

Hierarchical Scheduling in Grid Systems

Khaldoon AlZoubi

Carleton University, Ottawa, Canada
Email: Kalzoubi0708@rogers.com

Sivarama Dandamudi

Carleton University, Ottawa, Canada
Email: sivarama@scs.carleton.ca

ABSTRACT
This paper proposes hierarchal scheduling schemes for grid systems: a self-discovery scheme
for the resource discovery stage and an adaptive child scheduling method for the resource
selection stage. In addition, we propose three rescheduling algorithms: the butterfly, fallback
and load-balance. We also propose a hybrid system to combine the proposed hierarchal
schemes with the well-known peer-to-peer (P2P) principle. We compare the performance of
the proposed schemes against the P2P systems with respect to a set of predefined metrics.

Key Words: Grid Computing, Grid systems, Hierarchal Scheduling, P2P systems, Cluster Computing,
Parallel Scheduling, High-Performance Computing.

1. Introduction
The current status of computation is
equivalent in some respects to the status of
the electricity in around 1910s [4]. At that
time, electrical power was generated by
generators for specific individuals or
organizations needs. Truly, the real
electricity influence in our lives was born
with the creation of the electric power grid
which was provided via sharing generators.
The �Grid Computing� term was adopted
from the electricity grid to amplify
computational power via sharing
computational resources since both grids
are similar with respect to their
infrastructure and purpose. The term �the
Grid� started in the mid-1990s [4, 5] to
portray infrastructure for both scientific
and commercial distributed computing
communities and has been gaining
popularity ever since. The �Grid� can be
defined as a parallel and distributed system
that enables large collection of
geographically distributed heterogeneous
systems that usually span over several
organizations to share a variety of
resources dynamically at runtime
depending on their availability, capability,

user�s requirements and any other
predefined rules by local systems and
resources owners. The type of sharing in
the grid gives the impression of a powerful
self-managing virtual computer. The
Internet can be an ideal choice to link
thousands or millions of computers since it
already connects the whole world � if a
node�s IP address is known, it can then
receive data from another node. Benefits
of grids can be extensive. They include:
(1) expanding computing power, since
grids unleash the hidden computing power
that is not being used for most of the time
(e.g. most machines in a typical
organization are busy less than 5% of the
time [2]), (2) improving productivity and
collaboration among organizations (i.e.
wider audience) in a dynamic and
geographically distributed manner to form
one powerful computing system, and (3)
solving complex problems that were
previously unsolvable.
The rest of the paper is organized as
follows. In Section 2, the grid scheduling
stages and some of the grid challenges are
described. Section 3 presents the self-
discovery method to be used in the
resource discovery stage and the adaptive
hierarchical scheduling (AHS) method to

be used in scheduling jobs on selected
resources. Note that the AHS method is
based on the AHS method for parallel and
cluster systems presented in [3]. In
addition, we present three rescheduling
dynamic algorithms: the butterfly, the
fallback and the load-balance algorithms.
In Section 4, the simulation model and
samples of the preliminary results are
given. Conclusions are given in Section 5.
Refer to [1] for more in depth discussion of
the presented schemes and the complete set
of results.

2. Grid Scheduling Stages
Grid characteristics must be taken into
account to be able to perform efficient
scheduling. Grid schedulers must make
scheduling decisions in a very challenging
environment where it has: (1) no control
over the resources since they don�t own
them, (2) distributed resources, (3)
dynamic existence of resources (i.e.
resources may be added or removed from
the grid at any time), (4) dynamic
information collection, (5) heterogeneous
resources (jobs must match appropriate
resources in order to be executed as
requested by the users), (6) tentative
scheduling until the allocation of actual
resources (i.e. resources may be taken from
the grid before a job actually uses them).
In general, grid scheduling is performed in
three stages [7]. (1) Resource discovery
stage, which produces a set of matched
resources. Schedulers are expected to
collect static information (e.g. operating
systems), from local schedulers or general
information systems (GIS), in order to be
able to perform job matching. (2)
Resources are selected (i.e. resource
selection stage), from the list obtained
during the first stage, and are expected to
meet user�s imposed constraints (e.g.
deadlines). Schedulers are expected to
collect dynamic information (e.g. system
load) for this stage (3) Transfer jobs to
selected resources (i.e. job execution
stage).

