
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2016)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3811

SPECIAL ISSUE PAPER

Improving the performance of distributed discrete event simulation
by exchange of conditional look-ahead

Desheng Fu, Matthias Becker*,† and Helena Szczerbicka

FG Simulation, Leibniz University of Hannover, Welfengarten 1, 30167 Hannover, Germany

SUMMARY

Distributed discrete event simulation is an important approach for enabling the modeling and analysis of
the behavior of large systems. This approach presents a major problem, namely, the possible low perfor-
mance due to the excessive overhead in synchronizing the distributed logical processes. To counter this, our
approach to distributed discrete event simulation involves conservative synchronization and its acceleration
using dynamic estimation of process-to-process look-ahead with a feedback mechanism. This mechanism
allows for the estimation of a larger look-ahead, which may be invalidated and recalculated during the course
of the simulation, if one of the processes obtains more detailed knowledge.

In this work, we extend the dynamically estimated look-ahead, on the basis of the local state of the
logical processes, by exchanging conditional look-aheads, in conjunction with the broadcast of invalida-
tion announcements. A notable reduction in runtime in various cases is thus achieved, especially when the
estimated look-ahead is stochastically too conservative. Copyright © 2016 John Wiley & Sons, Ltd.

Received 18 January 2016; Accepted 28 January 2016

1. INTRODUCTION

The complexity of modeling and analysis of large systems can be handled using a Distributed
Discrete Event Simulation (DDES) approach. Compared with sequential simulation, this has many
advantages [1]. One specific goal is a reduction in execution time of the distributed simulation.
However, this goal cannot be achieved in some cases. For example, if the look-ahead (LA) between
tightly coupled logical processes (LPs) is very short [1].

One of the most important parameters in distributed simulation for describing the degree of cou-
pling of LPs is the LA. A shorter LA means more causality errors in the parallel execution. There
are two approaches for tackling this problem: avoidance of causality errors by conservative synchro-
nization and resolution of the errors after the occurrence by time warp [1, 2]. Many conservative
synchronization algorithms may be applicable, however, only when the LA is given for each link
between LPs. A reduction in the performance of these algorithms is seen due to the time-creep prob-
lem, when the LA is too short. In this case, execution time of these simulations might be reduced by
using a longer look-ahead.

Generally, a perfect prediction of the LA is impractical in the simulation of a complex model.
This makes the estimation of LA necessary. This estimation has to be conservative in order to use
conservative synchronization mechanisms, because any causality errors must be avoided here. There
are also optimistic estimations of the LA to reduce the cost of time warp, but these are beyond the
scope of this discussion. We shall only consider conservative estimations and allow for no over-
estimation. In practice, a shortly estimated LA often does not imply that the LPs are tightly coupled,

*Correspondence to: Matthias Becker, Faculty for Electrical Engineering and Computer Science, Leibniz University of
Hannover, Hannover, Germany

†E-mail: xmb@sim.uni-hannover.de

Copyright © 2016 John Wiley & Sons, Ltd.



D. FU, M. BECKER AND H. SZCZERBICKA

although the estimation algorithm should be improved nevertheless. One of the most important
challenges of DDES is the estimation of LA, when conservative synchronization is applied to avoid
causality errors.

We investigated the practical implementation of DDES with conservative synchronization and its
performance enhancement through dynamic estimation of process-to-process LA in our previous
work [3]. This dynamic estimation considers the run-time state of the model, in contrast to the
static estimation of LA prior to the simulation, resulting in a better estimation and a larger LA. For
example, the LA between two airports should increase, due to bad weather or traffic, which increases
the duration of all flights. Such knowledge of the current run-time state of the model improves the
dynamic estimation of LA during simulation and could provide a larger LA than static estimation.
However, the overhead of the dynamic estimation at run-time is counted in the execution time of
simulation. As a result, the estimation algorithm must be very efficient so that the overall execution
time is reduced compared with static estimation. In other words, we should balance the quality and
the overhead of the dynamic estimation.

Our approach aims at balancing the overhead of the dynamic estimation and the quality of the
estimated LA. Our mechanism involves the exchange of conditional look-ahead (CLA) and broad-
cast of invalidation announcement (IA). Additionally, we discuss some typical cases, where the
approach is applicable. Our approach increases the LA between LPs in many cases, as shown in
our evaluation. This approach has its greatest effect when the conservatively estimated LA is very
short. However, the occurrence of an external events right after the expiration of the estimated LA
is improbable. In other words, our approach provides the greatest performance boost, when the esti-
mated LA might be too conservative from a stochastic viewpoint (in the simulation of multi-agent
systems, stochastic Petri nets, Cell Biology [4], etc.).

