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Abstract— Discrete Event Simulations (DES) are the most
commonplace tools for modelling today’s manufacturing fac-
tories and their processes. DES are becoming steadfastly
integrated into their corresponding physical counterparts to
administer greater avenues for their analysis, control, forecasts
and optimisations in real-time. However, this growth does not
materialise without a penalty in the form of computational
burden. The demand for flexible and alternate approaches to
accelerate DES is made necessary. Hence, the utilisation of
GPUs to comply with such acceleration presents a research
topic of growing interest. This work investigates the use of
the Machine Learning platform TensorFlow with GPUs to
accelerate a variety of manufacturing-domain DES using the
SimPy simulation framework. A range of results were gathered,
of speed-ups spanning between x1.4 and x3.21, paving the
way for further enhancements towards the vision of real-time
communication between simulation and physical system in the
form of a complete Digital Twin.

I. INTRODUCTION

Of the ideologies that exist in the realm of High Perfor-
mance Computing (HPC), the use of Graphics Processing
Units (GPUs) to accelerate applications is becoming increas-
ingly prominent in a spectrum of domains, such as biology,
finance, modeling and simulation, etc. GPU acceleration can
be defined as an application leveraging the high instruction
throughput and memory bandwidth capabilities of GPU
architecture so that it can execute faster than it does on
Central Processing Unit (CPU) architecture [1]. Originally
developed for the specific use of graphics rendering, GPUs
have since evolved to become general purpose hardware -
mainly thanks to the inception of the Compute Unified
Device Architecture (CUDA) application programming in-
terface (API) developed by the company NVIDIA in 2007.
CUDA allows for high-level programming access to GPUs,
greatly simplifying the compatibility of GPU threads to
work with different codebases [2]. As a result, the GPU
acceleration methodology has superseded the benefits of
other acceleration techniques such as Field Programmable
Gate Array (FPGA) acceleration, multi-core acceleration and
distributed computing. GPUs provide both a higher level of
parallelism compared to CPUs and FPGAs, as well as avoid
issues related to the complex architecture and expensive
hardware of distributed systems [3].

Simulation can be defined as the imitation of a real-world
process or system over a period of time. Thus, owing to
their general compute-intensive nature, it is of no surprise to
find that the utilisation of GPUs to improve the performance

of simulations is widely sought after by researchers and
industrial institutions. Whether represented physically or
by a computer, simulations allow one to draw important
inferences concerning the system it represents. Simulations
are the most prevalent modelling technique for all various
types of processes ranging from medicine, education and
environmental studies to manufacturing and military ser-
vice [4]. This work is concerned with the use of GPUs and
computer simulations of manufacturing processes, discussed
in detail next, but findings are expected to have relevance
beyond this single application domain.

The remainder of this article will be structured as follows.
First, Section II establishes the necessary background. Sec-
ond, Section III will delve into previous work related to the
GPU acceleration of manufacturing simulations and note the
prominent works of GPU-based DES. Next, Section IV will
describe the approach proposed to accelerate SimPy-based
DES using GPUs, Section V will explain the experimentation
implemented alongside the presentation of tangible results.
Section VI will end with a conclusion summarising the main
findings, finishing with a note on the future work.

II. BACKGROUND

Manufacturing simulations can be split into three main cat-
egories: Discrete Event Simulation (DES), System Dynam-
ics (SD) and Agent-Based Simulation (ABS). Of these three
categories, rising firm above the two aforesaid simulations,
DES is the most popularly adopted [5]. Hence, the field and
category of simulation that forms the focus of this work are
manufacturing and DES respectively (the reader here should
understand that DES, ABS and SD are not solely utilised in
the field of manufacturing and have a broader scope of use).

DESs model a system as an interacting set of entities
that evolve through different states as internal or external
events happen; when an event occurs, certain changes are
triggered in the model and there are no changes in modelling
variables between two events. In simpler terms, a system is
modelled as a discrete sequence of events in time [6]. Hence,
the variation of system complexity that DESs can model
is considerably broader compared to SD and ABS (for a
more comprehensive view, there are several detailed pieces
of literature differentiating between the three simulation
techniques [4], [5], [6], [7]. DES allows for a variety of
metrics (e.g. system throughput, Work In Progress (WIP),
resource utilisation and financial gain), what-if scenarios and
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future forecasts to be assessed and considered. There exists
a large number of case-studies and literature concerning the
applications and advantages of DES in industrial settings,
relevant examples include: [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19].

