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Abstract

An important class of ecological problems concerns propagation processes. In ecological modelling, these phenomena generally

occur on large scales and are generally difficult to simulate efficiently because of the number of entities. Studies of this kind of
phenomena lack genericity and reusability because they are often presented from the point of view of a single domain expert.
Simulations made by domain experts seem to lack genericity for computer science specialists and simulations developed by computer

science specialists seem not to grasp the terminology and problems of the domain experts. We propose here a general object-oriented
framework for modelling and simulation of propagation processes. Object-oriented techniques help in developing generic and
reusable models. From modelling to simulation, the Unified Modelling Language (UML) provides a common means of

communication between computer science specialists and domain experts. The Model Driven Architecture (MDA) is used to
improve object-oriented methodology. Simulation optimisations are defined for discrete time models of propagation. The approach
is applied to the modelling and simulation of fire spread. Starting from wasteland fire problems, specification levels are used to

gradually specify a fire spread simulator. Each level of the study is specified in UML and thus can be reused in another wasteland fire
problem.
� 2004 Elsevier Ltd. All rights reserved.

Keywords: Fire spread modelling; Fire spread simulation; Propagation process; Object oriented technique; Discrete event simulation; Model Driven

Architecture
1. Introduction

Ecosystems show a high degree of heterogeneity in
space and time (Jørgensen and Bendoricchio, 2001).
Studying the dynamics of such systems requires the
development of models, able to consider both time and
space parameters. These models are spatially distributed
models. Among the phenomena studied through spa-
tially distributed models, propagation processes where
a lateral transfer of energy, mass or information occurs
( fire spread, oil spills, insect infestation, watersheds,
etc.) represent an important class of problems.
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Modelling propagation processes on large scales gen-
erally present two main difficulties. First, the large
number of intricate phenomena influencing the propa-
gation leads to collaborate with specialists of different
disciplines (ecology, physics, mathematics, biology,
etc.). Then the large volume of data and the number
of operations the models have to manage lead to the use
of computer simulation. From system analysis to pro-
gramming, object-oriented methodology can be used to
facilitate these two tasks.

The object-oriented approach is now well recognised
to benefit ecological modelling directly (Silvert, 1993)
and has been used in different ecosystem simulations
(Sequeira et al., 1991; Baveco and Lingeman, 1992; Chen
and Reynolds, 1997; Holst et al., 1997; Hill et al., 1998;
Neil et al., 1999; Alfredsen and Sæther, 2000; Spanou
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and Daoyi, 2000; Yang et al., 2002). The benefits of this
approach for ecological modelling can be summarised as
follows: (1) the safe reuse of code increases productivity;
(2) clear and understandable code is open to scientific
review; (3) through easier maintenance, simulation
models remain useful research tools for long periods
and; (4) common modelling concepts facilitate commu-
nication within and across research groups.

The simulation of propagation processes is per-
formed through cell space models. In ecosystem propa-
gation, the landscape is divided into parcels of land
(cells) interacting together. According to Tobler (1979),
a cellular (or cell) space model consists of an infinite
two-dimensional array of polygons (cells), each of which
is, at any time, in a state determined by the states of a set
of ‘neighbour’ cells according to some uniform location-
independent rules.

Cell space dynamics is generally achieved using
Cellular Automata (CA) (Von Neuman, 1966). Standard
CA are simple mathematical idealisations of natural
systems (Wolfram, 1994). They have been widely applied
in ecological modelling (Spencer, 1997; Dunkerley, 1999;
Sirakoulis et al., 2000; Dumont and Hill, 2001; Matsinos
and Troumbis, 2002; Soares-Filho et al., 2002; El
Yacoubi et al., 2003; Loibl and Toetzer, 2003). CA
consist of an infinite lattice of discrete identical sites,
each site taking on a finite site of, say, integer values.
The values of the sites evolve in discrete time steps
according to deterministic rules that specify the value of
each site in terms of the values of neighbouring sites. CA
are models where space, time and states are discrete
(Jen, 1990).

The originality of CA is to deal with relationships
between parts of a system producing macro-behavioural
complexity with simple local rules (Wolfram, 2002).
Nevertheless, as models of real-world spatial pheno-
mena, basic CA are restricted by those background
conventions the simplicity of which makes the richness
of their behaviour so unexpected (Couclelis, 1985)
(neighbourhood and rules uniformity of the cells, one
discrete state per cell, closure of the system to external
events and infinite lattice). According to experimental
conditions, cell behaviours and neighbourhoods of a CA
often need to be different. One boolean state per cell is
also usually not sufficient when dealing with complex
deterministic systems. Finally, external events modifying
cell states of the CA during the simulation can be
necessary. Therefore, CA often need to be modified for
simulation purposes (Worsch, 1999; Berjak and Hearne,
2002; De la Fuente et al., 2003). These problems can
be overcome by using object-oriented techniques
and discrete event simulation (DES) (Zeigler, 1976;
Fishwick, 1995; Hill, 1996). Considering a propagation
domain, traditional CA compute at each time step the
transition functions of all the cells, even the cells that
remain in an inactive state. However, in a fire spreading
application, for example, computations only need to be
concentrated around the fire front. Discrete events allow
to focus the simulation on the active cells of a propaga-
tion domain thus optimising the simulation. DES has
been used recently in the last decade for ecological
modelling purposes (Turner et al., 1982; Huston et al.,
1988; Pukkala, 1988; Auger and Faivre, 1993; Baveco
and Smeulders, 1994; Breckling and Müller, 1994; Hill
et al., 1994; Maxwell and Costanza, 1994; Coquillard,
1995; Laughlin et al., 2003).