The remainder of this article is organized as follows: the estimation of LA is introduced in 2. In
Section 3, the relationship between LA and the time-creep problem is discussed. Our approach is
then presented in Section 4. Section 5 shows a case study, as an evaluation of our approach. This is
followed by Section 6.

2. RELATED WORK

Investigations of the dynamic estimation of the LA can be categorized into two groups. To prevent
causality errors, the LA estimation for conservative synchronization algorithms (e.g., [5, 6]) has
to be conservative in general. Such investigations are often called look-ahead exploitation. Con-
servative LA estimation is responsible for providing a larger LA for conservative synchronization
algorithms, by estimating the run-time state. For example, implicit look-ahead in First Come First
Served stochastic queuing networks was introduced by Nicol [7], which was extended by Lazowska
to round robin [8] and some other queuing networks. The basic idea used by Nicol and Lazowska
is the pre-simulation of predictable random behavior. During the analysis of stochastic queuing net-
works, the service times of processes are pre-sampled into a ‘future list’. The LA is then the measure
of time to the end of next service, as per the future list. Another notable contribution was made by
Meyer et al. [9]. In this investigation of conservative algorithms for wireless network simulation,
the positive effect of dynamic LA estimation in wireless networks was reported. Liu and Nicol [10]
also investigated the LA estimation in wireless networks with the simulator SWAN. They consid-
ered the IEEE 802.11 CSMA/CA distributed coordination function protocol on the media access
control layer, and the LA was estimated from the CSMA/CA behavior of a station. The estimation
of successor transmit time and potential push time on the medium access control layer leads to an
increase in the LA and a significant decrease in execution time, especially in a low-traffic network.
The other group of investigations estimate the LA for optimistic time-warp algorithms (e.g., [11]).
In comparison with the estimation for conservative algorithms, overestimation is allowed. Such
estimation failures will be repaired at a later stage, using the time-warp algorithm. These LA esti-
mations are mainly responsible for providing a larger LA to reduce overhead in the algorithm. For
example, Maritini et al. [12] introduced the tolerant synchronization and accepted event errors dur-
ing the synchronization. The interval, during which event errors might occur, is predicted and the
time-warp algorithm is applied to the time interval for the resolution of errors. Ferscha et al. [13, 14]

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
DOI: 10.1002/cpe



IMPROVING THE PERFORMANCE OF DISTRIBUTED DISCRETE EVENT SIMULATION

estimated the LA in Petri nets very optimistically in order to reduce the cost of the applied opti-
mistic algorithm (time warp). This may also be considered as a conservative solution to the causality
error without hard synchronization requirements. Consequently, the occurred causality errors are
resolved by application of an optimistic algorithm. This idea is extended by Kunz et al. [15] as an
improvement of the optimistic algorithm. Park et al. [16] introduced the relaxed synchronization to
queuing networks. The LA is also estimated very optimistically for reduction in execution time.

In our previous work [3], we also presented a semi-conservative approach of LA estimation.
This is an approximation, as overestimation and causality errors are allowed to a certain extent.
By limiting the probability and the degree of overestimation, the level of approximation can be
determined. The results show a possible reduction in execution time, while respecting the error
bounds comparable with the exact simulation.

In our approach here, overestimation is allowed without the necessity of a time-warp algorithm,
because causality errors are avoided. The concept of conditional LA makes this achievable by
detection and invalidation of over-estimation [17], and the corrected estimation can be calculated
conservatively. This will be discussed in the next section.

3. TIME-CREEP PROBLEM AND LOOK-AHEAD

As mentioned before, the well-known time-creep problem is one of the most important challenges
in DDES with conservative synchronization. It occurs when the LA between tightly coupled LPs
is estimated to be very short. To reduce the execution time of the simulation, sequential simulation
could be taken into consideration instead of distributed simulation. When the process-to-process
LAs are estimated dynamically, the distributed simulation should be preferred, when each process-
to-process LA is large enough in general. However, we may have to deal with the temporary
shortening of some LAs, or a small amount of LAs between certain LPs constantly being very short.

When the LA is very short, the LPs must synchronize with each other at a high frequency (time-
creep). The costly synchronization must be thus performed very often. The time advance of the
system will be very slow due to the extra cost. The advantage of distributed simulation will be
eroded by the large overhead for synchronization between LPs. Most notably, the shortest LA in the
whole model often determines the frequency of the synchronization.