3. Hierarchal Grid Scheduling
Grid schedulers are structured in a tree
form that we call grid tree, as shown in
Figure 3.1, where grid schedulers (GS) are
placed into the tree according to their
geographical locations. Users submit their
jobs, in the form of requests to the grid via
the grid system scheduler (GSS), which is
the root node of the grid tree. A user�s
request describes the job in terms of the
job minimum requirements (JMR) (e.g.
operating system) in order to be matched
to resources and any other constraints
imposed by the user (e.g. completion
deadline). A leaf grid scheduler (LGS),
which is a node on top of local
scheduler(s), connects directly with the
user�s workstation, brings the physical job
to the grid (once a job is about to be
mapped to the selected resources) and
serves as a middleware between the user�s
workstation and the allocated resources.
Note that LGSs may be combined with
local schedulers in one unit.
Theoretically, a scheduler, in our proposed
systems, can break grid jobs into several
subjobs to be executed in parallel on
different children�s partitions. However,
the art of automatic transformation into
parallelism of an arbitrary job is in its
infancy stage [2]. In our case, we assume
whole jobs are submitted to resources.

3.1 Resource Discovery Stage
In this stage, we propose the self-discovery
method. The purpose of this method is to
produce a set of logical channels to be used
as paths by jobs (in the next scheduling
stage) to get to their physical resources.
Logical channels serve as a map for jobs so
that they know how to reach resources that
can meet their computational requirements.
The self-discovery method omits irrelevant
dissimilarities between resources of
different sites. The principle behind this
method is that resources are equivalent to
each other if they match the same set of
jobs. For example, one site advertises
INTEL architectures and another site
advertises AMD architectures. Now,
suppose the grid has a set of jobs that can
be executed on either INTEL or AMD

platform. In this case, the grid system
considers architecture INTEL as equivalent
to architecture AMD for those jobs in the
set since they can be executed on either
platform. However, suppose now another
set of jobs only requires architecture AMD
in order to execute. In this case, the grid
system considers architecture INTEL as
nonequivalent to architecture AMD for the
later set of jobs since those jobs can only
be executed on the AMD platform.
LGSs collect and store all static
information about resources either directly
from local schedulers or from a GIS.
Thus, information about local resources is
distributed across the grid which leads to
(1) increasing system scalability and (2)
maintaining up-to-date databases. LGSs
also initiate the resource discovery stage at
system startup or when no jobs in the grid
tree match their advertised resources by
issuing the request for job matching
(RFJM) message to their parents, which in
turn forward the RFJM messages to the
grandparents, and so on until the RFJM
message is received by the GSS, enabling
it to initiate resource discovery to all of its
raw jobs (i.e. new jobs that haven�t
previously been through resource
discovery stage). However, if the GSS has
no raw jobs, it will then backlog the RFJM
message until receiving new jobs.
The GSS starts the resource discovery
stage by: (1) broadcasting a special
message to all of its children to destroy all
channels in the system, and (2) passing all
raw jobs to all of its children as one block.
The children in turn pass the raw jobs as
one block to the grandchildren, and so on
until they reach the LGSs at the bottom of
the grid tree. LGSs match raw jobs
requirement to their local resources and
inserts all raw jobs that match resources in
their bags. They will then pass a copy of
their bags (along with any previous
matched jobs) to their parents. Note that
(1) LGSs save all requests that they receive
from their parents regardless if they have
matched or not, enabling LGSs to perform
rematching, if needed, due to resources
change (i.e. the GSS removes all stored
requests from all bags once they are

executed), (2) intermediate schedulers
(GS) always pass one RFJM message to
their parents on behalf of their children and
suppress other RFJMs preventing the GSS
from initiating any unnecessary resource
discovery, (3) A logical channel is created
for every unique jobs bag.
Once a scheduler receives a bag (from one
of its children) that is similar to another
bag of an existing channel, it will then: (1)
create a new branch from its existing
channel and bind it with the child�s
channel, (2) recalculate its channel�s
processing power based on the new created
branch, (3) inform the child with its
channel�s port number, and (4) update
parent, if any, with the new processing
power of its channel. However, if the
received bag is distinctive, scheduler will
then: (1) create a new channel with a new
port number, (2) create a new branch from
its new channel and bind it with the child�s
channel, (3) initialize the channel
processing power based on the new created
branch, (3) inform the child with the
channel�s port number, and (4) update
parent, if any, with the new bag and the
channel�s port number.

