

SCALABLE DEVS MODELING OF QUANTIZED DSP BASED SYSTEMS

By

Harshavardhan Gopalakrishnan

A Thesis Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE

In the Graduate College

THE UNIVERSITY OF ARIZONA

2 0 0 5

2

2

STATEMENT BY AUTHOR

 This thesis has been submitted in partial fulfillment of requirements for an
advanced degree at the University of Arizona and is deposited in the University Library
to be made available to borrowers under rules of the Library.

 Brief quotations from this thesis are allowable without special permission,
provided that accurate acknowledgement of source is made. Requests for permission for
extended quotation from or reproduction of this manuscript is whole or in part may be
granted by the head of the major department or the Dean of the Graduate College when in
his or her judgement the proposed use of the material is in the interests of scholarship. In
all other instances, however, permission must be obtained from the author.

 SIGNED: ___________________________

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

 __ _________________

 Bernard P Zeigler Date
 Professor of Electrical and Computer Engineering

3

3

ACKNOWLEDGMENTS

I express my sincere thanks to Dr. Bernard P. Zeigler for being my advisor and for his

immense help and guidance. My sincere thanks to Dr. Doohwan Kim and Dr. James J.

Nutaro for helping me in the course of my thesis.

I thank my thesis committee member Dr. Olgierd A. Palusinski for his time, effort and

patience. I thank my family for their care, encouragement and support and also my

friends who help me in all the ways they can.

4

4

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. 3

TABLE OF CONTENTS ... 4

TABLE OF FIGURES.. 8

LIST OF TABLES .. 10

ABSTRACT... 11

1 INTRODUCTION.. 12

1.1 DIGITAL AUDIO SYSTEMS ... 12
1.2 OBJECT-ORIENTED DISCRETE EVENT MODELING AND SIMULATION 13
1.3 ADEVS.. 15
1.4 AIM OF THESIS... 15
1.5 CONTRIBUTIONS... 19

2 ALGORITHMS AND MATH .. 20

2.1 DISCRETE FOURIER TRANSFORM... 20
DFT..20
IDFT ..20

2.2 FAST FOURIER TRANSFORM.. 21
2.2.1 RADIX – 2 FFT..21

2.2.1.1 DECIMATION IN FREQUENCY.. 21
2.2.1.2 DECIMATION IN TIME.. 22

2.2.2 RADIX – 4 FFT..23
2.2.2.1 DECIMATION IN FREQUENCY.. 24
2.2.2.2 DECIMATION IN TIME.. 25

2.3 PIPELINING THE FFT STAGES .. 26
2.4 COMPUTATIONAL QUANTIZATION.. 26
2.4 MEDIAN FILTER... 27
2.5 COMPLEX ARITHMETIC USING SIMD .. 27

3 FORMAL MODELS ... 29

3.1 BUTTERFLY.. 29
3.1.1 MODEL (ATOMIC)...29
3.1.2 PARAMETERS ..29
3.1.3 INPUT PORTS ...30
3.1.4 OUTPUT PORTS ...30
3.1.5 STATES..30
3.1.6 EXTERNAL TRANSITION...31
3.1.7 INTERNAL TRANSITION..31
3.1.8 OUTPUTS ..31

3.2 STAGE .. 32
3.2.1 MODEL (ATOMIC)...32
3.2.2 PARAMETERS ..32
3.2.3 INPUT PORTS ...32

5

5

3.2.4 OUTPUT PORTS ...33
3.2.5 STATES..33
3.2.6 EXTERNAL TRANSITION...34
3.2.7 INTERNAL TRANSITION..34
3.2.8 OUTPUTS ..34

3.3 STAGE MODULE .. 35
3.3.1 MODEL (DIGRAPH) ...35
3.3.2 PARAMETERS ..35
3.3.3 INPUT PORTS ...36
3.3.4 OUTPUT PORTS ...36

3.4 QFFT MODULE ... 37
3.4.1 MODEL (DIGRAPH) ...37
3.4.2 PARAMTERS ..38
3.4.3 INPUT PORTS ...38
3.4.4 OUTPUT PORTS ...38

3. 5 SYSTEM CONTROLLER.. 39

3.5.1 MODEL (ATOMIC)...39
3.5.2 PARAMETERS ..39
3.5.3 INPUT PORTS ...40
3.5.4 OUTPUT PORTS ...40
3.5.5 STATES..40
3.5.6 EXTERNAL TRANSITION...40
3.5.7 INTERNAL TRANSITION..41
3.5.8 OUTPUTS ..41

3.6 SYSTEM ... 42
3.6.1 MODEL (DIGRAPH) ...42
3.6.2 PARAMETERS ..43
3.6.3 INPUT PORTS ...43
3.6.4 OUTPUT PORTS ...43

3.7 GENERATOR... 44
3.7.1 MODEL (ATOMIC)...44
3.7.2 PARAMETERS ..44
3.7.3 INPUT PORTS ...44
3.7.4 OUTPUT PORTS ...44
3.7.5 STATES..45
3.7.6 EXTERNAL TRANSITION...45
3.7.7 INTERNAL TRANSITION..45
3.7.8 OUTPUTS ..45

3.8 AUDIO PLAYER.. 46
3.8.1 MODEL (ATOMIC)...46
3.8.2 PARAMETERS ..46
3.8.3 INPUT PORTS ...46
3.8.4 OUTPUT PORTS ...46
3.8.5 STATES..47
3.8.6 EXTERNAL TRANSITION...47
3.8.7 INTERNAL TRANSITION..47
3.8.8 OUTPUTS ..48

3.9 SPECTRUM ANALYZER ... 48
3.9.1 MODEL (ATOMIC)...48
3.9.2 PARAMETERS ..48
3.9.3 INPUT PORTS ...48

6

6

3.8.4 OUTPUT PORTS ...48
3.9.5 STATES..49
3.9.6 EXTERNAL TRANSITION...49
3.9.7 INTERNAL TRANSITION..49
3.9.8 OUTPUTS ..50

3.10 MEDIAN FILTER... 50
3.10.1 MODEL (ATOMIC) ...50
3.10.2 PARAMETERS ..50
3.10.3 INPUT PORTS ...50
3.10.4 OUTPUT PORTS ...51
3.10.5 STATES..51
3.10.6 EXTERNAL TRANSITION...51
3.10.7 INTERNAL TRANSITION..51
3.10.8 OUTPUTS ..51

3.11 BLOCK DIAGRAM OF THE SYSTEM.. 52

4 IMPLEMENTATION ... 53

4.1 PERFORMANCE.. 53
4.1.1 CIRCULAR ZERO COPY SHARED BUFFERS ..53
4.1.2 LOOK UP TABLES ...53
4.1.3 NUMBER OF PORTS..54

4.2 ACTUATORS ... 54
4.2.1 DISCRETE EVENT MODEL WITH CALLBACK EVENTS ..54
4.2.2 DISCRETE EVENT MODELS WITH SELF-TIMED EVENTS ..55

4.3 SCALABILITY AND REUSABILITY .. 56

5 STATE CHARTS AND SEQUENCE DIAGRAMS... 57

5.1 SYSTEM SEQUENCE ... 57
5.2 BUTTERFLY STATE CHART .. 58
5.3 PLAYER STATE CHART.. 59
5.4 MEDIAN FILTER STATE CHART... 60
5.5 SPECTRUM ANALYZER STATE CHART.. 61
5.6 STAGE STATE CHART .. 62
5.7 CONTROLLER STATE CHART... 63
5.8 GENERATOR STATE CHART... 64

6 EXPERIMENTS .. 65

6.1 WORKING.. 65
6.1.1 Radix – 2 Forward Transform and Inverse Transform – 1024 point...65

6.2 N-POINT TRANSFORMS (PIPELINED VS. NON-PIPELINED) 67
6.2.1 RADIX – 2..67
6.2.3 RADIX – 2 vs RADIX – 4..70

6.3 COMPUTATIONAL QUANTIZATION.. 71
6.3.1 RADIX – 2..71

6.3.1.1 INPUT Sine wave f = 100 Hz, fs = 6000Hz.. 71
6.3.1.2 INPUT Sine wave f = 100 Hz, fs = 22050Hz .. 72
6.3.1.3 INPUT Sine wave f = 100 Hz, fs = 44100Hz .. 73
6.3.1.4 INPUT Sine wave f = 5000 Hz, fs = 22050Hz .. 74
6.3.1.5 INPUT Sine wave f = 5000 Hz, fs = 44100Hz .. 75
6.3.1.6 INPUT Sine wave f = 16000 Hz, fs = 44100Hz .. 76
6.3.1.7 MUSIC SIGNAL fs = 11025 Hz ... 77

7

7

6.3.1.8 MUSIC SIGNAL fs = 22050 Hz ... 79
6.3.1.9 MUSIC SIGNAL fs = 44100Hz.. 80
6.3.1.10 MUSIC SIGNAL fs = 11025Hz.. 81
6.3.1.11 MUSIC SIGNAL fs = 22050Hz.. 82
6.3.1.12 MUSIC SIGNAL fs = 44100Hz.. 83
6.3.1.13 MUSIC SIGNAL fs = 44100Hz.. 84

6.3.2 RADIX – 4..85
6.3.2.1 MUSIC INPUT fs = 44100Hz... 85
6.3.2.2 MUSIC INPUT fs = 44100Hz... 86

6.3.3 MEAN SQUARE ERROR VARIATION WITH N ...87

7 ANALYSIS ... 88

7.1 PIPELINING ... 88
7.2 COMPUTATIONAL QUANTIZATION.. 90

8 CONCLUSION AND FUTURE WORK ... 93

9 REFERENCES... 94

APPENDIX A CLASS DIAGRAMS... 97

A.1 AU DECODER/ENCODER... 97
A.2 AUDIO PLAYER... 98
A.3 BUTTERFLY ... 100
A.4 GENERATOR.. 101
A.5 MEDIAN FILTER.. 103
A.6 MODULE ... 104
A.7 SIMULATOR... 105
A.8 SPECTRUM ANALYZER... 106
A.9 STAGE ... 108
A.10 SYSTEM .. 110
A.11 SYSTEM CONTROLLER ... 111