Among the disturbing propagation processes for eco-
systems, fire and its influences on ecosystems remain a
vast research field for numerous disciplines (biology,
ecology, economy, physics, computer science, etc.).
Modelling such a phenomenon needs to carefully iden-
tify all the behavioural categories and all the interac-
tions between these categories. The collaborative field is
so large that, starting from the phenomenon, different
abstraction levels are needed to efficiently define the
problem of interest and its interactive relationships.
Nowadays there is no generic method capable of repre-
senting and guiding scientists in such a field.

The object technology revolution has allowed the
replacement of more than 20-year-old step-wise pro-
cedural refinement paradigm by the more fashionable
object composition paradigm. Currently, this evolution
seems to be triggering another even more radical change
towards model transformation. As a concrete trace of
this, the Object Management Group (OMG) is rapidly
moving its previous Object Management Architecture
vision (OMA) to the latest Model Driven Architecture
(MDA) (Bézivin, 2001). Although the object-oriented
and component-based engineering are useful and proved
to be adequate for many applications, they also proved
to be limited when dealing with concrete interoperability
in large software systems. Such techniques can still be
efficiently used, but they must be considered as
belonging to the past. The MDA proposes a model
engineering approach, not to suppress OO modelling or
component-based modelling but to enhance what has
proved to be limited.

Using the MDA a new generic methodology can be
defined. Non-computer science experts, such as ecolo-
gists, benefit directly using such a methodology. First, at
a high level of description, fully abstract models can be
defined using the expert terminology. Then, cooperation
with other experts from different disciplines is also eased.
For example, to study forest spreading, one can imagine
a Forest Model, composed of a Forest Spreading Model
and a Forest Decreasing Model. The Forest Decreasing
Model can then be composed of a Fire Spread Model,
defined by physicists, and a Deforestation Model, defined
by biologists. After that, the Physical Fire Spread Model
can be decomposed into different Fire Spread Simulation
Models by computer scientists, and so on. At each level,
using a common ontology and standardized graphical
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representations to describe the models and their con-
nections, expert communications are enhanced, even if,
at a high level of specification, models are simply viewed
as black boxes by some experts.

The paper is organised as follows. Firstly, a back-
ground is provided on the MDA and the simulation of
fire spread. Secondly, a complete step-by-step modelling
and simulation process is proposed thus providing a first
MDA level architecture. Then, each step of the process
is specified. Starting from a wasteland fire phenomenon,
we gradually focus on the study of fire spread through
a mathematical model. This is followed by a design
framework for cell space simulation. Next, two generic
architectures for simulating efficiently explicit and im-
plicit models of neighbour-to-neighbour propagation
are presented. Using these simulation architectures,
simulations of the mathematical model of fire spread
are then depicted. Finally, we sum up our contribution
and define new perspectives.

2. Background

Modelling and simulating a phenomenon involve
using different abstraction levels. From the problem
definition to the simulation system, the MDA proposed
by the OMG helps to specify each modelling step. In
a fire spread problem, different simulation approaches
have been used until now. Each of these approaches has
been achieved within a particular frame of interest
(improvements of simulation models and ready-to-run
software). Defining a higher abstraction level of design
for this kind of problem is interesting for the specialists
of the domain under study or for specialists of domains
interacting with fire spread.

2.1. Meta-modelling concepts

A specific model usually simulates a special aspect of
a complex system with a particular modelling and
simulation technique (Partial Differential Equations,
Cellular Automata, Neural Networks, Individual Based
Model with or without Genetic Algorithms, etc.). A
multi-model of a complex or huge system can be
achieved with a composition of different specialized
models of arbitrary kinds and with several abstraction
levels (cf. Fig. 1). In addition, model components can be
simulated separately, thus the principle of multimodel-
ling is to support the hierarchical refinement of
heterogeneous models through functional coupling.
The computational refinement or derivability of a model
is a tough problem that should not be hushed up.
Thorough discussions dealing with model derivation can
be found in Zeigler (1984) and Fishwick (1995).

