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ABSTRACT

Findings from cognitive science link the architectural com-
plexity of multilevel buildings with occupants’ difficulty in
orienting and finding their way. Nevertheless, current ap-
proaches to modelling occupants’ wayfinding reduce the rep-
resentation of 3D multilevel buildings to isolated 2D graphs of
each floor. These graphs do not take account of the interplay
between agents’ 3D field of view and buildings’ 3D geometry,
topology, or semantics, yet these are necessary to inform occu-
pants’ path differentiation during wayfinding. Instead, agents
are often modeled as unbounded and rational, able to calculate
complete paths towards goals that are not immediately visible
using direct routing algorithms. In turn, simulated behavior in
most cases is unrealistically optimal (e.g. shortest or fastest
route). This gap may hinder architects’ ability to foresee how
their design decisions may result in suboptimal wayfinding be-
havior, whether intended or not. To bridge this gap, the paper
presents cogARCH, a computational, agent-based simulation
framework. cogARCH is grounded in research on spatial cog-
nition and heuristic decision making to support pre-occupancy
evaluation of wayfinding in multilevel buildings. To demon-
strate the relevance of cogARCH to architectural design, we
apply it to assess wayfinding performance across three archi-
tectural variations of a multilevel education building. Pre-
liminary results showcase significant variability in cognitive
agents’ wayfinding performance between building scenarios.
In contrast, behavior of shortest-path agents sampled across
respective conditions displayed significantly less variance and
thus failed to reflect potential effects of architectural changes
applied to 3D building configuration on wayfinding behavior.

Author Keywords
Pre-occupancy simulation; Cognitive agents; Wayfinding;
BIM; Agent-based simulations;

ACM Classification Keywords

1.6.1 SIMULATION AND MODELING: 1.6.5Model Devel-
opment; J.6 COMPUTER-AIDED ENGINEERING; 1.2 AR-
TIFICIAL INTELLIGENCE

1 INTRODUCTION
Within the building simulation community, research in the
area of pre-occupancy simulations has mainly focused on
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modelling egress evacuation[2], crowd behavior[21], and most
recently building narratives[23, 17]. These studies focus on
modeling collaborative behaviors to analyze macroscale pat-
terns. As a result, less emphasis is placed on modeling low-
level, microscale behaviors such as wayfinding. Instead, di-
rect routing algorithms (e.g. A*) are used to simulate obstacle
and crowd avoidance along a shortest path between origin and
destination pairs. This approach overlooks agents’ bounded
3D field of view and cognitive limitations observed during
wayfinding in unfamiliar environments, and especially in mul-
tilevel buildings[9, 11].

Cognitive science research on wayfinding in multilevel build-
ings has linked architectural complexity with occupants’ dif-
ficulty in orienting and finding their way[19, 9, 11]. In par-
ticular, discontinuous and discretized horizontal and vertical
sightlines from decision points to such key building elements
as vertical circulation, entrances, and exits is associated with
occupants’ having to rely on fragments of perceived or stored
information to support wayfinding towards goals that are not
directly visible[9, 11]. The incompleteness of this information
may result in erroneous decisions, loss of orientation, confu-
sion, and frustration[16, 9, 11].

Nevertheless, current approaches to simulating movement in
buildings decompose the spatial complexity of 3D multi-
level buildings into isolated 2D graph representations of each
floor[14]. The main shortcoming of this approach is its in-
ability to support 3D field of view calculations in a way that
captures agents’ visual perception of multilevel spaces. Rep-
resenting both the navigation space and agents’ vision in 2D
does not allow dynamic simulation of occupants’ field of view
through a vertical void in the building, such as an atrium
or staircase and towards potential goals at different floors.
Whereas this limitation plays a minor role in wayfinding sim-
ulations set in single-level environments, it poses a barrier to
wayfinding simulations set in multilevel buildings.