Since DES is the most popular simulation technique in
manufacturing, the demand of improving its performance in
terms of execution time is high. The driving force behind
this demand can be attributed to competitive markets that
dominate the realm of manufacturing as well as the potential
for DES to work in real-time alongside the system it repre-
sents, enabling physics-based predictions of future system
behaviour (supporting future visions such as production
facility Digital Twins). One of the methodologies to address
speed-up in DES has been the ability to achieve its paral-
lelisation across distributed multi-core computing systems,
a feat in which the parallel-DES (PDES) community have
constantly proven and optimised in several works. However,
the noted issues that distributed computing inevitably brings
to DES are that of expense, maintenance and specialised
knowledge - such that the procurement of a DES speed-up
is often neutralised by these factors [20], [21]. Hence, the
prospect of using a commodity GPU to achieve higher DES
parallelisation at low-cost and low-maintenance compared to
distributed systems is one that has received attraction.

This is where difficulties have been identified between
the compatibility of DES and GPU architecture. GPUs usu-
ally execute applications in the order they were submitted
whereas DESs consist of an asynchronous/discrete time
advance mechanism - creating an inharmonious mismatch
between the two [1], [22]. These difficulties, however, have
not prevented researchers from applying effort to rectify
and create novel workarounds/alternatives for them to be
minimised. Thus, there have been several frameworks and
libraries developed to achieve GPU-applied DESs, resulting
in experiments that have proven speed-up is possible. These
will be detailed further in the next section. However, it is
sufficient here to state that more research is required to
maximise the full-potential that GPUs have to offer to DES.

To this end, this work has been set out to explore the use
of GPUs for accelerating DESs. In particular, we will assess
approaches to extend SimPy1, a process-based discrete-event
simulation framework based on standard Python.

III. RELATED WORK

Concerning current research trends towards the GPU ac-
celeration of manufacturing simulations, it can be stated
that ABSs have shown more success than DESs. The main
attributable reason for this is that ABSs consist of an
intrinsically parallel codebase with non-mutually-exclusive
agents - perfectly complementing the architecture of a GPU
and, hence, requiring less GPU-porting effort compared to an
asynchronous DES codebase. Examples proving this include
Li et al. work [23] of porting the Agent Management and
Agent Interaction modules of a typical ABS codebase to a

1https://simpy.readthedocs.io/

GPU for greater simulation efficacy. The results found that
the performance of simulations running the GPU-enhanced
versions of the modules outperformed the optimised CPU-
versions substantially. Moreover, in a different work, Li et
al. [24] developed a GPU parallelisation scheme for 3D ABS
of In-Stent Restenosis (ISR). The scheme was successfully
realised and conveyed significant results in the sense that a
typical serial ISR model went from a run-time of greater than
fifteen minutes to only thirty-five seconds when parallelised
on a GPU. This paves the way for larger-scale ISR models
to be developed without the disruptive worry of computing
time and proves a reminder of the sheer power that a
GPU can accommodate. In another notable work, Saprykin
et al. [25] created a simulator by the name of GEMSim
to accelerate large-scale agent-based mobility and traffic-
forecasting simulations. Here, a large-scale mobility scenario
simulating the entire country of Switzerland was executed
on both GEMSim and an optimised MATSim (a non-GPU
version of GEMSim). The results between the two simulators
were compared and conveyed that GEMSim achieved a
speed-up of sixty-eight times, requiring a total of less than
five minutes to run on a standard workstation with a GPU.