APPENDIX B SIMULATION ENVIRONMENT ... 112

APPENDIX C SIMD SUPPORT FOR SIMULATION .. 113

8

8

TABLE OF FIGURES

FIGURE 1.1 : BLOCK DIAGRAM OF A TYPICAL DIGITAL AUDIO PROCESSING SYSTEM............................ 13
FIGURE 1.2 : BLOCK DIAGRAM OF A SIMULATED SYSTEM ... 18
EQUATION – 2.1 : DFT .. 20
EQUATION – 2.2 : IDFT... 20
FIGURE 2.1 : RADIX – 2 DECIMATION IN FREQUENCY FFT... 22
FIGURE 2.2 : BASIC BUTTERFLY OF RADIX – 2 DECIMATION IN FREQUENCY FFT 22
FIGURE 2.3 : RADIX – 2 DECIMATION IN TIME FFT... 23
FIGURE 2.4 : BASIC BUTTERFLY OF RADIX – 2 DECIMATION IN TIME FFT .. 23
FIGURE 2.5 : RADIX – 4 DECIMATION IN FREQUENCY FFT... 24
FIGURE 2.6 : RADIX – 4 DECIMATION IN TIME FFT... 25
FIGURE 3.1 BUTTERFLY MODEL ... 29
FIGURE 3.2 STAGE MODEL ... 32
FIGURE 3.3 STAGE MODULE .. 35
FIGURE 3.4 QFFTMOD MODEL ... 37
FIGURE 3.5 SYSTEM CONTROLLER MODEL ... 39
FIGURE 3.6 - SYSTEM MODEL ... 42
FIGURE 3.7 GENERATOR MODEL .. 44
FIGURE 3.8 AUDIO PLAYER MODEL... 46
FIGURE 3.9 SPECTRUM ANALYZER MODEL... 48
FIGURE 3.10 MEDIAN FILTER MODEL.. 50
FIGURE 3.11 SIMVIEW CAPTURE OF SYSTEM .. 52
FIGURE 5.1 SYSTEM SEQUENCE DIAGRAM.. 57
FIGURE 5.2 BUTTERFLY STATE CHART... 58
FIGURE 5.3 PLAYER STATE CHART.. 59
FIGURE 5.4 MEDIAN FILTER STATE CHART ... 60
FIGURE 5.5 SPECTRUM ANALYZER STATE CHART .. 61
FIGURE 5.6 STAGE STATE CHART... 62
FIGURE 5.7 CONTROLLER STATE CHART ... 63
FIGURE 5.8 GENERATOR STATE CHART ... 64
FIGURE 6.1 RADIX – 2 FORWARD TRANSFORM AND INVERSE TRANSFORM – 1024 POINT...................... 65
FIGURE 6.2 RADIX – 4 FORWARD TRANSFORM AND INVERSE TRANSFORM – 1024 POINT...................... 66
FIGURE 6.3 N-POINT TRANSFORMS (PIPELINED VS. NON-PIPELINED)... 68
FIGURE 6.4 N-POINT TRANSFORMS (PIPELINED VS. NON-PIPELINED)... 69
FIGURE 6.5 (RADIX – 2 VS RADIX - 4) (PIPELINED VS. NON-PIPELINED).. 70
FIGURE 6.6 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME QUANTUM 72
FIGURE 6.7 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME QUANTUM 73
FIGURE 6.7 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME QUANTUM 74
FIGURE 6.8 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME QUANTUM 75
FIGURE 6.9 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME QUANTUM 76
FIGURE 6.10 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME QUANTUM 77
FIGURE 6.11 MUSIC SIGNAL ... 77
FIGURE 6.12 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – SAME QUANTUM................................ 78
FIGURE 6.13 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – SAME QUANTUM................................ 79
FIGURE 6.14 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – SAME QUANTUM................................ 80
FIGURE 6.15 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – PROGRESSIVE QUANTUM................ 81
FIGURE 6.16 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – PROGRESSIVE QUANTUM................ 82
FIGURE 6.17 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – PROGRESSIVE QUANTUM................ 83
FIGURE 6.18 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – PROGRESSIVE QUANTUM................ 84
FIGURE 6.19 SPEED IMPROVEMENT – RADIX – 4 – MUSIC INPUT – SAME QUANTUM................................ 85
FIGURE 6.20 SPEED IMPROVEMENT – RADIX – 4 – MUSIC INPUT – PROGRESSIVE QUANTUM................ 86
FIGURE A.1 – AU DECODER/ENCODER CLASS DIAGRAM... 97
FIGURE – A.2 AUDIO PLAYER CLASS DIAGRAM – 1 ... 98
FIGURE – A.3 AUDIO PLAYER CLASS DIAGRAM – 2 ... 99
FIGURE – A.4 BUTTERFLY .. 100
FIGURE – A.5 GENERATOR CLASS DIAGRAM – 1 .. 101

9

9

FIGURE – A.6 GENERATOR CLASS DIAGRAM – 2 .. 102
FIGURE – A.7 MEDIAN FILTER CLASS DIAGRAM.. 103
FIGURE – A.8 MODULE CLASS DIAGRAM ... 104
FIGURE – A.9 SIMULATOR CLASS DIAGRAM ... 105
FIGURE – A.10 SPECTRUM ANALYZER CLASS DIAGRAM – 1 ... 106
FIGURE – A.11 SPECTRUM ANALYZER CLASS DIAGRAM – 2 ... 107
FIGURE – A.12 STAGE CLASS DIAGRAM – 1 ... 108
FIGURE – A.13 STAGE CLASS DIAGRAM – 2 ... 109
FIGURE – A.14 SYSTEM CLASS DIAGRAM .. 110
FIGURE – A.14 SYSTEM CONTROLLER CLASS DIAGRAM ... 111

10

10

LIST OF TABLES

TABLE 2.1 COMPLEX ADDITION USING 3DNOW!.. 28
TABLE 2.2 COMPLEX MULTIPLICATION USING 3DNOW!.. 28
TABLE 6.1 N-POINT TRANSFORMS (PIPELINED VS. NON-PIPELINED) .. 67
TABLE 6.2 N-POINT TRANSFORMS (PIPELINED VS. NON-PIPELINED) .. 69
TABLE 6.3 N-POINT TRANSFORMS (PIPELINED VS. NON-PIPELINED) .. 70
TABLE 6.4 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME QUANTUM....................................... 71
TABLE 6.5 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME QUANTUM....................................... 73
TABLE 6.6 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME QUANTUM....................................... 73
TABLE 6.7 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME QUANTUM....................................... 74
TABLE 6.8 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME QUANTUM....................................... 75
TABLE 6.9 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME QUANTUM....................................... 76
TABLE 6.10 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – SAME QUANTUM 78
TABLE 6.11 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – SAME QUANTUM 79
TABLE 6.12 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – SAME QUANTUM 80
TABLE 6.13 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – PROGRESSIVE QUANTUM 81
TABLE 6.14 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – PROGRESSIVE QUANTUM 82
TABLE 6.15 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – PROGRESSIVE QUANTUM 83
TABLE 6.16 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – PROGRESSIVE QUANTUM 84
TABLE 6.17 SPEED IMPROVEMENT – RADIX – 4 – MUSIC INPUT – SAME QUANTUM 85
TABLE 6.18 SPEED IMPROVEMENT – RADIX – 4 – MUSIC INPUT – PROGRESSIVE QUANTUM 86
TABLE 6.18 MEAN SQUARE ERROR VARIATION WITH N.. 87
TABLE 7.1 TIME TAKEN FOR VARIOUS QUANTUMS.. 90
TABLE C.1 RADIX-2 DIF BUTTERFLY IN AMD’S 3DNOW! INSTRUCTION SET .. 114
TABLE C.2 RADIX-2 DIT BUTTERFLY IN AMD’S 3DNOW! INSTRUCTION SET.. 115
TABLE C.3 MAGNITUDE OF A COMPLEX NUMBER USING AMD’S 3DNOW! INSTRUCTION SET............ 116

11

11

ABSTRACT

Discrete event modeling and simulation of complex Digital Signal Processing (DSP)

systems provide a systematic approach for better engineering, be it system level or

software level of design. Digital audio processing has become an indispensable part of

everyday life and is found in most of the devices that we use daily. The design of such

complex systems needs formal models and corresponding methods of design. Discrete

event modeling and simulation provides a framework to analyze a digital audio system.

In this thesis, a typical audio system is modeled and simulated using Discrete Events and

effects of quantization, in the computation of the Fast Fourier Transform (FFT) are

studied. The models are shown to be scalable, re-usable, performance-oriented and suited

for real-time deployment. This thesis provides a powerful and configurable framework

for complex DSP based systems.

Models for FFT (Butterfly, Stages, Controller and Quantizer) have been built for Radix–2

and Radix–4 transforms for Decimation in Frequency and Decimation Time Transforms.

Audio Player, Spectrum Analyzer, Audio Generator (with Au format Decoder/Encoder)

are the other models that have been built for the system. Experiments were performed to

analyze the speed-up due to pipelining the stages of the FFT in Radix – 2 and Radix – 4

transforms and compared for efficiency. Quantization when applied during the

computation of FFT reduces the time taken for the computation. When forward and

inverse transform are applied to a music input, it is observed that time taken for the

computation reduces to 82% of the actual time taken when noise starts getting audible.

12

12

1 INTRODUCTION

1.1 DIGITAL AUDIO SYSTEMS

Digital Signal Processing has rapidly advanced due to the significant advances in digital

computer technology and integrated circuit fabrication. Digital audio processing has

become an indispensable part of everyday life and is found in most of the devices that we

use daily. With the advancement in digital media technology, the market has been

experiencing an unparalleled inclination towards fully digital audio systems.

The rapid advancement in the digital infrastructure, along with new digital sound sources,

has created an unprecedented opportunity to process digital audio data and the need to do

so. Digital systems allow the use of digital signal processing, which has the power and

flexibility to address, in digital, problems that were too expensive or too difficult to

address well in analog. In addition to the increase in digital media and infrastructure, the

market is seeing an unprecedented trend toward minimization and sleeker-than-ever

audio equipment styling.

A block diagram of a typical digital audio processing system is shown below:

13

13

Figure 1.1 : Block diagram of a typical Digital Audio Processing system

Here, digital data from a digital audio source, which can be from CD/SPDIF/USB or any

digital input, is routed to the Digital Processing Unit by a compatible interface. The

interface can do the pre-processing jobs. The digital processing unit is where digital

filtering, equalization and so forth are performed. Once this processing is completed, the

signal is sent on to a digital amplifier, which converts the digital signal to a digital format

that can supply adequate current and voltage to drive the speaker.

1.2 OBJECT-ORIENTED DISCRETE EVENT MODELING

AND SIMULATION

The Discrete Event System Specification (DEVS) formalism introduced by Zeigler

(1976) provides a means of specifying a system with its discrete inputs, states, and

outputs, and functions for determining next states and outputs given current states and

inputs (Zeigler, 1984b). Object-oriented programming is a paradigm in which a software

system is decomposed into subsystems based on objects. The paradigm enhances

software maintainability, extensibility and reusability. Computation is done by objects

exchanging messages among themselves. Object oriented program encourages a much

14

14

more decentralized style of decision making by creating objects whose existence may

continue throughout the life of the program. We can make such objects act as experts in

their own task assignments by providing them with the appropriate knowledge [3].

Object-oriented modeling and simulation provides a structured, computer-aided,

streamlined approach of modeling hierarchical systems. The OO methodology

emphasizes code reuse or inheritance along with the other features like encapsulation and

abstraction. The key object of simulation is the mapping between real world and digital

world as objects that can be represented with their own attributes and which can act

according to external inputs or internal transitions.

Looking at the problem's perspective, system design is a complicated process with the

systems getting complex with the advances in technology and time. The process is

simplified by use of modeling framework and simulation. Discrete event modeling and

simulation of these complex systems provide a systematic approach for better

engineering, be it system level or software level of design. Design of such complex

systems needs formal models and corresponding methods of design. Discrete event

modeling and simulation would provide a concrete framework to analyze a digital audio

system using discrete events. When a digital audio system is broken down into its blocks

(namely Forward Transform, Inverse Transform, Linear Filters, Audio capture, Audio

Player etc…), modeling them on the basis of events would be advantageous looking at it

as hardware or a software system. The models are aimed to be scalable, re-usable,

performance-oriented and suited for real-time deployment. This thesis provides a

15

15

powerful and configurable framework for complex DSP systems. All these requirements

fit into object-oriented discrete event modeling and simulation.

1.3 ADEVS

ADEVS (A Discrete EVent System simulator) is a C++ library for constructing discrete

event simulations based on the Parallel DEVS and Dynamic Structure DEVS formalisms

[4]. With its conformance to the DEVS formalisms, it is a highly configurable simulation

environment with all the versatility provided by the C++ language in which it is

implemented. Due to the fact that the simulations of DSP systems based on discrete

events require high-performance simulation environment for real-time simulations,

ADEVS provides a suitable framework for modeling and simulation of the DSP systems.

The user manual and documentation for ADEVS available at

[http://www.ece.arizona.edu/~nutaro/adevs-docs/index.html] details the package

configuration, usage and simulation details.

1.4 AIM OF THESIS

 The aim of this thesis is to model and simulate a digital audio system as shown in Figure

1.1 using DEVS and study the effects of quantization when introduced during the

computation of FFT.

