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ABSTRACT
A framework combining DEVSJava simulation engine and MAT-

LAB is developed to implement a network of cognitive radios while
using the real hardware among simulated modems. The process
starts with one node and uses simulation in different stages of
the development as a test and measurement tool. Based on the
progressive simulation based design and development, we start from
simulation and substitute the models with real modules step by step
to build a full functional modem. Afterwards, to develop the network
of the cognitive radio modems, we deploy the available real modems
with simulated primary and secondary users in a central simulation.
To simulate the effect of the primary users on real modems, an
arbitrary signal generator is used to emulate the transmitted signal
of licensed users on the channel. Using this method, we are able
to develop our cognitive network while we do not have enough
hardware. One real node is integrated in our simulation which
performers channel sensing and data transmission. When this node
detects the presence of a primary user on its current working carrier,
it moves to an unoccupied carrier.

1. INTRODUCTION

Systematic design and implementation of modern systems
goes trough several steps. Engineers often start with ini-
tial formulations and simulation of their design; then build
several prototypes before the actual system is finalized.
While modeling and simulation has been widely deployed
in design of communication systems, the transition from
simulation to development is considered to be a big gap.
Facing discrepancies between simulation model and real
system is a common problem. In addition, in applications
such as Software Define Radio (SDR) where the complicated
signal processing algorithms are involved, having powerful
visualization tools as well as debugging techniques can
greatly reduce the development time and related costs; this
could explain why more engineers are using tools such as
Simulink and Realtime Workshop for fast prototyping [1].

Furthermore, most of the software and hardware compo-
nents of our system can be implemented independently. As
a result, we have used simulation not only as a test and
measurement technique in the development but also as an
environment that real (implemented) and simulated (yet to
be implemented) components work together. In the course
of implementation, we gradually move from simulation to a
system in which only real components exist. The process of
bringing hardware into the simulation while satisfying real-
time constraints is often called “Hardware in the Loop” (HIL)
simulation [2]. In essence, the intermediate stage of HIL sim-
ulation makes it possible to add conventional simulation and

real system experiment to form an incremental simulation-
based design process. HIL simulation has also many other
advantages such as reducing the complexity of the system
and at the same time expediting the implementation phase by
parallelizing the development of different components even
if some modules are not ready. During this text, we use the
terms co-simulation and HIL simulation interchangeably.

HIL simulation has been used in variety of applications in-
cluding embedded systems [3], avionics [4] and robotics [5],
[6]. However it is an engineering decision to which extent
simulation should be applied and interweaved with the real
components. One may apply the HIL simulation of a detailed
version of transceiver consisting all modules. This resolution
in modeling results in a higher level of confidence due
to more accurate measurements of a real system inside
the simulation. On the other hand, implementing a whole
network comprising tens or hundreds of nodes in this way is
not practical. When using HIL for network simulation, it is
easier for the host - the machine that runs the simulator- to
simulate a complete transceiver instead of individual internal
modules inside the transceiver. Therefore, there is always a
trade-off between the amount of simulation and hardware
implementation in system design using HIL technology, when
we are testing or developing an algorithm on a network of
wireless nodes.

Simulink and Realtime Workshop are used in conjunction
with different hardware platforms to develop embedded sys-
tems such as SDR. Simulink includes variety of blocksets
that simplify the design process of SDR to a large extent.
A developer in Simulink can also take advantage of the
powerful MATLAB libraries for signal processing and com-
munication algorithms. Realtime Workshop is designed for
rapid prototyping and testing new algorithms. However, if we
need to develop an optimized code for a particular DSP or
GPP, considering limited resources, Realtime Workshop does
not perform as well, unless many of the available general
modules would be rewritten for the target machine, which
is time consuming. To elaborate, since Realtime Workshop
should conform to the state-flow of Simulink, it is able to
generate code for various applications on different hardware
platforms, but the generated code often needs extra memory
and processing power. The optimization burden is thus put
on the compiler only. In the realtime embedded system
design era, the functionality of a module is defined not
only by the outcome but also the memory and realtime
requirements. Consecutively, it might not be a good option



to use Realtime Workshop for developing a complete radio
with high processing and memory demand, while it boosts
the productivity of developing individual algorithms.

Moreover, while Simulink and MATLAB are powerful
tools for designing communications and signal processing
systems, they are not suitable for network simulation and
implementation. For network simulation, other tools such
as OPNET [7] are used. For cognitive radio network HIL
simulation, we use open source DEVSJava [8] platform
together with MATLAB programming and Lyrtech libraries
to design a SDR Development test-bed which can be used for
development of a single wireless node as well as a network
of cognitive radio modems.