Moving on to the literature related to GPU-based DES,
there are several prominent works to note. Tang [26] presents
a GPU DES kernel equipped with three algorithms to min-
imise the incompatibilities between DES and GPU archi-
tecture. The three algorithms consist of a breadth-expansion
conservative time-window computation to minimise the cost
of thread synchronization, a memory management algorithm
to store events in a balanced manner and an event re-
distribution algorithm to decrease the possibility of branch
divergence. The kernel was named gDES and three CPU
standard simulations were executed with and without the
kernel. In all three cases, their performance with the kernel
was higher. Chapuis et al. [22] develop a framework for
the PDES engine, Simian, on GPUs. This framework allows
modelers to quickly exploit the potential of GPUs for PDES
via event handlers that fit the GPU paradigm. A hybrid
simulation was tested on the framework and was able to
achieve a speed-up compared to the non-GPU Simian engine.
However, a limitation of this work is that the framework is
not domain specific and the efficiency of its use on different
PDESs will vary. Furthermore, Perumalla [27] discusses an
alternative DES event-processing data structure, as opposed
to the traditional queuing model, to benefit the maximum
GPU utilisation. The essence of this data structure is to
cast events into a stream-processing paradigm consisting
of a stream of events and a stream of logical processes.
However, this proposal appears to have not been tested in
any tangible simulation thus far. Moreover, Park [2] was
able to contribute rather significantly. Park’s addition was the
building of a CUDA-based library to support DES parallel
event scheduling and queuing models on a GPU - a feat
that proves it is possible to efficiently harness the power
of a GPU on traditional queuing structures. This approach
explicitly implements a parallel Future Event List (FEL)
for selectively updating and scheduling events on the GPU
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and was experimented against sequential heap-based FEL
simulations. Although significant speed-ups were achieved
using the developed library, the simulation results were
slightly inaccurate by approximately 3% numerical error. In
simulations with flexibility in output results, this could be an
acceptable outcome for the advantage of speed-up.

To conclude the review, this work aims to add to the contri-
butions of GPU-enhanced DES by proving the possibility of
accelerating SimPy simulations with TensorFlow-GPU [28].
The forthcoming section will detail the approach proposed.

IV. APPROACH PROPOSED
The overall approach of this work was to employ

TensorFlow-GPU across various DES SimPy models and
assess the impact on simulation performance. For the eval-
uation of each model’s performance, the computation size
was varied between small, medium and large; with each
computation’s execution time being compared among CPU-
only, TensorFlow-CPU (TF-CPU) and TensorFlow-GPU
(TF-GPU) instances. The TensorFlow instances were applied
and activated through the appropriation of the Anaconda
distribution environment2 via Kelvin2 (a HPC cluster at
Queens University Belfast3). The remaining portion of this
section will delve into greater detail regarding TF-GPU and
its utilisation to run the SimPy models. Following this, each
SimPy model under experimentation - all of which cater
flexibility in terms of parameters and characteristics - will
be introduced and described.

TENSORFLOW-GPU (TF-GPU)
TensorFlow (TF) is a software library that uses data-flow

graphs to represent computation, shared-state and the opera-
tions that mutate shared-state. Although primarily exercised
and exploited for Machine Learning operations and algo-
rithms such as Deep Neural Networks, TF supports a wide
variety of applications [28]. The basic principle behind TF is
to adopt a unified data-flow graph to portray the computation
in an algorithm and the state in which the algorithm operates.
This includes individual mathematical operations, parameters
and their update rules, and the input pre-processing. Edges in
the graph carry tensors or multi-dimensional arrays between
nodes and transparently inserts the appropriate communica-
tion between distributed sub-computations. The advantage
of this paradigm, compared to traditional parameter-server
designs where the management of shared state is built in to
the system, is that the data-flow graph expresses the commu-
nication between sub-computations explicitly, thus making it
easy to execute independent computations in parallel and to
partition computations across multiple devices [28].

The TF platform supports running computations on both
CPUs and GPUs, and is principally targeted for the Python
programming language. Once a GPU is recognised on the
system, TF code will transparently execute on a single GPU
with no further changes required. This transparency proved
to be an essential trade-off when deciding between TF-GPU

2https://www.anaconda.com/
3https://www.ni-hpc.ac.uk/Kelvin2/

and PyCUDA [29] for the experiments to follow. Whilst
PyCUDA exposes the entire CUDA C/C++ API to Python
and allows for fine-grained optimisations to be fashioned
in Python code, a large proportion of the code-base would
require to be re-written in C/C++ alongside other additions
dealing with data transfer to and from GPU memory. As
a result, the portability and transparency that is required to
deal with the various SimPy models in question is lacking
compared with TF-GPU.

