
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gpaa20

International Journal of Parallel, Emergent and
Distributed Systems

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gpaa20

Flexible simulation of traffic with microservices,
agents & REST

Martynas Jagutis, Seán Russell & Rem Collier

To cite this article: Martynas Jagutis, Seán Russell & Rem Collier (2023): Flexible simulation
of traffic with microservices, agents & REST, International Journal of Parallel, Emergent and
Distributed Systems, DOI: 10.1080/17445760.2023.2242183

To link to this article: https://doi.org/10.1080/17445760.2023.2242183

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 31 Jul 2023.

Submit your article to this journal

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gpaa20
https://www.tandfonline.com/loi/gpaa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17445760.2023.2242183
https://doi.org/10.1080/17445760.2023.2242183
https://www.tandfonline.com/action/authorSubmission?journalCode=gpaa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gpaa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/17445760.2023.2242183
https://www.tandfonline.com/doi/mlt/10.1080/17445760.2023.2242183
http://crossmark.crossref.org/dialog/?doi=10.1080/17445760.2023.2242183&domain=pdf&date_stamp=2023-07-31
http://crossmark.crossref.org/dialog/?doi=10.1080/17445760.2023.2242183&domain=pdf&date_stamp=2023-07-31

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS
https://doi.org/10.1080/17445760.2023.2242183

Flexible simulation of traffic with microservices, agents & REST

Martynas Jagutis, Seán Russell and Rem Collier

University College Dublin, Dublin 4, Ireland

ABSTRACT
Hypermedia Multi-Agent System (MAS) Simulation is a novel approach
to building agent-based simulations in which the environment is mod-
elled as a set of linked hypermedia resources that are implemented using
microservices. This paper discusses the implementation of an prototypi-
cal simulation system based on this concept and the lessons learnt in the
process.

ARTICLE HISTORY
Received 28 February 2023
Accepted 25 July 2023

KEYWORDS
Traffic simulation;
microservices; REST;
multi-agent systems;
agent-based modelling

1. Introduction

Agent-Based Modelling (ABM) is an approach to studying the behaviour of complex systems that
can be modelled as a population of individuals [1]. These agents are designed to simulate low level
behaviours and interact through a shared environment. The overall behaviour of the system is an
emergent property of the interactions between the individuals within this environment.

A comprehensive review of the state of the art in Agent Based Modelling tools is presented in [2].
The review highlights that there are really two main approaches to implementing agent-based simu-
lation: desktop simulations, such as NetLogo [3], REPAST [4] andMason [5]; or distributed simulations,
such as RISE [6], REPAST-HPC [7] and Distributed Mason [8]. The distributed simulation community [9]
focuses on the development of techniques that can be deployed on high-performance computing
clusters. Taylor [10] reviews DS through the lens of Operational Research, highlighting the prevalence
of bespoke implementations tailored to specific scenarios, the lack of model reuse and the need for
well-designed frameworks. In fact, it is not possible to directly transfer a model from the desktop
version to the distributed version of the same tool.

More recently, ABM is being applied to problem domains that are increasingly complex, to the
point that it is becoming impossible to capture all the desired properties in a single model [11].
One approach, that is increasingly used in Operational Research [12] and Socio-Environmental Sys-
tems [13], is Hybrid Simulation [14]. This approach aims to combine multiple interconnected sub-
simulations, potentially implemented using a diverse set of modelling techniques [15]. However,
current tools and frameworks are considered inadequate [1] due partially to their lack of support for
interoperability [14].

This paper argues that (hybrid-)simulations should not be built on monolithic architectures and
homogeneous technology stacks, but should instead be implemented as loosely-coupled collec-
tions of reusable components, written using diverse programming languages and frameworks, that
are designed to be deployed at scale. In essence, it argues that HS should be implemented using
a microservices architecture [16]. This approach is explored from the perspective of Agent Based
Modelling, we believe it can be extended to cover the integration of ABM with other forms of
simulation.

CONTACT Rem Collier rem.collier@ucd.ie

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this
article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/17445760.2023.2242183&domain=pdf&date_stamp=2023-07-31
mailto:rem.collier@ucd.ie
http://creativecommons.org/licenses/by/4.0/

2 M. JAGUTIS ET AL.

HypermediaMulti-Agent System (MAS) Simulation [17] builds upon ABM simulations bymodelling
the environment as a set of linked hypermedia resources. In this novel approach, the resources within
the system function as micro-environments that are connected to other related micro-environments
by a set of hyperlinks. The overall design of the system is based on the microservices architec-
ture [16,18] and the interactions between the micro-environments are implemented using REpresen-
tational State Transfer (REST) [19]. This approach can be expanded to include the use of ontologies to
provide semanticmeaning to the resources and hyperlinkswithin the system and affordances to allow
agents to reason about the actions that can be performed on the resources [20].

Traffic Simulation Systems (TSS) is a mature area of research with the aim of improving the plan-
ning, design, and operation of transportation systems [21]. Simulations can vary in both scope and
scale. In some situations, the passage of vehicles through the systemcanbe represented asmathemat-
ical formulae, similar to throughput in networks, while in others, the position, actions and intentions
of individual vehicles are represented at each instant. The trade-off between the level of detail and
the computational cost of the simulation is a key consideration in the design of a TSS. Several mod-
elling applications havemadeuseof ABM to simulate thebehaviour of individual users of the transport
network being simulated [22,23].

This paper expands upon the original proof of concept of the Hypermedia MAS Simulation, which
took the form of a TSS, and is described in [24]. The features of the system described in this paper are
not novel and are typically included within a much larger feature set that is available in commercial
or open source TSS. The novelty of this work is in the way we construct the simulation through the
combination ofmicroservices, hypermedia systems, linked data,multi-agent systems, and affordances
in order to create a decentralised simulation that can scale while still delivering support for reusability
and extensibility.

The Hypermedia MAS Simulation approach is based on the principle that a simulation can be
constructed from a set of loosely coupled sub-simulations. Each sub-simulation is implemented as a
microservice that can be reused in other simulations. These individual sub-simulations work together
to achieve the global aims of the overall simulation. The use of microservices allows for the sim-
ulation to be constructed from a diverse set of modelling techniques and languages, rather than
being restricted to a single language or framework. Components can be developed independently
and integrated into the simulation at a later date as long as they can be accessed through a RESTful
interface.

The agent part of the simulation also resides in one (or more) microservices. Conceptually, agents
are integrated using the Multi-Agent MicroServices (MAMS) architectural style [25]. There are 2 dif-
ferent implementations of agents in our prototype: one is a pure Java implementation written
using Spring Boot1, and the second is based on a prototype MAMS framework that is based on the
ASTRA agent programming language [26,27] and CArtAgO [28]. Details of this framework are pre-
sented in [29]. The former approach uses no agent technologies, while the latter uses a dedicated
agent programming language that comes with a built in agent run-time. Further details of these
implementations are presented in Section 3.3.