The analogy between multimodelling and object-
oriented programming has been demonstrated by
Cubert et al. (1997), Frick (1997) and Fishwick et al.
(1998). Furthermore multi-models can be specified by
Zeigler’s DEVS formalism (Discrete Event System
Specifications), which presents a mathematical ground
helping to handle the well known aggregation problem
(Zeigler, 1976) encountered by biologists and simula-
tionists. DEVS has been successfully applied to various
ecological problems with multiple aggregation levels
over the last decade. There is a close link between multi-
formalism as discussed by Zeigler (1979) and multi-
modelling: they are both founded on theoretic system
concepts but they can be distinguished since they rely on
different abstraction levels. In order to meet multi-
modelling requirements, Fishwick (1996) introduced
a new methodology called Object-Oriented Physical
Modelling (OOPM) to extend the classical object-
oriented analysis and design methods in use in the
simulation community (Hill, 1996).

OOPM and DEVS models are well suited to precisely
specify simulation models. Incidentally, DEVS concepts
and techniques are used hereafter to design a cellular
simulation model. However, both methodologies lack
well defined tools to describe models at a very high level
of abstraction. Studying large complex systems needs
more and more to connect and identify abstract models
from different disciplines. This can be achieved by using
high level interdisciplinary models. The specification of
the models can then be performed by different domain
experts. Nevertheless, generic tools have to be provided
to describe these models at each level of specification.
These tools can then be used for communication
between different domain experts. Both DEVS and
OOPM approaches use the object-oriented reasoning.
Recent advances in object-oriented concepts can be used
to define a new high level methodology.

The history of object-oriented analysis and design
methods led to UML (Unified Modelling Language) in
1997. UML is the subject of a lot of research and UML
2.0 has recently been adopted by the OMG as the new de
facto standard. It provides a sound basis for MDA and
represents the next evolutionary step in our ability to
express and communicate system specifications. In our
work we retain UML for our multimodel designs since
they will be more widely read using this graphical nota-
tion. It proposes to various domain experts a unified
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Fig. 1. Simple UML multimodel and basic UML legend.
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view of a system and helps solving communication
problems (Baskent et al., 2001).

Since the adoption of the Meta Object Facility
(MOF) recommendation by the OMG in 1997, the
importance of model engineering in the information
system and the software development process has
rapidly increased (Breton and Bézivin, 2002). A key
role is now played by the concept of meta-model in new
software organisations like the OMG meta-model stack
architecture. At the top of this architecture there is the
MOF that provides a language for defining meta-
models. This meta-meta-model aims at describing a
particular domain of interest by defining a set of
concepts and relations between these concepts.

A four-layer architecture has progressively taken
shape. It is organised as follows:

M3: the meta-meta-model level (contains only the
MOF);

M2: the meta-model level (contains any kind of meta-
model described in UML);

M1: the model level (contains any model description
in UML with a corresponding meta-model in M2);

M0: the concrete level (contains any real situation,
unique in space and time, described by a given
model).

MDA provides both an environment to define platform-
independent models (PIM) and generation services to
map these models to a particular platform producing
a platform-specific model (PSM).

2.2. Simulation of fire spread

Today, most ready-to-run software for fire spread
simulation (Veach et al., 1994; Finney, 1995; Coleman
and Sullivan, 1996; Lopes et al., 2002) and simulations
of fire spreading on large-scale (Wu et al., 1996; Albright
and Meisner, 1999; Hargove et al., 2000; Miller and
Yool, 2002) are based on Rothermel’s model (Roth-
ermel, 1972). A lot of effort has been placed in
improving simulation of Rothermel’s model. In the
CA field studies pinpoint the need for developing new
classes of CA for fire spreading applications (Karafylli-
dis and Thanailakis, 1997; Berjak and Hearne, 2002).
Based on discrete event formalisms and object-oriented
programming many applications have been proposed to
improve CA capabilities for fire spread simulation
(Vasconcelos et al., 1995; Ameghino et al., 2001; Barros
and Ball, 1998; Muzy et al., 2002, 2003). Unlike CA,
these models can receive external updated information,
and the fire perimeter can be updated at any moment
due to the continuous time nature of the discrete event
specifications and active cells can be dynamically created
and removed to save memory for large cell spaces.

By the way, object-oriented programs of cellular
models are closer to reality than procedural programs.
Considering an object Cell, the behaviour of a patch of
a land can be designed by the Cell methods. The states
of the patch can be described by the Cell attributes. A
Cell object corresponding to a class, the class can be
reused to implement other cells containing different
behaviours or states. Modifications of the behaviour or
states can then be easily achieved by designing a new
class, inheriting from the previous one. Polymorphism
can also be used to specify new behaviours.