Moreover, architectural, semantic, and topological features
linked with 3D building configurations are often not encoded
in the navigation space, although these have been reported
to influence occupants’ ability to differentiate between path
choices[5, 3]. Instead, agents are modeled as essentially un-
bounded and rational and given complete knowledge of the
navigation environment[14]. In turn, simulated behavior in
most cases is optimal (i.e. shortest or fastest route) and fails



to account for reported findings regarding loss of orientation
as a function of vertical travel[19], specific wayfinding strate-
gies observed in multilevel buildings[9], and expectations, that
might be unmet, concerning the association of external cues
with typical building destinations[5]. In the absence of an inte-
grated simulation model that reflects both the cognitive and the
architectural complexity of wayfinding in multilevel buildings,
architects are not necessarily able to foresee the ways in which
their design decisions may result in suboptimal wayfinding be-
havior, whether intended or not.

This paper aims to bridge this gap and make a direct contri-
bution to the building simulation community and in particu-
lar to occupant-centered simulations. We thus present the de-
velopment of cogARCH: a computational, agent-based simu-
lation framework to simulate wayfinding in multilevel build-
ings. cogARCH draws on research from spatial cognition and
heuristic decision making to support pre-occupancy evaluation
of wayfinding during the design process. The paper’s main
contributions are threefold: (1) a parametric cognitive agent
model grounded in theories of spatial decision making and
spatial analysis, and incorporating reported wayfinding strate-
gies in multilevel buildings; (2) a combined approach to sim-
ulating agents’ visual perception in multilevel building space
that integrates 2D isovist fields and a 3D field of view; and
(3) an automated preprocessing pipeline to generate a 3D, hi-
erarchical and semantically rich navigation space from a 3D
Building Information Model (BIM).

To demonstrate the relevance of cogARCH to architectural de-
sign, we perform a sensitivity analysis and simulate wayfind-
ing across three architectural variations of a multilevel educa-
tion building. To highlight the need to model the interplay
between 3D field-of-view and complex geometry of multi-
level space, we consider architectural variations related to ver-
tical visibility, including variation in building materials (e.g.
glass vs. concrete) and floor permeability (e.g. addition of
atria voids). Preliminary results showcase significant vari-
ability in cognitive agents’ wayfinding performance between
building scenarios. In contrast, the behavior of shortest-path
agents sampled across respective settings displayed signifi-
cantly lower variance. Finally, we briefly discuss planned cal-
ibration and validation experiments in virtual reality and crit-
ically assess the relevance of the proposed method to inform
architectural design decisions.

2 RELEVANT STUDIES

2.1 The Process of Wayfinding in Buildings

Visual information is considered a primary input to wayfind-
ing decisions[3, 9]. The building design may facilitate or hin-
der visual access in both the horizontal and vertical axes with
walls, doors, choice of materials, atria, and shafts. Informa-
tion perceived by occupants is used to construct internal rep-
resentations both of the local choice set and of global search
structures, depending on the building’s configuration[22].

Various attempts have been made to quantify visibility based
on 2D floorplans using space syntax methods[3, 1]. Both
global and local measures of visibility can be described using
these methods. For instance, axial map analysis focuses on
global measures of visibility[7]. In contrast, isovists[1, 3]de-
scribe the local spatial properties of a visible area from a given
observation point using viewshed polygons. Amongst 18 iso-
vist measures[1, 3], building locations at which the area of
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each isovist polygon is larger have been correlated with the
locations of decision points[3].

A further link between visible information and background
expectations in directed wayfinding in unfamiliar buildings
is made by Frankenstein et al[5]. They conclude that occu-
pants’ background expectations regarding the association be-
tween perceived environmental cues and locations of typical
building destinations predict local wayfinding choices[5]. En-
vironmental cues are broadly defined and include configura-
tion, materials, objects, people, and activities. Results demon-
strate that building destinations such as auditorium, main exits
and restrooms were associated with more central and public
locations. In contrast, destinations such as rear exit, entrance
to the cellar, and broom closet were associated with peripheral
locations. Central locations were also rated as more public
than peripheral ones. Specific environmental cues were signif-
icantly associated with some goal destinations; for instance, a
chair was rated as indicative of a waiting area.

