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Abstract—This paper focuses on the handover performance
enhancement of high-speed railway (HSR) 5G millimeter
wave(mmWave) networks. As starting the handover at different
time may yield very different performances, we propose a Long
Short Term Memory (LSTM)-based prediction method to find a
proper handover point in advance to alleviate the high handover
delay and link interruption-prone problems of traditional A3
handover method. By learning the historical trend of Reference
Signal Receiving Power (RSRP) and predicting the future changes
of RSRP based on the LSTM encoder-decoder network, the
proposed LSTM-based prediction method is able to enhance the
handover performance of HSR 5G networks. Simulation results
show that compared with traditional A3 method, our proposed
LSTM-based prediction method reduces the probability of link
interruption, improve the stability of the quality of service (QoS)
during the handover process.

Index Terms—High-speed rail, Millimeter wave, LSTM, Han-
dover, 5G

I. INTRODUCTION

In the HSR 5G mmWave networks, to guarantee continuous
and uninterrupted train ground communications, the handover
has to be fulfilled when high-speed trains go through the
overlap region of two adjacent cells. However, with the incre-
ment of the moving speed of high-speed train, handover will
become more frequent. Therefore, how to enhance handover
performance is an urgent problem to be solved.

To enhance handover performance, some studies employed
optimization of existing handover judgment conditions. In [1],
a method was proposed to dynamically adjust the handover
control parameters in heterogeneous networks (HetNet) with
dense micro-areas, so that the time-to-trigger (TTT) and
handover margin (HOM) can be adjusted according to the
handover effect under different environments and speeds, thus
the wireless link failure probability and ping-pong probability
were minimized. In [2], a location-based handover method was
proposed for LTE networks in high-speed mobile scenarios,
supporting mobile scenarios of up to 500km/h. In [3], an
adaptive handover method based on random suppression was
proposed, by establishing the elliptic function relationship
between the hysteresis threshold and the train speed, introduc-
ing a normally distributed random variate to suppress reverse
handover, which maintained a low ping-pong handover rate
and a high handover success rate.

With the increase of machine computing power, machine
learning and neural network techniques are widely applied in

various domains. Many scholars have started to employ related
techniques to solve the problem of high-speed handover. In
[4], a machine learning-based handover method for HSR was
proposed to reduce the RSRP gap between the original base
station (BS) and the target BS and also help reduce the
probability of wireless link failure, by initiating the handover
earlier at the cell boundary. In [5], an adaptive optimization
method based on the Q-Learning algorithm was proposed
to achieve real-time estimation of the handover parameters
of the LTE-R system, and a performance situation map for
handover parameters for different speeds was established to
improving handover performance. In [6], a time-difference-
based reinforcement learning method was proposed to set
up an agent that can interact with the environment, and a
parameter adaptive handover mechanism for 5G in High-
speed Rail Communication (HSRC) was established to find the
optimal handover parameters by approximation functions to
improve the handover performance and network performance.

However, although all aforementioned existing works are
able to enhance the handover performance to some extent,
in 5G HSR mmWave networks, due to the small coverage
area and high propagation loss of mmWave BSs, the existing
methods may be inefficient when they are applied to the
scenarios with mmWave.

To fill the gap, this paper studies handover performance en-
hancement in HSR 5G mmWave networks, leverages mmWave
characteristics and present a LSTM-based prediction method
to find the optimal handover point to enhance handover
performance. The contributions are summarized as follows

• To facilitate prediction with LSTM, we convert the RSRP
signal variation trend into a time-series signal based on
the characteristics of the cell distribution of the high-
speed rail 5G network.

• To enhance handover performance, we propose a LSTM-
based prediction method, in which, the LSTM encoder-
decoder model is employed to study historical RSRP
data and predict the RSRP data in the future, the one-
dimensional search algorithm is employed to find the
optimal handover point.

• Simulation results show that the proposed LSTM-based
prediction method, compared with the traditional A3 one,
can reduce the probability of link interruption, improve
the stability of the QoS during the handover process.
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II. SYSTEM MODEL

The system model of considered HSR 5G mmWave net-
works is shown in Fig. 1, where a number of Distribution Units
(DU) are erected along both sides of the railroad, and each
DU is connected to a set of BSs with horizontal spacing L. In
the high-speed train, users communicate with an BS through
an on-board Access Point (AP) and then access the internet.
Because communication between users and APs is usually
more stable, maintaining the communication quality between
BSs and APs is essential for ensuring QoS for users. When
the train travels through the coverage of two neighboring BSs,
event A3 is triggered as the RSRP of the neighboring coverage
is stronger than the current coverage by an offset and maintains
TTT. Then, on-board APs connect to the BS with a stronger
RSRP, which is named handover. If handover occurs between
two BSs that belong to the same DU, it is called an Intra-
gNB-DU handover, otherwise it is called an Inter-gNB-DU
handover.