The advantages of using Discrete Event Simulation are:

16

16

1. When a process is running with multiple tasks or threads, the synchronization has

to be done on the basis of events. This is because the tasks cannot be critically

timed and polling the state of the tasks using a time driven controller is not

efficient. For example, here we have pipelined stages for the FFT and the

synchronization between the stages is done on the basis of events using a

controller.

2. Quantization used in the computation of FFT makes the pipelined stages

asynchronous. Synchronization can be done on the basis of events monitored by a

controller. This is an efficient method of controlling the data flow between the

stages, each of which might take a different time for processing based on the

inputs.

3. The inputs to the system need not be discrete-time which gives the flexibility to

use queued processing in pre-emptive processing environments.

This thesis includes formalization of discrete event models that form building blocks of a

digital audio system. This approach gives a distinct advantage over other simulation

methodologies in the way that the system can be hierarchically modeled and provides a

solid implementation at the system level or software level. Also the other advantages

have been mentioned above and in section 1.2. Most of the simulation environments

available are arduously slow and are not suitable for real-time simulations. These models

expose a way of overcoming the disadvantage and opens an avenue for discrete event

based modeling and simulation of digital signal processing systems. The various blocks

can be individually studied and optimized for performance based on time/space,

17

17

scalability and reusability. Here a typical audio system with Fast Fourier Transform

(FFT) for forward and inverse transform (Decimation in Time as well as Decimation in

Frequency: Radix – 2 and Radix - 4), spectrum analyzer, filter, player are modeled and

simulated using Discrete Events. Effects of computational quantization, when introduced

during computation of the FFT are studied. The system with pipelined FFT stages

provides a way to utilize the most out of multi-processor systems, implemented in either

software or hardware. The models can also be looked at as formalization in the hardware

design with independent blocks that can be designed as hardware blocks. The models are

aimed to be scalable, re-usable, performance-oriented and suited for real-time

deployment. This thesis provides a powerful and configurable framework for complex

DSP systems.

The following shows the block diagram of the system that has been simulated for the

implementation and experiments:

18

18

Figure 1.2 : Block diagram of a Simulated System

19

19

1.5 CONTRIBUTIONS

1. Discrete Event models for signal processing systems like pipelined Radix - 2 & Radix

– 4 FFT, Audio Player, Spectrum Analyzer etc. have been formally modeled and

implemented that can provide fast and effective simulations of signal processing systems.

These models can also be used for building other complex DSP systems.

2. Quantization has been introduced into the computation of FFT and the system has been

analyzed for the effects of quantization. This reduces the time taken for the computations.

3. Stages of the FFT are pipelined and the speed-up due to pipelining has been compared

and analyzed for Radix – 2 and Radix – 4 transforms.

4. Discrete Event Model with callback events and Discrete Event Model with self – timed

events have been used which helps in bridging the outputs of the discrete-event systems

with discrete-timed systems. For example, Audio Player is a Discrete Event Model with

callback events and plays the audio at the correct rate and uses callback events to retrieve

buffers from the driver. Spectrum Analyzer is a Discrete Event Model with self-timed

events that self-times itself to display the spectrum in synchronization with the audio

player model.

20

20

2 ALGORITHMS AND MATH

This chapter illustrates the important algorithms that have been used in the thesis. Also,

the associated math and equations are shown at the required places.

2.1 DISCRETE FOURIER TRANSFORM

Discrete Fourier Transform (DFT) is a very powerful computational tool for frequency

analysis of discrete time signals. The DFT and Inverse DFT of a signal are given by the

following formulae:

DFT

1,,2,1,0)()(
1

0

/2 −==∑
−

=

−
NkenxkX

N

n

Nknj Κπ

Equation – 2.1 : DFT

IDFT

1,,2,1,0)(
1

)(
1

0

/2 −== ∑
−

=

NkekX
N

nx
N

k

Nknj Κπ

Equation – 2.2 : IDFT

21

21

2.2 FAST FOURIER TRANSFORM

The Fast Fourier transform (FFT) [1] is a Discrete Fourier transform algorithm, which

reduces the number of computations, needed with the divide and conquer approach. The

DFT requires N2 complex multiplications where as the FFT requires only (N/2) log2N

complex multiplications in the case of Radix-2.

2.2.1 RADIX – 2 FFT

When the number of data points is a power of 2, the sequence can be split up into even

and odd data points or two N/2 point sequences and derived in such a way till individual

two-point sequences. The algorithm is explained more in detail below.

2.2.1.1 DECIMATION IN FREQUENCY

The process of dividing the frequency components into even and odd parts, gives this

algorithm its name. The block diagram of a Radix-2 Decimation-in-Frequency algorithm

is shown below:

22

22

Figure 2.1 : Radix – 2 Decimation in Frequency FFT

The Basic Butterfly for the algorithm is shown below:

Figure 2.2 : Basic Butterfly of Radix – 2 Decimation in Frequency FFT

[Digital Signal Processing: Principles, Algorithms and Applications : John G. Proakis,

Dimitris G. Manolakis, Third Edition, Page 460]

2.2.1.2 DECIMATION IN TIME

The process of splitting the time domain sequence into even an odd samples gives the

algorithm its name. The block diagram of a Radix-2 Decimation-in-Time algorithm is

shown below:

23

23

Figure 2.3: Radix – 2 Decimation in Time FFT

The Basic Butterfly for the algorithm is shown below:

Figure 2.4 : Basic Butterfly of Radix – 2 Decimation in Time FFT

[Digital Signal Processing: Principles, Algorithms and Applications : John G. Proakis,

Dimitris G. Manolakis, Third Edition, Page 464]

2.2.2 RADIX – 4 FFT

When the number of data points is a power of 4, the sequence can be split up into

sequences of (n mod 4) data points or four N/4 point sequences and derived in such a way

till individual four-point sequences. The algorithm is explained more in detail below.

24

24

2.2.2.1 DECIMATION IN FREQUENCY

The process of splitting the frequency domain sequence into (n mod 4) samples gives the

algorithm its name. The block diagram of a Radix-4 Decimation-in-Frequency algorithm

is shown below:

Figure 2.5: Radix – 4 Decimation in Frequency FFT

25

25

2.2.2.2 DECIMATION IN TIME

The process of splitting the time domain sequence into (n mod 4) samples gives the

algorithm, its name. The block diagram of a Radix-4 Decimation-in-Time algorithm is

shown below:

Figure 2.6: Radix – 4 Decimation in Time FFT

26

26

2.3 PIPELINING THE FFT STAGES

A Radix – 2 FFT has log2N stages in its transformation of data into frequency domain.

These stages can be pipelined and each of these stages can work on separate sets of data

in parallel (the data is fed to the successive stages). This reduces the execution time to

log2N times of single pass FFT, if there are log2N arithmetic units to perform the

computation. In our design, there is a single butterfly for every stage of FFT that

sequentially works on all the input data and performs the computations in-place. Once the

every stage is done processing, the controller is informed which keeps track of the stages

and regulates the data flow.

2.4 COMPUTATIONAL QUANTIZATION

The FFT also takes a lot of processor clock cycles. A Radix-2 butterfly takes a 2 complex

additions and a complex multiplication and a Radix-4 butterfly takes 12 complex

additions and 3 complex multiplications.

In a real-time signal (high sampling rate), the rate of change of the amplitude of the data

is not going to be drastic most of the time. It might happen that the complex

multiplications and additions would be performed on almost constant data most of the

time. If this is taken into consideration, an experimental quantum value can be applied to

the FFT stages, depending on which the butterfly would be computed or not. So, if a set

of data is seen by the butterfly, it compares it with the previous value based on the

27

27

quantum and either calculates the output or just copies the previously stored output. This

would enable the saving of the processor clock cycles as the complex multiplication and

addition is not performed. However, the compromise is on the quality (which depends

upon the correctness of the output) and memory taken up by the data to be stored.

2.4 MEDIAN FILTER

The median filter helps in reducing the sudden surges in the amplitude of the signal that

might occur due to the quantization. It helps in reducing the noise in the output. If this

can be added as a analog filter, this would help in accomplishing the noise reduction,

reducing the overhead. [26], explains such an approach. The median filter performs

better than the mean filter, because the noise is not averaged, but eliminated most of the

times due to the sorting of the samples. A similar module was built and simulated in the

digital domain to test the working and experiment real-time data.

2.5 COMPLEX ARITHMETIC USING SIMD

This section shows the complex arithmetic using AMD’s 3DNow! SIMD instruction set.

The 3DNow! enhanced instruction set provides DSP instructions to effectively perform

fast DSP complex math.

A 3DNow!/MMX register is 64-bits wide and can store two packed single-precision

floating point numbers in a single register. This allows us to load a complex number with

28

28

its real and imaginary parts into a single register for computation. The following tables

show addition and multiplication using Enhanced 3DNow! instruction set.

MOVQ MM0, MMWORD PTR a

PFADD MM0, MMWORD PTR b

MOVQ MMWORD PTR a, MM0

Table 2.1 COMPLEX ADDITION USING 3DNow!

MOVQ MM0, MMWORD PTR a

PSWAPD MM1, MM0

PFMUL MM0, MMWORD PTR b

PFMUL MM1, MMWORD PTR b

PFPNACC MM0, MM1

MOVQ MMWORD PTR a, MM0

Table 2.2 COMPLEX MULTIPLICATION USING 3DNow!

If we do not consider the move instructions, a complex addition takes only 1 clock cycle

and a complex multiplication takes only 4 clock cycles. So, this is used for calculating the

time taken in the experiments.

29

29

3 FORMAL MODELS

This chapter shows the formalization of models used to build the system. The input ports,

output ports, states, internal and external transitions and outputs have been shown for all

the models that have been used.

3.1 BUTTERFLY

The butterfly model takes r complex numbers as input depending on the radix and

performs the computations as shown in chapter 2. This is the elementary unit used for

building up the stages of the FFT.

3.1.1 MODEL (ATOMIC)

Figure 3.1 Butterfly Model

3.1.2 PARAMETERS

N : The N-point Fast Fourier Transform where N denotes the block size

Quantum : The quantum for comparisons of inputs with stored inputs

BUTTERFLY

cmplxInA[]

uint16K

cmplxOutA[]

30

30

3.1.3 INPUT PORTS

X = { cmplxInA[], uint16InK }

cmplxInA[] is an array of Complex inputs. It is of size 2 when it is a Radix-2 butterfly of

size –4 if it is a Radix-4 butterfly and uint16K is an 16-bit unsigned integer input.

3.1.4 OUTPUT PORTS

Y = { cmplxOutA[] }

cmplxOutA is an array of complex outputs. It is of size 2 when it is a Radix-2 butterfly of

size –4 if it is a Radix-4 butterfly.

3.1.5 STATES

S = {passive (S0), calculate (S1)} х +

0R

There are only two states. The model always stays passive, unless there is an input on all

the three ports that transitions it to the “calculate” phase. The comparisons and

calculations are performed and the model passivates after comparison time or calculation

time, depending on whether the outputs are actually calculated.

31

31

3.1.6 EXTERNAL TRANSITION

δext(passive, ∞, cmplxInA[], uint16InK, e)

/* if (cmplxInA[] equals (prevCmplxInA[], quantum)) */

= (calculate, TIME_COMPARE)

/* else */

= (calculate, TIME_COMPARE + TIME_CALCULATE)

If the current set of inputs fall within the quantum of the previous set then the state if held

for the comparison time otherwise for the comparison and calculation time.

3.1.7 INTERNAL TRANSITION

δint(calculate) = (passive, ∞)

The model passivates whenever there is an internal transition.

3.1.8 OUTPUTS

λ(calculate, σ) = cmplxOutA[]

The calculation phase outputs the values before the model passivates in the internal

transition.

32

32

3.2 STAGE

A stage model couples to a butterfly model and takes care of the data flow. There is a

single butterfly model for every stage which is used by the stage to perform its

computations.