The ability to differentiate between local choices is crucial
and depends on both the level of architectural differentiation
between path choices[22] and occupants’ reasoning on the
basis of background expectation, local heuristics, and search
strategies. Holscher et al[9] provide an overview of the types
of strategies that occupants employ in multilevel buildings.
Novice occupants are most likely to follow a central-point
strategy of finding one’s way by sticking as much as possible
to central and public parts of the building, even if this requires
considerable detours. More complex strategies include the di-
rection strategy: choosing routes towards the horizontal posi-
tion of the goal as directly as possible[3], irrespective of level
changes. In contrast, the floor strategy is applied when occu-
pants aim to reach the floor of the destination first, irrespective
of the horizontal position of the goal. Occupants familiar with
the building tend to rely on either of the complex strategies.
cogARCH uses these findings to provide a formal model in
which expectations, strategies, and heuristics are used to sim-
ulate unaided and directed wayfinding in multilevel buildings.

2.2 Wayfinding Simulation Approaches

Various models of human navigation exist, most of which are
grounded in the field of pedestrian dynamics. In this field, the
use of microscopic models is becoming especially prevalent
to decompose the complexity of collective emergent behavior
by modeling a single individual agent. The majority of mi-
croscopic models applied to simulate navigation include three
interconnected layers; a strategic layer in which agents choose
between possible destinations to form an activity schedule[4],
a tactical layer that focuses on route choice and path plan-
ning[8], and an operational layer that describes occupants’ lo-
cal ‘steering behavior,” such as obstacle avoidance, speed, and
acceleration[6].

The tactical layer models path planning towards a destination,
essentially modeling the process of wayfinding. However,
the destination is usually given to agents explicitly without
them having to search for it on the basis of perceived informa-
tion. In such cases, the simulation model is focused on path-
planning, assumes global knowledge, and uses graph-based
routing methods to calculate a walking path from an origin
to a destination in accordance with some optimization criteria
(e.g. distance, speed, density, etc.).



Approaches to generating navigation graphs from either 2D or
3D building geometries are various[8] and could be broadly
classified into (1) semantic approaches that identify objects
and relations between them; (2) topological methods that ex-
ploit visual connectivity and accessibility between semantic
or geometric structures in space, such as rooms; (3) metric ap-
proaches such as occupancy grids that describe the distance
and angle between locations in space; and (4) hierarchical
models[12] that propose a multilevel hierarchical representa-
tion combining two or more of these approaches to model in-
door navigation space.

Once a navigation graph is generated, a distinction is made
between egocentric and allocentric routing algorithms. Direct
routing solves the routing problem by providing an optimal
path to the destination based on shortest or fastest path so-
lutions. In contrast, iterative routing algorithms provide the
next node to visit stepwise based on local optima. These algo-
rithms are often used in egress simulations where agents are
used to simulate evacuation to one or more exits. Given that
agents have full knowledge of the navigation environment, the
process of uninformed search using perceived environmental
information is eliminated. Instead, agents calculate a short-
est path towards a goal destination, regardless of its visibil-
ity. The main considerations that govern agents’ movement
are distance minimization, obstacle avoidance, and crowd eva-
sion.

Cognitive approaches to simulating navigation and wayfinding
have mostly focused on wayfinding aided by externalized sym-
bolic information, such as signage, or on undirected wayfind-
ing (i.e. exploration). Penn and Turner[15] developed an
agent that perceives a space and infers spatial relations from a
lookup table that encodes global measures of a visibility graph.
This agent has access to cells captured in its 2D field of view
and moves towards the cells with the highest visual connec-
tivity value. Although this approach takes account of agents’
bounded visibility, information provided relates to global mea-
sures describing the buildings’ configuration beyond agents’
natural perception. Furthermore, this model does not consider
3D visibility and overlooks the role of background expecta-
tions during directed wayfinding.

