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ABSTRACT 
This paper proposes hierarchal scheduling schemes for grid systems: a self-discovery scheme 
for the resource discovery stage and an adaptive child scheduling method for the resource 
selection stage. In addition, we propose three rescheduling algorithms: the butterfly, fallback 
and load-balance.  We also propose a hybrid system to combine the proposed hierarchal 
schemes with the well-known peer-to-peer (P2P) principle.  We compare the performance of 
the proposed schemes against the P2P systems with respect to a set of predefined metrics. 
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Parallel Scheduling, High-Performance Computing.
 
 
1. Introduction          
The current status of computation is 
equivalent in some respects to the status of 
the electricity in around 1910s [4].  At that 
time, electrical power was generated by 
generators for specific individuals or 
organizations needs. Truly, the real 
electricity influence in our lives was born 
with the creation of the electric power grid 
which was provided via sharing generators.  
The �Grid Computing� term was adopted 
from the electricity grid to amplify 
computational power via sharing 
computational resources since both grids 
are similar with respect to their 
infrastructure and purpose.  The term �the 
Grid� started in the mid-1990s [4, 5] to 
portray infrastructure for both scientific 
and commercial distributed computing 
communities and has been gaining 
popularity ever since.  The �Grid� can be 
defined as a parallel and distributed system 
that enables large collection of 
geographically distributed heterogeneous 
systems that usually span over several 
organizations to share a variety of 
resources dynamically at runtime 
depending on their availability, capability, 

user�s requirements and any other 
predefined rules by local systems and 
resources owners.  The type of sharing in 
the grid gives the impression of a powerful 
self-managing virtual computer. The 
Internet can be an ideal choice to link 
thousands or millions of computers since it 
already connects the whole world � if a 
node�s IP address is known, it can then 
receive data from another node.  Benefits 
of grids can be extensive.  They include: 
(1) expanding computing power, since 
grids unleash the hidden computing power 
that is not being used for most of the time 
(e.g. most machines in a typical 
organization are busy less than 5% of the 
time [2]), (2) improving productivity and 
collaboration among organizations (i.e. 
wider audience) in a dynamic and 
geographically distributed manner to form 
one powerful computing system, and (3) 
solving complex problems that were 
previously unsolvable. 
The rest of the paper is organized as 
follows.  In Section 2, the grid scheduling 
stages and some of the grid challenges are 
described.  Section 3 presents the self-
discovery method to be used in the 
resource discovery stage and the adaptive 
hierarchical scheduling (AHS) method to 



be used in scheduling jobs on selected 
resources.  Note that the AHS method is 
based on the AHS method for parallel and 
cluster systems presented in [3].  In 
addition, we present three rescheduling 
dynamic algorithms: the butterfly, the 
fallback and the load-balance algorithms.  
In Section 4, the simulation model and 
samples of the preliminary results are 
given.  Conclusions are given in Section 5.  
Refer to [1] for more in depth discussion of 
the presented schemes and the complete set 
of results. 
 
 
2. Grid Scheduling Stages 
Grid characteristics must be taken into 
account to be able to perform efficient 
scheduling.  Grid schedulers must make 
scheduling decisions in a very challenging 
environment where it has: (1) no control 
over the resources since they don�t own 
them, (2) distributed resources, (3) 
dynamic existence of resources (i.e. 
resources may be added or removed from 
the grid at any time), (4) dynamic 
information collection, (5) heterogeneous 
resources (jobs must match appropriate 
resources in order to be executed as 
requested by the users), (6) tentative 
scheduling until the allocation of actual 
resources (i.e. resources may be taken from 
the grid before a job actually uses them). 
In general, grid scheduling is performed in 
three stages [7]. (1) Resource discovery 
stage, which produces a set of matched 
resources.  Schedulers are expected to 
collect static information (e.g. operating 
systems), from local schedulers or general 
information systems (GIS), in order to be 
able to perform job matching. (2) 
Resources are selected (i.e. resource 
selection stage), from the list obtained 
during the first stage, and are expected to 
meet user�s imposed constraints (e.g. 
deadlines).  Schedulers are expected to 
collect dynamic information (e.g. system 
load) for this stage (3) Transfer jobs to 
selected resources (i.e. job execution 
stage). 
 
