
ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2018

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1634

Synchronization Techniques in
Parallel Discrete Event Simulation

JONATAN LINDÉN

ISSN 1651-6214
ISBN 978-91-513-0241-6
urn:nbn:se:uu:diva-342270



Dissertation presented at Uppsala University to be publicly examined in 2446, ITC,
Lägerhyddsvägen 2, Uppsala, Tuesday, 10 April 2018 at 13:15 for the degree of Doctor of
Philosophy. The examination will be conducted in English. Faculty examiner: Professor
Christopher D. Carothers (Rensselaer Polytechnic Institute, Department of Computer
Science).

Abstract
Lindén, J. 2018. Synchronization Techniques in Parallel Discrete Event Simulation. Digital
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and
Technology 1634. 57 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0241-6.

Discrete event simulation is an important tool for evaluating system models in many fields of
science and engineering. To improve the performance of large-scale discrete event simulations,
several techniques to parallelize discrete event simulation have been developed.

In parallel discrete event simulation, the work of a single discrete event simulation is
distributed over multiple processing elements. A key challenge in parallel discrete event
simulation is to ensure that causally dependent events are processed in the correct order, so that
the same simulation trajectory is produced as in a sequential simulation. To preserve chronology
between events processed in parallel, different synchronization protocols have been devised,
each carrying a cost in performance.

This thesis presents techniques for reducing synchronization costs in two approaches to
parallel discrete event simulation, viz., optimistic space-parallel and share-everything parallel
discrete event simulation.

Firstly, we develop a concurrent priority queue, to be used as, e.g., a central event queue
in the share-everything approach to parallel discrete event simulation. The priority queue is
based on skiplists. It improves over previous queues by incurring fewer global synchronization
operations, thereby inducing less contention and improving scalability.

Secondly, we study how to improve the performance of optimistic parallel discrete event
simulation by disseminating accurate estimates of timestamps of future events. We present
techniques for obtaining the estimates in two different methods for simulation of spatial
stochastic models. The estimates allow processing elements to determine when to pause
simulation with high precision, thereby reducing the amount of performed useless work.

Finally, we observe that in the applications that we have studied, the phenomena of interest
are often non-homogeneous and migrate over time. Due to this, the work distribution tends
to become unbalanced among the processing elements. A solution is to rebalance the work
dynamically. We propose a fine-grained local dynamic load balancing algorithm for parallel
discrete event simulation. The load balancing algorithm reduces the number of events arriving
out-of-order, thereby reducing the amount of time spent on corrective actions.

Keywords: Parallel discrete event simulation, Discrete event simulation, PDES, Optimism
control

Jonatan Lindén, Department of Information Technology, Computer Systems, Box 337,
Uppsala University, SE-75105 Uppsala, Sweden.

© Jonatan Lindén 2018

ISSN 1651-6214
ISBN 978-91-513-0241-6
urn:nbn:se:uu:diva-342270 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-342270)



List of papers

This thesis is based on the following papers, which are referred to in the text
by their Roman numerals.

I A Skiplist-Based Concurrent Priority Queue with Minimal
Memory Contention.
J. Lindén and B. Jonsson. Tech. rep. 2018–003. Dept. of Information
Technology, Uppsala University, 2018.
Revised and extended version of:
A Skiplist-Based Concurrent Priority Queue with Minimal
Memory Contention.
J. Lindén and B. Jonsson. Principles of Distributed Systems.
OPODIS ’13, LNCS, vol. 8304. Springer, 2013, pp. 206–220.

II Efficient Inter-Process Synchronization for Parallel Discrete Event
Simulation on Multicores. P. Bauer, J. Lindén, S. Engblom, B.
Jonsson. Proc. 3rd ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation. SIGSIM-PADS ’15, ACM, 2015, pp.
183–194, doi: https://doi.org/10.1145/2769458.2769476.