The overhead of each synchronization is large for the following two reasons. Firstly, the synchro-
nization, especially the global synchronization, reduces the parallelism, because the fast LPs must
be blocked to wait for synchronization of the slow LPs. In addition, the cost of execution of the syn-
chronization after the LPs are blocked is strongly dependant on the transmission delay between the
LPs, including the time for processing received messages. In the idealistic situation, that is with-
out any transmission delay, the performance is almost the same as with sequential simulation. The
greater is the time needed for transmission, the slower is the advancement of time. Figure 1 shows
an example, where the synchronization always takes place when an LP is blocked (such as the null-
message algorithm [5, 6]). The effective time of execution with short transmission delay (b) is much
longer than with long transmission delay (a). The transmission delay between the LPs is fairly differ-
ent in practice. It is very short between two LPs, located at the same computer with shared memory,
as compared with two LPs located at two different computers connected via LAN. The transmission
delay further increases if the two computers are connected by the Internet.

(a) Time-Creep with long transmission delay (b) Time-Creep with short transmission delay

Figure 1. Time creep for different transmission delays.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
DOI: 10.1002/cpe



D. FU, M. BECKER AND H. SZCZERBICKA

As discussed before, the overhead of synchronization might become large when the LA is short.
To reduce overhead, we must distinguish between two situations: (1) The LA is intrinsically short.
As mentioned earlier, the LA is a characteristic of the model and cannot be changed. The time creep
problem in these situations is hard to avoid. Both LPs should be merged to improve the performance,
or sequential simulation should be considered. (2) The LA is actually long enough, but the behavior
of the model in the short future is hard to estimate conservatively. As a result, only a very short
LA can be applied and the probability that an event will be executed in the short future after the
expiration of LA is very small. A more precise (dynamic) estimation algorithm should be applied
in such a situation. It is obvious that the dynamic estimation has its own cost, and this cost will be
included to the total overhead of simulation; however, it can reduce the overall execution time in
many cases.

4. OUR APPROACH

In this section, we present our approach to synchronize LPs with CLA and IA.

4.1. Solution with conditional look-ahead

Our approach for increasing the LA is realized with the introduction of the CLA. CLA is an exten-
sion of the original LA, but is only valid under certain conditions [10]. With the time advance, the
conditions and CLA can be invalidated at any time, after the original LA expires. To ensure the
conservative nature of CLA and to prevent causality errors, a method must be utilized to avoid the
invalidation of CLA, until the related LP receives an IA. Moreover, it must be certain that the new
LA, after applying the IA, is non-negative, so that no causality error occurs. The new LA can be sent
with an IA. Alternatively, an IA may contain a timestamp. The IA will be ‘executed’ at this time
with the information that the CLA is no longer valid and that the new LA after invalidation is zero.

As mentioned earlier, the dynamic LA estimation during the simulation benefits from the knowl-
edge of the current state of the model and therefore usually provides a larger LA than the static
estimation. Two approaches exist for the state-dependent estimation. First, each LP estimates the
LA based only on its local state (e.g., [5, 6]). The cost of the estimation is hence minimized, because
unnecessary blocking for reading the state and exchange of the state between LPs is avoided. How-
ever, the estimated LA might be too conservative. Second, the global state is determined. Each LP
or a central controller has to block all LPs to obtain the static global observation for the LA estima-
tion (e.g., [1, 18, 19]). This approach will deliver a better LA, however, at the expense of overhead,
because it blocks all LPs with a global synchronization each time the estimation is done. The imple-
mentation and performance obviously depend strongly on the model. It is a very interesting topic
for investigation, but it is out of the scope of this article. Here, we want to present our solution based
on CLA, which works almost independently of the model. Our solution combines two basic ideas.
First, every LP exchanges certain information (CLA, IA) with neighboring LPs for providing a long
LA. Second, no global synchronization is necessary.

A scenario is shown in Figure 2a as an example with a distributed multi-agent system simulation.
In this example, the whole area is divided by a borderline, and each part is simulated with one
LP (LP1 and LP2). There are several agents with built-in intelligence, which can move in the
area to solve some certain problems. In general, simulation of such a DDES system is performed
with time warp or a conservative synchronization with a global controller. No positive LA can be
considered based on local state, because no information about agents in other parts of the area are
given. One agent might cross over the borderline (hand-in) by now and immediately returns back
(hand-out). As a result, we cannot utilize distributed conservative synchronization without central
intelligence. The cost of time warp depends on the cost of duplicating the agents, along with the
state of their intelligence, which can be very costly. For this reason, we may want to simulate the
model with conservative synchronization. In this case, the conservative synchronization with central
intelligence could be considered, for example, synchronized execution algorithms [1, 18] with a
specified synchronization algorithm (e.g., [20]). This includes a global view of the whole area.
Because no agent is right on the borderline at present, the exchange of information between LPs in

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
DOI: 10.1002/cpe



IMPROVING THE PERFORMANCE OF DISTRIBUTED DISCRETE EVENT SIMULATION

(a) Multi-agent system with two LPs (b) Multi-agent system with four LPs

Figure 2. Multi-agent systems.