Figure 3.1: A grid tree with two channels

Now consider, as an example, the grid tree
shown in Figure 3.1. Suppose the GSS
pass a six raw jobs J1 through J6 as one
block to all of its children. Suppose
further that J4, J5 and J6 do not match
resources at GS10. In this case, the GSS
ends up with two channels (via GS1) where
all jobs may use the first channel. On the
other hand, J1, J2 and J3 are the jobs that
can only use the second channel.

GSS

GS1

GS3 GS4

GS7 GS8 GS9 GS10

2nd
Chan

1st
Chan

3.2 Resource Selection Stage
The grid AHS scheduling method, in this
stage, uses self-scheduling by exploring the
parent-child relationship. When a non-root
GS wants some work to do, it initiates self-
scheduling by sending a request for
computation (RFC) message to its parent
(via a channel) requesting computation
from it. If the parent GS doesn�t have
computations that can be pushed on that
child�s channel at the time of receiving the
RFC, it in turn generates its own RFC and
sends it to its parent on the next level of
the grid tree. This process is recursively
followed until either the RFC reaches the
grid system scheduler (GSS) or a GS with
computations is encountered along the
path. Note that intermediate schedulers
send one RFC message per channel to their
parents, but still mark all branches that
have received RFCs from. Schedulers use
space-sharing policy to distribute
computations among channels, upon
receiving an RFC message from a
channel�s branch of a child, as follows:

 NBB rateshare ×=

where Bshare is branch�s share of all jobs
within scheduler�s subtree, Brate is the
branch�s transfer rate, and N is the number
of jobs within a scheduler�s subtree. Brate
is calculated as follows:

∑
=

= M

i
ipwr

pwr
rate

C

B
B

1

)(

where Bpwr is the branch�s processing
power, Cpwr is the channel�s processing
power (i.e. total processing power for all of
its branches), and M is the number of
channels in a scheduler. Note that, in our
case, the channel�s processing power is the
number of CPUs that resides under that
channel, since we assume that our
computational resources are parallel
computers (see Section 4). However, in
reality, we expect processing power to
consider more factors such as RAMs,
bandwidth, etc.

Now, once a scheduler determines the
number of jobs that will be pushed onto a
channel�s branch, it builds a list of those
jobs as one block and pushes them onto
that branch. Suppose, as an example, that
GS1, in Figure 3.1, has 9 jobs upon
receiving an RFC message from the first
branch of the first channel (i.e. via GS3).
Suppose further that the three branches that
connect GS1 with its two children have
equivalent processing power. In this case,
GS1 may then push up to 3 jobs onto that
branch.
Schedulers perform the following steps to
collect the jobs (in order to be pushed onto
a channel�s branch): (1) invokes the
�butterfly� algorithm, (2) collects jobs
from the unassigned (i.e. unpushed) jobs,
and (3) invokes the �load-balance�
algorithm. Note that we expect schedulers,
in practice, to collect more dynamic
information related to performance (e.g.
load) or economics (e.g. prices).

3.2.1 Butterfly Algorithm
The principle behind this scheme is to
reschedule jobs to better resources (with
respect to predefined metrics) when they
become available. Note that this algorithm
can be extended to any soft conditions
imposed by a user where soft conditions
are the ones that the user is willing to live
without them until they become available
(or if they ever become available). In our
case, we consider the geographical
closeness of resources with respect to
workstations as our metric (we use IP
addresses to determine location closeness).
Interestingly, a job may keep jumping (like
a butterfly) among children�s partitions
until it settles on the closest resources. In
this algorithm, after a scheduler receives
an RFC message from a child, the
scheduler will then (1) cancel any assigned
jobs from other children (if the new child
is closer to those jobs workstations), and
(2) push them into the new available
child�s partition.