III Exposing Inter-Process Information for Efficient PDES of Spatial
Stochastic Systems. J. Lindén, P. Bauer, S. Engblom, B. Jonsson.
Under submission.
Revised and extended version of:
Exposing Inter-Process Information for Efficient Parallel Discrete
Event Simulation of Spatial Stochastic Systems. J. Lindén, P. Bauer,
S. Engblom, B. Jonsson. Proc. 2017 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation. SIGSIM-PADS ’17.
ACM, 2017, pp. 53–64.

IV Fine-Grained Local Dynamic Load Balancing in PDES.
J. Lindén, P. Bauer, S. Engblom, B. Jonsson. Under submission.

Reprints were made with permission from the publishers.

iii





Comments on my Participation

I I am the principal author and the principal investigator.

II I am, together with Pavol Bauer, the principal author and the principal
investigator.

III I am, together with Pavol Bauer, the principal author and the principal
investigator.

IV I am the principal author and the principal investigator.

v



Other Publications

Predicting the Cost of Lock Contention in Parallel Applications on Mul-
ticores using Analytic Modeling.
X. Pan, J. Lindén, B. Jonsson. 5th Swedish Workshop on Multicore Comput-
ing, MCC ’12, 2012.

vi



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Discrete Event Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Parallel Discrete Event Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 Overview of Synchronization Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Adaptive Optimism Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 LP Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Event-Based Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1 Mesoscopic Event-Based Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Stochastic Simulation of Chemical Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Parallel NSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Skiplist-based Priority Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1 Lock-freedom and Correctness for Concurrent Data Structures . 40
5.2 Priority Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Summary of Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8 Summary in Swedish – Synkronisering i parallell diskret
händelsestyrd simulering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vii





1
Introduction

Parallel computing is ubiquitous in today’s society, appearing in everything
from smartphones to supercomputers. One type of parallel application that
has received much attention is computer simulation. Computer simulation is
the process of emulating some real or imagined system over time. There are
numerous applications of simulation; weather forecasting, traffic and road net-
work design, integrated circuit design, modeling of biological systems, and
many more. Simulation can have several goals, such as predicting disease
spread in epidemics or verification of integrated circuit design.
One important type of simulation is discrete event simulation (DES). DES

is typically concerned with the simulation of systems where changes occur in-
stantaneously and in discrete steps. In, e.g., epidemics, where a population
can be modeled as consisting of a number of healthy and infected individuals,
the spread of infectious diseases can be considered to be such a system: an
infection of a healthy individual occur instantaneously, and the infection re-
duces the number of healthy individuals and increases the number of infected
individuals by a discrete step.
A DES evolves by the occurrence of events. Each event causes a discrete

change in the state of the simulation model and is considered to take place in-
stantaneously. In the above example from epidemics, such an event is the in-
fection of an individual. Each event is associated with a timestamp, indicating
the instant in time the event is considered to occur. A discrete event simulator
typically maintains a state, which represents the state of the simulated system,
a collection of scheduled future events, usually stored in an event queue, and
a clock representing the time in the simulation [10]. A discrete event simula-
tion of a model proceeds by repeatedly processing (and removing) the event

9



with the earliest timestamp in the event queue: updating the simulation state
according to the type of the event, setting the clock to the time of the event,
and scheduling new events that become enabled by the processed event. The
newly created events model causal relationships in the system, e.g., an event
describing the infection of an individual may induce the creation of a future
event describing when the same individual recovers.
The proliferation of increasingly more complex systems that need verifi-

cation or evaluation, and a demand for more detailed simulations, has driven
the development of parallel simulation. Simulating large complex systems by
sequential execution would in many contexts take too long time. Instead, the
simulation is distributed onto many processing elements (e.g., processors or
multiprocessor cores) in parallel to reduce the execution time.
This thesis was motivated by the development of a parallel simulator for