In the first part of the paper, we run HIL simulation to
implement a single transceiver. A complete transceiver is first
simulated in MATLAB, then individual and combined signal
processing and communications algorithms are substituted by
those running on the board. To include the functionalities of
Simulink in our system, we also combine MATLAB with
DEVSJava, and test some parts of the radio in DEVSJava.

After the initial modem is implemented (as one secondary
user), a higher level HIL network simulation with primary
(PU) and more secondary users (SU) is performed to co-
simulate a network of cognitive SUs. At first, a complete
simulation of a cognitive radio system with SUs and PUs
is developed in DEVSJava. The central simulation engine
keeps track of the activities of channel assignments for
SUs and PUs. Secondary Base (SB) station receives the
sensing information from all SUs and compiles channel state
information. In our system, we have distributed sensing in
order to avoid hidden node problem as much as possible.
A vector signal generator emulates the traffic of PUs and
simulated SUs on the real channel. During the course of HIL
simulation, we have replaced one, and are going to replace
more, of the simulated SUs with the real cognitive radios in
order to test the whole system. In our setup, the real nodes
use filterbanks to detect the presence of the PUs [9], [10] and
send their sensing information to the SB which is simulated
in the host. In this way, we are able to develop our network
while some hardware parts are missing.

2. DISCRETE EVENT SYSTEM SPECIFICATION (DEVS)
MODELING

Simulation can be used as the feedback of the testing
phase during system development. Building large and com-
plex systems often requires defining intermediate goals, with
conditions that should be satisfied before moving to the
successive stages.

Modeling and Simulation starts with modeling the real sys-
tem and builds simulators upon them. The event based nature
of the radio network makes Discrete Event System Specifica-
tion (DEVS) a suitable environment with enough power and
more efficiency than time based modeling. Availability of

the DEVSJava [8] package (written in Java as a portable lan-
guage with many features including easy concurrency) made
DEVSJava the prime choice for starting point. DEVSJava
is used in many simulation problems before, including the
simulation of Robot Convoy with behaviors [11]. DEVS is a
theoretical modeling which can describe modular systems in
hierarchial manner. Based on the formal definition of DEVS,
it is able to model both time based and event based systems.
In addition, other popular modeling techniques such as Petri
nets, Finite State Machines and Timed automata have DEVS
equivalents. The structure of a model may be expressed in
a mathematical language called formalism. This formalism
defines the way variables take values and the time these
values should take effect [12].

The basic elements in DEVS formalism are atomic and
coupled models [12]. The atomic model ( Fig. 1) has internal
states (S) which change by internal (δint) and external (δext)
transition functions. These transitions may produce output
(λ). To describe the atomic model, suppose the system is in
the state s ∈ S. If no external event happens, the system
will remain in the same state for ta(s) (resting time). The
elapsed time is e. When the resting time expires (e = ta(s)),
the system outputs λ(s) and changes to the new state δint(s)
(this transition is called an internal event). In the following
figure, X and Y are incoming and generated external events
respectively.

Fig. 1. DEVS atomic model in action

Coupled models consist of more than one atomic model.
Generated events by one model can be fed to other models
in a coupled model and act as external events for them. If an
external event occurs before resting time elapses (system is
in total state (s, e) with e ≤ ta(s)), then the system changes
to another new state δext(s, e, x). The confluent transition
function (δconf ) determines the new state if both internal and
external transition functions happen at the same time.

In practice, the internal events are used for scheduling
upcoming events while external events are messages received
at particular input ports of the model. Therefore one should
implement δint to specify the timely behavior of the system



and δext to build the interface between ports of the models
by passing messages between models as in a network (with
models being the nodes). The coupled model keeps track
of all the components, components’ influences, the set of
input ports receiving external events and output ports sending
those events. This model itself has input and output ports
connecting to one or more of the components. The formalism
is closed under coupling, which means a coupled model can
serve as another DEVS model to build a hierarchical coupled
modeling. The semantics of DEVS decouples inside of the
model from outside by the concepts of internal and external
events, when both can be present.

Another characteristic of practical real-time systems is
the ability to work with concurrent real objects, having the
outputs ready by a deadline and the ability of decision
making based on computational processing units. Having that
in mind, the real-time simulator objects in DEVSJava are
implemented as concurrent threads.