3.2.2 Fallback Algorithm
The fallback algorithm is intended to
reschedule jobs that become incomputable

because of the grid losing their required
resources on their scheduled partitions.
When an LGS detects resources change, it
performs rematching for all saved requests.
Now, if an LGS ends up with the same
jobs bag, this resource change is then
irrelevant. However, if it produces a
different bag, it will then pass it onto its
parent.
Schedulers handle received bags in this
stage as previously described in the
resource discovery stage. Additionally,
schedulers mainly have to carry out the
following (of course, parents will also be
updated): (1) remove any jobs that become
incomputable, (2) recalculate modified
channels processing power, and (3) delete
any broken channels. For example,
assume GS10 changes resources and
produces similar bag to GS9�s bag in
Figure 3.1. In this case, GS4 will then
connect GS10 to the first channel and
inform its parent (GS1) of two things: (1)
the first channel new updated processing
power and (2) the broken second channel.
Now if GS4 has jobs that become
incomputable, it will then remove them
and update GS1. Note that GS1
reschedules those returned jobs (if they
still computable on its partition) with a
priority (in our case, the lesser the
sequence number, the higher the priority).
For instance, GS1 may swap some of those
returned jobs with assigned jobs in GS3�s
partition in order to execute jobs in the
same order of their arrival to the grid.

3.2.3 Load-Balance Algorithm
As stated earlier, schedulers determine the
number of jobs (that will be pushed into a
channel�s branch) by considering all jobs
within their subtrees. They will then
collect those jobs by invoking the butterfly
algorithm and from queued unassigned
jobs. Schedulers will then balance the load
among the channels by canceling already
assigned jobs and then reschedule them on
the channel�s branch that just requested
more work. Schedulers are always
responsible for balancing all assigned jobs
among their children�s channels within
their subtrees, since a parent may cause a

child�s subtree to get imbalanced (i.e. of
course, parents do not know how assigned
jobs are distributed within their children�s
subtrees). For example, assume that each
of GS7 and GS8, in Figure 3.1, has four
queued jobs (of course, GS1 assumes that
all 8 jobs are still queued at GS3). Suppose
now that GS1 decides to cancel four jobs to
reschedule them on a GS4�s channel in
order to balance its subtree. Now, if GS1
cancels the four jobs queued at GS8, it
imbalances the GS3�s subtree. In this case,
GS3 will balance its subtree upon receiving
an RFC message from GS8 (or will
forward the RFC message to GS1, if the
RFC message is received from GS7).

3.3 Hybrid System
The hierarchal system (one grid tree) has
major drawbacks: (1) all requests are
submitted to the GSS, which may become
overwhelmed with too many requests, (2)
difficult to bring too many organizations to
agree on things such as constructing the
grid tree, controlling GSS policies (e.g.
security), dealing with new joined
organizations, and (3) difficult to convince
companies to replace their peer-to-peer
(P2P) based grid systems. The hybrid
system, which is several grid trees that act
also as peers to each other, as shown in
Figure 3.2, does not only overcome the
above drawbacks, but also provides
organizations more efficient ways to
manage their own resources such as
stamping foreign requests with low
priority, isolating their resources swiftly
from the entire grid without pumping out
their pending requests of using their
resources, etc.

Figure 3.2: Hybrid System Example

In the hybrid system, a GSS in a grid tree
also acts as a peer GSS (PGSS) that

BA

C

forwards requests (after decrementing hop
count) to its neighbors. Of course
neighbors can be part of any other system
types (e.g. P2P system). The P2P system
can be viewed as a hybrid system where
each grid tree has only one scheduler, and
the hierarchal system can be viewed as a
hybrid system with one peer. In our case,
we assume that (1) requests are always
forwarded to neighbors (i.e. a request dies
when hop count reaches 0), hence, grid
trees also serve as backups to each other,
and (2) foreign and home requests are
queued in the same fashion.

4. Simulation Model and Results
This section presents the simulation model
and samples of the obtained preliminary
results. Readers are encouraged to refer to
[1] for the complete set of results and more
in depth discussion.
The grid simulation model is broken into
three submodels: communication, node
and system models, each of which is
described below.