3.2.1 MODEL (ATOMIC)

Figure 3.2 Stage Model

3.2.2 PARAMETERS

N : The N-point Fast Fourier Transform where N denotes the block size

Id : The stage’s id (0 based index) in an array of stages

3.2.3 INPUT PORTS

X = { cmplxInA[0 : N-1], cmplxBflyInA, cmplxBflyInB, uint16DataOut }

STAGE

cmplxBflyInA

cmplxBflyInB

uint16K

cmplxBflyOutA

cmplxBflyOutB

cmplxInA[0]

cmplxInA[1]

cmplxInA[2]

cmplxInA[N-1]

.

.

.

.

.

.

cmplxOutA[0]

cmplxOutA[1]

cmplxOutA[2]

cmplxOutA[N-1]

uint16DataOut uint16DataRdy

33

33

cmplxInA[0 : N-1] are the Complex inputs on which the data for processing come in.

cmplxBflyInA and cmplxBflyInB are Complex inputs that are connected to the Butterfly

unit to accept the outputs of the butterfly.

uint16DataOut is a 16-bit unsigned integer input, on receiving which the processed data

is sent out.

3.2.4 OUTPUT PORTS

Y = { cmplxOutA[0 : N-1],cmplxBflyOutA,cmplxBflyOutB,uint16InK,uint16DataRdy }

cmplxOutA[0 : N-1] are the Complex outputs which send the processed data out.

cmplxBflyOutA and cmplxBflyOutB are complex outputs, that send the data out to the

Butterfly unit.

uint16InK and uint16DataRdy are 16-bit unsigned integer ports for sending the value of

“K” to the butterfly and signaling Data Ready to the Controller.

NOTE: There cmplxBflyOutA, cmplxBflyOutB and uint16K are removed in the revised

model.

3.2.5 STATES

S = {passive (S0), send(S1), dataOut(S2)} х +

0R

The model always stays passive, unless there is an input on all the Complex data input

ports that transitions it to the “send” phase. The “send” phase sends pairs of data to the

butterfly and passivates. The data on the butterfly input ports “send” phase and at the last

34

34

receive of data from butterfly signals uint16DataRdy. When uint16DataOut is received at

this point the data is sent out.

3.2.6 EXTERNAL TRANSITION

δext(passive, ∞, cmplxInA[0 : N – 1], e, state == 0)

= (send, 0)

δext(passive, ∞, cmplxBflyInA, cmplxBflyInB, e, state <= N/2)

= (send, 0)

δext(passive, ∞, uint16DataOut, e, state == N/2 + 1)

= (dataOut, 0)

3.2.7 INTERNAL TRANSITION

δint(send) = (passive, ∞)

δint(dataOut) = (passive, ∞)

The model passivates whenever there is an internal transition.

3.2.8 OUTPUTS

λ(send, σ) = cmplxBflyOutA, cmplxBflyOutB, uint16K

λ(dataOut, σ) = cmplxOutA[0 : N – 1]

35

35

3.3 STAGE MODULE

3.3.1 MODEL (DIGRAPH)

Figure 3.3 Stage Module

3.3.2 PARAMETERS

N : The N-point Fast Fourier Transform where N denotes the block size

Id : The stage’s id (0 based index) in an array of stages

Quantum : The quantum for comparisons of inputs with stored inputs

cmplxInA[0] STAGEMOD

cmplxInA[1]

cmplxInA[2]

cmplxInA[N-1]

.

.

.

.

.

.

cmplxOutA[0]

cmplxOutA[1]

cmplxOutA[2]

cmplxOutA[N-1]

uint16DataOut uint16DataRdy

Stage

Butterfly

36

36

3.3.3 INPUT PORTS

X = { cmplxInA[0 : N-1], uint16DataOut }

cmplxInA[0 : N-1] are the Complex inputs on which the data for processing come in. It is

coupled to the Stage Atomic Model.

uint16DataOut is a 16-bit unsigned integer input, on receiving which the processed data

is sent out. It is also coupled to the corresponding input port on the Stage Atomic Model.

3.3.4 OUTPUT PORTS

Y = { cmplxOutA[0 : N-1], uint16DataRdy }

cmplxOutA[0 : N-1] are the Complex outputs which send the processed data out.

uint16DataRdy is16-bit unsigned integer port for signaling Data Ready to the Controller.

37

37

3.4 QFFT MODULE

This model has logrN stages coupled together serially to form a pipelined transform. This

model accepts N inputs and works on the inputs to transform them to frequency domain.

The heart of this unit is the stages that are coupled together and are responsible for the

data processing.

3.4.1 MODEL (DIGRAPH)

Figure 3.4 QFFTMod Model

QFFTMOD

.

.

.

cmplxInA[0]

cmplxInA[1]

cmplxInA[2]

cmplxInA[N-1]

.

.

.

.

.

.

cmplxOutA[0]

cmplxOutA[1]

cmplxOutA[2]

cmplxOutA[N-1]

uint16DataRdy[log2N-1]

uint16DataOut[0]

.

.

.

uint16DataOut[1]

uint16DataOut[2]

uint16DataOut[log2N-1]

uint16DataRdy[0]

uint16DataRdy[1]

uint16DataRdy[2]

StageMod

StageMod

StageMod

38

38

3.4.2 PARAMTERS

N : The N-point Fast Fourier Transform where N denotes the block

size

Quantum : The quantum for comparisons of inputs with stored inputs

b_inverse_transform : This parameter is used to calculate progressive quantum for the

stages depending on Forward or Inverse transform.

s8_pq_type : This parameter denotes the progressive-quantization type.

3.4.3 INPUT PORTS

X = { cmplxInA[0 : N-1], uint16DataOut[0 : logRN-1] }

cmplxInA[0 : N-1] are the Complex inputs on which the data for processing come in. It is

coupled to the Stage Module.

uint16DataOut[0 : logRN-1] are 16-bit unsigned integer inputs, which are coupled to the

respective stage modules based on the id.

3.4.4 OUTPUT PORTS

Y = { cmplxOutA[0 : N-1], uint16DataRdy[0 : logRN-1] }

cmplxOutA[0 : N-1] are the Complex outputs which send the processed data out.

uint16DataRdy[0 : logRN-1] are 16-bit unsigned integer ports for signaling Data Ready to

the Controller and are coupled to the respective stage modules based on the id.

39

39

3. 5 SYSTEM CONTROLLER

System Controller controls the data flow between the stages. This system has a forward

transform and an inverse transform module. The controller keeps track of the status of

every stage and regulates them to send the data out and accepts an input from the stages

once they are ready for the next set for data.

3.5.1 MODEL (ATOMIC)

Figure 3.5 System Controller Model

3.5.2 PARAMETERS

N : The N-point Fast Fourier Transform where N denotes the block size

SYSTEM

CONTROLLER

.

.

.

uint16DataRdyFwd[0]

uint16DataRdyFwd[1]

uint16DataRdyFwd[2]

uint16DataRdyFwd[log2N - 1]

.

.

.

uint16DataRdyInv[0]

uint16DataRdyInv [1]

uint16DataRdyInv [2]

uint16DataRdyInv [log2N - 1]

uint16DataOutFwd

uint16DataOutInv

40

40

3.5.3 INPUT PORTS

X = { uint16DataRdyFwd[0 : log2N -1], uint16DataRdyInv[0 : log2N -1] }

uint16DataRdyFwd[0 : log2N -1] and uint16DataRdyInv[0 : log2N -1] are data ready

inputs from the forward and inverse transform modules respectively.

3.5.4 OUTPUT PORTS

Y = { uint16DataOutFwd, uint16DataOutInv }

uint16DataOutFwd, uint16DataOutInv are the dataOut signals to the forward and inverse

transform blocks.

3.5.5 STATES

S = {passive (S0), dataOut(S1) } х +

0R

The model always stays passive, and counts the inputs on the forward and inverse

transforms and after a simple logic to determine if all the stages are ready for next input,

it sends the dataOut signals on the respective ports.

3.5.6 EXTERNAL TRANSITION

δext(passive, ∞, uint16DataRdyFwd[0 : log2N -1], uint16DataRdyInv[0 : log2N -1], e)

= (passive, 0) /* if (!dataOut) */

δext(passive, ∞, uint16DataRdyFwd[0 : log2N -1], uint16DataRdyInv[0 : log2N -1], e)

= (dataOut, 0) /* if (dataOut) */

41

41

3.5.7 INTERNAL TRANSITION

δint(dataOut) = (passive, ∞)

The model passivates whenever there is an internal transition.

3.5.8 OUTPUTS

λ(dataOut, σ) = uint16DataRdyFwd, uint16DataRdyInv

42

42

3.6 SYSTEM

3.6.1 MODEL (DIGRAPH)

Figure 3.6 - System Model

SYSTEM

cmplxInA[0]

cmplxInA[1]

cmplxInA[2]

cmplxInA[N-1]

.

.

.

.

.

.

cmplxOutA[0]

cmplxOutA[1]

cmplxOutA[2]

cmplxOutA[N-1]

QFFTMod

QFFTMod

System Controller

43

43

3.6.2 PARAMETERS

N : The N-point Fast Fourier Transform where N denotes the block size

Quantum : The quantum for comparisons of inputs with stored inputs

3.6.3 INPUT PORTS

X = { cmplxInA[0 : N-1] }

cmplxInA[0 : N-1] are the Complex inputs on which the data for processing come in. It is

coupled to the QFFT Module.

3.6.4 OUTPUT PORTS

Y = { cmplxOutA[0 : N-1], uint16DataOutGenr}

cmplxOutA[0 : N-1] are the Complex outputs which send the processed data out.

uint16DataOutGenr is coupled to the System Controller’s uint16DataOutFwd. It can be

used as an input to the generator to signal the send of next set of data.

44

44

3.7 GENERATOR

3.7.1 MODEL (ATOMIC)

Figure 3.7 Generator Model

3.7.2 PARAMETERS

N : The N-point Fast Fourier Transform where N denotes the block size

3.7.3 INPUT PORTS

X = { cmplxInA[0 : N-1], uint16DataOut }

cmplxInA[0 : N-1] are the Complex inputs on which processed data is received.

uint16DataOut is a 16-bit unsigned integer input, on receiving which the next set of data

is sent out.

3.7.4 OUTPUT PORTS

Y = { cmplxOutA[0 : N-1]}

GENERATOR

cmplxInA[0]

cmplxInA[1]

cmplxInA[2]

cmplxInA[N-1]

.

.

.

.

.

.

cmplxOutA[0]

cmplxOutA[1]

cmplxOutA[2]

cmplxOutA[N-1]

uint8DataOut

45

45

cmplxOutA[0 : N-1] are the Complex outputs which send the data out.

3.7.5 STATES

S = {passive (S0), send(S1) } х +

0R

The model always stays passive, unless there is an input on all the Complex data input

ports that transitions it to the “send” phase. The “send” phase sends pairs of data to the

butterfly and passivates. The data on the butterfly input ports “send” phase and at the last

receive of data from butterfly signals uint16DataRdy. When uint16DataOut is received at

this point the data is sent out.

3.7.6 EXTERNAL TRANSITION

δext(passive, ∞, uint16DataOut, e) = (send, 0)

δext(passive, ∞, cmplxInA[0 : N – 1], e) = (passive, 0)

3.7.7 INTERNAL TRANSITION

δint(send) = (passive, ∞)

The model passivates whenever there is an internal transition.

3.7.8 OUTPUTS

λ(send, σ) = cmplxBflyOutA[0 : N – 1]

46

46

3.8 AUDIO PLAYER

3.8.1 MODEL (ATOMIC)

Figure 3.8 Audio Player Model

3.8.2 PARAMETERS

N : The N-point Fast Fourier Transform where N denotes the block size

3.8.3 INPUT PORTS

X = { RealData[0 : N-1], releaseBuffer }

RealData [0 : N-1] are the real inputs on which data to be output to the sound card is

received. The releaseBuffer port accepts the free buffer at the input port and adds it to the

buffer queue.