In DEVS real-time simulation each atomic model is as-
signed to a real-time simulator that, based on the current time,
decides handling of internal and external events. Therefore
unlike conventional object oriented design, a DEVS object
provides a mechanism for introducing time in the objects.

Models discussed in DEVS are implemented in some
different programming languages such as DEVSC++ [13] (in
C++) and DEVSJava [8] (in Java). In addition, based on the
DEVS concepts, the designer just models the system while
the simulator is constructed upon each model automatically.
Therefore, one should design the basic models, from which
larger models are built, and then connect them together (add
couplings) in a hierarchical order. These models however, can
change their structure and couplings dynamically during the
simulation if needed (variable structure DEVS [14]).

3. IMPLEMENTATION OF A TRANSCEIVER

We have used two methods for implementation of a cog-
nitive radio node. First, Lyrtech provided libraries are used
to interface MATLAB with the board. Second, DEVSJava
is combined with MATLAB to incorporate hardware in
a co-simulation engine and couple it with a host model.
The second method is the starting point for developing the
required interface for HIL cognitive network simulation.

A. HIL simulation in MATLAB

Based on the regression testing in the software engineer-
ing, we have divided the SDR problem into smaller units
which are tested individually and also in groups. A complete
simulation of the system has been first been developed
in MATLAB programming environment. The simulation is
broken up into functions which are then substituted by the
embedded functions developed on an Small Form Factor
(SFF) SDR hardware platform which is provided by Lyrtech
and Texas Instrument as part of the support that we received
for Smart Radio Challenge. Starting from the freeze mode

(non real-time), the modules and algorithms are tested and
optimized on the hardware platform one-by-one until the
specified real-time requirements are achieved. In this way, it
is possible to generate input for different individual modules
while the preceding parts are not available yet.

In the next step, we test two or more modules on the board
while the remaining parts are still being simulated. Hence,
the dependency on the simulation is decreased gradually.
The product of this development phase is the first version
of a complete functional node implemented on the hardware
with individual parts working properly. Using this technique,
a cognitive radio transceiver is implemented on SFF SDR
development platform [15] [16].

The interface between the platform and MATLAB is devel-
oped using MATLAB executable (MEX) files and SMSHELL
API [17] provided by Lyrtech for the SFF SDR platforms.
At each stage one part of our system is migrated from
MATLAB script to the board. For each block the input is
generated using MATLAB and passed to the board using
the developed MEX function which writes into a predefined
memory addresses in the DSP using SMSHELL and the
network socket. The results of the algorithm and the values of
variables at the intermediate stages of algorithm is monitored
in MATLAB. For each algorithm, a C code is developed in
Code Composer Studio and the generated output file is trans-
ferred to the board. A protocol is implemented to synchronize
the transaction between the host (running MATLAB) and
DSP.

Herein, we present the MATLAB script for test and
implementation of convolutional coding and Viterbi decoding
algorithms on the DSP core. We have tested the integrity of
the results as well as the required processing time on the
hardware. A simple code fragment for testing the convolu-
tional coding in the MATLAB environment follows:

% set the monitoring addresses
setAddresses();

% select the target
h = targetSelect();
% load the bit file
targetDSPload(h,'c:\boz\TwoWay.out');

%----------- Convolutional Coding ----------------
%first control byte is the length of message
targetWrite(h,WRITE_MSG_LEN,int32(msgLen));
%pass the data
targetWrite(h,ADDR_WRITE_DATA,input32);
%Flag data ready
targetWrite(h,WRITE_HANDSHAKING,START_CNV_CODING);
tic;
while ((toc < 20) && _

(targetRead(h,WRITE_HANDSHAKING,1) 6= STOP_FN))
%Wait for operation, at most 20 seconds!

end
%convolutional code length
K = targetRead(h,READ_CONV_LEN,1);
%number of double-words to read
n_dw = double(ceil((2 * (msgLen * 8 + K - 1) + ...

2)/3/4));



%read conv-coded interleaved result in double-words
cnv_coded_target_dw = ...

targetRead(h,ADDR_READ_DATA,n_dw);
%convert to byte stream
cnv_coded_target = typecast(...

cnv_coded_target_dw,'uint8');
%convolutional coding result
cnv_coded_target = ...

double(cnv_coded_target(1: ...
length(cnv_intr_coded_mex)));

%find if they differ
err = sum(cnv_coded_target-cnv_intr_coded_mex);
if (err 6= 0)

disp('Error in convolutional coding!');
end
%time taken in milli seconds
dly = targetRead(h,READ_DELAY,1);
disp(['Convolutional coding took :' ...

num2str(dly) ' ms']);

In this script, first a connection with the board is established
and the socket handle is used in the rest of the code for data
transferring and synchronization. Note that the algorithms are
previously implemented using Code Composer Studio and
the output file is ready. Using the above technique we opti-
mized our algorithms for 1kb input data packets and reached
less than 1ms of time for convolutional coding and 20ms
for Viterbi decoding which met our realtime requirement for
our modem. In fact, for 20kbs (as proposed in the problem
definition) this delay corresponds to 40% of the whole time
available for input data processing before the successive input
arrives.