Nevertheless, all these recent advances in the field of
fire spread simulation do not deal with real-time con-
straints. As far as we know, even if these approaches
improve simulation model reusability and simplify
simulation model modifications, only one of them is
capable of simulating fire spread models requiring more
computer resources under real time deadlines (Muzy
et al., 2003). To give real-time advice for fire fighters,
execution times of fire spread simulators have to be as
small as possible compared to an actual fire propaga-
tion. Moreover, small execution times mean increased
productivity of researchers experimenting new models.
Simulation software have thus to deal efficiently with the
large amount of data and operations required by fire
spread models. However, every approach has been
achieved only at a simulation level without putting the
study in a larger context.

3. The modelling and simulation process

The development of a simulation system is performed
through a software development life cycle. Numerous
works have conceptualised the whole or a part of this
development cycle (Zeigler, 1976; Fishwick, 1995; Zeigler
et al., 2000). Based on these studies, two approaches pro-
posed a complete software development life cycle (Hill,
1996; Traoré and Hill, 2001). We used these two ap-
proaches to develop a new generic software development
life cycle. This cycle is presented as a meta-model of level
M0 (Fig. 2). It is composed of three phases: identifica-
tion, engineering and integration. The aim of the cycle is
to provide a decision support for a large application
domain. This meta-model can then be reused for simu-
lation model development.

The identification phase is the beginning of a simula-
tion study. This phase consists in defining a problem
concerning a phenomenon. Then formulating the prob-
lem a system is identified within an application domain.
Objectives are formulated corresponding to the question
the system has to answer about the phenomenon.

The engineering phase consists of iterative processes
through which informal knowledge is transformed into
an ultimate executable form: the programmed model.
To achieve this goal, the system is specified at different
levels of abstraction through a PIM. Each level of
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Fig. 2. Modelling and simulation life cycle.
abstraction has to be verified with regard to the last level
of specification.

First a domain analysis has to be conducted together
with the specialist of the domain and the software
designer. The objects, the relations and the behaviours
brought out are those of interest for the domain specia-
list. This work constitutes the domain class model. After
this phase, the object-oriented analysis (OOA) consists
in defining the real system with the system class model
which instantiates a subset of the domain class model.
Then, an object-oriented design proposes the structure
and the behaviour of a conceptual model. Different
abstraction levels can be used to build the conceptual
model. The last level is coded in the implemented model
corresponding to the PSM. Finally, the implemented
model outputs are compared to the system objectives.

The integration phase exploits the simulation results
to provide information to a decision support (human-
kind and/or a computer system). The decision-makers
can interact with the simulation system (1) proposing
new plans of experiments and (re)use of the simulation
results to solve the problem; (2) improving the system
knowledge looking at the conceptual model; and (3)
sending commands to the physical system (if it exists) or
to the conceptual system (if the system has to be
(re)configured).

All the abstraction phases of Fig. 2 can be specified
by a meta-model. Using UML, this meta-model de-
scribes in a precise manner the interactions between the
different models and entities defined above (Fig. 3). An
experimental frame can be added to establish the set of
experiments for which the model is valid (Zeigler, 1976;
Jørgensen and Bendoricchio, 2001). Separating the
model description from the experiment limits the
changing of experiment description for new experiments
(Lorek and Sonnenschein, 1998).

4. Application to fire spread modelling

Consideringwasteland fire phenomena, defining a con-
ceptual model consists in gradually specifying a partic-
ular domain of interest. Here, starting from a domain
class model of wasteland fire we focus on the fire
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Fig. 3. UML meta-model of the modelling and simulation process.
behaviour dynamics. The system class model then
consists in a fire propagation experiment. Finally,
a solution is proposed through a conceptual mathemati-
cal model of fire spread. All these phases constitute
a PIM of the model level of MDA and can be reused by
other domain specialists.

4.1. The domain class model

Study of a wasteland fire phenomenon can be broken
down into four packages (Fig. 4):

1. The Human Action package encompasses develop-
ment of wasteland fire prevention strategies in-
cluding land management and equipment policies as
well as the elaboration of technical or regulatory
solutions for reducing the number of wasteland fire
ignitions and fighting fires.

2. The Environmental Conditions package evaluates
wasteland fire risks, describes geographic and
climatic conditions and provides vegetation models.

3. The Ecological Impact package includes knowledge
of fire consequences.
4. The Fire Dynamics package provides a description
of the fire behaviour dynamics.

Fig. 5 details the fire dynamics package. The study of the
fire behaviour dynamics consists in describing chrono-
logically the ignition, the propagation and finally the
extinction. These phases can be mathematically de-
scribed. Mathematical models provide the flame front
position using the temperature distribution in complex
fuel.

To achieve this goal an experiment is used to provide
input data or information and to validate the model. A
fire spread experiment obviously modifies the real world
to collect data of interest. Using an experiment, the
propagation domain is described through the geogra-
phy, the vegetation and the climate. Depending on the
scale of the experiment and of the degree of precision the
modeller has, different types of mathematical models
can be used. To achieve real-time simulation, simple
mathematical models have to be used to predict the
main behavioural features of fire.