 

3. Hierarchal Grid Scheduling 
Grid schedulers are structured in a tree 
form that we call grid tree, as shown in 
Figure 3.1, where grid schedulers (GS) are 
placed into the tree according to their 
geographical locations.  Users submit their 
jobs, in the form of requests to the grid via 
the grid system scheduler (GSS), which is 
the root node of the grid tree.  A user�s 
request describes the job in terms of the 
job minimum requirements (JMR) (e.g. 
operating system) in order to be matched 
to resources and any other constraints 
imposed by the user (e.g. completion 
deadline).  A leaf grid scheduler (LGS), 
which is a node on top of local 
scheduler(s), connects directly with the 
user�s workstation, brings the physical job 
to the grid (once a job is about to be 
mapped to the selected resources) and 
serves as a middleware between the user�s 
workstation and the allocated resources.  
Note that LGSs may be combined with 
local schedulers in one unit. 
Theoretically, a scheduler, in our proposed 
systems, can break grid jobs into several 
subjobs to be executed in parallel on 
different children�s partitions.  However, 
the art of automatic transformation into 
parallelism of an arbitrary job is in its 
infancy stage [2].  In our case, we assume 
whole jobs are submitted to resources. 
 
3.1 Resource Discovery Stage 
In this stage, we propose the self-discovery 
method.  The purpose of this method is to 
produce a set of logical channels to be used 
as paths by jobs (in the next scheduling 
stage) to get to their physical resources.  
Logical channels serve as a map for jobs so 
that they know how to reach resources that 
can meet their computational requirements.  
The self-discovery method omits irrelevant 
dissimilarities between resources of 
different sites.  The principle behind this 
method is that resources are equivalent to 
each other if they match the same set of 
jobs.  For example, one site advertises 
INTEL architectures and another site 
advertises AMD architectures.  Now, 
suppose the grid has a set of jobs that can 
be executed on either INTEL or AMD 



platform.  In this case, the grid system 
considers architecture INTEL as equivalent 
to architecture AMD for those jobs in the 
set since they can be executed on either 
platform.  However, suppose now another 
set of jobs only requires architecture AMD 
in order to execute.  In this case, the grid 
system considers architecture INTEL as 
nonequivalent to architecture AMD for the 
later set of jobs since those jobs can only 
be executed on the AMD platform. 
LGSs collect and store all static 
information about resources either directly 
from local schedulers or from a GIS.  
Thus, information about local resources is 
distributed across the grid which leads to 
(1) increasing system scalability and (2) 
maintaining up-to-date databases.  LGSs 
also initiate the resource discovery stage at 
system startup or when no jobs in the grid 
tree match their advertised resources by 
issuing the request for job matching 
(RFJM) message to their parents, which in 
turn forward the RFJM messages to the 
grandparents, and so on until the RFJM 
message is received by the GSS, enabling 
it to initiate resource discovery to all of its 
raw jobs (i.e. new jobs that haven�t 
previously been through resource 
discovery stage).  However, if the GSS has 
no raw jobs, it will then backlog the RFJM 
message until receiving new jobs. 
The GSS starts the resource discovery 
stage by: (1) broadcasting a special 
message to all of its children to destroy all 
channels in the system, and (2) passing all 
raw jobs to all of its children as one block.  
The children in turn pass the raw jobs as 
one block to the grandchildren, and so on 
until they reach the LGSs at the bottom of 
the grid tree.  LGSs match raw jobs 
requirement to their local resources and 
inserts all raw jobs that match resources in 
their bags.  They will then pass a copy of 
their bags (along with any previous 
matched jobs) to their parents.  Note that 
(1) LGSs save all requests that they receive 
from their parents regardless if they have 
matched or not, enabling LGSs to perform 
rematching, if needed, due to resources 
change (i.e. the GSS removes all stored 
requests from all bags once they are 