3.8.4 OUTPUT PORTS

Y = { queueBuffer}

AUDIO PLAYER

RealData[0]

RealData [1]

RealData [2]

RealData [N-1]

.

.

.

releaseBuffer

queueBuffer

47

47

“queueBuffer” port is used to send the prepared data to the sound card.

3.8.5 STATES

S = {passive (S0), play(S1) } х +

0R

The model stays passive, unless there are inputs on all the real data input ports that

transitions it to the “play” phase. When the buffer to be freed is received at the

releaseBuffer port, the model continues in the same state with an elapsed time, where-in

the freed buffer is enqueued in the buffer queue.

3.8.6 EXTERNAL TRANSITION

δext(passive, ∞, RealData[0 : N – 1], e) = (play, 0)

δext(phase, σ, releaseBuffer, e) = (phase, σ – e, queue.Enqueue(releaseBuffer))

 where phase = passive or play

When the model is passive and there is data in the input ports, it prepares the data for

output and transitions to the “play” phase where a buffer is dequeued from the buffer

queue. When there is an input in the releaseBuffer port, the model continues in the same

phase and the released buffer is enqueued onto the buffer queue.

3.8.7 INTERNAL TRANSITION

δint(play, σ, queue) = (passive, ∞, queue.Dequeue())

The model passivates whenever there is an internal transition after dequeuing a buffer

from the buffer queue.

48

48

3.8.8 OUTPUTS

λ(play, σ, queue) = queue.Front

3.9 SPECTRUM ANALYZER

3.9.1 MODEL (ATOMIC)

Figure 3.9 Spectrum Analyzer Model

3.9.2 PARAMETERS

N : The N-point Fast Fourier Transform where N denotes the block size

3.9.3 INPUT PORTS

X = { cmplxInA[0 : N-1] }

cmplxInA[0 : N-1] are the Complex inputs on which the frequency data is received.

3.8.4 OUTPUT PORTS

Y = { queueBuffer}

SPECTRUM ANALYZER

cmplxA[0]

cmplxA [1]

cmplxA [2]

cmplxA [N-1]

.

.

.

releaseBuffer

queueBuffer

49

49

“queueBuffer” port is used to send the prepared data to the display.

3.9.5 STATES

S = { passive (S0), display(S1) } х +

0R

The model always passive, unless there are inputs on all the data input ports that

transitions it to the “display” phase. When the buffer to be freed is received at the

releaseBuffer port, the model continues in the same state with an elapsed time, where-in

the freed buffer is enqueued in the buffer queue.

3.9.6 EXTERNAL TRANSITION

δext(passive, ∞, RealData[0 : N – 1], e) = (display, 0)

δext(phase, σ, releaseBuffer, e) = (phase, σ – e, queue.Enqueue(releaseBuffer))

 where phase = passive or display

When the model is passive and there is data in the input ports, it prepares the data for

output and transitions to the “display” phase where a buffer is dequeued from the buffer

queue. When there is an input in the releaseBuffer port, the model continues in the same

phase and the released buffer is enqueued onto the buffer queue.

3.9.7 INTERNAL TRANSITION

δint(display, σ, queue) = (passive, ∞, queue.Dequeue())

The model passivates whenever there is an internal transition after dequeuing a buffer

from the buffer queue.

50

50

3.9.8 OUTPUTS

λ(display, σ, queue) = queue.Front

3.10 MEDIAN FILTER

3.10.1 MODEL (ATOMIC)

Figure 3.10 Median Filter Model

3.10.2 PARAMETERS

N : The N-point Fast Fourier Transform where N denotes the block size

3.10.3 INPUT PORTS

X = { IRealData[0 : N-1] }

RealData [0 : N-1] are the real inputs on which the data is received.

MEDIAN FILER

RealData[0]

RealData [1]

RealData [2]

RealData [N-1]

.

.

.
.

.

.

RealData[0]

RealData[1]

RealData[N - 1]

RealData[2]

51

51

3.10.4 OUTPUT PORTS

Y = { ORealData[0 : N-1] }

RealData [0 : N-1] are the real median filtered outputs.

3.10.5 STATES

S = {passive (S0), filter(S1) } х +

0R

The model always stays passive, unless there are inputs on all the data input ports that

transitions it to the “filter” phase. The “filter” filters the data as per the median filter

algorithm and passivates.

3.10.6 EXTERNAL TRANSITION

δext(passive, ∞, IRealData[0 : N – 1], e) = (filter, 0)

3.10.7 INTERNAL TRANSITION

δint(filter) = (passive, ∞)

The model passivates whenever there is an internal transition.

3.10.8 OUTPUTS

λ(filter, σ) = ORealData[0 : N-1]

52

52

3.11 BLOCK DIAGRAM OF THE SYSTEM

Figure 3.11 SIMVIEW CAPTURE OF SYSTEM

Figure 3.11 shows the simulated system screen captured from simView. It is the same

system as intended (shown in Figure 1.2). The various components shown are the models

that have been designed in the previous sections of this chapter.

53

53

4 IMPLEMENTATION

4.1 PERFORMANCE

One of the most essential criterions for design is to achieve a performance level when the

implementation is done. Few of the design issues and constraints and performance

enhancements are discussed below.

4.1.1 CIRCULAR ZERO COPY SHARED BUFFERS

There is a lot of data transfer involved between the different models in the simulation.

Copying the data and allocating memory dynamically on the heap (scalable models),

would consume a lot of time in this high data rate application. To achieve better

performance, the data is put on a circular buffer that would also move along the different

stages of the pipeline. There is no data copying involved right from the generator, where

it comes from. The generator can retrieve/refill its buffers in similar circular fashion.

4.1.2 LOOK UP TABLES

Few of the models that would need the same set of data (for example : twiddle factors)

can be put in LUTs. This is make the retrieval time for these values as O(1), which

otherwise would prove very costly for the math involved. Bit-reversal (for Radix - 2) and

Digit-Reversal (for Radix – 4) are similar ones that require LUTs for efficient

implementation.

54

54

4.1.3 NUMBER OF PORTS

The number of ports in the model seems to affect the performance, since the simulator-

coordinator has to look-up the ports and route the events/data. So, the N-ports for data

were replaced by 1-port that can carry all the data. This enhanced the performance

considerably for simulations.

4.2 ACTUATORS

The audio player model and spectrum analyzer model are the models that fall out of

conventions. The audio player needs interaction with the sound card driver, to share its

buffers and retrieve its buffers from the sound card. The spectrum analyzer on the other

hand needs to interact with a display thread that would display the data onto the screen as

spectrum bars. These situations demanded the usage the following models.

4.2.1 DISCRETE EVENT MODEL WITH CALLBACK EVENTS

Callback events are required for the situation mentioned above. Buffer management

between sound card driver and audio player model is handled through a callback function

that would be called when the driver finishes up using the buffer. This event would then

get a mutually exclusive access to mark the buffers as free to be used by the model. A

typical setup of the model is shown below:

55

55

This model is coupled to the sound card and interacts with it through the sound card

driver. The sound data buffers are received through the data port at an external transition

and are queued for playing. These buffers are consumed by the sound card and returned

through callback event. The callback event releases the buffers between external

transitions and the next external transition retrieves these buffers for preparing the next

set of data.

4.2.2 DISCRETE EVENT MODELS WITH SELF-TIMED EVENTS

The Spectrum Analyzer model needs to display the data in sync with the player. So, a

dedicated thread of the model, self-times itself to display the data in its buffers after

periodic intervals of time. Typically, the sleep time of the thread would be (N/ (sampling

rate)) – (display calculation time).

Audio Player

Sound Driver

Data

releaseBuf

queueBuf

Spectrum Analyzer

Display Driver

Data

releaseBuf

queueBuf

56

56

The model prepares the display buffers during the external transition when the raw data is

received. The prepared buffers are queued for playing. A display thread coordinated by

the model is responsible for displaying the queued buffers at periodic intervals by

interacting with the display card driver using GDI (Graphics Device Interface). The

buffers are freed once they are consumed and are retrieved at the next external transition.

4.3 SCALABILITY AND REUSABILITY

This is handled by the very concept of object-oriented modeling and simulations. But

configuration options have been added at places where they were required.

57

57

5 STATE CHARTS AND SEQUENCE DIAGRAMS

5.1 SYSTEM SEQUENCE

Figure 5.1 System Sequence Diagram

58

58

Figure 5.1 shows the sequence diagram of the system and the interaction between the

different objects and the simulation sequence.

5.2 BUTTERFLY STATE CHART

Figure 5.2 Butterfly State Chart

The above figure shows the state chart of a FFT Butterfly. It is either a Radix - 2

Butterfly or Radix – 4 butterfly based on the simulation settings. The butterfly either

59

59

calculates the output in-place or copies the previous output depending on whether the

current inputs fall within the stage’s quantum or not.

5.3 PLAYER STATE CHART

Figure 5.3 Player State Chart

60

60

Figure 5.3 shows the state chart of an Audio Player object. Whenever there is an input, it

is copied and queued for playing. If there are not enough buffers, an intermediary stage

tries to retrieve the buffers. There is also a parallel state, which on a callback event from

the sound driver, marks the returned buffer as free and ready for refill.

5.4 MEDIAN FILTER STATE CHART

Figure 5.4 Median Filter State Chart

61

61

A median filter gets the input and adds it to the input queue and moves the head pointer

of the circular queue by one. Then it serially sorts the input data by using binary search to

insert the data into an already sorted array. The median of these values is the projected

output for the serial input.

5.5 SPECTRUM ANALYZER STATE CHART

Figure 5.5 Spectrum Analyzer State Chart

62

62

The spectrum analyzer states are shown in Figure 5.5. The model, when it gets an input,

copies it onto the display buffer. When there are not enough buffers available, wait states

are introduced to retrieve the buffers. Now the data is queued for display. There is

another parallel state which causes self-critically timed events to display. The time gap

for the event is the block size/sample rate + the time taken for display. This causes the

display to be synchronized with the audio player’s output.

5.6 STAGE STATE CHART

Figure 5.6 Stage State Chart

63

63

A stage model, typically calculates its butterflies sequentially over the set of input data

and stays passive until there is next input. It outputs the data when the controller signals

data-out event in the corresponding port.

5.7 CONTROLLER STATE CHART

Figure 5.7 Controller State Chart

64

64

A controller is system-specific. For this system with a forward transform and an inverse

transform module, the controller keeps track of which stages are ready to output and

signals the events correspondingly.

5.8 GENERATOR STATE CHART

Figure 5.8 Generator State Chart

The generator inputs data to the system and gets processed data from the system. It uses

the Au Encoder/Decoder module to Encode/Decode Au Formatted data.

65

65

6 EXPERIMENTS

6.1 WORKING

The experiments in the following sub-sections test the working of the models. So, a

forward transform and inverse transform on a data has to produce the same output as the

input.

6.1.1 Radix – 2 Forward Transform and Inverse Transform – 1024

point

INPUT OUTPUT

Figure 6.1 Radix – 2 Forward Transform and Inverse Transform – 1024 point

The output signal is same as the input signal (Figure 6.1). This confirms the working of

the Radix – 2 FFT and the associated models.

Sample # → Sample # →

A
m

p
li

tu
d

e
→

A
m

p
li

tu
d

e
→

66

66

6.1.2 Radix – 4 Forward Transform and Inverse Transform – 1024

point

INPUT OUTPUT

Figure 6.2 Radix – 4 Forward Transform and Inverse Transform – 1024 point

The output signal is same as the input signal (Figure 6.2). This confirms the working of

the Radix – 4 FFT and the associated models.

A
m

p
li

tu
d

e
→

A
m

p
li

tu
d

e
→

Sample # → Sample # →

67

67

6.2 N-POINT TRANSFORMS (PIPELINED vs. NON-

PIPELINED)

This experiment tests the N-point transforms for different values of N and the

corresponding time taken. The time taken is based on the values from the section 2.5.