B. HIL using DEVSJava and MATLAB

In the next step, we combine the functionality of DEVS-
Java and MATLAB for HIL simulation. This environment
incorporates both event-driven environment of DEVSJava
and powerful MATLAB toolboxes to be able to develop
and test our wireless node. To elaborate, while in MATLAB
programming we can generate arbitrary waveforms and pass
it to the board, we do not have the capabilities of DEVSJava
for event based simulation. The MATLAB functionalities in
communications and signal processing are brought inside
Java environment using MATLAB Builder for Java. MAT-
LAB Builder for Java, can build Java classes from the MAT-
LAB functions and have them ready to use in DEVSJava.
The MATLAB m-files that were already developed for MAT-
LAB simulation of the channel, the MATLAB visualization
methods, and also the hardware-interfacing MEX files are
compiled to Java classes that will be called later inside our
DEVSJava simulation.

In Figure 2 we have presented a simple example of this
environment which can be seen in the process of developing
a node. We have developed a DEVS model to measure the
performance of convolutional coding and Viterbi decoding on
different channel models which are simulated in MATLAB.
The blocks are atomic DEVS models and the couplings show
the flow of data from output ports (at the right side of each
block) to the input ports of other blocks (at the left side of

each block). When an external event happens at a model, the
signal (conveyed in the form of a message) generated at that
block follows the coupling path associated with the output
port of the event to the input port of the destination block. As
it is shown in the figure 2, the data generator atomic model
(Data Gen) sends random frames of data periodically (using
external events or messages) to the DEVS model in charge of
co-simulation (DSP-cosim) which then acts as a proxy to the
DSP board. The co-simulation engine is responsible for hand-
shaking and synchronization required when communicating
with the board. When data is processed inside the DSP, an
external event is generated for the DEVS model (Fading
channel) in which the coded binary result is passed to our
developed system in MATLAB. In the MATLAB routine,
other parts of a transmitter such as baseband modulation,
up-sampling, pulse shaping, and modulation are performed
and then the signal is sent to a communications channel
model and finally at the receiver down-sampling, carrier
recovery, timing recovery, equalization, and demodulation
are performed. In another cycle, the previous result data is
again passed to the co-simulation engine for Viterbi decoding.
The final results are then presented using MATLAB plotting
commands in the DEVS model TimeScope.

Fig. 2. HIL simulation with DEVS models

For more details, one movie to show the entire process
is available at [18]. As can be seen in this movie, in each
simulation run the data path begins at the data generator and
passes the hardware (embedded in the DSP co-simulation
engine) twice. The decoded data at the end of simulation is
the same as the original one, which shows the robustness of
our coding against noise.

4. COGNITIVE RADIO NETWORK

We have developed a simulation of a cognitive radio
network using DEVS. Considering the discrete nature of
data networks, DEVS perfectly matches the requirements



of our simulation scenario. Moreover, to test the cognitive
radio system in the absence of a few radio modems, we
have used the Hardware in The Loop (HIL) approach by
plugging the hardware of the radio modem in a co-simulation
engine as a secondary user (SU). The network design starts
from an all-virtual simulation with only the models of the
cognitive nodes in the simulation and adds real nodes to the
system gradually. The intermediate system consists of real
and simulated cognitive nodes talking to each other. This
systematic approach for implementing collaborative systems
has shown to be successful in revealing the underlying
problems and devising high fidelity models [5].