executed), (2) intermediate schedulers 
(GS) always pass one RFJM message to 
their parents on behalf of their children and 
suppress other RFJMs preventing the GSS 
from initiating any unnecessary resource 
discovery, (3) A logical channel is created 
for every unique jobs bag. 
Once a scheduler receives a bag (from one 
of its children) that is similar to another 
bag of an existing channel, it will then: (1) 
create a new branch from its existing 
channel and bind it with the child�s 
channel, (2) recalculate its channel�s 
processing power based on the new created 
branch, (3) inform the child with its 
channel�s port number, and (4) update 
parent, if any, with the new processing 
power of its channel.  However, if the 
received bag is distinctive, scheduler will 
then: (1) create a new channel with a new 
port number, (2) create a new branch from 
its new channel and bind it with the child�s 
channel, (3) initialize the channel 
processing power based on the new created 
branch, (3) inform the child with the 
channel�s port number, and (4) update 
parent, if any, with the new bag and the 
channel�s port number. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1:  A grid tree with two channels 
 
Now consider, as an example, the grid tree 
shown in Figure 3.1.  Suppose the GSS 
pass a six raw jobs J1 through J6 as one 
block to all of its children.  Suppose 
further that J4, J5 and J6 do not match 
resources at GS10.  In this case, the GSS 
ends up with two channels (via GS1) where 
all jobs may use the first channel.  On the 
other hand, J1, J2 and J3 are the jobs that 
can only use the second channel. 
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3.2 Resource Selection Stage 
The grid AHS scheduling method, in this 
stage, uses self-scheduling by exploring the 
parent-child relationship.  When a non-root 
GS wants some work to do, it initiates self-
scheduling by sending a request for 
computation (RFC) message to its parent 
(via a channel) requesting computation 
from it.  If the parent GS doesn�t have 
computations that can be pushed on that 
child�s channel at the time of receiving the 
RFC, it in turn generates its own RFC and 
sends it to its parent on the next level of 
the grid tree.  This process is recursively 
followed until either the RFC reaches the 
grid system scheduler (GSS) or a GS with 
computations is encountered along the 
path.  Note that intermediate schedulers 
send one RFC message per channel to their 
parents, but still mark all branches that 
have received RFCs from.  Schedulers use 
space-sharing policy to distribute 
computations among channels, upon 
receiving an RFC message from a 
channel�s branch of a child, as follows: 
 

 NBB rateshare ×=  
 
where Bshare is branch�s share of all jobs 
within scheduler�s subtree, Brate is the 
branch�s transfer rate, and N is the number 
of jobs within a scheduler�s subtree.  Brate 
is calculated as follows: 
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where Bpwr is the branch�s processing 
power, Cpwr is the channel�s processing 
power (i.e. total processing power for all of 
its branches), and M is the number of 
channels in a scheduler.  Note that, in our 
case, the channel�s processing power is the 
number of CPUs that resides under that 
channel, since we assume that our 
computational resources are parallel 
computers (see Section 4).  However, in 
reality, we expect processing power to 
consider more factors such as RAMs, 
bandwidth, etc. 

Now, once a scheduler determines the 
number of jobs that will be pushed onto a 
channel�s branch, it builds a list of those 
jobs as one block and pushes them onto 
that branch.  Suppose, as an example, that 
GS1, in Figure 3.1, has 9 jobs upon 
receiving an RFC message from the first 
branch of the first channel (i.e. via GS3).  
Suppose further that the three branches that 
connect GS1 with its two children have 
equivalent processing power.  In this case, 
GS1 may then push up to 3 jobs onto that 
branch. 
Schedulers perform the following steps to 
collect the jobs (in order to be pushed onto 
a channel�s branch): (1) invokes the 
�butterfly� algorithm, (2) collects jobs 
from the unassigned (i.e. unpushed) jobs, 
and (3) invokes the �load-balance� 
algorithm.  Note that we expect schedulers, 
in practice, to collect more dynamic 
information related to performance (e.g. 
load) or economics (e.g. prices). 
 