Linked Data and its use within the Web of Things (WoT) [30] forms the basis for the approach
to interoperability between sub-simulations. WoT developed the Thing Description standard [31]
which is a machine readable document that describes the capabilities of the devices that have been
deployed. This allows clients to reason about how (or whether) to use them. Analogous descriptions,
called Simulation Descriptions, could be developed for sub-simulations in order to enable the inter-
operability and reuse of the sub-simulations. These would describe the inputs and outputs of the
sub-simulation as well as the nature of the simulation environment. This description could then be
utilised by the system to automatically handle data transformationswhen required as semanticmean-
ingwill be available for the inputs andoutputs. The provided semanticmeaning could be leveragedby
agents to reason about the actions that can be performed on the entities within the simulation envi-
ronment. The use of aHypermediaMAS [32] approachwould allow agents to navigate the hypermedia
space and reason about the information that they perceived.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 3

The embodiment of agents within the environments of the available sub-simulations is a key
feature of the this hybrid simulation approach. These agents are expected to control the actions
of the entities being represented in the simulation. The need for agents to be capable of inter-
acting with a diverse set of environments presents a significant challenge. In addition to this,
the agents may require implementations of greater complexity as a result of the requirement
to interact with multiple sub-simulations as they will need to navigate and transition between
them.

The ‘Keep It Descriptive, Stupid’ principle described in [33] argues for the simulation of richer, more
realistic models. This principle aligns with the increased complexity of agents that is expected in this
approach. AdamandGaudou [33] argue that the social simulation community needs to adopt BDI style
models, tools and programming languages.

Affordances can be used to facilitate agent interactions in diverse simulation environments. Affor-
dances are information perceived from the environment, this information details the possible actions
that can be performed. Agents capable of understanding and reasoning about affordances can be
designedwith a higher level of abstraction. This removes the limitation of hard coded actions or plans
for specific circumstances and enables agents to reason about the actions that can be performed in
a given situation. Proper documentation of these affordances as hypermedia documents published
within the simulation system would allow agents to discover the entities that they are capable of
controlling or interacting with regardless of their location.

2. Related work

This paper describes work that combines traffic simulation as well as multi-agent systems research. As
such, the related work is presented from both perspectives. First research in the area of traffic simu-
lation is discussed at a high level. This is then followed by a discussion of related work in the area of
multi-agent systems.

2.1. Traffic simulation

Traffic simulation systems are an important tool to aid in the planning, design and management of
road infrastructure. Decades of increasing urbanisation and levels of car ownership have strained the
transportation networks withinmany cities [34]. These systems help to explore the complexities of the
networks being simulated and the impact of different variables on the network. As such research into
traffic simulation systems has been ongoing for many years.

Systems that simulate traffic networks are available in large numbers [35]. This includes commer-
cial systems as well as open source solutions. They can often be fundamentally different in terms of
efficiency or features, but generally can be categorised based a number of key characteristics, traffic
flow behaviour, traffic flow models, and representation.

2.1.1. Traffic flow behaviour
is the way in which vehicles are modelled in the simulation. This is considered both from the perspec-
tive of variance of behaviour within the population as well as with respect to the types of vehicles that
are modelled. The behaviour of vehicles within most systems is modelled in a homogeneous man-
ner [35]. That is that there are typically a limited number of vehicle types and that the behaviour of
each vehicle is predictable. This is in contrast to heterogeneous behaviour where vehicles are mod-
elled with a greater variance in behaviour and types [36]. For behaviour, vehicles may have a greater
tendency to reroute based on traffic of to accelerate or decelerate more quickly, for types, the simu-
lator may consider pedestrians, cyclists as well as different classes of vehicles. This approach is made
available by only a small number of systems such as Sumo [37].

4 M. JAGUTIS ET AL.

2.1.2. Traffic flowmodels
can typically be described as Macroscopic, Microscopic, or Mesoscopic. Macroscopic models are the
simplest and most computationally efficient. They model the overall flow of vehicles on the network,
rather than the behaviour of individual vehicles [38]. This is typically implemented using a statistical
approach. Microscopic models are the most computationally expensive and are based on the simula-
tion of individual vehicles (agents) and include representing the position and velocity of all vehicles on
the road network [37,39]. This allows for a greater level of customisation of the behaviour of individual
vehicles and the ability tomodel heterogeneous behaviour. This approach is becomingmore relevant
as the need to include the simulation of autonomous vehicles becomes more important [40].

Mesoscopicmodels attempt to benefit from themore individual representation of vehicles in some
places while also benefiting from the higher level calculations in others [37,41]. This can be achieved
using strategies such as grouping vehicles such that they move together on a road, or by simplifying
the dynamics of individual vehicles.

The amount of detail required by a simulation system will have a large influence on the choice of
traffic flowmodel. If a high level of detail is required, then the use of a macroscopic model may not be
sufficient. In the case where a high level of detail is not required, then the use of a microscopic model
may be wasteful of both resources and of time.

The manner of Representation for concepts such as position and velocity can also vary in these sys-
tems. One approach is to model the transport network as a collection of cells that the vehicles can
inhabit andmove between [42,43]. This limits the amount of detail that needs to bemodelled, but can
simplify the process of calculating the movement of vehicles. This is called a Discretemodel.

Alternatively, the network can be modelled as a continuous space where vehicles can move
freely [37]. This allows for a greater level of detail to be modelled, but requires a greater level of com-
putational power to calculate the movement of vehicles. This is called a Continuous model. Discrete
models are often used in the casewhere the network is relatively simple and the level of detail required
is low.

2.2. Multi-agent systems

Work on the use of the Belief-Desire-Intention (BDI) architecture [44] in social simulation [45,46] high-
lights the potential quality improvements that cognitive architectures bring to simulation. Early work
in the area was argued to be limited in the level of agency displayed by the software entities in sim-
ulations [47]. The argument put forward by Edmonds and Moss that the ‘Keep It Descriptive, Stupid’
(KIDS) principle is more suitable than the ‘Keep It Simple, Stupid’ (KISS) principle for the definition of
agents within simulation systems reflected similar sentiments [48].

Adam and Gaudou argue that the increased computing resources currently available, along with
further technological development, means that the use of richer cognitive agent architectures will
facilitate the creation of more nuanced models. Over time, the need to simplify models in an effort to
maximise the performance of the simulation will become less and less important [33].

Ciortea et al. proposed the concept of Hypermedia Aware Agents [32]. The concept is underpinned
by the Hypermedia MAS; an approach to building dynamic, open and long-lived MAS [49,50] that are
designed to inter-operate seamlessly with the World Wide Web.

The concept was expanded to outline a vision in which the hypermeda fabric of the web is used
as an environment into which the agents are integrated [51]. This shared hypermedia environment
would be based on the open standards of the Web. Agents, in such an environment, could use hyper-
links and hypermedia controls to discover and interact with entities and other agents regardless of
their location. The entities with which the agents interact could be physical services or devices. The
hypermedia controls could be published through hypermedia documents that are adapted based on
the state of the underlying entities.