6.2.1 RADIX – 2

DATA
SIZE

N-POINT TIME TAKEN
(DFT)

TIME TAKEN
(CLOCK CYCLES)

(PIPELINED)

TIME TAKEN
(CLOCK CYCLES)
(NON-PIPELINED)

4194304 4 79691776 12582924 25165824
4194304 8 163577856 12582960 37748784
4194304 16 331350016 12583056 50331888
4194304 32 666894336 12583296 62915424
4194304 64 1337982976 12583872 75500160
4194304 128 2680160256 12585216 88088064
4194304 256 5364514816 12588288 100684032
4194304 512 10733223936 12595200 113299968
4194304 1024 21470642176 12610560 125964288
4194304 2048 42945478656 12644352 138743808
4194304 4096 85895151616 12718080 151793664
4194304 8192 171794497536 12877824 165470208
4194304 16384 343593189376 13221888 180584448
4194304 32768 687190573056 13959168 198967296

TABLE 6.1 N-POINT TRANSFORMS (PIPELINED vs. NON-PIPELINED)

68

68

Figure 6.3 N-POINT TRANSFORMS (PIPELINED vs. NON-PIPELINED)

Table 6.1 and Figure 6.3 shows the speed-up of pipelined implementation over the non-

pipelined implementation for Radix – 4 FFT. There are log2N stages in a pipelined

implementation whereas there is only one stage in a non-pipelined implementation. So,

the speedup observed should be

Time taken for pipelined implementation TP = Time taken for non-pipelined

implementation(TNP)/log2N.

But, there is a zero quantum comparison that takes place, i.e. if the input is same as the

previous input the calculations will not be performed, but the previously stored output

values are copied. So,

TP*log2N >= TNP

 From Table 6.1, this can be verified. All the observed values hold to the equation.

N-POINT transform →

T
im

e
T

a
k

en
 (

cl
k

)
→

69

69

6.2.2 RADIX – 4

DATA
SIZE

N-POINT TIME
TAKEN
(DFT)

TIME TAKEN
(CLOCK CYCLES)

(PIPELINED)

TIME TAKEN
(CLOCK CYCLES)
(NON-PIPELINED)

4194304 16 331350016 25165920 50331648
4194304 64 1337982976 25166592 75498240
4194304 256 5364514816 25170432 100670976
4194304 1024 21470642176 25190400 125884416
4194304 4096 85895151616 25288704 151339008
4194304 16384 343593189376 25755648 178126848

TABLE 6.2 N-POINT TRANSFORMS (PIPELINED vs. NON-PIPELINED)

Figure 6.4 N-POINT TRANSFORMS (PIPELINED vs. NON-PIPELINED)

Table 6.2 and Figure 6.4 shows the speed-up of pipelined implementation over the non-

pipelined implementation for Radix – 4 FFT. There are log4N stages in a pipelined

implementation whereas there is only one stage in a non-pipelined implementation.

Following the similar derivation as in section 6.2.1,

TP*log4N >= TNP

N-POINT transform →

T
im

e
T

a
k

en
 (

cl
k

)
→

70

70

 From Table 6.2, this can be verified. All the observed values hold to the equation.

6.2.3 RADIX – 2 vs RADIX – 4

DATA
SIZE

N-
POINT

RADIX – 2
TIME
TAKEN
(PIPELINED)

RADIX – 2
TIME TAKEN
(NON-
PIPELINED)

RADIX – 4
TIME
TAKEN
(PIPELINED)

RADIX –4
TIME
TAKEN
(NON-
PIPELINED)

4194304 16 12583056 50331888 25165920 50331648
4194304 64 12583872 75500160 25166592 75498240
4194304 256 12588288 100684032 25170432 100670976
4194304 1024 12610560 125964288 25190400 125884416
4194304 4096 12718080 151793664 25288704 151339008
4194304 16384 13221888 180584448 25755648 178126848

TABLE 6.3 N-POINT TRANSFORMS (PIPELINED vs. NON-PIPELINED)

Figure 6.5 (RADIX – 2 vs RADIX - 4) (PIPELINED vs. NON-PIPELINED)

Figure 6.5 shows that the Radix – 2 and Radix – 4 non – pipelined implementation takes

the same amount of time. This is because, there are 2 complex additions and one complex

multiplication in a Radix – 2 butterfly and there are 12 complex additions and 3 complex

N-POINT transform →

T
im

e
T

a
k

en
 (

cl
k

)
→

71

71

multiplications in a Radix – 4 butterfly and the values chosen for the time taken sum up

to equally. There are log2N processing stages in Radix – 2 and there are log4N processing

stages in Radix – 4. So, Radix – 2 performs fasters in this experiment as shown in the

figure.

6.3 COMPUTATIONAL QUANTIZATION

The following sub-sections show the effects of computational quantization when applied

to different sets of data in the Radix – 2 as well as Radix – 4. The Mean Square Error is

also shown between the output signal (out of forward and inverse transform) and the

input signal.

6.3.1 RADIX – 2

6.3.1.1 INPUT Sine wave f = 100 Hz, fs = 6000Hz

In this experiment same quantum is applied for all the stages of the forward and inverse

transform. The quantum value is tabulated in the “Quantum” column.

N-POINT Quantum Time Taken (Clock

Cycles)
ΣΣΣΣ((((Ds – Dsq)

2
/(N)

1024 0 3186176 0
1024 0.05 2290376 0.156932
1024 0.1 2185766 0.17657
1024 0.15 2108726 0.484297
1024 0.2 2069534 0.240643
1024 0.25 2090432 0.239156
1024 0.3 1980278 0.204524
1024 0.35 1947398 0.131614
1024 0.4 1872668 0.158622
1024 0.45 1822946 0.161584

TABLE 6.4 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME

QUANTUM

72

72

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 0.1 0.2 0.3 0.4 0.5

Figure 6.6 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME

QUANTUM

Figure 6.6 shows the speed improvement graph with time on y-axis and quantum on x-

axis.

6.3.1.2 INPUT Sine wave f = 100 Hz, fs = 22050Hz

This is another experiment of the same type with a higher sample rate.

N-POINT Quantum Time Taken (clock

cycles)
ΣΣΣΣDs – Dsq)

2
/(N)

1024 0 3186176 0
1024 0.05 2245934 0.158939
1024 0.1 2143814 0.274074
1024 0.15 2072570 0.368139
1024 0.2 1996046 0.311567
1024 0.25 2018618 0.363661
1024 0.3 1975952 0.326492
1024 0.35 1975592 0.345531
1024 0.4 1932302 0.30662
1024 0.45 1891154 0.31129

Quantum →

T
im

e
T

a
k

en
 (

cl
k

)
→

73

73

TABLE 6.5 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME

QUANTUM

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 0.1 0.2 0.3 0.4 0.5

Figure 6.7 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME

QUANTUM

6.3.1.3 INPUT Sine wave f = 100 Hz, fs = 44100Hz

This is another experiment of the same type with a higher sample rate.

N-POINT Quantum Time Taken (clock

cycles)
ΣΣΣΣDs – Dsq)

2
/(N)

1024 0 3186176 0
1024 0.05 2139362 0.212919
1024 0.1 1975628 0.261253
1024 0.15 2020676 0.274961
1024 0.2 1960538 0.251832
1024 0.25 1937594 0.205307
1024 0.3 1906676 0.220355
1024 0.35 1892708 0.215292
1024 0.4 1866182 0.263561
1024 0.45 1835672 0.310884

TABLE 6.6 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME

QUANTUM

Quantum →

T
im

e
T

a
k

en
 (

cl
k

)
→

74

74

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 0.1 0.2 0.3 0.4 0.5

Figure 6.7 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME

QUANTUM

6.3.1.4 INPUT Sine wave f = 5000 Hz, fs = 22050Hz

N-POINT Quantum Time Taken (clock

cycles)
ΣΣΣΣDs – Dsq)

2
/(N)

1024 0 3186176 0
1024 0.05 2342726 0.025257
1024 0.1 2379674 0.038308
1024 0.15 2415728 0.057775
1024 0.2 2409938 0.104773
1024 0.25 2400668 0.14315
1024 0.3 2390288 0.186954
1024 0.35 2378300 0.243059
1024 0.4 2367110 0.311485
1024 0.45 2401376 0.399582
1024 0.5 2393114 0.437922

TABLE 6.7 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME

QUANTUM

Quantum →

T
im

e
T

a
k

en
 (

cl
k

)
→

75

75

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 6.8 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME

QUANTUM

6.3.1.5 INPUT Sine wave f = 5000 Hz, fs = 44100Hz

N-POINT Quantum Time Taken (clock

cycles)
ΣΣΣΣDs – Dsq)

2
/(N)

1024 0 3186176 0
1024 0.05 2409158 0.016258
1024 0.1 2385026 0.058052
1024 0.15 2381552 0.226532
1024 0.2 2320274 0.348745
1024 0.25 2312840 0.467876
1024 0.3 2285078 0.4867
1024 0.35 2267582 0.488488
1024 0.4 2252426 0.431518
1024 0.45 2187902 0.331102

TABLE 6.8 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME

QUANTUM

Quantum →

T
im

e
T

a
k

en
 (

cl
k

)
→

76

76

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 6.9 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME

QUANTUM

6.3.1.6 INPUT Sine wave f = 16000 Hz, fs = 44100Hz

N-POINT Quantum Time Taken (clock

cycles)
ΣΣΣΣDs – Dsq)

2
/(N)

1024 0 3186176 0
1024 0.05 2363168 0.019887
1024 0.1 2328554 0.036828
1024 0.15 2306576 0.051304
1024 0.2 2291534 0.058094
1024 0.25 2279636 0.063437
1024 0.3 2281280 0.068193
1024 0.35 2310722 0.064777
1024 0.4 2332568 0.082279
1024 0.45 2329244 0.104613
1024 0.5 2327588 0.125317

TABLE 6.9 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME

QUANTUM

Quantum →

T
im

e
T

a
k

en
 (

cl
k

)
→

77

77

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 6.10 SPEED IMPROVEMENT – RADIX – 2 – SINE INPUT – SAME

QUANTUM

6.3.1.7 MUSIC SIGNAL fs = 11025 Hz

The following experiment is conducted with a music signal whose spectrum is shown in

the figure below. The maximum frequency in the input signal is limited to 5000Hz after

passing it through a Low Pass Filter.

INPUT – TIME INPUT – FREQUENCY (fs = 11050)

Figure 6.11 MUSIC SIGNAL

A
m

p
li

tu
d

e
→

d
B

 →

Sample # → frequency →

Quantum →

T
im

e
T

a
k

en
 (

cl
k

)
→

78

78

N-POINT Quantum Time Taken (clock

cycles)
ΣΣΣΣDs – Dsq)

2
/(N)

1024 0 9565696 0
1024 0.05 7680826 0.000661
1024 0.1 6716368 0.002599
1024 0.15 5612686 0.004885
1024 0.2 4793194 0.007438
1024 0.25 3929146 0.009523
1024 0.3 3355060 0.014715
1024 0.35 2920420 0.015464
1024 0.4 2276710 0.014773
1024 0.45 2130496 0.015426
1024 0.5 2024986 0.020765

TABLE 6.10 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – SAME

QUANTUM

0

2000000

4000000

6000000

8000000

10000000

12000000

0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 6.12 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – SAME

QUANTUM

Quantum →

T
im

e
T

a
k

en
 (

cl
k

)
→

79

79

6.3.1.8 MUSIC SIGNAL fs = 22050 Hz

The following experiment is conducted with a music signal whose spectrum is shown in

the figure below. The maximum frequency in the input signal is limited to 10000Hz after

passing it through a Low Pass Filter.