4.1 Communication Model
The communication model, which is used
by nodes (i.e. node model) to communicate
with each other, consists of 2400 nodes
that span across four backbones. Each
backbone (600 nodes) consists of four Nets
where each Net consists of 10 networks,
each network consisting of 15 nodes.
Therefore, there are (4 backbones) (4 Nets)
(10 networks) (15 nodes) which adds up to
2400 nodes in total in the model. The
communication model uses the Discrete
Event Simulation (DEVS) CD++ simulator
[1, 11] to simulate all communication
aspects among all nodes.
The model presented numerous of
challenges that we had to address to bring
it closer as much as possible to the actual
communication over the Internet, which is
almost an impossible job to do, since the
Internet is a very large unpredictable
public network. We�ve assumed that 10%
of the model�s capacity accounts for the
external Internet load and the routers
processing time based on the studies in [1,

8], which were based on actual statistics by
the Internet Service Providers (ISP).
We�ve also assumed 64 kilobytes TCP
window size to control data flow [1].
Backbones in the model are connected
with 1000 km, 9.6 Gb/s (e.g. OC-192 link)
cables, Nets/sites are connected with 50
km, 155 Mb/s (e.g. OC3 link) cables [1, 8],
and nodes within a site are connected with
100 MBytes/s [1] cables.

4.2 Node Model
A node, in the communication model, is
simply a computer with an IP address. On
the other hand, the node component
contains the implementation of the
proposed schemes for the grid systems in
this paper. A node can be configured to
operate as a peer, local scheduler,
intermediate GS, LGS, GSS, PGSS or a
workstation. Note that the node�s
configuration determines the system model
type.

4.3 System Model
The grid model can be configured to a
peep-to-peer (P2P), a hierarchal (one grid
tree) or a hybrid (several grid trees) system
model, as discussed below in this section.
The P2P systems are distributed systems
and the only ones, to our knowledge, that
are currently well thought-out by
researchers [1, 7, 9] to replace the
centralized systems. As a result, it is a
reasonable choice to be compared against
the proposed hierarchal systems in this
paper.

4.3.1 Peer-to-Peer (P2P) System
Once a job request is received at a peer
that meets its requirement, it contacts the
workstation to offer its service and times
for the workstation response (100 ms, in
our case). Workstations may accept peers
service by responding to it or may refuse
peers service by simply not responding to
it. If a peer can not accept a workstation
request, it decrements the hop count (1000
in our case) in the message and forwards it
to its neighbors. In our model, peers accept
requests if they meet their deadline, which
is three times the estimated execution time

for that job. To improve P2P performance:
(1) if a workstation doesn�t get a service
offer within 2 minutes; it resubmits the job
request again to the grid and (2) neighbors
are manually configured to be
geographically close. However, this may
not be the case in reality.

4.3.2 Hierarchal System
The system has one grid tree. The tree is
constructed by connecting the GSS to 4
children where each child holds one
backbone. Each backbone�s root has 4
children where each child holds one Net.
Each Net�s root has two children where
each child holds 5 sites.

4.3.3 Hybrid System
The system has several grid trees acting as
peers to each other. We use two hybrid
systems in our simulation: 4 grid trees
system (Hybrid-4T) and 16 grid trees
system (Hybrid-16T). In the Hybrid-4T
system the grid tree of the hierarchal
system (see previous subsection) is broken
to 4 grid trees where each backbone has
one grid tree. In the Hybrid-16T (16 grid
trees), each Net has one grid tree.

4.4 Grid Jobs
A workstation submits a job to the grid via
its grid entry (e.g. GSS) as a request that
defines the job minimum requirements
(JMR) for that job. Jobs are assumed to be
executed until completion as batches on
resources that meet their predefined
requirements (i.e. operating systems, in our
case). Gaussian distribution is usually
used to simulate the required time to run a
job on a server in [1, 9, 6, 10] with respect
to the input job size and server�s
processing power. Therefore, we assume
job sizes are correlated to the amount of
work performed by each job where the
input data size is expressed by Gaussian
distribution with mean µ = b * cpus * wall
time in seconds, where b = 100, as in [9].
We also assume a job produces output data
five times the original input job size.

4.5 Computational Resources

We assume all resources (i.e. servers) are
parallel machines that consist of a number
of interconnected nodes with a number of
CPUs within a node as in [1, 9]. Table 1
shows the servers used in the simulation
experiments, which are originally based on
real machines [1, 9, 6].