A clear understanding of the relationship between Agents and Microservices Architecture is criti-
cal to the approach advocated in this paper. Recent experience in industry has shown that the use

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 5

of microservices can be a powerful approach to building distributed systems that scale. The ability
to build and deploy microservices independently make it easier to scale parts of the application as
needed. The combination ofmicroserviceswith agentswas first explored in bespoke applications built
for the IoT domain [52,53]. An approach to this combination of ideas was presented as an architectural
style called Multi-Agent MicroServices (MAMS) [25]. The ASTRA agent programming language [26,27]
was used to implement and deploy a prototype of theMAMS approach [29]. More recently, theMAMS
approach has been used in the development of a semantic web service composition system [54] as
well as a group planning system [55].

2.2.1. Affordances
within agent systems are a means of representing the potential actions that an agent can perform
in a given environment and context. The concept originates in ecological psychology as a means of
representing the relationship between objects in an environment and the potential actions that an
agent (human or otherwise) may perform with those objects [56]. Affordances enable the possibil-
ity for agents to be implemented at a higher level of abstraction that would otherwise be possible.
Agents can potentially have more general plans that can be applied in a variety of situations instead
of requiring that actions be hard coded into the plans.

Agent-oriented programming has been undergoing a transition to the point where the environ-
ment is now viewed as an explicit part of a multi-agent system [57]. The effect of this change can be
seen in the development of systems such as the Environment Interaction System (EIS) [58] and the
CArtAgOmulti-agent system [28]. These systems provide an abstraction of the environment such that
it can be used across agent platforms.

Simulation systems have already been developed that integrate environment abstraction. The
JaCaMo-sim platform [59] makes use of environments developed in CArtAgO and as such allows the
use of agents within simulations. TheWeb of Things (WoT) environment [32] is an example of an envi-
ronment that hasbeendeveloped touse affordanceswithin aCArtAgOworkspace.While bothof these
systems are based on the use of CArtAgO, the combination of both affordances and simulation has not
yet been reported.

Implementation of affordanceswithin existing agent based simulation systems has typically varied.
Affordances and effects were paired together in the modelling of human behaviour within an emer-
gency evacuation scenario [60–62]. Affordances used in combination with a scalar value representing
fitness have been used in path planning simulations [63]. Others have proposed a representation in
which an agent identifies its own affordances and may determine the possible actions within a traf-
fic simulation environment [64]. More recent work has proposed the adoption of a formal affordance
schema for use within agent-based modelling systems [65,66].

3. A prototype traffic simulator

The vision originally described in [17] considered simulations to be a composition of two types of inter-
acting microservice. The first type of microservice, environment microservices, host pieces of the envi-
ronment to be simulated. The second type of microservice, agent-oriented microservices, implement
the intelligent behaviour of the individuals driving the actions of the entities in the simulation.

The implementation of environment microservices can be completed using any technology that
can be exposed as a RESTful service. In this regard, we consider the environment microservices to be
heterogeneous or at least capable of being implemented using heterogeneous technologies. In this
example, all the environment microservices are implemented in Java not because it is a requirement,
but simply out of convenience. It is expected that such systemsmature, components would be added
(or existing ones replaced) with implementations in whichever technology is most appropriate.

The agent-oriented microservices were developed and tested using two alternate implementa-
tions. The first implementation is built using the ASTRA [26] platform to define the agents and their
behaviour. The second implementation made use of Java to similarly define the agents and their

6 M. JAGUTIS ET AL.

behaviour within the simulation. Testing using both implementations was completed to ensure that
the simulation system was capable of supporting heterogeneous implementations of the agent-
oriented microservices.

3.1. Overview of implementation

Figure 1 outlines the architecture and some interactions of the prototype simulation2. The primary
environment microservices are highlighted in green. The Traffic Simulatormanages the movement of
vehicles on the road and through junctions. The Home Simulator andWork Simulator operate as sinks
and sources of agents, these are destinations that the agentswill navigate to and from. Currently, these
simulators are very simple, but their inclusion allows for the simulation of agents that can transition
between multiple connected micro-environments.

Secondary environment services are shown in blue. The Clock Service provides a global discrete
time to the environment microservices. This is shown in the figure as a PUT (/step) request that is
sent to each of the environment microservices informing them of the current time. The Traffic Lights
service implements the scheduling of the traffic lights at different junctions in the traffic simulator. The
addition of nodes to the traffic light service is done by the traffic simulator at the point of initialisation.
These nodes then report their status to the traffic simulator at the beginning of each time step.

The remaining microservices are shown in blue. TheManagement Service is used to configure and
manage the execution of the simulation. The Driver Service is used to decide the actions of the entities
within the simulation. Although the name may suggest that the agents are configured only for the
traffic simulator, their implementation within this service also governs their actions within the home
and work simulators.

3.2. Simulation of traffic

The prototype simulator is initiated in a state where all agents are located within the home simula-
tor. At the appropriate discrete time, the agents will initiate their journey to the work simulator by

Figure 1. Overview of Simulation Architecture.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 7

transitioning into the traffic simulator. The agent then navigates through the traffic simulator to the
appropriate point and transitions into the work simulator. Figure 1 illustrates a sample of the interac-
tions that take place between the microservices. The interactions are in the form of JSON documents
which are delivered as thepayloadofHTTPmessages. The interactions are designedbasedon theREST
architectural style.

Entities within the system all have identifiers that are locally unique for their type, but that are not
globally uniquewithin the simulator. For example, an agent, street and junctionmay all share the same
identifier, but no two agents will be allocated the same identifier. The separation of environment into
multiple services as well as the use of specific URIs for each interaction removes any need for global
identifiers.

When joining a simulation environment, agents pass a URI to themicro-environment service which
enables information to be passed back to the agent. Thesewebhooks are associatedwith each individ-
ual agent and are used to allow the simulation environment to send updates. These updates concern
the current state of the body of the agent in the simulation as well as the relevant perceptions of that
body. The state update is sent to the agent as a PUT request at the beginning of each time step.Within
this updated state is a list of actions that the agent can perform. This basic implementation of the
concept of affordances demonstrates that the approach is viable.

Figure 2 shows an example interaction between an agent and the traffic simulator. The agent
receives information about the state of the simulated environment as well as percepts and affor-
dances. The affordances received by the agent represent the possible actions the agent can perform.
In response, the agent informs the simulator of the action to be performed by the entity it represents.
This is completed by sending a PUT request to the traffic simulator with the action to be performed as
well as any required parameters specified within the payload.

The list of all possible affordances are:

• Accelerate: increase the current speed of the vehicle;
• Decelerate: decrease the current speed of the vehicle;
• Enter: enter an intersection with the intention to exit on a specified street;
• Leave: leave an intersection via the street specified;
• Move: continue travelling along the street at the same speed;
• Plan: generate a new route to a given destination; and
• Wait: do nothing.