With regards to 3D visual perception, multilevel building com-
plexity is decomposed into isolated 2D graph representations
of each floor, although agents’ movement is often visualized
on a 3D building model. The main shortcoming of this ap-
proach is its inability to support 3D field of view calculations
in a way that captures agents’ visual perception in a multilevel
space. A few notable exceptions simulate wayfinding using
3D visibility[18, 13], but these studies focus on wayfinding
aided by signage perception using a 3D field of view.

More recently, Kielar et al developed Spice, a framework for
cognitive-pedestrian modeling[10]. Spice’s architecture com-
bines the three-layered approach to pedestrian modeling with
concepts from cognitive and social science. Agents’ decision-
making process is hierarchical and is informed by a 2D field
of view and a 2D representation of an environment. Although
Kielar’s work is very much in-line with our aim of combining
pedestrian modeling with cognitive principles, it does not take
account of wayfinding towards non-visible goals and for 3D
visual perception of multilevel spaces.
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3 THE COGARCH SIMULATION FRAMEWORK

3.1 Overview

The development of cogARCH aims to overcome the limi-
tations discussed above and simulate the process of unaided
and directed wayfinding in unfamiliar, multilevel buildings.
Achieving this requires both a cognitive agent model to rep-
resent human spatial search process and a navigation space to
represent the building search space, and these must be both
sufficient and complementary. To this end, cogARCH pro-
vides a computational framework in which a cognitive and
parametric agent model interacts with a 3D, hierarchical and
semantically rich navigation space generated from a BIM rep-
resentation of a multilevel building.

cogARCH consists of three core modules: (1) spaces (2)
agents, and (3) tasks. Simulation parameters are specified and
controlled by (4) a batch simulator module or by a (5) GUI
module that enables manual assignment of wayfinding scenar-
ios and supports expert-based visual inspection of the simu-
lation in real-time. Data collected during the simulation is
stored in (6) a data collector module from which it is further
analyzed and visualized using (7) analysis and visualization
engine. The chosen development environment is Unity3D, a
video-game engine that is able to support the physics and pro-
cessing of complex geometries. Figure 1 provides an overview
of cogARCH’s framework structure.

3.2 Spaces

The navigation space in cogARCH is hierarchical. Each layer
describes geometric, topological, semantic or metric prop-
erties of the building that are necessary to support agents’
wayfinding decisions. Three interconnected layers are gen-
erated from the building description, imported as an IFC file
from a BIM environment. The first layer consists of 3D con-
vex zone partitions that discretize the building space into high-
level path choices. Zones are created manually during the
modeling of the building in a BIM environment. Zone bound-
aries are determined by two criteria: visibility and semantics.
In contrast to purely continuous representations of navigation
spaces such as those that discretize space uniformly into equal-
sized cells, each of which is a unit of choice, the syntactical na-
ture of zones allows similar and adjacent cells to be grouped
semantically into meaningful units of spatial choice.

We distinguish two types of zone: (a) room-like zones, which
are ‘naturally’ bounded in both horizontal and vertical dimen-
sions by walls, floors, ceiling, doors, and other surfaces; and
(b) open-area zones, which are spaces that are not directly
bounded by a surface, but rather indirectly, by applying sur-
face extension[16] in the horizontal and vertical dimensions.
For example, a long corridor along a row of offices is subdi-
vided into zones to reflect the variation in information continu-
ity that results from the ability to look through office doors and
towards office spaces. Accordingly, while moving from one
zone to the next, new visual information is available. Transi-
tion points are thus located on the boundaries of zones. We
refer to these locations as decision thresholds in which agents
make local decisions and choose amongst alternative zones.
Each zone stores features related to its semantics (e.g. office,
public), objects (e.g. desk, chair), and connected thresholds.