Server Number of
Nodes

CPUs per
Node

1 184 16
2 305 4
3 144 8
4 1024 4
5 64 2
6 512 4
7 128 2

Table 1: Computational Resources

Those servers are duplicated in all the 160
sites in a range of 2 to 6 servers per site.
The type of the servers and their operating
systems (Windows, UNIX or LINUX) are
picked up in random. We assume 0.1 local
loads (i.e. not related to the grid) on all
computational resources at all times, as the
typical case in most studies like [6]. Note
that the simulation model consists of 520
servers versus about 1880 workstations
throughout all experiments� ratio 1:3.6.

4.6 Workloads
Unfortunately it was difficult to find real
traces for grid computing. However we
were able to base our workloads on real
traces for parallel machines and scientific
applications [1, 6, 9, 12, 13]. Jobs in the
workloads, that are relevant to this paper,
use input average sizes of 1GB, 10GB and
100GB over the following number of jobs:
520, 1040, 1560, 3000 and 10,000 jobs.
Refer to [1] for the complete set of
workloads. We use Poisson distribution to
generate input data sizes for submitted jobs
to the grid where the Poisson mean is set to
the desired average input size. In this way,
jobs are generated with different sizes, but
with the desired average input size, which
is close to the typical case in reality.

4.7 Performance Metrics

We use three performance metrics to
compare systems: Total response time,
average waiting time and average response
time.
The total response time (TRT) is the time
from submitting first job request until the
completion of all jobs in a workload. For
example, suppose that the first request was
submitted to the grid at 5:00 PM and the
last job of a workload was completed at
10:00 PM, the total response time will then
be 5 hours. The purpose of this metric is
to show the degree of parallelism in the
grid, since we view the grid as a huge
virtual parallel machine. The total
response time (TRT) is calculated as
follows:

)(FRSLJCTRT −=

where LJC (Last Job Completion Time) is
the time that the output (i.e. at workstation)
of the last completed job in the workload is
received. FRS (First Request Submission),
which is the time of transmitting the first
request by a workstation.
The waiting time (WT) for a job is the time
from submitting the job�s request to the
grid until the start of the actual job transfer
to selected resources. For example, if a
workstation submits a request to the grid at
5:00 PM, and gets a service offer from a
resource at 6:00 PM, the waiting time for
that job will be 1 hour. The purpose of this
metric is to measure the scheduling time
(i.e. the time it takes until a resource is
allocated to that job). The average waiting
time (AWT) is calculated as follows:

∑ =
−= N

j jRTSJTT
N

AWT
1

)(1

where N (Jobs count) is the number of jobs
in a workload. SJTT (Start Job
Transferring Time) is the time when a
workstation receives a service offer from a
resource and starts transferring the
physical job. RT (Request Time) is the
time when a workstation submits that job
request to the grid.
The execution time (ET) is the time from
submitting the actual job to the grid until
the job�s output is received at the

submitter�s workstation. For example, a
workstation receives a service offer from a
resource at 5:00 PM. Suppose now that
the workstation receives the output of the
job at 6:00 PM, the execution time will
then be 1 hour. Although all systems, in
our model, function the same way when a
request is mapped to a resource, but we
still need this metric to measure the
location where a job was executed at. The
average execution time (AET) is calculated
as follows:

∑ =
−= N

j jSJTTJCT
N

AET
1

)(1

where JCT (Job Completion Time) is the
time when the job�s output is received at
the workstation.

4.8 Simulation Experiments
We present, in this section, a sample of the
experimental results in order to compare
the performance over different scenarios.
Refer to [1] for the complete set of results.
Note that regardless of the configured
system or experiment, the following
assumptions still apply. (1) The
computational power in the grid is
maintained (i.e. 520 servers all the times).
(2) A job is submitted by one workstation
and executed by one server. Note that a
workstation is called active if it has a
pending request in the grid. Otherwise, it
is called inactive. (3) A workstation that
submits jobs according to a stochastic rate
only operates at that rate while it is
inactive. For example, a workstation
submits jobs to the grid with rate 12 hours.
Now, when that workstation becomes
inactive, it waits according to that Poisson
distribution with a mean of 12 hours before
it submits another job. (4) All results are
obtained by averaging 20 different runs.
Note that the difference between the worse
and the best case runs is in the range of 5%
to 15%. Perhaps, this is because of having
too many nodes in the model.