The affordances received by the agent are based on the current state of the simulation. For exam-
ple, the Enter affordance is only received when the vehicle is at the entrance of an intersection, the
Leave affordance can only be received when the vehicle has already entered an intersection. Some
more general affordances such as Wait and Plan are always available to the agent. The response in

Figure 2. Example interaction between agent and traffic simulator.

8 M. JAGUTIS ET AL.

Figure 2 details the agents command to enter the vehicle it controls into a junction while specifying
that the intended exit point of the junction is street 434.

The traffic simulator uses the cellular automata approach to representation and execution. In this
approach the road is discretised into cells of set size, where each cell will be empty or contain a vehicle
at anygivenpoint in time. Junctions connecting twoormore roads are implementedasqueuesof vehi-
cles. This approach to the simulation of traffic is designed to reduce the complexity and computational
requirements of the simulation while involving the more human-oriented aspects of driving [67].

The traffic simulator is responsible for the movement of vehicles through the junctions and along
the roads. In order to ensure that the individual sub-simulations remain synchronised, the simulations
operate on a discrete time model controlled by the clock service. The home and work services are
minimal, these are added to allow the opportunity to allow agents to transition across multiple envi-
ronments within the simulation. Within these simulations, the only context the agent receives is the
current time, and the only affordance they are provided is for the Plan action. The agents in these sim-
ulations wait for the correct time, then transition from the home simulator to the traffic simulator by
making use of the plan action to set the desired destination. The process is then later reversed when
the correct time comes for the agent to leave the work simulator.

The home and work simulators are linked to individual junctions in the traffic simulator. When an
agent transitions from the home simulator to the traffic simulator, they are placed at the relevant junc-
tion. When the agent within the traffic simulator arrives at the correct junction, they are automatically
transitioned to the desired simulator.

3.3. Implementing agent drivers

One of the advantages that our approach brings is that it decouples the implementation of the envi-
ronment from the implementation of the agents. This means that we can write our agent code in
any language that is able to implement the protocol outlined in Figure 2. To illustrate this, the pro-
totype system presented in this article includes two examples of how to integrate an agent driver. The
first approach is an object-oriented implementation written in Java and the second approach is an
Agent-Oriented Programming (AOP) solution that has been built using theMulti-Agent MicroServices
(MAMS) architectural style. The twoapproaches are illustrated in the sections below. This article argues
that the latter approach offers a better level of abstraction for defining agent behaviours. This is espe-
cially so when linked-data representations that can be transformed directly to knowledge are used.
That said, this section demonstrates the flexibility of the approach as the designer is free to choose any
implementation strategy they feel is appropriate and the cost of integrating that strategy is minimal.

3.3.1. Java drivers
The procedural approach has been implemented using thewell-known Java Spring-Boot framework3.
The prototype application is quite simple. It defines a single endpoint/{id}/notifications that
receives the state update from the environment aswas shown earlier in Figure 2. It is expected that the
consequence of a PUT request being submitted to this endpoint is that the environment description
will be passed to an agent implementation that will identify the next action to be performed. Again,
as is shown in Figure 2, this action is submitted to the simulator via a second PUT request.

Figure 3 illustrates this through a simplified implementation of the Java method associated with
the notification endpoint. Most of the decision making logic is hidden in the generateAction()
method which takes the state of the environment as an input and returns the selected action.

3.3.2. MAMS drivers
The second approach to implementing drivers uses an AOP language. Specifically, the agents are pro-
grammed using the ASTRA programming language, an AOP language that is based on the abstract
AgentSpeak(L) language [44]. ASTRA is an event driven language where behaviour is encoded using
event-context-plan triples, knownasplan rules. Exampleplan rules canbe seen in Figure 4. They are the

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 9

Figure 3. Spring Boot Agent Implementation.

statements that are prefixed by the keyword rule. Events can model environmental change (known
as belief events) or decision points (known as goal events). The latter type of event is used in the
example code. Goals have a long history in Multi-Agent Systems and AI but here can be viewed as
representing decision points. The idea behind ASTRA (and AgentSpeak(L)) is that an agent behaviour
is triggered by an environmental event indicating that something undesirable has occurred in the
environment. This event is matched to a plan to that is selected contextually based on the current
state (beliefs) of the agent. Because the environment is dynamic the plan parts are written as partial
plans and goals identify decision points where the agentmust choose how to proceed. Choosing how
to proceed involvesmatching (again contextually) the goal event generated by the adoption of a goal
in the current plan to a plan rule and then adopting the plan part as a sub-plan of the overall plan.

You can see an example of this pattern of behaviour in the example program shown in Figure 4. The
pattern starts with the handling of the !updatedObject(...) goal in the second rule. The plan
part of theplan ruledefines two sub-goals!decide(...) and!act(...)whichmustbe achieved
in sequence. The last two rules highlight two possible sub-plans for achieving the !decide(...)
goal. The agent will choose only one of these options based on what its current state is. The selection
conditions are expressed by the context part which appears after the colon (:) and before the opening
brace () of the plan. This is the equivalent of the generateAction() method defined in the Java
Drivers example. The secondgoal is used to send the chosen action to the server. This takes the formof
a low level !put(...) goal which is implemented as part of the Multi-Agent MicroServices (MAMS)
framework.

MAMS is visible in two parts of the example code. The latter place is in the rule associated with
the !act(...) goal where a !put(...) goal is adopted to submit the action to the server. The
representation actually sent to the simulation has been simplified for readability. The former place
where MAMS is visible is in the rule that handles the !main(...) goal. The actions specified in this
rule connect the agent to the MAMS infrastructure and create a resource that is exposed on the web
under the /{agent-name}/notification URL. The simulation service sends the environment
state to the agent in the sameway; by updating this resource using aPUT request. Upon theprocessing
of a new PUT request, the underlying MAMS infrastructure generates the updatedObject(...)
goal to trigger a response from the agent.

Finally, the example includes two logical inference rules (denoted by the inference keyword).
These rules are used to provide abstract (derived) representations of the environment state to improve

10 M. JAGUTIS ET AL.

Figure 4. ASTRA-MAMS Implementation.

the readability of the plan rule contexts. the contexts environment state into beliefs that are matched
against the context of the !decision(...) rules. The environment state itself is encapsulated as a
Java object that is an instance of the EnvironmentState class.

3.4. Walkthrough

Executing the simulation is a process that requires the performance of a set of steps in sequence. If
services are started in the wrong order or if the configuration is incorrect, the simulation will not func-
tion correctly. In order to execute the prototype, the microservices must be started in the following
order:ClockService,Micro-EnvironmentService, Traffic Simulator,HomeSimulator,WorkSimulator,Driver
Service andManagement Service. The management service once started will initiate the simulation.

Figure 5 shows a screenshot taken during the operation of the simulator. The simulation was
designed as a small scale test of the underlying system. The network being simulated was made up of
31 streets which intersected at 14 points. Dispersed throughout the network were a number of homes

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 11

Figure 5. Screenshot of the simulation in progress.

and workplaces that agents would navigate between. Once initialised, agents exist within the home
simulation andwait for the correct time to transition into the traffic simulation. Once in the traffic sim-
ulation, agents navigate to the relevant junction and transition into the work simulation. The process
is reversed when the correct time comes for the agent to leave the work simulator.

