3 14.5 438.8

26 1194.4 51.2 1413.6

27 207.3 20.2 26.1

28 181.8 14.3 144.3

29 420.5 24.9 2401.6

30 164.3 15.7 558.0

31 265.8 21.0 1097.1

32 144.2 15.7 988.8

33 344.4 20.3 2116.4

34 167.7 14.8 733.2

35 556.7 38.8 1303.8

36 1363.3 155.8 4116.9

37 566.2 61.0 5938.0

38 2979.9 153.3 4890.7

39 418.9 55.9 3287.5

(Continues)

Trial
Pressure,
Original

Pressure,
Corrected Temperature

40 313.2 16.8 1590.2

41 238.2 15.5 78.9

42 65.2 8.0 241.5

43 647.3 38.4 2103.8

44 1440.7 62.0 1607.6

Abbreviation: WANOVA, wavelet analysis of variance.