(a) Model with two LPs (b) Model with more LPs (Fully connected) (c) Model with more LPs (Two groups)

Figure 3. Applicability of CLA in different topologies.

the short future is not necessary and the bi-directional LA could be calculated as the minimal time
needed for an agent to move to the borderline regarding the position, as well as the maximal speed
of each agent (T2�1 in the example). There exist various algorithms to synchronize the LPs with the
estimated LA, which are beyond the scope of this article.

Without global observation, this idea could still be executed through exchange of extra informa-
tion between LPs. This could be formally described with CLA and IA as shown in Figure 3a. The
condition of the CLA sent fromLP1 toLP2 (CLA1�2) is thatLP2 will make no change to the local
state of LP1 (no external event or IA from LP2 will be processed by LP1). The length of CLA1�2
depends on the model. It is at least the LA, but it is larger than the LA in many cases (T1�2 vs. zero
in the example). Similarly, the CLA sent from LP2 to LP1 (CLA2�1) is determined. Furthermore,
the condition of the CLA sent from LP1 to LP2 breaks if LP2 sends an external event to LP1 with
time stamp T . In that case, an IA is sent by LP2 to itself to inform the invalidation of CLA1�2 at
T . Because T is anyhow after the current time of LP2, no causality error occurs.

4.2. Fully-connected topology and line topology

The approach from the previous subsection can also be applied to the model with more LPs with
a fully-connected topology (with all LPs directly connected). Figures 2b and 3b show a scenario
of a multi-agent system with four LPs and the general model, respectively. When there is direct
communication between all LPs and an LA exists between each pair of LPs, each LP can send an
identical CLA to all other LPs. This CLA between each LP has the condition that its state will not
be modified by any other LP. When the first external event is sent between LPs, an IA with the
same timestamp is broadcasted. This ensures that all CLAs from the LP, where the external event
is processed, are invalidated. For obvious reasons, the global CLA sent from this LP is shorter
compared with any process-to-process CLA from this LP. Thus, irrespective of the destination LP,
the timestamp of the external event is larger compared with the global CLA sent from this LP.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
DOI: 10.1002/cpe



D. FU, M. BECKER AND H. SZCZERBICKA

The IA is thus subsequent to any other LPs. Thus, there is no causality error caused by the external
event and the IA. Reconstruction of the CLAs after the IA is broadcasted is demanding. Thus, the
solution with CLA is only practical when the probability of premature CLA invalidation is very
small. The mechanism results in an increase in the short LAs, however, possible reduction the long
LAs in the system. In this aspect, it leads to a balance of the LAs in the system.

Similarly, this approach is applied to line topology models (where all LPs are connected as a
chain) as long as the state change of one LP will not cause the immediate state change of a neighbor-
ing LP. The notion from the previous section is applicable to each interface between a pair of LPs.
The calculation of CLA for an interface is performed under the assumption that the state of the LP
could be changed any time by a neighboring LP from another interface. Thus, the CLA is limited
by the minimal time needed as that state change ‘propagated’ from one interface to another. For the
multi-agent simulation example earlier, it is the minimal time needed for an agent to cross the area
simulated by this LP.

Moreover, the approach of CLA is useful for a combination of fully connected topology and chain
topology. Here, an interface is shared by a group of LPs organized as a fully connected topology.
An example will be illustrated later as a case study. In comparison with the synchronized execution
based on conservative LA, more messages will be sent between these LPs to exchange CLAs and
IAs. However, no static observation to the whole system is needed, and the LPs will not be blocked
due to the observation in general. Our approach is thus convenient especially when the estimated LA
is stochastically too conservative. Figure 4 shows a practical implementation of the mechanism with
some slight simplification. Here, each LP estimates a global CLA for all neighboring LPs instead of
only one CLA per interface. Because it is unknown whether the external event will be processed at
the specified LP before sent IAs are processed at some other LPs, serial ID management is necessary
for comparison of the number of processed external events and IAs between each pair of LPs.