In the considered HSR 5G mmWave networks, signal trans-
mission from BSs to the train is subject to fading by various
influences. In this paper, both large-scale fading and small-
scale fading are considered, including path loss, shadow effect
and Rician fading.

A. Path Loss

Path loss is caused by the propagation characteristics of the
channel and the diffusion of the transmitted power, which is
a kind of large-scale fading and can represent the variation of
the received power over a large area. This paper considers the
calculation of the path loss of mmWaves based on the channel
model proposed by 3GPP for the 0.5-100 GHz band. So, The
path loss PLRMa−LOS at the distance of d3D from the BS can
be expressed by

PLRMa−LOS =

{
PL1 10 m ≤ d3D ≤ dBP

PL2 dBP ≤ d3D ≤ 10 km,

where PL1 can be calculated by

PL1 = (1)

20 log10

(
40πd3Dfc

3

)
+min

(
0.03h1.72, 10

)
log10 (d3D)

−min
(
0.044h1.72, 14.77

)
+ 0.002 log10(h)d3D,

and PL2 can be calculated by

PL2 = PL1 (dBP) + 40 log10

(
d3D
dBP

)
. (2)

In the above equations (1) and (2), h is the average height of
the building, dBP is break point distance that can be expressed
by

dBP =
2πhBShUTfc

c
, (3)

where fc is a center frequency normalized to 1 GHz, c is
the propagation speed in free space with a value of 3.0 ×
108 m/s, hBS and hUT are the antenna heights at the BS

and users, respectively. In addition, the standard deviation of
shadow fading σSF = 4 when PLRMa−LOS is taken as PL1

and σSF = 6 when PLRMa−LOS is taken as PL2.

B. Shadow Effect

Inevitably, a small number of trees and other objects along
both sides of the HSR track produces a degree of obscuration
of the mmWave signal transmission path, creating the shadow
effect and causing power fading. The shadow effect obeys a
log-normal distribution. Let the ratio of transmit power and
receive power be ψ = Pt/Pr, and its density function can be
expressed by

p(ψ) =
ξ√

2πσψdB
ψ
exp

[
− (10 log10 ψ − µψdB

)
2

2σ2
ψdB

]
, ψ > 0

(4)
where ξ = 10/ln10, ψdB = 10log10ψ. µψdB

is the mean of
ψdB and σψdB

is the standard deviation of ψdB.

C. Rician fading

The mmWave signal is mainly propagated by Line of
Sight (LoS) direct transmission which means that the direct
path is the main component, in accordance with the Rician
distribution.The probability distribution function (PDF) of the
signal amplitude is

fp(ρ) =

(1 +K)e−K
ρ

p̄
exp

(
−1 +K

2p̄
ρ2
)
I0

(√
2K(1 +K)

p̄
ρ

)
,

(5)
where local average power p̄ = A2/2 + σ2, Rician factor
K = A2/2σ2, A is main signal amplitude peak and σ2 is
local average scattered power.

According to equation (5), PDF of signal power can be
expressed by

fp(p) =

(1 +K)e−K

p̄
exp

(
−1 +K

p̄
p

)
I0

(√
4K(1 +K)p

p̄

)
.

(6)

III. THE LSTM-BASED PREDICTION METHOD FOR
HANDOVER

A. Data Preparation And Processing

Given the specific HSR track, the overall RSRP trend for
trains is similar to the historical trend. So, in order to adapt
the LSTM-based model to a specific HSR track, the RSRP
information from the train’s previous period can be used as
model input to predict the trend of RSRP in the future period.
When the train is running, the RSRP measurement information
of the BSs around the train is shown as Fig. 4(a). There
are multiple constantly changing data sources, if they are
employed as model input without being processed, the amount
of data and complexity of training will increase significantly,
so it must be simplified. Given that the handover only involves
two BSs, this paper focuses on the RSRP change of the two
BSs closest to the train. As shown in Fig. 2, when the train
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Fig. 1. HSR networks system model.

passes through railroad section di−1, only the RSRP changes
of BSi−1 and BSi need to be considered. Conversely, BSi
only needs to be considered on railroad sections di−1 and di.