3.2.1 Butterfly Algorithm 
The principle behind this scheme is to 
reschedule jobs to better resources (with 
respect to predefined metrics) when they 
become available.  Note that this algorithm 
can be extended to any soft conditions 
imposed by a user where soft conditions 
are the ones that the user is willing to live 
without them until they become available 
(or if they ever become available).  In our 
case, we consider the geographical 
closeness of resources with respect to 
workstations as our metric (we use IP 
addresses to determine location closeness). 
Interestingly, a job may keep jumping (like 
a butterfly) among children�s partitions 
until it settles on the closest resources.  In 
this algorithm, after a scheduler receives 
an RFC message from a child, the 
scheduler will then (1) cancel any assigned 
jobs from other children (if the new child 
is closer to those jobs workstations), and 
(2) push them into the new available 
child�s partition. 
 
3.2.2 Fallback Algorithm 
The fallback algorithm is intended to 
reschedule jobs that become incomputable 



because of the grid losing their required 
resources on their scheduled partitions.  
When an LGS detects resources change, it 
performs rematching for all saved requests.  
Now, if an LGS ends up with the same 
jobs bag, this resource change is then 
irrelevant.  However, if it produces a 
different bag, it will then pass it onto its 
parent. 
Schedulers handle received bags in this 
stage as previously described in the 
resource discovery stage.  Additionally, 
schedulers mainly have to carry out the 
following (of course, parents will also be 
updated): (1) remove any jobs that become 
incomputable, (2) recalculate modified 
channels processing power, and (3) delete 
any broken channels.  For example, 
assume GS10 changes resources and 
produces similar bag to GS9�s bag in 
Figure 3.1.  In this case, GS4 will then 
connect GS10 to the first channel and 
inform its parent (GS1) of two things: (1) 
the first channel new updated processing 
power and (2) the broken second channel.  
Now if GS4 has jobs that become 
incomputable, it will then remove them 
and update GS1.  Note that GS1 
reschedules those returned jobs (if they 
still computable on its partition) with a 
priority (in our case, the lesser the 
sequence number, the higher the priority).  
For instance, GS1 may swap some of those 
returned jobs with assigned jobs in GS3�s 
partition in order to execute jobs in the 
same order of their arrival to the grid. 
 
3.2.3 Load-Balance Algorithm 
As stated earlier, schedulers determine the 
number of jobs (that will be pushed into a 
channel�s branch) by considering all jobs 
within their subtrees.  They will then 
collect those jobs by invoking the butterfly 
algorithm and from queued unassigned 
jobs.  Schedulers will then balance the load 
among the channels by canceling already 
assigned jobs and then reschedule them on 
the channel�s branch that just requested 
more work.  Schedulers are always 
responsible for balancing all assigned jobs 
among their children�s channels within 
their subtrees, since a parent may cause a 

child�s subtree to get imbalanced (i.e. of 
course, parents do not know how assigned 
jobs are distributed within their children�s 
subtrees).  For example, assume that each 
of GS7 and GS8, in Figure 3.1, has four 
queued jobs (of course, GS1 assumes that 
all 8 jobs are still queued at GS3).  Suppose 
now that GS1 decides to cancel four jobs to 
reschedule them on a GS4�s channel in 
order to balance its subtree.  Now, if GS1 
cancels the four jobs queued at GS8, it 
imbalances the GS3�s subtree.  In this case, 
GS3 will balance its subtree upon receiving 
an RFC message from GS8 (or will 
forward the RFC message to GS1, if the 
RFC message is received from GS7). 
 
3.3 Hybrid System 
The hierarchal system (one grid tree) has 
major drawbacks:  (1) all requests are 
submitted to the GSS, which may become 
overwhelmed with too many requests, (2) 
difficult to bring too many organizations to 
agree on things such as constructing the 
grid tree, controlling GSS policies (e.g. 
security), dealing with new joined 
organizations, and (3) difficult to convince 
companies to replace their peer-to-peer 
(P2P) based grid systems.  The hybrid 
system, which is several grid trees that act 
also as peers to each other, as shown in 
Figure 3.2, does not only overcome the 
above drawbacks, but also provides 
organizations more efficient ways to 
manage their own resources such as 
stamping foreign requests with low 
priority, isolating their resources swiftly 
from the entire grid without pumping out 
their pending requests of using their 
resources, etc. 
 