4.3. Grouping the logical processes

The simulation of large models often results in a large number of LPs. For application of the mecha-
nism to these simulations, the LPs should be split into groups based on the transmission delay. This
way, the transmission delay between LPs within a group is short and the transmission delay between
LPs in different groups is long. For each group, the local synchronized execution is applied and the
whole group acts like a single LP. For the synchronization between groups, the solution with CLA
is applied, which was discussed in the previous subsections. The cost of such local synchronized
execution is much less than that of a global synchronized execution, because the transmission delay
within the group is short. However, the local synchronization must be done more frequently for the
calculation of CLAs needed for the synchronization between groups. The combination with syn-
chronized execution and CLA is only applicable when the LA is stochastically too conservative, as
mentioned earlier.

Alternatively, a synchronization based on conservative LA within each group and synchronization
based on CLA between groups can be considered. A scenario with three LPs is shown in Figure 3c.
As illustrated in the figure, the three LPs are divided into two groups.LP1 belongs to the first group,
LP2 and LP3 belong to the second. Each group is simulated with an individual computer with a
sufficient number of processors. Because the transmission delay between LP1 and LP2, as well as
between LP1 and LP3, is very long, we will extend them with CLA. First of all, LP1 sends CLA
to LP2 and LP3 (CLA1) with the condition that its own state will neither be modified by LP2, nor
by LP3. If LP2 sends an external event to LP1 with time stamp T for example, it will send an IA
to itself to inform that the CLA1 is no more valid after T . As discussed earlier, there is no causality
error. In addition, it will send the same IA to LP3. This IA will arrive in time without causality
error, if the LA from LP2 to LP3 (LA2�3) is shorter than the sum of the LA from LP2 to LP1
(LA2�1) and LA from LP1 to LP3 (LA1�3). Similarly, it must be guaranteed that the LA from
LP3 to LP2 (LA3�2) is shorter than the sum of LA from LP3 to LP1 (LA3�1) and LA from LP1
to LP2 (LA1�2). Otherwise, the mechanism might cause causality errors and cannot be applied. In
practice, we only consider LA2�1 and LA3�1 and ignore the LA1�3 and LA1�2 because of the
extra cost of communication. Most importantly, we limit LA2�3 and LA3�2 so that it is always

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
DOI: 10.1002/cpe



IMPROVING THE PERFORMANCE OF DISTRIBUTED DISCRETE EVENT SIMULATION

Figure 4. Pseudocode of the algorithm.

shorter than LA2�1 and LA3�1. Furthermore, LP2 sends CLA to LP1 with the condition that LP1
will not modify the state of LP2 and LP3 with external events. If LP1 sends an external event to
LP2, an IA will be sent to itself as discussed previously.

This alternative solution can be seen as a trade-off between the external LAs and internal LAs.
On one side, any LA sent from LPi to any LP in the same group is limited by

min¹LAi�kjLPk belongs to the other groupº:

Conditional look-ahead (CLA) can be applied to extend these LAs anyway, but the limit must be
kept. On the other side, the LA / CLA sent from LPi to any LP in the other group could be extended
by a condition. Whether this condition really helps to extend the LA depends strongly on the model
and the partitioning. This is generally unpredictable due to the unknown state of LPs in the same
group. But in some special situations, the interruption of some immediate communication loops
is useful.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
DOI: 10.1002/cpe



D. FU, M. BECKER AND H. SZCZERBICKA

5. EVALUATION

We will evaluate our solution based on the exchange of conditional look-ahead here. We con-
sider a set of multi-agent systems, because these scenarios show the characteristics suitable for
our approach.

5.1. Environment and estimation algorithms

All models for the evaluation are implemented with our simulator named Universal Simulation
Engine (USE) [21] ‡. We shall consider the ‘simulation of simulation’ for study. In other words, we
simulate a distributed simulator of the given model. Other than the model itself, we also simulate
core behaviors of the distributed simulator. These include the transmission delay, cost to lock and
unlock an LP, the execution power of each LP, wall-clock time of the virtual simulator, and so on.
The result represents the simulation result with nine individual computers.

Universal Simulation Engine (USE) applies a framework of conservative synchronization to
adhere to causality by using the process-to-process barriers (P2P barriers). A barrier represents a
specific time bound that the process should never reach. During the simulation, each process should
set a barrier to every process, including itself based on the predictable LAs. These barriers will be
altered (moved back) by a specified algorithm. The framework does not include the algorithm for
calculation and alteration of barriers. However, many ideas exist, which can be slightly modified
and applied to this framework.