The second layer of the navigation space builds upon the first
to derive a threshold graph. This graph represents the topolog-
ical relation between zones and thresholds. Whereas the first



Figure 1: The cogARCH framework: A BIM model input is automatically processed into the layers of the hierarchical navigation
space. Tasks and agent type are set using a batch simulator to execute simulations directly inside the GUI or remotely using a
computing cluster. The simulation output is exported to a database for further analysis and visualization.

two layers represent high-level movement choices, the third
layer provides low-level metric information to support opera-
tional movement (e.g. path calculation, obstacle avoidance).
This layer consists of a multi-floor occupancy grid that pro-
vides a metric representation of walkable space. The occu-
pancy grid graph is continuous along staircases without any
need to link separate floors manually. The occupancy grid
graph is also used to cast 2D isovists from each grid cell to
form an isovist field. An area measure per isovist is calculated
and mean isovist area for all cells within each zone is com-
puted. The generation of the hierarchical navigation space is
automated using a preprocessing pipeline. The output of pre-
processing steps using this pipeline is visualized in Figure 1.

3.3 Agents

We assume that agents have no prior knowledge of the navi-
gation space and that they are searching for a semantically de-
fined destination, such as an office or entrance. Agents’ tem-
plate consists of the following four components: (1) a goal-
specific expectation function (2) a 3D field of view (3) work-
ing memory, and (4) a state machine that represents the agent’s
decision-making process.

Similarly to the hierarchical navigation space described in the
previous section, agents’ wayfinding decisions follow a hierar-
chical structure from coarse to fine [9]. Three decision-making
layers guide agents’ wayfinding: (1) a strategic layer supports
agents’ ability to approximate the location of non-visible des-
tinations; (2) a tactical layer allows agents to make local turn
choices to move in the direction of the approximated destina-
tion; and (3) an operational layer allows agents to calculate an
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obstacle-free shortest path towards a visible target. The three
layers composing the navigation space correspond to each of
these decision-making layers. The strategic layer is informed
by 3D zones, the tactical layer is supported by both 3D zones
and the threshold graph, and the operational layer is supported
by the occupancy grid.

An agent’s access to each layer of the navigation space is
bounded by its 3D visual field of view. At each decision
threshold, an agent casts a 3D field of view and constructs
a choice set of adjacent and visible zones and a set of zones
that are only visible but not reachable in one time-step. This is
critical for multilevel buildings in which potential goals could
be visible, for instance. through atria, but are not directly ac-
cessible (e.g. because they are at another level).

To determine the approximate location of the destination,
agents’ strategic decision-making layer is in charge of ranking
zone alternatives for expected cues according to its expecta-
tion function [5] or chosen wayfinding strategy [9, 3]. The
wayfinding literature leads us to assume that agents would
strive to maximize the correspondence between features of
perceived zones and their goal-specific expectations or strate-
gies. We thus formulate both expectations and strategies as a
multi-objective optimization function per goal.

Instead of evaluating all zone alternatives for all possible fea-
tures, a process that would require significant cognitive re-
sources, agents apply the notion of heuristics to differentiate
between alternative zones. Heuristics are used to compare
zone alternatives in a more human-like manner. Accordingly,
agents prune the number of alternative zones to only those sat-
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Figure 2: Selected time steps showcasing a sample task performed by a cognitive agent in building scenario 2 (Glass): At T=1,
the agent casts a 3D field of view. At T=2 it evaluates zone alternatives based on destination expectations. The global goal is
not visible so it ranks zones based on central point strategy using mean isovist area measure per zone. At T=6 the agent moves
towards the threshold of the zone with the highest mean of isovist area. At T=12 the agent doesn’t gain new visibility information
and the floor strategy is triggered. The agent moves to a visible zone with vertical circulation. At T=23 the agent moves up the

staircase and during so perceives its global goal.

isfying distinct criteria. This heuristic follows the elimination-
by-aspects theory of decision making. This theory states that
alternatives will be ignored if they do not fit within specific
definitions of acceptability [20].