 
 
 
 
 
 

 
Figure 3.2:  Hybrid System Example 

 
In the hybrid system, a GSS in a grid tree 
also acts as a peer GSS (PGSS) that 
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forwards requests (after decrementing hop 
count) to its neighbors.  Of course 
neighbors can be part of any other system 
types (e.g. P2P system).  The P2P system 
can be viewed as a hybrid system where 
each grid tree has only one scheduler, and 
the hierarchal system can be viewed as a 
hybrid system with one peer.  In our case, 
we assume that (1) requests are always 
forwarded to neighbors (i.e. a request dies 
when hop count reaches 0), hence, grid 
trees also serve as backups to each other, 
and (2) foreign and home requests are 
queued in the same fashion.  
 
 
4. Simulation Model and Results 
This section presents the simulation model 
and samples of the obtained preliminary 
results.  Readers are encouraged to refer to 
[1] for the complete set of results and more 
in depth discussion. 
The grid simulation model is broken into 
three submodels: communication, node 
and system models, each of which is 
described below. 
 
4.1 Communication Model 
The communication model, which is used 
by nodes (i.e. node model) to communicate 
with each other, consists of 2400 nodes 
that span across four backbones.  Each 
backbone (600 nodes) consists of four Nets 
where each Net consists of 10 networks, 
each network consisting of 15 nodes.  
Therefore, there are (4 backbones) (4 Nets) 
(10 networks) (15 nodes) which adds up to 
2400 nodes in total in the model. The 
communication model uses the Discrete 
Event Simulation (DEVS) CD++ simulator 
[1, 11] to simulate all communication 
aspects among all nodes. 
The model presented numerous of 
challenges that we had to address to bring 
it closer as much as possible to the actual 
communication over the Internet, which is 
almost an impossible job to do, since the 
Internet is a very large unpredictable 
public network.  We�ve assumed that 10% 
of the model�s capacity accounts for the 
external Internet load and the routers 
processing time based on the studies in [1, 

8], which were based on actual statistics by 
the Internet Service Providers (ISP). 
We�ve also assumed 64 kilobytes TCP 
window size to control data flow [1].  
Backbones in the model are connected 
with 1000 km, 9.6 Gb/s (e.g. OC-192 link) 
cables, Nets/sites are connected with 50 
km, 155 Mb/s (e.g. OC3 link) cables [1, 8], 
and nodes within a site are connected with 
100 MBytes/s [1] cables. 
 
4.2 Node Model 
A node, in the communication model, is 
simply a computer with an IP address.  On 
the other hand, the node component 
contains the implementation of the 
proposed schemes for the grid systems in 
this paper.  A node can be configured to 
operate as a peer, local scheduler, 
intermediate GS, LGS, GSS, PGSS or a 
workstation.  Note that the node�s 
configuration determines the system model 
type. 
 
4.3 System Model 
The grid model can be configured to a 
peep-to-peer (P2P), a hierarchal (one grid 
tree) or a hybrid (several grid trees) system 
model, as discussed below in this section.  
The P2P systems are distributed systems 
and the only ones, to our knowledge, that 
are currently well thought-out by 
researchers [1, 7, 9] to replace the 
centralized systems.  As a result, it is a 
reasonable choice to be compared against 
the proposed hierarchal systems in this 
paper.  
 
4.3.1 Peer-to-Peer (P2P) System 
Once a job request is received at a peer 
that meets its requirement, it contacts the 
workstation to offer its service and times 
for the workstation response (100 ms, in 
our case).  Workstations may accept peers 
service by responding to it or may refuse 
peers service by simply not responding to 
it.  If a peer can not accept a workstation 
request, it decrements the hop count (1000 
in our case) in the message and forwards it 
to its neighbors. In our model, peers accept 
requests if they meet their deadline, which 
is three times the estimated execution time 



for that job.  To improve P2P performance: 
(1) if a workstation doesn�t get a service 
offer within 2 minutes; it resubmits the job 
request again to the grid and (2) neighbors 
are manually configured to be 
geographically close.  However, this may 
not be the case in reality. 
 