The most popular algorithms for synchronized execution, known as the barrier synchronization
algorithms, are summarized in [1]. The Butterfly Barrier algorithm [20] is implemented as follows
for the evaluation:

(1) First, each process sets proper barriers to all other processes. After process Pi has received
these barriers, it calculates which events are safe to process. In addition, it can calculate the
virtual time ti for the next synchronization, as the minimum of all received barriers.

(2) Each processPi sets the barriers that are received from the processes, with which it should syn-
chronize later to ti . For example, if there are eight processes, the process P0 will synchronize
with process P1, P2, and P4. Furthermore, it sets its own barrier to ti .

(3) When a process needs to convey a signal to another process for synchronization, it alters the
barrier to that process to infinity. When a process Pi is blocked, it checks the barriers received
from other processes within the call-back function. If the relevant barrier is larger than ti , then
the signal has been received by a process. Then the process Pi sends signals back to these
processes with respect to the synchronization algorithm. If all signals cannot be sent at that
point in time, the process goes to wait.

(4) If a signal is received during the wait period, the process will be activated and will go to wait
again, because one of the barriers at the present time point has been altered back. The call-back
function will be triggered for another time to re-check the situation and to send more signals.

(5) After all signals have been received by Pi , the process executes the barrier primitive and sets
new barriers to the other processes. The new barrier must be however larger than ti . Then,
another period will be started.

5.2. The models

As a case study, we consider the simulation of a multi-agent system build on Universal Multi-Agent
System (UMAS)§, a framework of multi-agent models based on our simulator USE. An agent of
UMAS framework is always under a movement with a given speed and a duration. A waiting period
will be considered as movement with zero speed. After the end of a movement, the agent arrives
at its destination and another movement will be started immediately. Movement in UMAS cannot
be canceled.

‡The simulator is available at http://use.useproject.com/.
§The framework is available at http://umas.useproject.com/.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
DOI: 10.1002/cpe



IMPROVING THE PERFORMANCE OF DISTRIBUTED DISCRETE EVENT SIMULATION

To calculate the CLA, the current movement of each agent is analyzed. If the destination (location
after the end of current movement) is located in the range of another LP, the exact time that the agent
crosses the border line is calculated as the hand-over time Th. Otherwise, we calculate

T 0h D Te CDmin=Smax

as the potential hand-over time, where Te is the end time of current movement, Dmin is the minimal
distance from the destination to border line, and Smax is the maximal speed of the agent. Then,
we calculate

Th;min D min¹min¹Thº;min¹T 0hºº

as the minimal hand-over time (the bounding time stamp). The difference between the minimal
hand-over time and current time represents the global CLA, which will be sent to neighboring LPs
after the calculation.

As mentioned in our algorithm (Figure 4), the CLA will be broadcasted after an external event
is received (an agent is handed in). If there is no external event, the CLA will be broadcasted
periodically. To calculate the time of next broadcasting, we consider

Te;min D min¹min¹Teº; Th;minº

as the end time of the next movement in the system. Obviously, Th;min will not advance before the
time defined by Te;min. In other words, no new minimum of hand-over time can be calculated before
the end of the next movement. Thus, a new calculation of Th;min before Te;min is pointless. However,
a new calculation of Th;min must be done within the time-frame defined by current Th;min, because
the neighboring LPs will be blocked after that time (expiration of CLA). In UMAS, a new Th;min

will be calculated at the time

Tc D .Th;min C Te;min/=2

if no external event is received.
An example is shown in Figure 5 where three agents are located in the range of the LP, and we

consider that no agent will be handed in the short future. At the current time, the CLA is being
calculated, and we analyze the current movement of the three agents. The destination of agent 1 and
agent 3 are still located in the range of the LP. We calculate the end time of the current movement
(time C ), plus the minimal time from the destination to border line (time A). The destination of
agent 2 is out of range of this LP; a hand-over is scheduled during the movement (time B). The
minimal hand-over time is calculated as the minimum of time A for agent 1, time B for agent 2, and
time A for agent 3. Furthermore, we calculate the minimum of time C for agent 1, 2, and 3 as the
end time of the next movement. Subsequently, Tc is calculated. The CLA will be re-calculated and
broadcasted at that time.

As an example, we consider the simulation of a multi-agent system. The whole area is divided
into nine sub-areas (3 � 3) as shown in Figure 6a, and each sub-area will be simulated with one LP.