4.8.1 First Experiment
In this experiment workstations submit
jobs one after another until the entire
workload is completed. This scenario is

possible when an organization, for
instance, executes a number of jobs one
after another automatically as a set. The
workload in this experiment is already
distributed among sites by the submission
approach. For example, if site A has 3
workstations and site B has 6 workstations.
Most likely, site B will submit twice the
requests that are submitted from site A.
The average waiting time (AWT) and the
total response time (TRT) showed a
substantial improvement against the P2P
system regardless of the number of used
grid trees, workload or scenario, as shown
in Figures 4.1, 4.2, 4.4 and 4.7.
Interestingly, the AWT starts declining
when the hybrid system contains too many
grid trees. Perhaps, this is because it gets
closer and closer to the P2P system as a
result of continue increasing the trees in
the system. The average execution time
(AET) is almost the same for small jobs (1
GB), but starts to differ when jobs-size
increases (100 GB), as shown in Figures
4.3 and 4.5, which makes sense, since the
model is built with high performance links.

4.8.2 Second Experiment
In this experiment, workstations operate at
different stochastic submission rate where
each workstation selects, in random, one of
the following rates: 10 minutes, 30
minutes, 1 hour, 5 hours, 1 day or 1 week.
Furthermore, a workload in this
experiment is not already distributed
among sites, as in the case of the first
experiment. Furthermore, in this scenario,
sites also have different probabilities when
generating a job. For example, if site A
has 3 workstations and site B has 6
workstations. It is not necessary that site B
is going to submit twice the requests that
will be submitted from site A. On the
other hand, it is quite possible that all
requests will be submitted from site A.
Observations of the first experiment are
also supported by this experiment.
Furthermore, both the butterfly and the
load-balance algorithms showed a
significant influence on the performance of
the hierarchal system, as shown in Figure
4.6. In fact, the more jobs in a workload

the worse it gets, if the subject algorithms
are disabled, hence, the more jobs, the
more performed rescheduling.

4.8.3 Third Experiment
In this experiment workstations submit
jobs with the same stochastic rate (e.g. one
hour rate for all workstations in the grid).
A workload in this experiment is already
distributed among sites, as in the case of
the first experiment. We study the
systems with three different rates: one
hour, one day and one week.
Observations of the previous experiments
are also supported by this experiment. In
addition, the AWT tends to decline with a
big slope in the hierarchal systems when
jobs arrive into the grid with larger mean
rate. However, it decreases slightly in the
P2P system, as shown in Figure 4.7.

4.8.4 Fourth Experiment
In this experiment, resources change
according to one of the following
stochastic changing-rates: One day, three
days, one week, one month, three months
and six months. Note that the changing-
rate is also reselected, in random, along
with advertised resources. For example, a
server selects 6 months changing rate and
reselects 3 months changing rate when it
changes its advertised resources.
Now, when resources-change is a
possibility during jobs scheduling, the
AWT turns out the same comparing when
resources are constant, as shown in Figure
4.8, which makes sense, since the fallback
algorithm reschedules jobs while resources
are already busy in executing other jobs
anyway.

0

5

10

15

20

25

520 1040 1560 3000

Number of Jobs (Size = 10GB)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 4.1: A Sample of Average Waiting

Time in Experiment 1

0

50

100

150

200

250

300

350

400

450

520 1040 1560 3000 10000

Num ber of Jobs (Size = 10GB)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 4.2: A Sample of Total Response

Time in Experiment 1

40

50

60

70

80

90

100

520 1040 1560 3000 10000

Number of Jobs (Size = 100GB)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 4.3: A Sample of Average

Execution Time for large-size jobs in
Experiment 1

0

20

40

60

80

100

120

140

520 1040 1560 3000

Number of Jobs (Size = 100G)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 4.4: A Sample of Average Waiting

Time in Experiment 2

20

25

30

35

40

45

50

55

520 1040 1560 3000

Number of Jobs (Size = 1G)