Based on the classification of Weber (1990), three
kinds of mathematical models for fire propagation can
WASTELAND FIRE DOMAIN 

FIRE DYNAMICS

ECOLOGICAL IMPACT

HUMAN ACTION ENVIRONMENTAL
CONDITIONS

Fig. 4. Package diagram of fire domain breakdown.
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Fig. 5. Excerpt of the fire domain class model: the Fire Dynamics package.
be identified according to the methods used in their
construction. The first type of models are statistical
models (McArthur, 1966), which make no attempt at
involving physical mechanisms, being merely a statistical
description of test fires. The results can be very success-
ful in predicting the outcome of similar fires to the test
fires. However, the lack of a physical basis means that
the statistical models must be used cautiously outside
the test conditions. The second category of models
incorporates semi-empirical models (Rothermel, 1972)
based on the principle of energy conservation but which
do not distinguish between the different mechanisms of
heat transfer. Rothermel’s stationary model is a one-
dimensional model, in which a second dimension can be
obtained using propagation algorithms (Richards, 1990)
integrating empirically wind and slope. Finally, physical
models (Albini, 1985) integrate wind and slope effects in
a more robust manner describing the various mecha-
nisms of heat transfer and production. Physical mech-
anisms are described using a chemical, thermal and
mechanical definition of basic fire phenomena. Hence,
physical and semi-empirical models use the definition
of basic fire phenomena to physically describe fire
propagation.

4.2. The system class model

We used data of experimental fires conducted on
Pinus pinaster litter, in a closed room without any air
motion, at the INRA (Institut National de la Recherche
Agronomique) laboratory near Avignon, France (Balbi
et al., 1999). Rigorous experiments were performed in
order to observe fire spread for point-ignition fires under
no slope and no wind conditions. The experimental
apparatus was composed of a one square meter
aluminium plate protected by sand. A porous fuel bed
was used, made up of pure oven dried pine needles
spread as evenly as possible on the total area of the
combustion table in order to obtain a homogeneous
structure. The experiment consisted in igniting a point
using alcohol. The resulting spread of the flame across
the needles was closely observed with a camera and
thermocouples.



834 A. Muzy et al. / Environmental Modelling & Software 20 (2005) 827e842
Semi-empirical Model

energyConservation() :

Model from Physics

heatTransferMechanisms() :

Reduced Model from Physics

Mathematical Model of Fire Spread

domainTemperatures : Vector

flameFrontPosition() :

Statistical Model

statisticalDescription() :

Focuses on the main 
mechanisms involved
in a fire spread

Fig. 6. Mathematical modelling of fire spread.
4.3. The conceptual model

Once the laboratory experiment has been defined,
a mathematical model has to be designed to simulate the
fire spread. The large number of data and phenomena
leads to a model simplification. Nevertheless, the des-
cription of the laboratory fire spread is a simplified case
of fire spread. Actual fire spread often necessitates
combining different mathematical models.

Among the models from physics (Fig. 6), the
multiphase approach which takes into consideration
the finest mechanisms involved in fire spreading is the
most complete modelling that has been developed so far
(Grishin, 1997; Larini et al., 1997). Although the simula-
tion of such models requires a very long calculation
time, the multiphase approach can be used to improve
or develop simpler models dedicated to fire spread
simulators (Giroux, 1997; Dupuy and Larini, 2001). To
achieve such a simple model, we have developed a
strategy based on the reduction of multiphase models.
This leads to a reduced physical model focusing on the
main mechanisms involved in fire spreading (Balbi et al.,
1999). This last model is non-stationary and two-
dimensional.

This model uses elementary cells of earth and plant
matter. Under no wind and no slope conditions, the
temperature of each cell is represented by the following
PDE:

vT

vt
¼ �kðT� TaÞCKDT�Q

vsv

vt
in the domain ð1aÞ

sv ¼ sv0 if T!Tig ð1bÞ

sv ¼ sv0e
�aðt�tigÞ if TRTig ð1cÞ

Tðx; y; tÞ ¼ Ta at the boundary ð1dÞ
Tðx; y; tÞRTig for the burning cells ð1eÞ

Tðx; y; 0Þ ¼ Ta for the non-burning cells at t ¼ 0 ð1fÞ

where, considering a cell, Ta (27 (C) is the ambient
temperature, Tig (300 (C) is the ignition temperature,
tig (s) is the ignition time, T ((C) is the temperature,
K (m2 s�1) is the thermal diffusivity, Q (m2 (C/kg) is the
reduced combustion enthalpy, D is the Laplacian in two-
dimensional Cartesian coordinates, a (s�1) combustion
time constant, sv (kg m�2) is the vegetable surface mass,
sv0 (kg m�2) is the initial vegetable surface mass (before
the cell combustion).