applications in systems biology. For many systems being studied in systems
biology, e.g., intracellular systems, spatial and stochastic effects that depend on
small molecule numbers are important. Therefore, stochastic models are used
for modeling such systems, rendering analytic solutions difficult to obtain or
even infeasible. Instead, to learn about the behavior of a stochastic (and spatial)
system, we can use methods based on simulation. By simulating a stochastic
model many times, using computer-generated “random” numbers to mimic the
stochasticity of the system, we obtain many different simulation trajectories.
We can then ask questions about the average behavior of the system through
these trajectories, e.g., what is themean duration of an oscillation in the system,
or, what is the mean time before the system switches state. Parallelization can
help speeding up these otherwise time-consuming discrete event simulations.
There are several tools for simulation of spatial stochastic models, of which
one is the URDME framework [16]. The techniques developed in this thesis
aim at providing URDME with an efficient parallel simulator. The models
which are studied in this thesis have been taken from systems biology, but can
be applied to many other fields as well.
Parallel DES (PDES) is concerned with distributing the work of a sequen-

tial DES onto multiple processing elements, which collaborate to perform the
simulation faster. Simulation models often contain plenty of potential paral-
lelism, since different parts of a model typically only causally interfere with a
few other parts of the model, while the remaining parts are unaffected. How-
ever, exploiting the parallelism has proven to be surprisingly hard. The core
challenge in PDES is to ensure that causally dependent events are processed
in the correct order, even though they are processed on different processing
elements. (Un)fortunately, the causality between events is dynamic and hard
to predict. PDES has been actively developed in academia during the last three
decades, and a rich research literature has been developed [6, 11, 24, 41, 42].
There are multiple approaches to parallelization of DES. The approach that

has received the most attention is arguably space-parallel simulation. Space-
parallel simulation is done by partitioning the model state and distributing the

10



partitions onto so-called logical processes. The logical processes are then ex-
ecuted in parallel on multiple processing elements, each one evolving its par-
tition along a local simulation time axis. Events that affect the partition of
another logical process are exchanged. Upon receipt of an event at a logical
process, it is incorporated at the right time into the local time axis. Since each
logical process evolves its time axis independently, such an event may cause
a causality error: the received event may have an earlier timestamp than the
current time axis. There exist several synchronization protocols to handle lo-
cal causality errors in space-parallel simulation, but all of them have a cost in
performance [24].
Another approach to PDES that has received more attention lately, with

the advent of multicore processors, is share-everything PDES. Here, all pro-
cessing elements typically share the complete model state and a single central
event queue. Hence an efficient design of the event queue is crucial, to prevent
it from becoming a bottleneck. On the other hand, synchronization between
the threads is simplified taking place implicitly through the event queue, con-
sequently reducing the risk of causality errors.
This thesis develops techniques for improving the performance of PDES

executing on shared-memory computer architectures. More specifically, the
techniques developed are intended to improve the parallel efficiency by reduc-
ing the synchronization cost in space-parallel and share-everything PDES of
spatial stochastic models, to which three different approaches are taken.
In share-everything PDES, the central event queue is frequently accessed

by multiple processing elements concurrently. Removing the earliest event
from the event queue becomes a hot-spot, as concurrent accesses try to remove
the same element and must be synchronized. How can the synchronization
cost of concurrent accesses for the event queue in a share-everything PDES be
reduced? This question is addressed in Paper I.
In space-parallel PDES, one way of reducing the synchronization cost is to

ensure that simulation time progresses at approximately the same rate at each
logical process, thereby reducing the risk of costly causality errors. If a logical
process could know timestamps of future incoming events, it would be able
to optimally advance its local simulation. How can information about future
events be extracted and disseminated efficiently in stochastic spatial simula-
tion? This question is addressed in Papers II and III.
In space-parallel PDES, one issue that causes a high synchronization cost

uneven distribution of work over the processing elements, especially if the dis-
tribution of work varies with time. By dynamically balancing the load between
logical processes during the simulation, can the synchronization cost in PDES
be reduced? This question is addressed in Paper IV.

Thesis Organization
The remainder of this thesis introduction is organized as follows. First, a brief
introduction to DES follows in Chapter 2. Then, in Chapter 3, the main syn-

11



chronization protocols of PDES are surveyed, and techniques related to the pro-
tocols are discussed. At the end of the chapter, challenges in PDES addressed
by this thesis are introduced. This thesis concerns PDES of spatial stochastic
models with applications in, e.g., systems biology. These systems and related
simulation methods are presented in Chapter 4. At the end of the chapter, we
present the challenges that are inherent to the application. A concurrent data
structure suitable for use as a central event queue in, e.g., share-everything
PDES, is described in Chapter 5. At the end of the chapter, challenges related
to concurrent event queues are presented. In each of Chapters 3 to 5, related
work is discussed throughout the text. Summaries of the included papers fol-
low in Chapter 6, before we conclude in Chapter 7.