The duration that the simulation executes for is specified by the management service. During exe-
cution, rudimentary statistics are gathered relating to the travel times of the vehicles. The statistics are
not as detailed as those that would be gathered by a traditional traffic simulation system. However,
there is no reason that the system could not be extended to gather other statistics that are required
for the specific application.

4. Lessons learnt

The development of this prototype was a part of the overall process of developing and evaluating
this vision for agent-based modelling. As a consequence of the development and evaluation of the
prototype and the natural extension of the ideas and concepts underlying the vision, a number of
lessons were learnt. In this section, we describe the most evident lessons learnt.

4.1. The importance of URLs as identifiers

Traditionally, some form of integer is used as a unique identifier to refer to different nodes or edges in
a graph. Such identifiers work well in closed systems where all the components are known in advance
because it is possible to encode how to use those identifiers across all components. In the case of our
prototype, the use of identifiers refers to the constructionofURLs needed to interactwith specific envi-
ronment resources defined in the simulation model. For example, when the agent uses a PUT request
to submit the next action to be performed or when an agent is transferred from a home environment
to a junction in the traffic simulator environment. Here, the knowledge of how to construct URLs that

12 M. JAGUTIS ET AL.

refer to the specific streets or junctions must be replicated across the home, work, management and
agent microservices. While the knowledge is relatively trivial – the base URL that is common to all
streets or junctions – the key issue is the replication of the code as this increases the coupling of the
system components. The introduction or removal of an environment resource requires that the devel-
oper modify all microservices that refer to the new/existing microservice. This task only increases in
complexity as the system scales.

The issue of constructing URLs is not new. In fact, it is one of a number of issues raised by Fielding
[19] when describing REST. In particular, he describes best practice for the implementation of REST
basedapplications through the conceptofHypermediaAsTheApplicationOf EngineState (HATEOAS).
Fielding argues that the construction of URLs should be the responsibility by themicroservice (he used
the word server here) that the URLs refer to and should be provided by that service as part of the
resource representation.

In the prototype, we did not follow this design principle, but instead used integers as unique identi-
fiers in the resource representations returned by the three environment microservices. This is evident
from the simplified resource representations shown in Figure 1. Ourmotivationwas to keep thedesign
as simple as possible, but it became clear towards the end that the resulting system components had
closer coupling thatwewould like. Itwasparticularly clear in thedesignof theagents as they interacted
with all the other services.

4.2. Semantic descriptions

The lack of semantic descriptions of the environment became a barrier to the addition of new func-
tionality. The underlying layout of the traffic network being simulated was not available to the agents.
As a result, it was impossible for agent to plan their route through the network. As a consequence, the
route planning functionality was implemented as part of the traffic simulation service. This approach
is not ideal because it is not possible to implement alternative route planning strategies.

A semantic representation of the traffic simulation that could expose the current simulation state
would be a better approach. Using the appropriate technologies would allow the construction of a
shared knowledge graph that agents could explore directly. This would make it possible to imple-
ment functionality, such as route planning, within the agent. This allows for heterogeneous route
planning strategies, such as theQ-learning approach advocated in [68], while also allowing centralised
approaches to be used when they are considered appropriate.

4.3. Decomposition is good

In this prototype, the traffic simulation implements the entire simulation of the traffic network and
other functions such as route planning. This seemed like a good idea in the original design, as the
traffic simulation was viewed as one of three types of environment that the agents could inhabit.

On reflection this has a number of drawbacks: combining the implementation of junctions and
streets into a single service enforces a single (or at least fixed) set of junction and street models be
used. In the prototype, we implemented just one junction model and one street model. In practice, it
may be necessary to use different models for different parts of the simulation. For example, a multi-
lane street models might be designed that include support for overtaking, or a one-way lane models
to support one way systems. It became clear that we had not decomposed our traffic simulation suffi-
ciently. A better level of decomposition would be at the street/junction level; allowing the integration
of multiple street/junction models by implementing a microservice for each model. An obvious issue
in this is the increased complexity described in Subsection 4.1. This approach would also not fit well
with the use of a graph database such as Neo4J.

One solution is to useURLs to implement the graph structure. In such an approach, junctionswould
be implemented as individual environment resources and would include URLs to the street environ-
ment resources that connect to it. Similarly street environment resources would include URLs to the

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 13

associated junction environment resources. The result is a decentralised graph implementation based
on the URLs themselves.

4.4. The potential of knowledge graphs

While reflecting on the lessons learnt in the previous three sections, another idea emerged. The com-
bination of URLs and semantic representations are the building blocks of knowledge graphs [69].
When this is combined with the decomposition of the traffic simulation into junctions and streets,
an interesting possibility emerges: the creation of a distributed knowledge graph of the simulation
environment. Such a knowledge graph could be used by the simulation agents to explore the envi-
ronment. For example, in our prototype, route finding is implemented using a shortest path algorithm
provided by Neo4J. In a knowledge graph centric environment, the agent could perform route finding
by simply exploring the knowledge graph following the URLs connecting streets to junctions and vice
versa. An example of such an approach can be found in [68] where agents are implemented that use
Reinforcement Learning to explore a semantically defined maze environment.

Knowledge graphs can not only enable discovery of the structure of the environment, but also
can be used to provide additional knowledge necessary for the agents to operate effectively in the
environment. For example, amore complex work environment could include descriptions of themain
tasks associated with each role. This offers the potential for an agent with no prior knowledge of that
particular workplace learning how to perform a given job. Here we use the term ‘learn’ in its most gen-
eral sense which can be realised through some form of plan sharing, the application of reinforcement
learning from first principles or even some form of transfer learning.

4.5. Other lessons

Other lessons havebeen learnt that aremore specific to theprototype. For example, the use of the Plan
action to trigger transition from a home/work simulation into the traffic simulator only works if there
is a traffic simulator. In the context of the avoiding monoliths lesson, perhaps a generic Leave action
would bemore appropriate. Also, the use of theMove action does notmakemuch sense in the context
of the Accelerate and Decelerate actions. A better model would be to accelerate to the correct speed
and then to Wait if there is nothing to do. Similarly, the need to perform an Enter action at the end
of a street does not make sense, it is surely more appropriate to expect that the car will automatically
transition into the intersection when it reaches the end of the street.

5. Conclusions

This paper presents an overview of a prototype agent-based traffic simulator based on microservices
and REST. The development of the prototype demonstrates the potential of the approach to building
simulations based on Agent-Based Modelling.

One particularly nice feature of the approach is the flexibility afforded in choosing how to imple-
ment the agent part of the simulation. By adopting HTTP as an interface between the agent and
its environment, it is possible to use any programming language or agent framework that is able
to interact with services via HTTP. This is illustrated through two prototype agent implementations.
Section 3.3.1 introduces a simple Java based agent implementation that uses the well-known Spring-
Boot framework to provide theHTTP integration. The second approach, described in Section 3.3.2 uses
the less well known Multi-Agent MicroServices (MAMS) framework which is built on top of the ASTRA
agent programming language.