4.3.2 Hierarchal System 
The system has one grid tree. The tree is 
constructed by connecting the GSS to 4 
children where each child holds one 
backbone.  Each backbone�s root has 4 
children where each child holds one Net.  
Each Net�s root has two children where 
each child holds 5 sites.  
 
4.3.3 Hybrid System 
The system has several grid trees acting as 
peers to each other. We use two hybrid 
systems in our simulation: 4 grid trees 
system (Hybrid-4T) and 16 grid trees 
system (Hybrid-16T).  In the Hybrid-4T 
system the grid tree of the hierarchal 
system (see previous subsection) is broken 
to 4 grid trees where each backbone has 
one grid tree.  In the Hybrid-16T (16 grid 
trees), each Net has one grid tree.  
 
4.4 Grid Jobs 
A workstation submits a job to the grid via 
its grid entry (e.g. GSS) as a request that 
defines the job minimum requirements 
(JMR) for that job.  Jobs are assumed to be 
executed until completion as batches on 
resources that meet their predefined 
requirements (i.e. operating systems, in our 
case).  Gaussian distribution is usually 
used to simulate the required time to run a 
job on a server in [1, 9, 6, 10] with respect 
to the input job size and server�s 
processing power.  Therefore, we assume 
job sizes are correlated to the amount of 
work performed by each job where the 
input data size is expressed by Gaussian 
distribution with mean µ = b * cpus * wall 
time in seconds, where b = 100, as in [9].  
We also assume a job produces output data 
five times the original input job size.  
 
4.5 Computational Resources 

We assume all resources (i.e. servers) are 
parallel machines that consist of a number 
of interconnected nodes with a number of 
CPUs within a node as in [1, 9].  Table 1 
shows the servers used in the simulation 
experiments, which are originally based on 
real machines [1, 9, 6]. 
 

Server Number of  
Nodes 

CPUs per  
Node 

1 184 16 
2 305 4 
3 144 8 
4 1024 4 
5 64 2 
6 512 4 
7 128 2 

 
Table 1: Computational Resources 

 
Those servers are duplicated in all the 160 
sites in a range of 2 to 6 servers per site. 
The type of the servers and their operating 
systems (Windows, UNIX or LINUX) are 
picked up in random.  We assume 0.1 local 
loads (i.e. not related to the grid) on all 
computational resources at all times, as the 
typical case in most studies like [6].  Note 
that the simulation model consists of 520 
servers versus about 1880 workstations 
throughout all experiments� ratio 1:3.6.  
 
4.6 Workloads 
Unfortunately it was difficult to find real 
traces for grid computing.  However we 
were able to base our workloads on real 
traces for parallel machines and scientific 
applications [1, 6, 9, 12, 13].  Jobs in the 
workloads, that are relevant to this paper, 
use input average sizes of 1GB, 10GB and 
100GB over the following number of jobs: 
520, 1040, 1560, 3000 and 10,000 jobs.  
Refer to [1] for the complete set of 
workloads.  We use Poisson distribution to 
generate input data sizes for submitted jobs 
to the grid where the Poisson mean is set to 
the desired average input size.  In this way, 
jobs are generated with different sizes, but 
with the desired average input size, which 
is close to the typical case in reality.  
 
4.7 Performance Metrics 



We use three performance metrics to 
compare systems:  Total response time, 
average waiting time and average response 
time.  
The total response time (TRT) is the time 
from submitting first job request until the 
completion of all jobs in a workload.  For 
example, suppose that the first request was 
submitted to the grid at 5:00 PM and the 
last job of a workload was completed at 
10:00 PM, the total response time will then 
be 5 hours.  The purpose of this metric is 
to show the degree of parallelism in the 
grid, since we view the grid as a huge 
virtual parallel machine.  The total 
response time (TRT) is calculated as 
follows: 