Figure 3 shows a network model of primary users and
cognitive secondary users with a base station. One of the
secondary users (SU2), two primary users (PU1 and PU2)
and also the secondary base (SB) station are simulated in the
host. Only one of the secondary users (SU1) has hardware
implementation thus is emulated using the co-simulation
engine. Using the message passing mechanism of DEVS
between the models, in which messages are external events,
and also exploiting the time triggered message generation
inside the modeled nodes, which are internal events, the
simulation of the network was implemented. We used imme-
diate messages for passing parameters between the models
while time scheduled messages were used to pass the data-
carrying binary signals (longer packet is scheduled for later
time). For the simulated nodes, after a transmitter sends
a packet of data, the DEVS model Channel passes the
binary signal, along with the carrier frequency and other
required parameters to a MATLAB code which simulates a
complete transmitter, channel, and receiver. The MATLAB
code for the transmitter includes source coding, base-band
modulation, up-sampling and RF modulation, channel, down-
sampling, etc. At the receiver, also the necessary functions
are developed in MATLAB and the data which might have
error is passed to the node in DEVS. The real cognitive
nodes rely on their embedded software for data transmission
among themselves and the co-simulation engine handles their
interface to the simulation.

We use filterbank for sensing in the implemented nodes.
The sensing information is passed to the Secondary Base
(SB) in the host. The SB is responsible for channel assign-
ment and also coordinations for sensing. All of the SUs,
including the SB, sense the channel periodically. Afterwards,
the SB compiles all of the sensing information and assigns
channels to the users. To simulate the effect of the primary
users, an Agilent ESG signal generator emulates a pseudo
traffic on the bands in which the simulated primary users
are occupying the bandwidth. The transmitted signal by
the function generator is a multi-band waveform which is
generated using a MATLAB script and uploaded to the device
With Agilent’s Waveform Download Assistant via network.
SUs move to a new channel when a PU is occupying the
bandwidth.

Fig. 3. A cognitive network with 2 Primary Users (PU) and 2 Secondary
Users (SU) and one Secondary Base station (SB), SU1 is implemented inside
an SFF SDR board and emulated along with the other nodes

In our simulation we have used a bernoulli arrival process
for secondary users. The activity of a node is determined
by the probability that a new packet is generated inside
that node at each time slot. The primary users change the
frequency bands that they are using randomly. Different
primary networks need to be modeled differently deponing
on their traffic type. For example, in a cellular network it
is reasonable to assume that the channel is not freed during
a conversation which takes at least a few seconds and lasts
up to several minutes. However, the traffic model would be
different for other networks such as wireless LAN or TV
stations.

Progressive design starts with a traditional all-simulated
network using virtual-time instead of the real-time to test
the behavior of the design in the long run. The traditional
simulation runs much faster than realtime and the deficiencies
of the design strategies are revealed easier before going into
the implementation phase. After the initial simulation (with
only the simulated nodes) is finished, the HIL simulation
with reduced realtime speed is run. The reduced speed of
realtime simulation is often necessary to compensate for the
overhead of co-simulation engine on the actual hardware.
For the first HIL case study, when we have only one SFF
SDR board the simulation scenario is as follows. In the first
simulation there is only one PU and three SUs (including
one SB simulated in the host). The PU is simulated using
the signal generator to emulate the effect the simulated users
on the wireless channel. Sensing data is collected by the real
nodes and passed to the SB simulated on the host. Following
this step, we increase the number of simulated nodes and
then the real nodes.



5. STATUS OF IMPLEMENTATION, CONCLUSION AND
FUTURE RESEARCH

A single cognitive radio node was developed using HIL
simulation. Different signal processing and communication
algorithms were developed and tested on the board and the
performance of each routine and the required time was stud-
ied. The integration of DEVS with MATLAB gives designers
the opportunity of decoupling the model and underlying
(often very complicated) math. While it is possible to reuse
the code available in MATLAB (including the MATLAB
simulation codes), the event based nature of DEVSJava
(adding the concept of time to the objects) adds to the power
of normal object oriented Java language. In addition, the
message passing structure of DEVS models fits naturally
into the category of networking. As a result the developer
can benefit from a well-defined simulation engine which is
an alternate to some other very expensive solutions. The
initial HIL network simulation is now ready and we can
simulate the dynamic channel assignment in the presence of
a simulated primary user. Currently, we are using a single
functional SDR platform which acts as one secondary user
that can send and transmit data. In the current setup, the
real node can sense the channel and move to a new band
when a PU transmit on the band that they are using. We
are currently working on the cognitive radio network HIL
simulation and as soon as more hardware is available, more
of the models will be substituted with the actual nodes. In
addition, so far a memory-less scheme is implemented in
the secondary base during the channel access coordination.
A more complicated AI method for resource management
can significantly reduce the primary-secondary collisions and
thus increase the link throughput. A flexible framework was
developed to set up a cognitive radio network, and we are
waiting for more hardware to progress towards the all-real
cognitive radio network.
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