N-POINT Quantum Time Taken (clock

cycles)
ΣΣΣΣDs – Dsq)

2
/(N)

1024 0 18023936 0
1024 0.05 14331332 0.000842
1024 0.1 12034358 0.002959
1024 0.15 10022600 0.005347
1024 0.2 7941032 0.007916
1024 0.25 6623210 0.011146
1024 0.3 5596778 0.012665
1024 0.35 5163182 0.013522
1024 0.4 4451984 0.017959
1024 0.45 4146056 0.01849
1024 0.5 3510176 0.013889

TABLE 6.11 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – SAME

QUANTUM

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

20000000

0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 6.13 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – SAME

QUANTUM

Quantum →

T
im

e
T

a
k

en
 (

cl
k

)
→

80

80

6.3.1.9 MUSIC SIGNAL fs = 44100Hz

The following experiment is conducted with a music signal whose spectrum is shown in

the figure below. The maximum frequency in the input signal is limited to 20000Hz after

passing it through a Low Pass Filter.

N-POINT Quantum Time Taken (clock

cycles)
ΣΣΣΣDs – Dsq)

2
/(N)

1024 0 35728896 0
1024 0.05 27809478 0.001322
1024 0.1 22979556 0.003733
1024 0.15 18048522 0.005643
1024 0.2 14112540 0.008289
1024 0.25 12136536 0.010167
1024 0.3 10431780 0.01261
1024 0.35 9358932 0.014871
1024 0.4 8680242 0.022046
1024 0.45 7784202 0.024811
1024 0.5 7028190 0.022555

TABLE 6.12 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – SAME

QUANTUM

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 6.14 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT – SAME

QUANTUM

Quantum →

T
im

e
T

a
k

en
 (

cl
k

)
→

81

81

6.3.1.10 MUSIC SIGNAL fs = 11025Hz

The following experiment is conducted with a progressive quantization scheme where the

quantum varies as Quantum[i] = (q *log2N)/(i + 1)

N-POINT Quantum Time Taken (clock

cycles)
ΣΣΣΣDs – Dsq)

2
/(N)

1024 0 9565696 0
1024 0.005 8744014 0.000002
1024 0.01 8517760 0.000015
1024 0.015 8280820 0.000048
1024 0.02 8079052 0.000108
1024 0.025 7882684 0.000193
1024 0.03 7685512 0.000302
1024 0.035 7462780 0.000437
1024 0.04 7327378 0.000603
1024 0.045 7174150 0.000782
1024 0 9565696 0

TABLE 6.13 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT –

PROGRESSIVE QUANTUM

0

2000000

4000000

6000000

8000000

10000000

12000000

0 0.01 0.02 0.03 0.04 0.05

Figure 6.15 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT –

PROGRESSIVE QUANTUM

Quantum →

T
im

e
T

a
k

en
 (

cl
k

)
→

82

82

6.3.1.11 MUSIC SIGNAL fs = 22050Hz

N-POINT Quantum Time Taken (clock

cycles)
ΣΣΣΣ(Ds – Dsq)

2
/(N)

1024 0 18023936 0
1024 0.005 16869896 0.000003
1024 0.01 16279688 0.000023
1024 0.015 15733088 0.000072
1024 0.02 15229154 0.000153
1024 0.025 14800058 0.000267
1024 0.03 14323640 0.000416
1024 0.035 13863350 0.000598
1024 0.04 13511174 0.000817
1024 0.045 13210040 0.00101

TABLE 6.14 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT –

PROGRESSIVE QUANTUM

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

20000000

0 0.01 0.02 0.03 0.04 0.05

Figure 6.16 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT –

PROGRESSIVE QUANTUM

Quantum →

T
im

e
T

a
k

en
 (

cl
k

)
→

83

83

6.3.1.12 MUSIC SIGNAL fs = 44100Hz

N-POINT Quantum Time Taken (clock

cycles)
ΣΣΣΣDs – Dsq)

2
/(N)

1024 0 35728896 0
1024 0.005 33324222 0.000006
1024 0.01 31727166 0.000044
1024 0.015 30439896 0.000129
1024 0.02 29318196 0.000271
1024 0.025 28364682 0.000457
1024 0.03 27470478 0.000689
1024 0.035 26652288 0.000958
1024 0.04 25849494 0.001225
1024 0.045 25112094 0.001501
1024 0 35728896 0

TABLE 6.15 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT –

PROGRESSIVE QUANTUM

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

0 0.01 0.02 0.03 0.04 0.05

Figure 6.17 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT –

PROGRESSIVE QUANTUM

Quantum →

T
im

e
T

a
k

en
 (

cl
k

)
→

84

84

6.3.1.13 MUSIC SIGNAL fs = 44100Hz

The following experiment shows the real-time speed improvement observed while

running the simulations. Experiment 6.3.1.12 is repeated to obtain the real-time execution

speed.

N-POINT Quantum Time Taken

(seconds)
ΣΣΣΣ((((Ds – Dsq)

2
/(N)

1024 0 1.559313 0
1024 0.005 1.558073 0.000006
1024 0.01 1.462919 0.000044
1024 0.015 1.428628 0.000129
1024 0.02 1.39524 0.000271
1024 0.025 1.370745 0.000457
1024 0.03 1.347872 0.000689
1024 0.035 1.31875 0.000958
1024 0.04 1.297712 0.001225
1024 0.045 1.282039 0.001501

TABLE 6.16 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT –

PROGRESSIVE QUANTUM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.01 0.02 0.03 0.04 0.05

Figure 6.18 SPEED IMPROVEMENT – RADIX – 2 – MUSIC INPUT –

PROGRESSIVE QUANTUM

Quantum →

T
im

e
T

a
k

en
 (

cl
k

)
→

85

85

6.3.2 RADIX – 4

The following experiments are conducted with Radix – 4 FFT for different values of

computational quantization.

6.3.2.1 MUSIC INPUT fs = 44100Hz

In the following experiment, same quantum has been applied to all the stages of the

transform.

N-POINT Quantum Time Taken (clock

cycles)
ΣΣΣΣDs – Dsq)

2
/(N)

1024 0 31577600 0
1024 0.05 25901072 0.000888
1024 0.1 22484772 0.002932
1024 0.15 18829248 0.005883
1024 0.2 15412843 0.00753
1024 0.25 13589773 0.008654
1024 0.3 11624130 0.011853
1024 0.35 11052455 0.012841
1024 0.4 10209779 0.014848
1024 0.45 10061919 0.026239

TABLE 6.17 SPEED IMPROVEMENT – RADIX – 4 – MUSIC INPUT – SAME

QUANTUM

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

0 0.1 0.2 0.3 0.4 0.5

Figure 6.19 SPEED IMPROVEMENT – RADIX – 4 – MUSIC INPUT – SAME

QUANTUM

Quantum →

T
im

e
T

a
k

en
 (

cl
k

)
→

86

86

6.3.2.2 MUSIC INPUT fs = 44100Hz

In the following experiment, progressive quantum has been applied to the stages of the

transform.

N-POINT Quantum Time Taken (clock

cycles)
ΣΣΣΣ(Ds – Dsq)

2
/(N)

1024 0 31577600 0
1024 0.005 30508428 0.000003
1024 0.01 29414420 0.000021
1024 0.015 28460188 0.000067
1024 0.02 27675681 0.000139
1024 0.025 26994645 0.000246
1024 0.03 26350972 0.000382
1024 0.035 25776725 0.000527
1024 0.04 25259840 0.000726
1024 0.045 24711914 0.000902

TABLE 6.18 SPEED IMPROVEMENT – RADIX – 4 – MUSIC INPUT –

PROGRESSIVE QUANTUM

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

0 0.01 0.02 0.03 0.04 0.05

Figure 6.20 SPEED IMPROVEMENT – RADIX – 4 – MUSIC INPUT –

PROGRESSIVE QUANTUM

Quantum →

T
im

e
T

a
k

en
 (

cl
k

)
→

87

87

6.3.3 MEAN SQUARE ERROR VARIATION WITH N

The following experiment is conducted to observe the errors for different values of N. So,

a particular quantum is kept constant and N is varied for the observation.

N-POINT Quantum ΣΣΣΣ(Ds – Dsq)
2
/(N)

256 0.02 0.000467
512 0.02 0.000385

1024 0.02 0.000271
2048 0.02 0.000182
4096 0.02 0.000124

TABLE 6.18 MEAN SQUARE ERROR VARIATION WITH N

N decides the block size of the transform. For a Radix – 2 transform there are log2N

stages. For example, if a block size of 1024 is taken, there are 10 stages in the transform.

For a block size of 2048 stages there are 11 stages in the transform. So, the error

introduced by processing a bigger block size would be lesser because, the data undergoes

a less number of passes. For a data size of 2048, a 1024 point transform has to do 20

passes, whereas a 2048 point transform does only 11 passes.

88

88

7 ANALYSIS

Experiments were conducted on various waveforms and different experiment setup and

some of them have been shown above. The models work correctly and the simulations

are fast & real-time and provide a solid framework for DSP modeling and simulation

using Discrete Events. The Spectrum Analyzer model and Audio Player model are a great

addition to the package which allow viewing the spectrum and hearing the output real-

time during the simulation.

7.1 PIPELINING

The time taken for calculating the Radix – 2 FFT of a block is

TNP = (N/2)*log2N*(2*TIME_ADDITION + 1*TIME_MULTIPLICATION)

With zero quantum applied, the outputs are not computed if the current inputs are same as

the previous inputs. So,

TNP = (N/2)*log2N* (2*TIME_ADDITION + 1*TIME_MULTIPLICATION) +

(N/2)*log2N *TIME_COMPARE + NC2EQ *TIME_COMPARE –

NCEQ*(2*TIME_ADDITION + 1*TIME_MULTIPLICATION)]

where NC2EQ is the Number of comparisons for the second input in the butterfly

89

89

NC2EQ <= (N/2)*log2N

where NCEQ is the Number of comparisons that results in current input being equal to the

previous input.

NCEQ <= NC2EQ

(there are a maximum of NC2EQ butterflies that are not computed)

So, if TC is taken as calculation time and TCMP is taken as comparison time,

TNP = TC [(N/2)*log2N - NCEQ] + TCMP[(N/2)*log2N - NC2EQ]

For pipelined implementation, the time taken is

TP >= TNP/log2N

Because, all the stages wait to output till the stage which takes the longest time finishes

processing. It is observed that all the values from Table 6.1 conform to these equations.

The same holds true for the Radix – 4 case where there are N/4 butterflies and log4N

stages. Observations from Table 6.2 conforms to the equations modified for the Radix –

4.

In the Radix- 2 case there are log2N execution units and in Radix- 4 case there are log4N

execution units. So, for the same block sizes, Radix – 2 would perform faster than Radix

– 4 using the values from section 2.5.

90

90

7.2 COMPUTATIONAL QUANTIZATION

Computational quantization reduces the time taken for the quality trade-off. The Mean

Square Error column tabulates the corresponding quality trade-offs with the speed

improvement.

The observed speed improvements for the music signal from the tables are given below:

RADIX /

QUANTUM

TYPE

Fs QUANTUM TIME TAKEN (% =

ratio of rime taken for

the quantum to zero

quantum)

MSE

2 – SAME 11025 0.2 50.11 0.007438

2 – SAME 22050 0.2 44.06 0.007916

2 – SAME 44100 0.2 39.50 0.008289

2 – PROG 11025 0.02 84.46 0.000108

2 – PROG 22050 0.02 84.49 0.000153

2 – PROG 44100 0.02 82.06 0.000271

4 – SAME 44100 0.2 48.81 0.00753

4 – PROG 44100 0.02 87.64 0.000139

TABLE 7.1 TIME TAKEN FOR VARIOUS QUANTUMS

91

91

Using same quantum for all the stages of the transform produces better speed-up but the

error is higher. Using progressive quantization reduces the Mean Square Error (MSE),

but the time taken for the calculation is higher.