)( FRSLJCTRT −=  
 
where LJC (Last Job Completion Time) is 
the time that the output (i.e. at workstation) 
of the last completed job in the workload is 
received.  FRS (First Request Submission), 
which is the time of transmitting the first 
request by a workstation. 
The waiting time (WT) for a job is the time 
from submitting the job�s request to the 
grid until the start of the actual job transfer 
to selected resources.  For example, if a 
workstation submits a request to the grid at 
5:00 PM, and gets a service offer from a 
resource at 6:00 PM, the waiting time for 
that job will be 1 hour.  The purpose of this 
metric is to measure the scheduling time 
(i.e. the time it takes until a resource is 
allocated to that job).  The average waiting 
time (AWT) is calculated as follows: 
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where N (Jobs count) is the number of jobs 
in a workload.  SJTT (Start Job 
Transferring Time) is the time when a 
workstation receives a service offer from a 
resource and starts transferring the 
physical job.  RT (Request Time) is the 
time when a workstation submits that job 
request to the grid. 
The execution time (ET) is the time from 
submitting the actual job to the grid until 
the job�s output is received at the 

submitter�s workstation.  For example, a 
workstation receives a service offer from a 
resource at 5:00 PM.  Suppose now that 
the workstation receives the output of the 
job at 6:00 PM, the execution time will 
then be 1 hour.  Although all systems, in 
our model, function the same way when a 
request is mapped to a resource, but we 
still need this metric to measure the 
location where a job was executed at.  The 
average execution time (AET) is calculated 
as follows: 

∑ =
−= N

j jSJTTJCT
N

AET
1

)(1  

 
where JCT (Job Completion Time) is the 
time when the job�s output is received at 
the workstation.  
 
4.8 Simulation Experiments 
We present, in this section, a sample of the 
experimental results in order to compare 
the performance over different scenarios.  
Refer to [1] for the complete set of results.  
Note that regardless of the configured 
system or experiment, the following 
assumptions still apply. (1) The 
computational power in the grid is 
maintained (i.e. 520 servers all the times).  
(2) A job is submitted by one workstation 
and executed by one server.  Note that a 
workstation is called active if it has a 
pending request in the grid.  Otherwise, it 
is called inactive.  (3) A workstation that 
submits jobs according to a stochastic rate 
only operates at that rate while it is 
inactive.  For example, a workstation 
submits jobs to the grid with rate 12 hours.  
Now, when that workstation becomes 
inactive, it waits according to that Poisson 
distribution with a mean of 12 hours before 
it submits another job.   (4) All results are 
obtained by averaging 20 different runs.  
Note that the difference between the worse 
and the best case runs is in the range of 5% 
to 15%.  Perhaps, this is because of having 
too many nodes in the model. 
 
4.8.1 First Experiment 
In this experiment workstations submit 
jobs one after another until the entire 
workload is completed.  This scenario is 



possible when an organization, for 
instance, executes a number of jobs one 
after another automatically as a set.  The 
workload in this experiment is already 
distributed among sites by the submission 
approach.   For example, if site A has 3 
workstations and site B has 6 workstations.  
Most likely, site B will submit twice the 
requests that are submitted from site A. 
The average waiting time (AWT) and the 
total response time (TRT) showed a 
substantial improvement against the P2P 
system regardless of the number of used 
grid trees, workload or scenario, as shown 
in Figures 4.1, 4.2, 4.4 and 4.7.  
Interestingly, the AWT starts declining 
when the hybrid system contains too many 
grid trees.  Perhaps, this is because it gets 
closer and closer to the P2P system as a 
result of continue increasing the trees in 
the system.  The average execution time 
(AET) is almost the same for small jobs (1 
GB), but starts to differ when jobs-size 
increases (100 GB), as shown in Figures 
4.3 and 4.5, which makes sense, since the 
model is built with high performance links. 
 