Figure 5. Example: periodical broadcasting of conditional look-ahead.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
DOI: 10.1002/cpe



D. FU, M. BECKER AND H. SZCZERBICKA

(a) Model (b) Result

Figure 6. Case study.

There exist n agents in the whole area, which are positioned randomly at the start with a random
direction. They move straight and forward with a constant speed. When an agent reaches a border
of the whole area, it will be rebounded. However, a random duration is chosen for each movement.
The simulator itself holds no extra knowledge about the intelligence in the agent and the future
movement is unpredictable. Moreover, each agent saves information about the agent’s ‘meetings’
(distance is short enough) as well the timestamp of these meetings.

5.3. Results

The scenario to be simulated is considered as a combination of four fully connected topologies and
several line topologies between the stars. For example, the fully connected topology FC1 contains
LP1, LP2, LP4, and LP5. If LP1 sends an external event to LP4, it will broadcast an IA to LP2,
LP4 (‘included’ in the external event), and LP5. Furthermore, LP4 belongs to two different fully-
connected topologies (FC1 and FC3). In other words, it has two interfaces. The state changes of
LP4 due to the LP1 will not cause immediate state change of LP7, for example, because of the
minimal time needed for an agent to cross the sub-area simulated by LP4. In many models of multi-
agent system including this one, the minimal time needed that the state change propagated from
one interface to another interface of a LP is longer than any CLA provided by the LP, and it will be
thus ignored.

The LPs are synchronized with the algorithm based on CLA and IA. In comparison, we also
consider the standard time-warp algorithm as well as the globally synchronized execution based
on Butterfly Barrier synchronization [20]. The result of the simulation is shown in Figure 6b. The
simulation is more time consuming when there are more agents to be simulated. The execution time
for time warp is very great due to the extra cost involved with saving the state of each agent and
its AI. Obviously, this time-warp algorithm can be further optimized. But this is out of the scope
of our discussion. The results of global synchronized simulation and the results based on CLA are
comparable. Our approach takes about 10–24% less time compared with the approach using globally
synchronized execution, depending on the number of agents in the system.

6. CONCLUSION

We presented a new mechanism to accelerate DDES using the exchange of the CLA and broadcast
of IA. Our approach is able to increase the LA between LPs, especially when the estimated LA is
stochastically too conservative and the probability that an external event really occurs right after
the expiration of the LA, is very small. The basic idea of our approach is to exchange information
between neighboring LPs for the dynamic conservative estimation of the LA. This approach is a
trade-off between an estimation based on the global state and an estimation based on the local state.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
DOI: 10.1002/cpe



IMPROVING THE PERFORMANCE OF DISTRIBUTED DISCRETE EVENT SIMULATION

This way, a better estimation of the LA is achieved at lower cost. The approach is applicable to vari-
ous existing models without significant modification, because the only model-dependent parameters
concern the exchange of CLA and IA. However, the algorithm to estimate the LA has to be modified
to calculate the CLA instead of the LA.

We also presented two typical topologies where CLA is applied to accelerate the simulation.
Firstly, if all LPs are allowed to communicate with each other directly (fully-connected topology),
then each LP sends an identical CLA to all other LPs. This CLA is with the condition, that its local
state will not be modified by any other LP. The broadcast of IA within the whole system occurs
after any external event is sent. Additionally, the approach can be applied to a chain of LPs (line
topology), given that the state change of one LP will not cause the immediate state change of a
neighboring LP. Most importantly, the approach also works for a combination of both topologies.
We also showed the outline of applying the solution with CLA to more complex models by group-
ing of LPs. Our case studies of multi-agent systems based on UMAS and USE showed that the
execution time of the simulation is reduced by up to 24% compared with the solution based on
synchronized execution.

REFERENCES

1. Fujimoto RM. Parallel and Distribution Simulation Systems (1st ed.) John Wiley & Sons Inc.: New York, NY, USA,
1999.

2. Niewiadomska-Szynkiewicz E, Sikora A. Algorithms for distributed simulation - comparative study. In Paral-
lel Computing in Electrical Engineering, 2002. PARELEC ’02. Proceedings. International Conference on, 2002;
261 – 266.

3. Fu D, Becker M, Szczerbicka H. On the potential of semi-conservative look-ahead estimation in approximative
distributed discrete event simulation. In Proceedings of the 2013 Summer Computer Simulation Conference, Ser.
SCSC ’13. Vista, CA: Society for Modeling & Simulation International, 2013; 28:1–28:8.