Fig. 2. Distribution of RSRP data source.

Fig. 3. An illustration of interception and splicing of raw RSRP data of BS.

The process of intercepting and splicing the raw RSRP data
of the BS is shown in Fig. 3. Point A to point F indicates the
times when the train travels to the nearest point of the railroad
to the 5 BSs. The train starts from point A and travels to point
F. Assuming the range radius of the on-board AP to obtain the

(a) Raw RSRP data.

(b) Simplified RSRP data.

Fig. 4. Comparison of RSRP data before and after simplifying.

change in RSRP of the BS is 2 times the BS spacing, at each
point, RSRP changes can be measured for up to 5 BSs. The
RSRP change of the BSs on the railroad side can be obtained
by splicing the data in blue, which is set as RSRP1. And by
splicing the data in green, the RSRP change of the BSs on the
another side can be obtained, which is set as RSRP2.

Fig. 4 visualizes the raw and simplified RSRP data.The blue
and orange lines in Fig. 4(b) represent the trends of RSRP1

and RSRP2, respectively. Compared with the complicated and
redundant raw RSRP data, the simplified RSRP data clearly
and intuitively represents the RSRP changes received from
the BSs. In addition, there are multiple intersection points in
RSRP1 and RSRP2, and at each intersection point, if the
handover condition is satisfied, a handover occurs. Therefore,
after simplifying, multiple different data sources are integrated
into two abstract data sources, and the problem of choosing the
timing of handover between multiple BSs is transformed into
the problem of predicting the trends of RSRP1 and RSRP2
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and finding their intersection times, respectively.

B. The LSTM-based Predictive Handover Method

For sequence-to-sequence prediction of RSRP data trends,
an LSTM-based encoder-decoder model is built. Fig. 5 por-
trays its structure, which is made up of two LSTMs. The first
LSTM processes an input sequence and generates an encoded
state which condenses the data in the input sequence and then
the encoded state is used by the second LSTM to generate an
output sequence. In addition, the propose method employs the
mix teacher forcing method to accelerate model convergence
and improve training effect. We sometimes give the LSTM
decoder the true value as the next moment’s input, just like a
teacher, and other times we give it the predicted value. Each
epoch of model training, the amount of teacher forcing is
gradually reduced. At the start of training, mix teacher forcing
can assist the model in learning the structure of the data, but
it gradually transitions it to making predictions on its own.

Fig. 5. The structure of LSTM encoder-decoder.

The sequence data should be windowed and divided into a
series of shorter sequence data by strides in order to train the
model, each of which includes no sequences of target values
and ni sequences of input values. The windowing process is
visualized in Fig. 6. Beginning with the first y value, ni values
are gathered as input values, and the following no values are
used as target values. The window then slides to the second y
value as the stride is 1 and continues to do so until the window
can no longer slide. Suppose that after windowing, a amount
of nw sequence data are obtained. Then both of matrix X with
the shape (ni, nw) composed of the input values and matrix
Y with the shape (no, nw) composed of the target values are
fed into LSTM encoder-decoder model for training.

Fig. 6. Windowing of sequence data.

The data processing flow of the proposed method is shown
in Fig. 7. First, the raw RSRP data is simplified to obtain
RSRP1 and RSRP2, then they are windowed separately and

the LSTM encoder-decoder model is trained independently.
After that, we input the RSRP changes in the previous period
to predict the short-term RSRP changes in the future. Finally,
we search for the best handover point by one-dimensional
search.

Fig. 7. Data processing flow of the proposed method.

One-dimensional search algorithm for handover points is
summarized in Algorithm 1. The algorithm takes the prediction
sequence of the LSTM-based predictive handover method as
input and can find the best handover point from a global, a
priori perspective via the one-dimensional search algorithm,
effectively alleviating the handover delay problem of the A3
algorithm.

IV. NUMERICAL SIMULATIONS

We simulate a HSR 5G mmWave network with 100 BSs
and 57km of railroad, where the train travels at a constant
speed of 300km/h and measures the RSRP of the surrounding
BSs every 0.2s. The simulation parameters are summarized in
table.I.

We first observe the change of loss value versus epoch,
shown as Fig. 8. The proposed method is able to converge
to near zero with about 15 epochs. Fig. 9 visualizes the
comparison of the predicted results of the proposed method
with the real target results. The red line indicates the predicted
value and the blue line indicates the target value. It can be seen
that the predicted value is basically the same as the target
value.