Algorithm 1: Agents’ Decision-Making Process

Input: Agent’s 2D and 3D perception of the environment
Output: Time history of agent’s position and decision
making
while Global Goal Is Not Visited do
Cast 3D field of view;
Log to Memory;
Rank zones by expectation;
if Global Goal is Visible then
if Path is Visible then Follow Visible Path ;
else if Path in Memory then
| Follow Path from Memory;
else if Goal in same level then
if NewRandomNumber < 0.3 then
| Rank zones by Direction Strategy:
else Rank zones by Floor Strategy ;
else Rank zones by Floor Strategy ;
else Rank Zones by Central Point Strategy ;
Set Local Goal Zone;
Chose threshold;
Find Shortest Path;
Move to threshold;

end

Upon pruning the set of alternatives, agents aim to identify the
highest ranked zone alternatives (i.e. that best match agents’
expectations or strategy). This process is performed by rank-
ing each zone for each relevant cue. If a zone matches all cues,
the agent sets it as global goal, meaning the location of the fi-
nal destination has been identified. If none of the zones meet
agents’ expectations, the agents rank the zones again for cues
associated with the central point strategy. In this case, agents
constrain their choices to public zones and aim to maximize
mean isovist area per zone. [sovist area provides agents with a
local measure of integration and is thus preferred over global
measures such as visual graph connectivity.

Once a goal has been set, agents rely on their tactical decision-
making layer to choose between visible zones that are also ad-
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jacent. If an agent is at the same floor as the goal, it may
choose either the central point strategy or the direction strat-
egy to rank adjacent zones. In the direction strategy, the agent
strives to minimize the horizontal angle deviation towards the
goal, thus choosing the zone that best meets this condition.
If the agent is at a different floor from the goal, it can either
perform the direction strategy or execute the floor strategy, in
which it searches for an escalator, staircase, or elevator based
on its expectation of vertical circulation cues. Once an adja-
cent zone has been chosen, the agent relies on its operational
layer to calculate a shortest path using the A* algorithm and
reach a threshold at a boundary with the adjacent zone.

This decision-making process repeats at every threshold until
the agent finds its destination. Visited zones and thresholds
are logged to construct a graph as part of the agents’ working
memory and allow the agent to follow a path from memory.
The current stage of the framework’s development does not
incorporate angular distortion of stored locations or memora-
bility on the basis of visual and semantic saliency. Addition-
ally, a shortest-path agent using A* algorithm is implemented
to simulate a benchmark shortest-path and compare it against
cognitive agents’ paths.

3.4 Wayfinding Tasks

In cogARCH, wayfinding tasks consist of a single origin and
either one or multiple destinations. Both origin and destination
are defined by a zone rather than a point. Zones can be selected
through direct interaction with the building model using the
GUI or indirectly by specifying the semantics of destination
zones: entrance, exit, staircase, elevator, or sitting area.

3.5 Simulation setup

Several parameters are used to define each simulation: (1)
building scenario, (2) tasks, (3) type of agents performing each
task, (4) the number of agents of each type to perform each
task, and (5) the number of samples to be collected per sce-
nario. Parameters can be set either manually through the GUI,
or with a text file in JSON format to support headless batch
execution.