Increasing the sampling rate of the input signal, reduces the time taken for the

computation, but correspondingly the error introduced is also higher. This is the same for

same quantization or progressive quantization and also Radix – 2 and Radix – 4.

Radix – 4, for the same quantum and quantization type as Radix – 2, produces lesser

speed-up and lesser error. This is because the number of comparisons also increase in

Radix – 4.

The time taken for the computation is derived in Section 2.5. It shows that complex

multiplication takes 4 clock cycles and complex addition and subtraction in 1 clock cycle

each. The speed-up due to the computational quantization is analogous to saving power

on systems that take up a lot of power performing floating point operations.

The following figures show the music input in time and frequency for various quantum:

Quantum

(Progressive)

Input(Time) Input(Frequency)

0

A
m

p
li

tu
d

e
→

d
B

 →

Sample # → frequency →

92

92

0.005

0.02

A
m

p
li

tu
d

e
→

A

m
p

li
tu

d
e
→

d
B

 →

d
B

 →

Sample # →

Sample # →

frequency →

frequency →

93

93

8 CONCLUSION AND FUTURE WORK

DEVS serves as a good framework for modeling and simulating the system as software or

hardware. In this thesis, we have shown that Discrete Event Simulation provides a solid

framework for design and analysis of DSP based systems. Models for FFT (Butterfly,

Stages, Controller and Quantizer) have been built for Radix – 2 and Radix – 4 transforms

for Decimation in Frequency and Decimation Time Transforms. Audio Player, Spectrum

Analyzer, Audio Generator (with Au format Decoder/Encoder) are the other models that

have been built for the system. Models built using DEVS are fast, scalable, reusable and

configurable. They allow real-time simulations of high sampling rate systems as shown in

the thesis. The models built are of immense use for hierarchical systems based on them.

Various experiments were performed on the system and analyzed as shown in chapter 6

and chapter 7. Quantization when applied during the computation of FFT reduces the

time taken for the computation. Table 7.1 shows the time taken for different quantization

types and quantums. A quantum of 0.02 takes only 82% of the time taken for 0 quantum

with a MSE of 0.000271 at a sampling rate of 44100 Hz. Noise due to quantization starts

getting audible at this level.

Systems can be built in hardware where quantizers can be embedded with processing

elements. In this case, even if a zero quantum is applied to the processing elements, the

successive values, if equal, in case of constant amplitude signals, would benefit a lot from

such a design. The future work is vast and promising. Quantizers can be built at

hardware level and software systems can use them.

94

94

9 REFERENCES

1. James W. Cooley and John W. Tukey, “An algorithm for the machine calculation of

complex Fourier series”, Math. Comput. 19, 297–301 (1965).

2. Bernard P. Zeigler, “Discrete Event Abstraction: An Emerging Paradigm For

Modeling Complex Adaptive Systems”, to appear in “Adaptation and Evolution”

(Festschrift for John H.Holland) to be published by Santa Fe Institute, Oxford Press,

England.

3. Bernard P. Zeigler, “Object Oriented Simulation with Hierarchical, Modular Models:

Selected Chapters Updated for DEVS-C++”, (1995) Originally published by Academic

Press, 1990.

4. James J. Nutaro, “Adevs: User manual and API documentation”.

5. Bernard P. Zeigler, “DEVS Today: Recent Advances in Discrete Event-Based

Information Technology”.

6. P. Duhamel and M. Vetterli, “Fast Fourier transforms: a tutorial review and a state of

the art” Signal Processing 19, 259–299 (1990).

7. John G. Proakis and Dimitris Manolakis, “Digital Signal Processing: Principles,

Algorithms and Applications (3rd Edition)”.

8. A. V. Oppenheim and R. W. Schafer, “Discrete-Time Signal Processing”.

9. Wan-Teh Chang, Soonhoi Ha, Edward A. Lee, “Heterogeneous Simulation—Mixing

Discrete-Event Models with Dataflow”, Journal of VLSI Signal Processing 15, 127–144

(1997).

95

95

10. Duhamel, P. & Vetterli M. “Fast Fourier Transforms: A Tutorial Review and a State

of the Art,” Digital Signal Processing Handbook Ed. Vijay K. Madisetti and Douglas B.

Williams Boca Raton: CRC Press LLC, 1999.

11. “AMD Athlon™ Processor x86 Code Optimization Guide”, Publication No. 22007

Revision K Date February 2002.

12. “AMD Extensions to the 3DNow! and MMX Instruction Sets Manual”.

13. Lothar Thiele�, “Discrete Event Systems - Introduction - Computer Engineering and

Networks Laboratory”, Swiss Federal Institute of Technology (ETH) Zurich.

14. I.S.Uzun and A.Amira A.Bouridane, “FPGA Implementations of Fast Fourier

Transforms for Real-Time Signal and Image Processing”, Field-Programmable

Technology (FPT), 2003. Proceedings. 2003 IEEE International Conference on 15-17

Dec. 2003, p 102- 109.

15. Shousheng He and Mats Torkelson, “A new approach to pipeline FFT processor”,

IPPS 1996.

16. Kofman, E. (2002), “Discrete Event Simulation of Hybrid Systems”, Technical

Report LSD0205, LSD, Universidad Nacional de Rosario. To appear in SIAM Journal on

Scientific Computing.

17. Zarka Cvetanovic, “Performance analysis of the FFT-algorithm on a sharedmemory

parallel architecture”, IBM Journal of Research and Development(1987).

18. Chao-Kai Chang; Chung-Ping Hung; Sau-Gee Chen, “An efficient memory-based

FFT architecture, Circuits and Systems”, 2003. ISCAS '03. Proceedings of the 2003

International Symposium on Page(s): II-133- II-136 vol.2.

96

96

19. J.H. Son, B.S. Jo, B.G. Sunwoo, M.H. Oh, S.K. , “A continuous flow mixed-

radix FFT architecture with an in-place algorithm”, Circuits and Systems, 2003. ISCAS

'03. Proceedings of the 2003 International Symposium on 25-28 May 2003 p II-133- II-

136 vol.2.

20. Thomas Lenart and Viktor Öwall, “A Pipelined FFT Processor using Data Scaling

with Reduced Memory Requirements”, In Proc. NORCHIP, 2002.

21. Joo, T.H.; Oppenheim, A.V., “Effects of FFT coefficient quantization on sinusoidal

signal detection”, Acoustics, Speech, and Signal Processing, 1988. ICASSP-88., 1988

International Conference on , 11-14 April 1988 Pages:1818 - 1821 vol.3.

22. Sukhsawas, S.; Benkrid, K., “A high-level implementation of a high performance

pipeline FFT on Virtex-E FPGAs”, VLSI, 2004. Proceedings. IEEE Computer society

Annual Symposium on , 19-20 Feb. 2004 Pages:229 – 232.

23. Agarwal, R.C.; Gustavson, F.G.; Zubair, M., “A high performance parallel algorithm

for 1-D FFT”, Supercomputing '94. Proceedings , 14-18 Nov. 1994 Pages:34 – 40.

24. D'Abreu, M.C.; Wainer, G.A., “Models for continuous and hybrid system simulation,

Simulation Conference”, 2003. Proceedings of the 2003 Winter , Volume: 1 , 7-10 Dec.

2003 Pages:641 - 649 Vol.1.

97

97

APPENDIX A CLASS DIAGRAMS

A.1 AU DECODER/ENCODER

Figure A.1 – AU Decoder/Encoder Class Diagram

98

98

A.2 AUDIO PLAYER

Figure – A.2 Audio Player Class Diagram – 1

99

99

Figure – A.3 Audio Player Class Diagram – 2

100

100

A.3 BUTTERFLY

Figure – A.4 Butterfly

101

101

A.4 GENERATOR

Figure – A.5 Generator Class Diagram – 1

102

102

Figure – A.6 Generator Class Diagram – 2

103

103

A.5 MEDIAN FILTER

Figure – A.7 Median Filter Class Diagram

104

104

A.6 MODULE

Figure – A.8 Module Class Diagram

105

105

A.7 SIMULATOR

Figure – A.9 Simulator Class Diagram

106

106

A.8 SPECTRUM ANALYZER

Figure – A.10 Spectrum Analyzer Class Diagram – 1

107

107

Figure – A.11 Spectrum Analyzer Class Diagram – 2

108

108

A.9 STAGE

Figure – A.12 Stage Class Diagram – 1

109

109

Figure – A.13 Stage Class Diagram – 2

110

110

A.10 SYSTEM

Figure – A.14 System Class Diagram

111

111

A.11 SYSTEM CONTROLLER

Figure – A.14 System Controller Class Diagram

112

112

APPENDIX B SIMULATION ENVIRONMENT

The ADEVS package and QFFT package were compiled on

1. Microsoft Visual Studio.NET 2003

a. ADEVS as a library

b. QFFT as a console application

c. For the experiments both the projects were configured for release mode

with Global Optimization, Full Optimization, Default Floating Point

consistency, CPU for P4 and above and SSE2 code optimization.

The test machines were:

1. AMD Athlon XP 2800+/ 512MB RAM/ 64 MB ATI Radeon IGP.

2. Intel Pentium 4 2.8 GHz with HyperThreading/ 512 MB RAM / 128 MB ATI

Radeon 9200.

113

113

APPENDIX C SIMD SUPPORT FOR SIMULATION

The following explains SIMD support for the simulation using AMD’s 3DNow!

instruction set and its extensions for DSP. Figure 2.2 shows a basic butterfly unit for

Radix – 2 Decimation in Frequency FFT and Figure 2.4 shoes a basic butterfly for Radix

– 2 Decimation in Time FFT. The complex mathematics involved for the operation can

be simplified very much by using the SIMD instruction set and the DSP extensions. The

instructions that simplify the calculation are:

INSTRUCTION EXPLANATION

PSWAPD Swaps upper and lower halves of the source operand

PFADD Performs packed floating-point, single-precision addition

PFSUB Performs packed floating-point, single-precision subtraction

PFMUL Performs packed floating-point, single-precision Multiplication

PFPNACC Performs packed floating-point, single-precision positive-negative

accumulation

The following tables show the code for the butterflies and getting the magnitude of the

complex number.

114

114

MOV eax, DWORD PTR [lpcmplxA]

MOV ebx, DWORD PTR [lpcmplxB]

MOVQ MM0, [eax + 8]

MOVQ MM1, MM0

PFADD MM0, [ebx + 8]

PFSUB MM1, [ebx + 8]

PSWAPD MM2, MM1

PFMUL MM1, MMWORD PTR t

PFMUL MM2, MMWORD PTR t

PFPNACC MM1, MM2

MOVQ [eax + 8], MM0

MOVQ [ebx + 8], MM1

FEMMS

Table C.1 Radix-2 DIF Butterfly in AMD’s 3DNow! Instruction set

115

115

MOV eax, DWORD PTR [lpcmplxA]

MOV ebx, DWORD PTR [lpcmplxB]

MOVQ MM0, [ebx + 8]

PSWAPD MM1, MM0

PFMUL MM0, MMWORD PTR t

PFMUL MM1, MMWORD PTR t

PFPNACC MM0, MM1

MOVQ MM1, MM0

MOVQ MM2, [eax + 8]

PFADD MM0, MM2

PFSUB MM2, MM1

MOVQ [eax + 8], MM0

MOVQ [ebx + 8], MM2

FEMMS

Table C.2 Radix-2 DIT Butterfly in AMD’s 3DNow! Instruction set

116

116

MOV eax, DWORD PTR value

MOVQ MM0, MMWORD PTR [eax]

PFMUL MM0, MM0

PFACC MM0, MM0

PFRSQRT MM1, MM0

PFRCP MM0, MM1

MOV eax, DWORD PTR magnitude

MOVQ MMWORD PTR [eax], MM0

FEMMS

Table C.3 Magnitude of a Complex Number using AMD’s 3DNow! Instruction Set