The goal of this work is to explore the potential of the approach. We have not done any significant
performanceanalysis.Wedoexpect that thedecompositionof the simulation into a set ofmicroservice
will increase network overheads and could have an impact at scale. One interesting avenue of future

14 M. JAGUTIS ET AL.

research would be to explore possible techniques for managing this increased load. Potential strate-
gies could include the use of mobile agents techniques to balance the network load or the use of the
duplexmode offered in HTTP/2. Evenwith such optimisations, we do not expect that any Hypermedia
MAS Simulation would be able to compete with a bespoke simulation developed for and deployed on
a cluster. This was never our goal for this work.

The experience of building and testing the prototype has influenced our original vision for agent-
based modelling. The importance of semantic meaning and hypermedia links was made evident. The
adoption of Semantic Web and Linked Data technologies has three potential benefits:

• The use of linkedmicroserviceswould allow the decomposition of complex environments into a set
of simpler environments implemented as a decentralised suite of microservices that form a decen-
tralised linked environment. This has the potential to enhance the configurability and reusability of the
environment components. For example, a new street model can be introduced by deploying it as a
microservice, creating necessary environment resources and linking them to the relevant junction
service endpoints.

• The use of linked data technologies should further simplify the interface between the environment
microservices and agent frameworks that operate with knowledge/beliefs (such as ASTRA) allow-
ing the direct ingestion of knowledge from the environment removing the need to provide custom
abstractions such as the inference rules defined in Section 3.3.2. This will simplify further the use
of agent frameworks making them a more viable option for agent-based simulation. It also opens
up the possibility of hybrid agent simulations where different agents within the simulation are
implemented using different technologies, but are able to inter-operate through the same shared
environment.

• The combination of linked data and microservices leads to the potential to create a decentralised
knowledge graph of the simulation environment. By embedding links to the environment descrip-
tions inside the environment state representations, it becomes possible for agents to access their
local knowledge graph. This offers the potential for implementing agents that are able to combine
the traditional local state with access to global knowledge of their environment.

Future work will focus on the development of the decentralised linked environment approach, the
integration of semantics and the creation of a larger andmore complex prototype that will allow us to
better evaluate the potential of the linked data approach and to enable its evaluation through larger
and more complex scenarios.

Notes

1. http://spring.io
2. Source code: https://gitlab.com/mams-ucd/examples/microservice_traffic_simulator
3. https://spring.io

Disclosure statement
No potential conflict of interest was reported by the author(s).

References
[1] Polhill JG, Ge J, HareMP, et al. Crossing the chasm: a ‘tube-map’ for agent-based social simulation of policy scenarios

in spatially-distributed systems. GeoInformatica. 2019;23(2):169–199. doi: 10.1007/s10707-018-00340-z
[2] Abar S, Theodoropoulos GK, Lemarinier P, et al. Agent based modelling and simulation tools: a review of the state-

of-art software. Computer Sci Rev. 2017;24:13–33. doi: 10.1016/j.cosrev.2017.03.001
[3] Tisue S, Wilensky U. Netlogo: a simple environment for modeling complexity. In: International Conference on

Complex Systems; Boston, May 16–21; Vol. 21. Citeseer; 2004. p. 16–21.
[4] NorthMJ, Collier NT, Ozik J, et al. Complex adaptive systemsmodelingwith repast simphony. Complex Adaptive Syst

Modeling. 2013;1:1–26. doi: 10.1186/2194-3206-1-3

http://spring.io
https://gitlab.com/mams-ucd/examples/microservice_traffic_simulator
https://spring.io
https://doi.org/10.1007/s10707-018-00340-z
https://doi.org/10.1016/j.cosrev.2017.03.001
https://doi.org/10.1186/2194-3206-1-3

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 15

[5] Luke S, Cioffi-Revilla C, Panait L, et al. Mason: amultiagent simulation environment. Simulation. 2005;81(7):517–527.
doi: 10.1177/0037549705058073

[6] Al-Zoubi K, Wainer G. Rise: a general simulation interoperability middleware container. J Parallel Distrib Comput.
2013;73(5):580–594. doi: 10.1016/j.jpdc.2013.01.014

[7] Collier N, North M. Repast HPC: a platform for large-scale agent-based modeling. Large-Scale Comput.
2012;10:81–109. doi: 10.1002/9781118130506.ch5

[8] Cordasco G, Scarano V, Spagnuolo C. Distributedmason: a scalable distributedmulti-agent simulation environment.
Simul Model Pract Theory. 2018;89:15–34. doi: 10.1016/j.simpat.2018.09.002

[9] Rashid ZN, Zebari SR, Sharif KH, et al. Distributed cloud computing and distributed parallel computing: a review. In:
2018 International Conference on Advanced Science and Engineering (ICOASE). IEEE; 2018. p. 167–172.

[10] Taylor SJ. Distributed simulation: state-of-the-art and potential for operational research. Eur J Oper Res.
2019;273(1):1–19. doi: 10.1016/j.ejor.2018.04.032

[11] Kitova OV, Kolmakov IB, Dyakonova LP, et al. Hybrid intelligent system of forecasting of the socio-economic
development of the country. Int J Appl Business Economic Res. 2016;14(9):5755–5766.

[12] Brailsford SC, Eldabi T, Kunc M, et al. Hybrid simulation modelling in operational research: a state-of-the-art review.
Eur J Oper Res. 2019;278(3):721–737. doi: 10.1016/j.ejor.2018.10.025

[13] Turner II B, Esler KJ, Bridgewater P, et al. Socio-environmental systems (ses) research: what have we learned and
how can we use this information in future research programs. Curr Opin Environ Sustain. 2016;19:160–168. doi:
10.1016/j.cosust.2016.04.001

[14] Eldabi T, Brailsford S, Djanatliev A, et al. Hybrid simulation challenges and opportunities: a life-cycle approach. In:
2018 Winter Simulation Conference (WSC); Gothenburg, Sweden. IEEE; 2018. p. 1500–1514.

[15] Mustafee N, Brailsford S, Djanatliev A, et al. Purpose and benefits of hybrid simulation: contributing to the conver-
gence of its definition. In: 2017 Winter Simulation Conference (WSC); Las Vegas, USA. IEEE; 2017. p. 1631–1645.

[16] Fowler M, Lewis J. Microservices: a definition of this new architectural term; 2014. Available at https://martinfowler.
com/articles/microservices.html.

[17] Collier R, Russell S, Golpayegani F. Harnessing hypermedia MAS andmicroservices to deliver web scale agent-based
simulations. In: Proceedings of the 17th International Conference on Web Information Systems and Technologies –
WEBIST; INSTICC. SciTePress; 2021. p. 404–411. [online only]

[18] Zimmermann O. Microservices tenets. Computer Sci-Res Develop. 2017;32(3-4):301–310. doi: 10.1007/s00450-016-
0337-0

[19] Fielding RT. Architectural styles and the design of network-based software architectures [dissertation]. University of
California, Irvine; 2000.