The model parameters are identified from experimen-
tal data of temperature versus time. The heat transfer of
the model is sketched in Fig. 7.

Eq. (1a) has to be solved numerically. Although
analytical solutions exist for simple mathematical
models of fire spread (Weber, 1989), generally, numer-
ical methods are necessary to solve complex mathemat-
ical models of fire spread. Two numerical methods can
be used to discretise the model: the Finite Element
Method (FEM) and the Finite Difference Method
(FDM). In a previous study, we applied both methods
(Santoni, 1997). Although they provided the same

( )aTTk −

t
Q

∂
∂ TK ∆TK ∆

Fig. 7. Heat transfer of the semi-physical model.
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results, the FEM appeared more complex to implement,
and involved longer execution time. Thus, the FDM was
chosen because of its simplicity and equally good
performance.

The propagation domain is divided into a rectangular
grid. With the FDM, Eq. (1a) can be discretised with
both explicit and implicit schemes. Simulation models
obtained with an explicit scheme are easier to implement
while those obtained with an implicit scheme are
numerically more stable.

Using an explicit scheme, a discrete time model, well
suited for computer simulation, is retained. The study
domain is meshed uniformly with cells of 1-cm2 and
a time step of 0.01 s. The following algebraic equation is
obtained:

TkC1
i;j ¼ aðTk

i�1;jCTk
iC1;jÞCbðTk

i;j�1CTk
i;jC1Þ

CcQ
vsv

vt

� �k

i;j

CdTk
i;j ð2Þ

where Tij is the grid node temperature. The coefficients
a, b, c and d depend on the time step and mesh size
considered. At each time step k, every temperature is
calculated for the next time step kC1.

Using an implicit scheme, the Eq. (1a) is discretised
onto the domain propagation and leads to a linear
system. The system is solved using the Jacobi iterative
method (Sibony and Mardon, 1998). The study domain
is meshed uniformly with cells of 1-cm2 and a time step
of 0.1 s.

TkC1
i;j ¼ a#ðTkC1

i�1;jCTkC1
iC1;jÞCb#ðTkC1

i;j�1CTkC1
i;jC1Þ

Cc#Q
vsv

vt

� �k

i;j

Cd#Tk
i;j ð3Þ

Every temperature is calculated at the same time step. A
convergence condition is used to pass onto the next time
step.

5. Design framework for cell space simulation

Different choices of software architectures can be
selected to simulate propagation processes. Developing
efficient, reusable and easy to maintain programs is
a long and difficult task. However, for a class of systems,
different programming techniques and principles can be
identified to propose a reusable software architecture.
A framework is a guide for the modeller in the
implementation phase. It is an abstract idea of an
application structure, i.e. a reusable design for solutions
to problems in some particular domain, than can be
a system or a part of a system (Campos and Hill, 1998).

5.1. Conceptual model for cell space simulation

To achieve a simulation model of a cell space we
distinguish between different objects (Fig. 8). First, we
separate the simulation model into a Simulator package
and a World modelling package. The Simulator package
controls and schedules events. The World modelling
package represents the model of the real world to
simulate. Separating computer model and simulator
makes it possible to reuse a simulator for many models
thus reducing development time (Zeigler et al., 2000).

Modelling with object-oriented approaches is based
on the concepts of hierarchy and taxonomy, which are
the two organising principles in ecology (Sequeira et al.,
1991). By composition, the simulation of a cell space can
be constructed in a hierarchical way (Fig. 9). We use the
system entity structure (SES) to represent the simulation
model composition (Zeigler, 1984). SES allows to refine
object-oriented hierarchical trees generally provided in
ecological modelling literature (Chen and Reynolds,
1997; Baveco and Lingeman, 1992) differentiating single
and multi-decomposition. In a SES a single bar (r)
represents single decomposition and a triple bar (M)
represents multi-decomposition.

The Simulator class is composed of object classes
such as the synchronization kernel (Synchro. Kernel)
that uses the time (Time). Using the simulation kernel,
the Simulator manages the simulation of the World
modelling package. The former is also composed of the
Cell Space class and the Experimental Frame one. Here,
the Experimental Frame can be seen as an object
selecting data from real world and validating simulation
results. In the World Modelling Package, behaviour
and structure are separated. In ecological propagation,
structure concerns parcels of landscape. More precisely
structure concerns the value of the model’s state vari-
ables in each parcel (biomass, presence of an organism,
food resources, etc.) (Laval, 1996; Congleton et al.,
1997). Each state variable of a parcel (which generally
corresponds to rasters of Geographical Information
System (GIS)) is embedded in an array of object cells
(Parcel Attributes) thus containing multiple state vari-
ables. Dynamics of the parcels changing one of their
state variables is achieved through a Vector of active
cells.