4 CASE STUDY RESULTS

To demonstrate the potential of cogARCH to architectural de-
sign, we apply it to evaluate variability in wayfinding perfor-
mance across three multilevel building scenarios with system-
atically varied architectural design. Figure 3 shows 3D models



(a) Scenario 1: Base case

(b) Scenario 2: Glass shafts

(c) Scenario 3: Atria

Figure 3: Three building scenarios were evaluated. Scenario 1 is the base case building and the highlighted elements are those
subject to variations. In Scenario 2, we apply material variation to the circulation shaft. Instead of a concrete enclosure, as in the
base case, a glass facade is set. Scenario 3 presents a variation in floor permeability in the form of atria added to the second floor.
Paths of both agent type for a subset of 5 tasks are included per scenario. ( —, Shortest-path agent), ( —, Cognitive agent)

Max I

Ls <l mm Lo
= W
<

L4
i mf

| Sdy area }
L2 L2
8] 8]

Path points density

E
5

(a) Shortest-path agents,
across scenarios

(b) Cognitive agents,
Scenario 1.(Base Case)

(c) Cognitive agents,
Scenario 2. (Glass shafts)

(d) Cognitive agents,
Scenario 3. (Atria)

Figure 4: Overlay of paths with 3D path point kernel density across 5 tasks for both agent types for each building scenario

Building Scenario

Agent Type 1 (Base case) 2 (Glass Shaft) 3 (Atria)
Cognitive 10500 10500 10500
Shortest-Path 10500 10500 10500

Table 1: The experimental setup used to conduct simulation
experiments. 21 initial zones x 5 destinations x 100 samples
=10500 samples in total per agent case pair. A total of 63000
samples

of all three building scenarios. The base case building (Sce-
nario 1) spans 5 building floors. The building program con-
sists of a cafeteria, auditorium, exhibition space, open-space
study areas, classrooms, office spaces, meeting rooms, indoor
patios, and a roof terrace. Vertical circulation between floors
is enabled by two staircases and two elevators located in en-
closed concrete shafts. The building has two main entrances
on the ground floor, located on opposing facades. Two varia-
tions to the base case building are introduced. The first one,
Scenario 2, replaces the concrete enclosure of both circulation
shafts with a glass facade. The second variation, Scenario 3,
introduces a series of small-scale atria on the second floor sim-
ilar to those on the fifth floor.
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Model Effect Coef. Std.Err. z

1 dist ~ buil. + type  buil. 2.701 1.768 1.528
type 96.682  2.887 33.485

2 dist ~ buil. S(B-G)  buil. 2.737 0.131 20.926

3 dist ~ buil. C(B-G) buil. -26.323 1487 -17.697

4 dist ~ buil. S(B-A) buil. -3.781  0.385 -9.825

5 dist ~ buil. C(B-A) buil. 14.343  2.190 6.549

Table 2: Results of a Mixed Linear Model regression for pre-
liminary data

The proposed variations aim to make wayfinding in the base
case building more efficient by increasing vertical visibility
between floors. Architectural changes are specifically applied
to the three-dimensional configuration of the building. We do
so to demonstrate the need for a cognitive agent with a 3D
field of view in order to capture potential effects these varia-
tions may have on wayfinding performance and could not be
observed using a shortest-path agent. Accordingly, we simu-
late both shortest-path and cognitive agents” wayfinding across
typical tasks typical of novice occupants. These tasks consider
21 initial origin zones combined with one of 5 semantically
defined destinations. A total of 63,000 samples is generated,
see the experimental setup in Table 1. Monte Carlo type sim-
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Figure 5: Comparison of simulated wayfinding performance across tasks, agents and building scenarios

ulations were performed to evaluate the distribution of the re-
sults. Randomization has been introduced to agents’ initial
headings. The simulations were executed using a computing
cluster through singularity-based containerization.

Preliminary results regard a subset of 5 tasks that origin from
the buildings’ main entrance. Figure 4 shows the difference
in path dispersion using kernel density estimation. It can be
observed that path density in shortest-path agents (see Fig-
ure 4a), is highly localized and shows minimal variability
across scenarios in comparison to cognitive agents, (see Fig-
ures 4b,4c,4d). This results is further reflected when com-
paring average distance performance between cognitive and
shortest-path agents across those 5 tasks Figure 5a. Whereas
shortest-path agents showcase minimal performance variabil-
ity, cognitive agents’ performance varies largely between sce-
narios.