There are three main channels to install TF. The first
channel is the installation of TF directly in Python with
the ‘pip install’ command. The second channel is through
a virtual environment such as Anaconda and the final is
through a container setting such as Docker4. Since the
Kelvin2 cluster does not grant direct installation in Python
and caters minimally for containers, the TF installation and
activation avenue taken for this particular work was through
Anaconda’s virtual environment.

SIMPY MODELS

The purpose of this section is to describe the three SimPy
models being investigated for their potential acceleration
through the route of TF-GPU alongside the significance that
this may deliver.

A. Basic BPMN model

Of the three models under investigation, the basic Business
Process Modeling and Notation (BPMN) model [30] is the
most simplistic in terms of functionality. Regardless of its
straightforward nature, the model represents and illustrates
a core behaviour typical in DES SimPy applications. The
model is a portrayal of a simple process whereby entities
are created in a source that pass a process-step and leave
the system via a sink. The main parameters at the source are
inter-arrival time and number of entities with the computation
size able to be varied by adjusting the latter.

Owing to the fact that this simple model acts as a building
block to SimPy models of greater purpose, any significant
speed-up gained has the capacity to enhance the speed-up
towards its more complex counterparts.

B. Line balancing models of increasing complexity

Succeeding the aforementioned model comes three models
of increasing intricacy (simple, two-sided and complex)
that describe the same line-balancing problem. Akin to the
production logistics model described below, the purpose of
the simulation here is to exhibit a traditional line-balancing
problem that involves balancing operator and machine time
to equal the rate at which products are produced in order
to adhere to customer demands. The simple model con-
sists of two processes and one queue, with the two-sided
and complex models increasing in number of queues, sub-
processes and processes accordingly. The main parameters
for the three models are store capacity, queue capacity and
employees-per-process. Within each model, the computation
size can be elevated by increasing the shop-floor working

4https://www.docker.com/
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(a) Simple line-balancing model.
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(b) Two-sided line-balancing model.
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(c) Complex line-balancing model.

LEGEND
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ProcessP

Q Queue

D Dispatch

SA Sub Assembly

MA Main Assembly

Fig. 1: Structure of the three line-balancing models simulated in the experiments.

time. Figures 1a, 1b and 1c represent graphical abstractions
of the model structure and data-flow as the model complexity
increases. For emphasis, line-balancing problems are imper-
ative and central to manufacturing factories. A speed-up that
can be cultivated in this realm serves towards the goal of real-
time interaction between a manufacturing simulation and the
physical system that it represents.

C. Reinforcement learning assembly line supply strategy and
planning model

The most complex model that this work investigates is
that of Reinforcement Learning in an assembly line settings5.
This model incorporates an ever-emerging Machine Learning
strategy, Reinforcement Learning [31], with an important
aspect of manufacturing factory production-logistics in as-
sembly line supply strategy and planning. Moreover, this
model forms the basis of a Digital Twin in the sense that
it is able to produce accurate decisions/outputs when pro-
vided with real-time inputs. As an overview of the model’s
functionality, an abstracted version of an assembly line with
a corresponding material supply system is developed in
the form of an environment whereby a self-learning agent
autonomously discovers successful strategies (in terms of
maximising throughput and minimising bottleneck) through
environment-interaction. In other words, without the provi-
sion of a specific solution strategy, an agent learns as it
continues to interact with a specific setting. The agent here
represents a Tugger6 and deals with the following system
parameters: processing time per station per product, demand
per product of station type, Tugger movement speed, Tugger

5https://fladdimir.github.io/post/tugger-routing/#reinforcement-learning
6In the context of manufacturing, a Tugger is a machine that pulls, drags

and loads materials from one place to another.

capacity, amount of material (un-)loaded per training step
and time required per (un-)loading training step. To re-
iterate, production-logistics in assembly line frameworks is
a fundamental element in manufacturing factory settings.
Any speed-up that can be accomplished in this arena will
contribute towards real-time integration with their mirrored
physical counterparts.