Modelling ecological systems needs different abstrac-
tion levels communicating together. More generally,
holistic and reductionistic views can be used to
complementarily specify a model (Goguen and Varela,
1979; Jørgensen and Bendoricchio, 2001). Besides the
cell’s rules used to represent the system dynamics at
a low level (Local Rule), rules can be used at a higher
level (Global Rule) in the Cell space to represent the
evolution of the global state of the system.

5.2. Coupling the world model and data landscape

Let us now focus on the coupling of the World model
and data landscape. The World object can be considered
as the object container possessing all entities in the
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Fig. 8. Proposition of a design framework for cell space simulation.
simulation and being coupled with the data landscape.
In large propagation phenomena, a GIS generally
provides the latter. This case can be handled easily by
means of the Experimental frame (Vasconcelos et al.,
1995). The relevant issues we retain are: the number of
active and passive cells, the spatial environment di-
mension and its scale of representation, the velocity
performance and the memory capacity required.

In accordance with these issues, two basic approaches
can be retained to encapsulate and to manipulate the
world data structure (Campos and Hill, 1998) (Fig. 10).
The first is spatial oriented and the second is entity
oriented. In a spatial-oriented approach we can see the
world like a grid providing a matrix of positions where
a position can be assigned to an entity. This approach is
suitable for simulations with a large number of entities
and where the computer time performance is more
important than memory constraints. The second ap-
proach is for simulations with few simulation entities
and when we do not want to use the large memory space
required by a spatial localisation table (matrix of
positions). Thus, localisation information is saved inside
the entity instead of having a matrix of position where
a position points to the entity. As a consequence, little
memory space will be lost in the simulation implemen-
tation. However, the computer time performance will
decrease since to get information about environmental
position we may have to consult all entities in the worst
case.

For large-scale cell space simulation, a combination
of the first two approaches can be achieved using a
spatial-oriented representation for the Grid of state
variable and an entity-oriented representation for the
Vector of active cells (Fig. 8). To respect real-time
deadlines, dynamic allocation has to be suppressed for
these classes. Indeed, for significant numbers of object
instantiation/deletion dynamic allocation is inefficient

Object Simulator

Cell Space

Simulation Kernel

Experimental Frame

Vector of Active Cells Cell

Parcel Attributes

Fig. 9. The system entity structure for the cell space simulation.
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and a specialised static allocation has to be designed
(Stroustrup, 2000). A pre-dimensioning via large static
arrays and vectors can be easily achieved thanks to
current modern computer memory capabilities.

The Vector of active cells is updated using a DES.
A start-index and an end-index delimit the current
calculation domain on the vector. Thus initial active
cells that return in a quiescent state during a simulation
run can be dynamically ignored in the main loop. At
each time step, by modifying the value of the indexes,
new tested cells can be added to the calculation domain
and cells that return in a quiescent state are removed
from the former.

6. Simulation models for neighbour-to-neighbour

propagations

The design framework previously introduced is used
here to implement an optimised simulation of a neigh-
bour-to-neighbour propagation. In Section 4 we saw
that the numerical resolution of the PDE (Eq. (1a)) leads
to two algebraic Eqs. (2) and (3). The differences
between Eqs. (2) and (3) are (1) the condition used to
increment the discrete time base added for Eq. (3); (2)
a modification of the value of the equation parameters;
(3) a different value of time step. Using the previous
design framework, most of the classes previously defined
can be reused and few modifications have to be achieved
on some classes. Modification (1) leads to testing the
event occurrences in the Synchro. Kernel (Fig. 7).
Modifications (2) and (3) induce little modifications of
the Time and Cell classes. This phase represents the last
abstraction level of a PIM.

6.1. The pure event scheduling approach

For neighbour-to-neighbour propagation, a generic
rule can be implemented in the Cell space class to
control the evolution of the calculation domain (corre-
sponding to the set of active cells). To control the
domain evolution, propagation states have been added
to the cells (testing for the cells at the edge of the
propagation, non testing for the cells whose state is not

E
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A

Position (3,1)

Position (5,3)

Position (6,6)

Position (4,7)

Position (2,4)

E

D

C

B

A

Entity-oriented structureSpatial-oriented structure

Fig. 10. Choices of world data structure for DES.
tested at each state transition and quiescent for the
inactive cells in quiescent state).

A neighbour-to-neighbour propagation example is
sketched in Fig. 11 for a cardinal neighbourhood. In our
algorithm, only the bordering cells test their neighbour-
hood, this allows to reduce the number of testing cells.
The test depends on the cells’ state. If the tested cell
fulfils the requested condition, the cell becomes an active
cell and new tested neighbouring cells are added to the
set of active cells.

In the case of fire spread, two grids of state variables
are used. One to store the propagation states, the other
to store the temperatures of cells. As the phase of a cell
(unburned, burning and burned ) only depends on the
temperature of the cell, the phases are directly embedded
in the cell objects.