Fig. 10 visualizes the location of the handover points of
the proposed method and the A3 handover method, where the
blue vertical line indicates the handover point of the proposed
method and the red vertical line indicates the handover point
of the A3 handover method. It can be seen that the handover
point of the proposed method is earlier than that of the con-
ventional A3 handover method and is closer to the intersection
of RSRP1 and RSRP2, which indicates that the proposed
method can effectively alleviate the handover delay caused by
the offset and TTT conditions in A3 handover. In addition,
the difference between RSRP1 and RSRP2 before and after
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Algorithm 1: One-dimensional Search Algorithm For
Handover Points
Input: RSRP prediction arrays r1,r2 and threshold t;
Output: Set of handover points Sh;

1 if r1[0] > r2[0] then
2 strong, weak ← r1, r2;
3 else
4 strong, weak ← r2, r1;
5 end
6 while i < len(r1) do
7 if weak[i] > strong[i] then
8 counter = 0;
9 for i← 1 to t+ 1 do

10 if weak[index+ i] ≤ strong[index+ 1]
then

11 index← index+ counter;
12 break;
13 else
14 counter ← counter + 1;
15 end
16 end
17 if counter == t then
18 Put index into set Sh;
19 strong, weak ← weak, strong;
20 r1, r2 ← r2, r1;
21 index← index+ t− 1;
22 end
23 end
24 index← index+ 1;
25 end

TABLE I
SIMULATION PARAMETER SETTING

Parameter Meaning Value
f mmWave signal frequency 30GHZ

µψdB
The mean of ψdB 0

σψdB
The standard deviation of ψdB 4

p BS transmit power 46dbm
d0 Distance between BS and railroad 5-25m
L Horizontal spacing of neighboring BSs 576m
v Train speed 300km/h
t RSRP measurement interval 200ms

handover is closer to the proposed method, which indirectly
reflects that the proposed method has more stable received
power and better handover effect.

Fig. 11 compares the link interruption probability of the two
methods with the link interruption threshold. From the figure,
it can be seen that the link interruption probability of the
proposed method is always lower than that of the A3 handover.
With the increase of the link interruption threshold, the link
interruption probabilities of both methods keep increasing, and
the proposed method increases at a lower rate than the A3
handover. Simulation result shows that the proposed method
has a 21.1% lower link interruption probability than the A3
handover, which indicates that the proposed method has more

Fig. 8. Change of loss versus epoch.

Fig. 9. Prediction result.

stable performance and can better guarantee the service quality
of users.

In addition, we tested and compared the two methods in
terms of more metrics, including the handover delay, the av-
erage received power, and the difference between the average
received power before and after the handover. The three are
employed to evaluate the handover efficiency, the average QoS,
and the stability of the QoS during the handover process,
respectively.

Fig. 12 compares the handover delay of the two methods,
from which we can conclude that compared to A3 handover
method, the proposed LSTM-based prediction method is able
to reduce the handover delay by 33.9%, and each handover
is 837.5ms earlier on average, which effectively alleviates the
handover delay, provides more time for handover preparation,
and makes the triggered handover more timely.

Fig. 13 compares the average received power of the two
handover methods. From the figure, it can be seen that the
average received power of the proposed method increases

Fig. 10. Comparison of handover points between the proposed and A3
handover method.
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Fig. 11. The influence of link interruption threshold on link interruption
probability of two methods.

Fig. 12. Comparison of handover delay.

by 0.5dBm compared to the A3 handover method, which
indicates that the proposed method is able to improve the
overall QoS.

Fig. 13. Comparison of average received power.

Fig. 14 compares the received power difference before and
after handover for the two methods. It can be seen that the
proposed method reduces the average difference of received
power before and after handover by 85.14% and the average
received power difference by 5.9dBm, which indicates that the
proposed method can make the difference between received
power before and after handover smaller and enhance the
stability of the service during the handover process.

Fig. 14. Comparison of average received power difference.

V. CONCLUSION

This paper studied the handover performance enhancement
in the HSR 5G mmWave networks. Leveraging the character-
istics of the networks, we proposed a LSTM-base prediction
method. The simulation results show that compared with
traditional A3 method, the proposed LSTM-base prediction
method can reduce the probability of link interruption by
33.9 percent and the difference in received power before
and after handover by 85.14 percent, increase the average
received power by 0.5dBm, and effectively enhance handover
performance.
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