4.8.2 Second Experiment 
In this experiment, workstations operate at 
different stochastic submission rate where 
each workstation selects, in random, one of 
the following rates: 10 minutes, 30 
minutes, 1 hour, 5 hours, 1 day or 1 week.  
Furthermore, a workload in this 
experiment is not already distributed 
among sites, as in the case of the first 
experiment.  Furthermore, in this scenario, 
sites also have different probabilities when 
generating a job.  For example, if site A 
has 3 workstations and site B has 6 
workstations.  It is not necessary that site B 
is going to submit twice the requests that 
will be submitted from site A.  On the 
other hand, it is quite possible that all 
requests will be submitted from site A. 
Observations of the first experiment are 
also supported by this experiment.  
Furthermore, both the butterfly and the 
load-balance algorithms showed a 
significant influence on the performance of 
the hierarchal system, as shown in Figure 
4.6.  In fact, the more jobs in a workload 

the worse it gets, if the subject algorithms 
are disabled, hence, the more jobs, the 
more performed rescheduling. 
 
4.8.3 Third Experiment 
In this experiment workstations submit 
jobs with the same stochastic rate (e.g. one 
hour rate for all workstations in the grid).  
A workload in this experiment is already 
distributed among sites, as in the case of 
the first experiment.   We study the 
systems with three different rates: one 
hour, one day and one week.   
Observations of the previous experiments 
are also supported by this experiment.  In 
addition, the AWT tends to decline with a 
big slope in the hierarchal systems when 
jobs arrive into the grid with larger mean 
rate.  However, it decreases slightly in the 
P2P system, as shown in Figure 4.7. 
 
4.8.4 Fourth Experiment 
In this experiment, resources change 
according to one of the following 
stochastic changing-rates: One day, three 
days, one week, one month, three months 
and six months.  Note that the changing-
rate is also reselected, in random, along 
with advertised resources.  For example, a 
server selects 6 months changing rate and 
reselects 3 months changing rate when it 
changes its advertised resources. 
Now, when resources-change is a 
possibility during jobs scheduling, the 
AWT turns out the same comparing when 
resources are constant, as shown in Figure 
4.8, which makes sense, since the fallback 
algorithm reschedules jobs while resources 
are already busy in executing other jobs 
anyway. 
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Figure 4.1: A Sample of Average Waiting 

Time in Experiment 1 
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Figure 4.2: A Sample of Total Response 

Time in Experiment 1 
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Figure 4.3: A Sample of Average 

Execution Time for large-size jobs in 
Experiment 1 
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Figure 4.4: A Sample of Average Waiting 

Time in Experiment 2 
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Figure 4.5: A Sample of Average 

Execution Time for small-size jobs in 
Experiment 2 
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Figure 4.6: A Sample of algorithms 

influence on the Average Waiting Time in 
Experiment 2 
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Figure 4.7: A Sample of Average Waiting 

Time in Experiment 3 

0

20

40

60

80

100

120

520 1040 1560 3000

Number of Jobs (Size = 100GB, Experiment 1 Scenario)

Ti
m

e 
in

 H
ou

rs

Changing Resources Constant Resources

 
Figure 4.8: A Sample of Average Waiting 

Time in Experiment 4 
 
 
5. Conclusions 
Many studies jump over the resource 
discovery stage into the second scheduling 
stage by assuming that all jobs can execute 
anywhere in the grid, or simply assuming 
that resources will be discovered using the 
P2P approach.  However, as we�ve shown 
those stages have to be dealt with in a 
sequence because of their dependency on 
each other.  The hierarchal approach has 
not only shown substantial improvement 
over the P2P system, but also the ability to 



be combined with it in one hybrid system. 
Both the average waiting time (AWT) and 
the total response time (TRT) metrics 
showed a large improvement of the 
hierarchal approach against the P2P system 
regardless of the number of used grid trees, 
workload or scenario.  The average 
execution time (AET) metric also showed 
a significant improvement over the P2P 
system for large-size jobs, but almost the 
same for small-size jobs, which makes 
sense, since the model is built with high 
performance links. The three rescheduling 
algorithms showed a big contribution in 
the overall performance of the system.  
The fallback algorithm saved not only 
some jobs of not being able to execute 
because of resources change, but also 
maintained the same system performance 
when resources are constant.  Both the 
butterfly and load-balance algorithms 
saved the system of performing poorly 
when increasing the number of jobs in 
workloads. 
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