6.2. The activity scanning modification

Activity scanning (also known as the two-phase
approach) was first introduced by Buxton and Laski
(1962). An activity is what transforms the state of an
object over a period of time. An activity is initiated by
the occurrence of an event and is ended by the
occurrence of another event. Under the activity scanning
conceptual framework, the modeller describes an
activity in two parts: condition and actions.

In order to try to remedy the execution inefficiency of
activity scanning, Tocher (1963) suggested the three-
phase approach, which combines activity scanning and
event scheduling. A classification is made to separate
unconditional and conditional activities. The three-
phase approach executes sequentially (Pidd, 1984)
(1) the time-scanning (A Phase); (2) the bound-to-occur
or book-keeping activities that represent the uncondi-
tional state changes (unconditional events) which can be
scheduled in advance (B phase); (3) the conditional or
co-operative activities that represent the state changes
which are conditional upon the co-operation of different
objects or the satisfaction of specific (compound) con-
ditions (C phase).

t t+h t+2h

?

?

?

?

??

??

?

?

?

non testing testing

quiescent

Propagation states

Fig. 11. Evolution of the calculation domain.
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Terminate
Simulation ?
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Add neighbouring cells to the active set

ACTIVITY 2

CellPhase == 'quiescent'

Remove the cell from the active set

Fig. 12. Three-phase approach modification for implicit model simulation.
Fig. 12 depicts an adaptation of the three-phase
approach for the simulation of implicit models.
A principal time scanning loop is in charge of the
simulation time (A phase). However, the A phase has
been duplicated by a smaller loop in charge of the
iteration time base (A# phase). As long as the states of
all cells do not converge, the transition function of a cell
is executed. Once the state of a cell converges it is added
or removed from the calculation domain (C phase).

7. Results of fire spread simulation

For the PSM we chose to program our implemented
model in CCC for efficiency reasons. We used three
techniques for the simulation phase (Balci and Sargent,
1989; Youngblood and Pace, 1995; Hill et al., 1996): (1)
comparison validation: comparison of simulation results
with an experiment; (2) confrontation validation: asking
physicists if the results and behaviour of the simulation
model were consistent; (3) graphic validation: using
visualisation and animation to make use of the human
ability to apprehend spatial relationships.

Fig. 13 shows a comparison of the simulated and
experimental fire fronts obtained for a point-ignition.
Black squares represent the experimental fire fronts.
Fig. 14 represents the evolution of the active cells
around the fire fronts. Finally, Figs. 15 and 16 depict the
execution time gain (on a 500 MHz Pentium III
processor) obtained focusing on the active cells of the
propagation domain. It is noticeable that this gain is
more important for a three-phase simulation. Indeed,
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Fig. 13. Simulated and experimental fire fronts at: (a) t ¼ 122 s and (b) t ¼ 144 s.
for the implicit method if the time step is greater than
the explicit one (ten times), the number of iteration per
time step is lower than ten. Moreover, the number of
active cells is approximately equivalent at each time
step. Hence, if at the end of the simulation the three-
phase method will execute 10 million cell transition
functions, the pure discrete event one corresponding to
the explicit model necessitates 56 million cell transition
functions.

8. Conclusion

We have presented a method for modelling wasteland
fires and simulating fire spread. This method uses both
the latest advances in the field of software engineering
and new developed simulation and modelling tools.
Except for the PSM all the PIMs can be reused in
another propagation problem or by another research
domain on wasteland fires. The final PSM developed
using the MDA architecture proved to be efficient in
terms of execution time and has been qualitatively
validated against experimental data.

Model composition seems to be well suited to eco-
logical modelling. Model representation allows aggre-
gating different ecological features providing a problem
overview. Description of model interactions facilitates
the communication between specialists of different
research domains. Structure or concepts of this new
framework can be used by other object-oriented ap-
proaches designed for cell space simulations, which
generally lack genericity. Modules of the framework
can be adapted for new problems integrating specific
data (experiments and parcel attributes), behaviours
(rules of the cells or cell space) or time schemes (simu-
lator part of the framework). Optimisation concepts
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concentrating the simulation on active cells can also be
reused to significantly reduce simulation time of large
cell spaces.

The method now needs to be tested for other
ecological systems and thus refined for the encountered
problems. In the wasteland fire field other subdomains
than fire spread can be studied in more detail and
connections to the fire spread models can be developed.
Other PSM can also be tested using our first architec-
ture. Once sufficient work has been done in a specific
application domain, UML profiles (Fuentes and Valle-
cillo, 2001) will be able to be designed for these
applications. These profiles focus on the common
properties of systems of the same application domain.
Domain experts can then use these macro-architectures
as the software designers used the well known design
pattern micro-architectures (Gamma et al., 1995; Holst
et al., 1997).
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