Ti
m

e
in

 M
in

ut
es

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 4.5: A Sample of Average

Execution Time for small-size jobs in
Experiment 2

0

20

40

60

80

100

120

140

160

180

200

520 1040 1560 3000

Number of Jobs (Size = 100GB, Experiment 2 Scenario)

Ti
m

e
in

 H
ou

rs

Disabled Enabled

Figure 4.6: A Sample of algorithms

influence on the Average Waiting Time in
Experiment 2

3

5

7

9

11

13

15

1 Hour 1 Day 1 Week

Arrival Rates (Size=10G, 1560 Jobs)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal

Figure 4.7: A Sample of Average Waiting

Time in Experiment 3

0

20

40

60

80

100

120

520 1040 1560 3000

Number of Jobs (Size = 100GB, Experiment 1 Scenario)

Ti
m

e
in

 H
ou

rs

Changing Resources Constant Resources

Figure 4.8: A Sample of Average Waiting

Time in Experiment 4

5. Conclusions
Many studies jump over the resource
discovery stage into the second scheduling
stage by assuming that all jobs can execute
anywhere in the grid, or simply assuming
that resources will be discovered using the
P2P approach. However, as we�ve shown
those stages have to be dealt with in a
sequence because of their dependency on
each other. The hierarchal approach has
not only shown substantial improvement
over the P2P system, but also the ability to

be combined with it in one hybrid system.
Both the average waiting time (AWT) and
the total response time (TRT) metrics
showed a large improvement of the
hierarchal approach against the P2P system
regardless of the number of used grid trees,
workload or scenario. The average
execution time (AET) metric also showed
a significant improvement over the P2P
system for large-size jobs, but almost the
same for small-size jobs, which makes
sense, since the model is built with high
performance links. The three rescheduling
algorithms showed a big contribution in
the overall performance of the system.
The fallback algorithm saved not only
some jobs of not being able to execute
because of resources change, but also
maintained the same system performance
when resources are constant. Both the
butterfly and load-balance algorithms
saved the system of performing poorly
when increasing the number of jobs in
workloads.

References:

[1] K. AlZoubi, Hierarchical

Scheduling in Grid systems.
Master Thesis, Carleton University,
Ottawa, Canada, 2006 (expected).

[2] V. Berstis, �Fundamentals of Grid

Computing�,
http://www.redbooks.ibm.com/redp
apers/pdfs/redp3613.pdf

[3] S. Dandamudi, Hierarchical

Scheduling in Parallel and Cluster
systems. Kluwer Academic
Publishers, 2003.

[4] I. Foster and C. Kesselman, The

Grid: Blueprint for a New
Computing Infrastructure, Morgan
Kaufmann, 2004.

[5] I. Foster, C. Kesselman, and S.

Tuecke, �The Anatomy of the Grid:
Enabling Scalable Virtual
Organizations�,

http://www.globus.org/research/pap
ers/anatomy.pdf.

[6] S. Hotovy, �Analysis of the Early

Workload on the Cornell Theory�,
ACM SIGMETRICS, 1996, pp.
272 � 273.

[7] J. Nabrzyski, J. Schopf and J.

Weglarz, Grid Resource
Management: State of the Art and
Future Trends. Kluwer Academic
Publishers, 2004.

[8] A. Odlyzko, �Internet Traffic

Growth: Sources and Implications�,
http://www.dtc.umn.edu/~odlyzko/
doc/itcom.internet.growth.pdf

[9] H. Shan, W. Smith, L. Oliker and

R. Biswas, �Job Scheduling in a
Heterogeneous Grid Environment�,
http://www-
library.lbl.gov/docs/LBNL/549/06/
PDF/LBNL-54906.pdf

[10] A. Takefusa, �Bricks: A

Performance Evaluation System for
Scheduling Algorithms on the
Grids�, JWAITS 2001.

[11] G. Wainer. DEVS CD++ tools,

http://www.sce.carleton.ca/faculty/
wainer.html.

[12] Parallel Workloads Archive.

http://www.cs.huji.ac.il/labs/paralle
l/workload/ .

[13] �Long Term Technology Review

of the Science & Engineering
Base�,
http://www.rcuk.ac.uk/lttr/finalvers
ion/LTTR_ContentsPage.htm,
2000.