Given that distance performance varies across the 5 selected
tasks (see Figure 5b), we provide further evidence through 5
Mixed Effects Model Regressions (MEMR) considering the
wayfinding tasks as random effects, summarized in Table2.
MEMR 1. models the building and agent type as fixed ef-
fects, and is evaluated across the subset of 5 wayfinding tasks.
The model results show that the major effect across the en-
tire sample is due to the agent type (an increase of 96.68m in
the path lengths). All subsequent models evaluate individu-
ally either the shortest-path agent (S) or the cognitive agent
(C) against a pair of scenarios (i.e. Base case vs Glass (B-G)
or Base vs Atria considering only the building as the fixed ef-
fect. MEMR 2. shows that the architectural variation (Glass)
has a marginal variation in shortest-path agents’ performance
and a minimal increase in the path length (2.737m); In con-
trast, MEMR 3. shows that this effect is substantial in the case
of cognitive agents with an improvement of performance of
(26.323m) from the base case scenario. Although MEMR 4
leads to the same observations as MEMR 2, it is interesting
to notice that the effect of the atria (scenario 3) is actually a
decrease of performance (14.343m) for the cognitive agents,
meaning that agents covered more distance to find their way
across tasks. Although this result could be counter-intuitive, it
highlights the need for simulation tools such as cogARCH to
inform architectural intuition with quantifiable metrics.
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The presented sub-sample intends to show the potential of
cogARCH to quantify the effects of architectural variations
on wayfinding performance for a small-scale scenario that di-
rectly translate to a specific use-case (i.e. novice occupants).
The rest of the results showcase cogARCH’s ability to process
larger data sets (e.g. from the 105 possible task we selected
26 named A through Z in Figure 5c). Figure 5c showcases
mean distance covered by cognitive agents across 26 tasks for
all three building scenarios. As can be seen, mean distance
across tasks within samples from the same building scenario,
as well as between scenarios, varies. In this case the analysis
is unequivocal in favour of one building scenario with respect
to our design objective (i.e. more efficient wayfinding). This
finding reflects the complex nature of architectural design and
the need for simulation tools to reveal potential performance
tradeoffs that are not necessarily intuitive to predict otherwise.

5 CONCLUSION

The ability to foresee how architectural design decisions im-
pact occupants’ wayfinding can provide ample inspiration to
inform design decisions and actively facilitate wayfinding by
architecture. Multilevel buildings, with their multiple usages,
complex three-dimensional configurations, and many origin
and destination pairs, provide particular challenges that cur-
rent simulation tools have not yet addressed.

To bridge this gap, the paper presented cogARCH, a com-
putational simulation framework to evaluate wayfinding per-
formance in multilevel buildings. Preliminary results have
demonstrated cogARCH’s capacity to capture significant vari-
ability in wayfinding behavior given architectural design vari-
ations applied to a 3D multilevel building. This finding stands
in contrast to the significantly less varied wayfinding perfor-
mance of shortest-path agents sampled under the same scenar-
ios. Extending our work and validating our findings requires
a validation protocol. To that end, a series of virtual-reality
and real-world experiments is underway to replicate the be-
haviors simulated in cogARCH. By comparing observed be-
havior against simulated, the predictive power of our model
will be assessed and the model adapted as necessary.

Future applications of cogARCH aim to extend its cognitive
agent to deal with prior knowledge of the building and pro-



cesses of knowledge acquisition. We further aspire to integrate
other models of cognitive agents and to establish benchmark
cases for assessing variability between models against real-
world and lab-based data. Concurrently with extending cogA-
RCH, we aspire to integrate it in simulation-based generative
design workflows. Such integration would incorporate evalu-
ation of wayfinding performance alongside other performance
criteria to prune the solution space. Such an approach has
the potential to introduce a much-needed occupant-centered
perspective to future applications of architectural optimization
and design automation.
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