V. EXPERIMENTS

The purpose of this section is to present the outcome
of applying TF-GPU to the three SimPy models explained
in the previous section. For each SimPy model, TF-GPU
was activated using the Anaconda virtual environment via
the mechanisms of the Kelvin2 HPC cluster. The GPU
version utilised throughout experimentation was an NVIDIA
Tesla v100, coupled alongside two 24-core Intel Xeon Plat-
inum 8168 CPUs at 2.70GHz, and 512GB of DDR4 SDRAM
memory at 2.66GHz.

Commencing with the basic BPMN model, the target was
to assess how the execution time varied amongst increasing
computation size for CPU-only (No TF), TF-CPU and TF-
GPU exponents. For each exponent, the computation size
was raised by adjusting the ‘number of entities’ variable
and keeping the ‘inter-arrival time’ constant. The smallest
computation size consisted of 90,000 entities, with 150,000
and 250,000 entities attributed to medium and large respec-
tively. Each computation size was executed three times and
the value shown is the average.

The CPU-only (no TF) instance proportionally ran the
model at an average execution time of 1 minute 54 seconds,
6 minutes 19 seconds and 21 minutes 9 seconds for low,
medium and high computation size, respectively. Following
the activation of TF-CPU, the model performed almost
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(d) Line balancing complex model.

Fig. 2: Average execution time when simulating the different models by varying the computation size without TensorFlow
(CPU-Only) and with TensorFlow (CPU and GPU).

equally at 1 minute 50 seconds, 6 minutes 26 seconds and
21 minutes 35 seconds as the computation size increased.
However, once TF-GPU was activated and initiated to run the
model, the distinctness in the average execution time became
increasingly apparent as the computation size increased. The
smallest computation size was only slightly more performant
compared to TF-CPU, running 30 seconds faster. Whilst it
was for the medium and large computation sizes that clear
performance gains were achieved. Medium-size acquired
a speed-up of x2.11, executing at 3 minutes 2 seconds,
and large-size acquired a x2.74 speed-up, completing at
7 minutes 52 seconds. Figure 2a illustrates the model’s
performance between CPU-only, TF-CPU and TF-GPU.

The outcome of this model’s behaviour after applying TF-
GPU is that which is typically associated with GPU accel-
erated applications, in the sense that the performance grows
greater as the computation size increases. This behaviour is
connected with the fact that there are a larger number of
operations being executed in parallel for large computation
size as opposed to that of small, minimalising any overhead
penalty caused by GPU data transfer.

The next SimPy model under experimentation pertained
to a line-balancing model that could be varied in terms of
complexity by altering the number of queues, sub-processes
and processes. Hence, the model was partitioned into three
categories of increasing complexity: simple, two-sided and
complex (previously detailed in Figures 1a, 1b and 1c,

respectively). For each category, the computation size was
determined via the working-time parameter with 87,600,
262,800 and 876,000 hours adhering to small, medium and
large computation size respectively. Moreover, each model
complexity was executed against the CPU-only, TF-CPU and
TF-GPU exponents to examine the developments in average
execution time.

Mixed outcomes were gathered. Opening with the simple
model, shown in Figure 2b, TF-GPU gained the superior
performance ahead of its CPU-only exponent; approximately
procuring a x2 speedup. TF-CPU maintained an average
execution time lower than CPU-only and higher than TF-
GPU. Next, the two-sided model, shown in Figure 2c,
conveys the trend of both TF instances performing similarly
with each other for all computation sizes whilst the CPU-only
instance performs slower. The speed-up is minimal and does
not reach greater than x1.4. Furthermore, the complex model,
shown in Figure 2d, unexpectedly revealed that, of the three
instances, TF-CPU was the greatest in performance; with
CPU-only performing the lowest and TF-GPU in the middle.
Again, any speed-up gained by TF-CPU was nominal and did
not eclipse x1.4. Figures 2b, 2c and 2d depict the trends in
average execution time for all three model categories across
increasing computation size for the TF-GPU, TF-CPU and
CPU-only instances. It is worth noting at this point that the
variation in execution time generally increases with problem
size owing to the rising non-linear program response to time
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(illustrated in Figures 2b-2d with the max/min bars).
Figure 3 illustrates how the TF-CPU and TF-GPU accel-

eration speed-up evolves for all three model complexities
as the computation size transforms from small to large. It
is explicit to conclude with two main verdicts from the
preceding results. Firstly, as the computation size increases
with model complexity, the acceleration-ratio is less, and
secondly, utilising a TF environment to run the three model
categories, whether CPU or GPU, will earn a speed-up.
The deviating outcome of TF-CPU outperforming TF-GPU
for the complex model is one that requires additional ex-
amination and analysis. From the outset, the fact that the
execution of the models is limited to a virtual environment
articulates the likelihood of overhead playing a role, and
thus opening opportunities for supplementary investigation.
The conclusions section will seek to clarify as to what these
investigations demand and assert the relevance of the speed-
ups fulfilled in this work.