[20] Collier R, Russell S, Ghanadbashi S, et al. Towards the use of hypermedia mas andmicroservices for web scale agent-
based simulation. SN Computer Sci. 2022;3(6):510. doi: 10.1007/s42979-022-01424-2

[21] Pursula M. Simulation of traffic systems-an overview. J Geographic Inform Decision Anal. 1999;3(1):1–8.
[22] Espié S, Auberlet JM. ARCHISIM: a behavioral multi-actors traffic simulation model for the study of a traffic system

including ITS aspects. Int J ITS Res. 2007;5(1):7–16.
[23] Horni A, Nagel K, Axhausen K. Multi-agent transport simulation MATSim. London: Ubiquity Press; 2016.
[24] Jagutis M, Russell S, Collier R. Simulating traffic with agents, microservices & rest. In: Proceedings of the 15th

International Symposium on Intelligent Distributed Computing; Bremen, Germany. Springer; 2022.
[25] Collier RW, O’Neill E, Lillis D, et al. MAMS: multi-agent microServices. In: Companion Proceedings of The 2019 World

WideWeb Conference, WWW ’19; San Francisco, USA. New York, NY: Association for Computing Machinery; 2019. p.
655–662.

[26] Collier RW, Russell S, Lillis D. Reflecting on agent programming with agentspeak (l). In: International Conference on
Principles and Practice of Multi-Agent Systems; Bertinoro, Italy. Springer; 2015.

[27] Dhaon A, Collier RW. Multiple inheritance in agentSpeak (L)-style programming languages. In: Proceedings of the
4th International Workshop on Programming based on Actors Agents & Decentralized Control; Portland, USA. ACM;
2014. p. 109–120.

[28] Ricci A, Viroli M, Omicini A. Cartago: a framework for prototyping artifact-based environments in mas. In: Weyns
D, Parunak HVD, Michel F, editors. Environments for multi-agent systems III. Berlin, Heidelberg: Springer Berlin
Heidelberg; 2007. p. 67–86.

[29] O’Neill E, Lillis D, O’Hare GMP, et al. Explicit modelling of resources for multi-agent microservices using the CArtAgO
framework. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems;
Auckland, NZ; 2020.

[30] Guinard DD, Trifa VM. Building the web of things. Vol. 3. Manning Publications Shelter Island; 2016. ISBN
9781617292682.

[31] CharpenayV, Käbisch S.Onmodeling thephysicalworld as a collectionof things: thew3c thingdescriptionontology.
In: European Semantic Web Conference. Springer; 2020. [online only]

[32] Ciortea A, Boissier O, Ricci A. Engineering world-wide multi-agent systems with hypermedia. In: International
Workshop on Engineering Multi-Agent Systems; Stockholm, Sweden. Springer; 2018. p. 285–301.

https://doi.org/10.1177/0037549705058073
https://doi.org/10.1016/j.jpdc.2013.01.014
https://doi.org/10.1002/9781118130506.ch5
https://doi.org/10.1016/j.simpat.2018.09.002
https://doi.org/10.1016/j.ejor.2018.04.032
https://doi.org/10.1016/j.ejor.2018.10.025
https://doi.org/10.1016/j.cosust.2016.04.001
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s42979-022-01424-2

16 M. JAGUTIS ET AL.

[33] Adam C, Gaudou B. BDI agents in social simulations: a survey. Knowl Eng Rev. 2016;31(3):207–238. doi:
10.1017/S0269888916000096

[34] United Nations Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision. UN;
2019.

[35] Ullah M, Khattak K, Khan Z, et al. Vehicular traffic simulation software: a systematic comparative analysis. Pakistan J
Eng Technol. 2021;4(1):66–78. doi: 10.51846/vol4iss1pp66-78.

[36] Noroozian A, Hindriks K, Jonker C. Towards simulating heterogeneous drivers with cognitive agents. In: ICAART 2014
– Proceedings of the 6th International Conference on Agents and Artificial Intelligence; Vol. 2, 6th International
Conference on Agents and Artificial Intelligence, ICAART 2014; Conference date: 06-03-2014 Through 08-03-2014;
Angers, France. SciTePress; 2014. p. 147–155.

[37] Krajzewicz D, Hertkorn G, Rössel C, et al. SUMO (Simulation of Urban MObility) – an open-source traffic simulation.
In: Al-Akaidi A, editor. Proceedings of the 4th Middle East Symposium on Simulation and Modelling (MESM20002);
Dubai; 2002. p. 183–187.

[38] Prevedouros PD, Li H. Comparison of freeway simulation with INTEGRATION, KRONOS, and KWaves. In: Fourth
International Symposium on Highway Capacity. Maui, Hawaii; 2000. p. 96–107. ISSN 0097-8515.

[39] Axhausen KW, Horni A, Nagel K. The multi-agent transport simulation MATSim. London (UK): Ubiquity Press; 2016.
[40] Fang X, Tettamanti T. Change in microscopic traffic simulation practice with respect to the emerging automated

driving technology. Periodica Polytechnica Civil Eng. 2022;66(1):86–95. doi: 10.3311/PPci.17411.
[41] Auld J, Hope M, Ley H, et al. POLARIS: agent-based modeling framework development and implementation for

integrated travel demand and network and operations simulations. Transp Res Part C: Emerging Technologies.
2016;64:101–116. doi: 10.1016/j.trc.2015.07.017

[42] Nagel K, Schreckenberg M. Traffic jam dynamics in stochastic cellular automata. Stuttgart (Germany): Los Alamos
National Laboratory; 1995.

[43] Shang XC, Li XG, Xie DF, et al. A data-driven two-lane traffic flowmodel based on cellular automata. Phys A: Statistical
Mechanics and Its Applications. 2022;588:126531. doi: 10.1016/j.physa.2021.126531

[44] Rao AS, Georgeff MP. Bdi agents: from theory to practice. In: ICMAS; San Francisco, USA; Vol. 95; 1995.
[45] Wai SY, Cheah WS, Wai SK, et al. Towards software engineering perspective for BDI agent. In: 2021 4th International

Symposium on Agents, Multi-Agent Systems and Robotics (ISAMSR); Malaysia; 2021. p. 106–110.
[46] Bulumulla C, Singh D, Padgham L, et al. Multi-level simulation of the physical, cognitive and social. Comput Environ

Urban Syst. 2022;93:101756. doi: 10.1016/j.compenvurbsys.2021.101756
[47] Drogoul A, VanbergueD,Meurisse T.Multi-agent based simulation: where are the agents? In: Simão Sichman J, Bous-

quet F, Davidsson P, editors. Multi-agent-based simulation II. Berlin, Heidelberg: Springer Berlin Heidelberg; 2003. p.
1–15.