4. Leye S, Uhrmacher A, Priami C. A bounded-optimistic, parallel beta-binders simulator. In Distributed Simulation
and Real-Time Applications, 2008. DS-RT 2008. 12th IEEE/ACM International Symposium on, Vancouver, BC,
Oct 2008; 139–148.

5. Bryant RE. Simulation of packet communication architecture computer systems. Technical Report , Massachusetts
Institute of Technology, Cambridge, MA, USA, 1977.

6. Chandy K, Misra J. Distributed simulation: a case study in design and verification of distributed programs. Software
Engineering, IEEE Transactions on 1979; SE-5(5):440–452.

7. Nicol DM. Parallel discrete-event simulation of fcfs stochastic queueing networks. SIGPLAN Not. 1988; 23(9):
124–137.

8. Lin Y, Lazowska E. Exploiting lookahead in parallel simulation. IEEE Transactions on Parallel and Distributed
Systems 1990; 1(4):457–469.

9. Meyer RA, Bagrodia RL. Improving lookahead in parallel wireless network simulation. In Proceedings of the 6th
International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, Ser.
MASCOTS ’98, IEEE Computer Society, Washington, DC, USA, 1998; 262–267.

10. Liu J, Nicol DM. Lookahead revisited in wireless network simulations. In Proceedings of the Sixteenth Workshop on
Parallel and Distributed Simulation, Ser. PADS ’02, IEEE Computer Society, Washington, DC, USA, 2002; 79–88.

11. Jefferson DR. Virtual time. ACM Transactions on Programming Languages and Systems 1985; 7(3):404–425.
12. Martini P, Rümekasten M, Tölle J. Tolerant synchronization for distributed simulations of interconnected computer

networks. SIGSIM Simulation Digest 1997; 27(1):138–141.
13. Ferscha A, Chiola G. Self-adaptive logical processes: the probabilistic distributed simulation protocol. In Simulation

Symposium, 1994., 27th Annual, La Jolla, CA, 1994; 78–88.
14. Ferscha A. Probabilistic adaptive direct optimism control in time warp. In Parallel and Distributed Simulation, 1995.

(PADS’95), Proceedings., Ninth Workshop on (Cat. No.95TB8096), Lake Placid, NY, June 1995; 120–129.
15. Kunz G, Stoffers M, Gross J, Wehrle K. Know thy simulation model: analyzing event interactions for probabilistic

synchronization in parallel simulations. In Proceedings of the 5th International ICST Conference on Simulation Tools
and Techniques, Ser. SIMUTOOLS ’12, ICST, Brussels, Belgium, Belgium: ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2012; 119–128.

16. Park H, Fishwick P. A fast hybrid time-synchronous/event approach to parallel discrete event simulation of queuing
networks. In Simulation Conference, 2008. WSC 2008. Winter, Austin, TX, December 2008; 795–803.

17. Fu D, Becker M, Szczerbicka H. Accelerating distributed discrete event simulation through exchange of conditional
look-ahead. In Distributed Simulation and Real Time Applications (DS-RT), 2014 IEEE/ACM 18th International
Symposium on, IEEE, Toulouse, 2014; 183–189.

18. Jafer S, Wainer G. Global lookahead management (GLM) protocol for conservative devs simulation. In Distributed
Simulation and Real Time Applications (DS-RT), 2010 IEEE/ACM 14th International Symposium on, Fairfax, VA,
October 2010; 141–148.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
DOI: 10.1002/cpe



D. FU, M. BECKER AND H. SZCZERBICKA

19. Chetlur M, Wilsey P. Causality and proactive cancellation. In Distributed Simulation and Real-Time Applications,
2006. DS-RT’06. Tenth, IEEE International Symposium on, IEEE, Terremolinos, 2006; 193–200.

20. Nicol DM. Noncommittal barrier synchronization. Parallel Computing 1995; 21(4):529–549.
21. Fu D, Becker M, Szczerbicka H. Universal simulation engine (use) - a model-independent library for discrete event

simulation. The Spring Simulation Multi-Conference, 2015. SpringSim’15. Annual Simulation Symposium, 2015
ANSS’15, San Diego, CA, USA, 2015; 146–154.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
DOI: 10.1002/cpe


	Improving the performance of distributed discrete event simulation by exchange of conditional look-ahead
	Summary
	Introduction
	Related Work
	Time-Creep Problem and Look-Ahead
	Our Approach
	Solution with conditional look-ahead
	Fully-connected topology and line topology
	Grouping the logical processes

	Evaluation
	Environment and estimation algorithms
	The models
	Results

	Conclusion
	REFERENCES