Proceeding to the Reinforcement Learning production lo-
gistics model, the aim was to evaluate the execution time for
TF-CPU and TF-GPU instances only. The fact that the Rein-
forcement Learning algorithm present in the code is unable
to run without TF alleviates the need for the evaluation of a
CPU-only instance. Here, the computation size was elevated
by growing the number of training steps. Small computation
size made up of 10,000 steps, with 100,000 steps for medium
and 1 million steps for large. Subsequently, the small-
computation attained an average execution time of 2 minutes
24 seconds for TF-CPU compared to 45.38 seconds for TF-
GPU, a speed-up of x3.17. Medium-computation surpassed
this by procuring a x3.21 speed-up; TF-CPU executed for
25 minutes 18 seconds whilst TF-GPU did so for 7 minutes
53 seconds. However, this upward trend in speed-up was not
sustained for large-computation. The average execution time
for both TF-CPU and TF-GPU were almost resembling each
other with 1 hour 15 minutes 1 second for TF-CPU and 1
hour 9 minutes 25 seconds for TF-GPU - a speed up of
x1.08. Two figures represent these trends. Figure 4 shows a
graph comparison of average execution time across all three
computation sizes and Figure 5 equivalently expresses how
the execution time of the most significant function in the
code-base, specifically TF’s internal function pywrapTensor-
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FlowInternal.TFSessionRunWrapper, varied throughout.
Assessing the aforementioned results, it was anticipated

for the acceleration to be the greatest with regards to the
large-computation setting. In fact, the antithesis occurred. A
reason for this could be that there is a higher number of
data elements than there are threads in a grid, and hence
a one-to-one mapping does not exist. Therefore, granular
GPU optimisations such as grid-striding will be deemed
necessary to exploit GPU architecture and memory. Another
exploration could be the adoption of multi-GPU acceleration.
Overall, the results in this context express that the faster the
simulation runs, the quicker a high training accuracy can
be realised. Hence, a high simulation throughput is attained
more rapidly.

VI. CONCLUSIONS

To conclude, this work presented an inquisition as to how
TensorFlow-GPU affects DES SimPy models in relation to
performance. Three SimPy models within the sphere of man-
ufacturing were utilised as case-studies, and the computation-
size for each case was varied as TensorFlow-GPU was
activated and applied. The purpose was to establish that a
GPU-based acceleration is feasible in DES SimPy settings.

The results obtained confirm this, with an acceleration
realised for each model and the largest acceleration in-
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duced being x3.21. However, perfect acceleration across the
computation-sizes of the Reinforcement Learning and Line-
balancing models, two of the cases being examined, was
not procured. The Reinforcement Learning model conveyed
a similar TensorFlow CPU to GPU performance across
the largest computation-size whilst the most complex line-
balancing model conveyed that TensorFlow-CPU performed
better than TensorFlow-GPU. As a result of these anomalies,
future work and research is necessitated. Whilst the use
of the Kelvin2 cluster provided powerful compute-resource
advantages, it also added the limitation of initiating Tensor-
Flow inside Anaconda’s virtual environment - hypothetically
generating GPU overhead. Therefore, it is of primary interest
that future work recognises the extent of this GPU overhead
and investigates the potential shift in acceleration when Ten-
sorFlow is applied in a non-virtual native mode. Furthermore,
accompanying research could also consider methodologies
to accomplish greater acceleration. For example, the use of
PyCUDA to probe how fine-grained GPU optimisations in
Python affect the performance of SimPy models.

In short, it is expected that these contributions function as
building-blocks in supporting the wider direction of manu-
facturing DESs becoming fully-integrated with their physical
counterparts in the form of a Digital Twin.
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