[48] Edmonds B, Moss S. From kiss to kids – an ‘anti-simplistic’ modelling approach. In: Davidsson P, Logan B, Takadama
K, editors. Multi-agent and multi-agent-based simulation. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005. p.
130–144.

[49] Vachtsevanou D, Junker P, Ciortea A, et al. Long-lived agents on the web: Continuous acquisition of behaviors in
hypermedia environments. In: Companion Proceedings of the Web Conference; Taipei, Taiwan. 2020. p. 185–189.

[50] Ciortea A, Mayer S, Gandon F, et al. A decade in hindsight: the missing bridge betweenmulti-agent systems and the
world wide web. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems;
Montreal, Canada; 2019.

[51] Ciortea A, Mayer S, Boissier O, et al. Exploiting interaction affordances: on engineering autonomous systems for the
web of things. In: Second W3C Workshop on the Web of Things The Open Web to Challenge IoT Fragmentation.
Munich, Germany; 2019 Jun. [Online]

[52] Kravari K, Bassiliades N. A rule-based eCommerce methodology for the IoT using trustworthy intelligent agents and
microservices. In: International Joint Conference on Rules and Reasoning; Luxemborg. 2018.

[53] Krivic P, Skocir P, Kusek M, et al. Microservices as agents in IoT systems. In: Smart Innovation, Systems and Technolo-
gies; 2018. ISSN: 2190-3018.

[54] Zouad S, Boufaida M. Using multi-agent microservices for a better dynamic composition of semantic web services.
In: Proceedings of the 4th International Conference on Advances in Artificial Intelligence, ICAAI ’20. New York, NY:
Association for Computing Machinery; 2021. p. 47–52.

[55] Alves P, Gomes D, Rodrigues C, et al. Grouplanner: a group recommender system for tourism with multi-agent
microservices. In: Dignum F, Mathieu P, Corchado JM, De La Prieta F, editors. Advances in practical applications of
agents, multi-agent systems, and complex systems simulation. The PAAMS Collection. Cham: Springer International
Publishing; 2022. p. 454–460.

[56] Gibson JJ. The ecological approach to visual perception. New York (USA): Houghton-Mifflin; 1979.
[57] Weyns D, Omicini A, Odell J. Environment as a first class abstraction inmultiagent systems. Auton AgentMulti Agent

Syst. 2007;14(1):5–30. doi: 10.1007/s10458-006-0012-0
[58] Behrens T, Hindriks KV, Bordini RH, et al. An interface for agent-environment interaction. In: Collier R, Dix J, Novák P,

editors. Programming multi-agent systems. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 139–158.

https://doi.org/10.1017/S0269888916000096
https://doi.org/10.51846/vol4iss1pp66-78
https://doi.org/10.3311/PPci.17411
https://doi.org/10.1016/j.trc.2015.07.017
https://doi.org/10.1016/j.physa.2021.126531
https://doi.org/10.1016/j.compenvurbsys.2021.101756
https://doi.org/10.1007/s10458-006-0012-0

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 17

[59] Ricci A, Croatti A, Bordini R, et al. Exploiting simulation forMAS programming and engineering-the JaCaMo-sim plat-
form. In: 8th International Workshop on Engineering Multi-Agent Systems (EMAS 2020); Auckland, New Zealand;
2020 May. Cham: Springer. p. 42–60. (Lecture Notes in Computer Science; vol. 12589).

[60] Joo J, KimN,Wysk RA, et al. Agent-based simulationof affordance-basedhumanbehaviors in emergency evacuation.
Simul Model Pract Theory. 2013;32:99–115. doi: 10.1016/j.simpat.2012.12.007

[61] BusogiM, Shin D, RyuH, et al. Weighted affordance-based agentmodeling and simulation in emergency evacuation.
Saf Sci. 2017;96:209–227. doi: 10.1016/j.ssci.2017.04.005

[62] Hassanpour S, Rassafi AA. Agent-based simulation for pedestrian evacuation behaviour using the affordance
concept. KSCE J Civil Eng. 2021;25(4):1433–1445. doi: 10.1007/s12205-021-0206-7

[63] Kapadia M, Singh S, Hewlett W, et al. Egocentric affordance fields in pedestrian steering. In: Proceedings of the 2009
Symposium on Interactive 3D Graphics and Games, I3D ’09. New York, NY: Association for Computing Machinery;
2009. p. 215–223.

[64] Ksontini F, Mandiau R, Guessoum Z, et al. Affordance-based agent model for road traffic simulation. Auton Agent
Multi Agent Syst. 2015;29(5):821–849. doi: 10.1007/s10458-014-9269-x

[65] Klügl F, Timpf S. Approaching interactions in agent-based modelling with an affordance perspective. In: Suk-
thankar G, Rodriguez-Aguilar JA, editors. Autonomous agents andmultiagent systems. Cham: Springer International
Publishing; 2017. p. 222–238.

[66] Klügl F, Timpf S. Towardsmore explicit interactionmodelling in agent-based simulation using affordance schemata.
In: Edelkamp S, Möller R, Rueckert E, editors. KI 2021: Advances in Artificial Intelligence. Cham: Springer International
Publishing; 2021. p. 324–337.

[67] Maerivoet S, DeMoor B. Cellular automatamodels of road traffic. Phys Rep. 2005;419(1):1–64. doi: 10.1016/j.physrep.
2005.08.005

[68] Beaumont K, O’Neill E, Bermeo N, et al. Collaborative route finding in semantic mazes. In: Proceedings of the All the
Agents Challenge (ATAC 2021); 20th International Semantic Web Conference (online); 2021.

[69] HoganA, Blomqvist E, CochezM, et al. Knowledgegraphs. Springer Nature Switerland; 2021. doi: 10.1007/978-3-031-
01918-0. (Synthesis Lectures on Data, Semantics, and Knowledge; 22).

https://doi.org/10.1016/j.simpat.2012.12.007
https://doi.org/10.1016/j.ssci.2017.04.005
https://doi.org/10.1007/s12205-021-0206-7
https://doi.org/10.1007/s10458-014-9269-x
https://doi.org/10.1016/j.physrep.2005.08.005
https://doi.org/10.1007/978-3-031-01918-0

	1. Introduction
	2. Related work
	2.1. Traffic simulation
	2.1.1. Traffic flow behaviour
	2.1.2. Traffic flow models

	2.2. Multi-agent systems
	2.2.1. Affordances

	3. A prototype traffic simulator
	3.1. Overview of implementation
	3.2. Simulation of traffic
	3.3. Implementing agent drivers
	3.3.1. Java drivers
	3.3.2. MAMS drivers

	3.4. Walkthrough

	4. Lessons learnt
	4.1. The importance of URLs as identifiers
	4.2. Semantic descriptions
	4.3. Decomposition is good
	4.4. The potential of knowledge graphs
	4.5. Other lessons

	5. Conclusions
	Notes
	Disclosure statement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [493.483 703.304]
>> setpagedevice