12



2
Discrete Event Simulation

In this chapter, we present some brief preliminaries of simulation and DES.
Simulation can be broadly classified into two categories. Discrete event

simulation (DES), also known as event-driven simulation, is concerned with
the simulation of models, where the state of the system is viewed as a discrete
quantity. In such a model, changes to the model state necessarily occur in-
stantaneously and in discrete steps even though such an assumption may not
exactly reflect the process being modeled. The time evolution of an example
discrete system with state 𝑥(𝑡) is shown in Figure 2.1(c). On the other hand,
in discrete time simulation (also known as continuous simulation, time-driven,
or time-step simulation) time progresses in discrete steps, and the state of the
simulated system is considered to change continuously, evaluated at the instant
of the discrete time-steps. In Figure 2.1, examples of continuous and discrete
systems are shown. In Figure 2.1(a) and Figure 2.1(b), a continuous system
and its example discrete time simulation are shown. The quantity Δ𝑡 in Fig-
ure 2.1(b) does not have to be constant, and may change during the simulation.
The simulation methods are suitable for different types of problems. Dis-

crete time simulation is suitablewhen the complete state of the simulatedmodel
changes continuously, whereas discrete event simulation is suitable when only
a part of the state changes, at irregular intervals. In many cases, event-based
approaches can also be used for modeling continuous systems [55], e.g., to
reduce computational complexity. In that case, the continuous state is trans-
formed, discretized, into a discrete state space.
Discrete models are most easily described through the possible transitions

that may occur in them; e.g., in an epidemics simulation, a person may become
infected, which is reflected by a change of infected and healthy individuals

13



𝑡

𝑥(
𝑡)

(a)

𝑡

𝑥(
𝑡)

∆𝑡

(b)

𝑒1 𝑒2 ⋯

𝑡

𝑥(
𝑡)

(c)

Figure 2.1. A continuous system (a), and its time-step simulation with a fixed step-size
of Δ𝑡 (b). In (c), we see the time evolution of a discrete system, which corresponds to
one discretization of the state space of the system in (a). 𝑒1, 𝑒2, … denotes the events
that take place during the process, and that would be part of a corresponding discrete
simulation.

in the state. In the simulated system, each transition is considered to occur
instantaneously at a specific instant, which constitutes an event. An event may
trigger new events with timestamps greater than that of the triggering event.
Thus, a simulation can be seen as the processing of a time-ordered sequence
of timed transitions.

𝑒3 𝑒2 𝑒1 𝑒0

(a) (b)

Figure 2.2. Schematic drawing of a DES, consisting of an event queue (a), and a
model state (b). There are four events, 𝑒0, … , 𝑒3 in the event queue. The model state
depicted could, for example, be the discretization of a two-dimensional space, and the
colored dots could represent, e.g., healthy and infected individuals in a disease spread
simulation.

Now, let us describe the structure of a typical DES more precisely. In DES,
we have a countable set of states 𝑠0, 𝑠1, … ∈ 𝑆, and a finite number of transi-
tion 𝑎1, … , 𝑎𝑚 ∈ 𝐴. In each state 𝑠 ∈ 𝑆, there is a subset 𝐴(𝑠) ⊆ 𝐴 of feasible
transitions, which can occur and trigger a transition to another state. An event
𝑒 is a pair of a transition 𝑎 ∈ 𝐴 and a timestamp 𝑡, 𝑒 = ⟨𝑎, 𝑡⟩. Initially, there
is a given state 𝑠0. A simulation run is a sequence of states 𝑠0, 𝑠1, … , 𝑠𝑛, to-
gether with a sequence of events 𝑒1, … , 𝑒𝑛, such that 𝑠𝑖+1 is reached from 𝑠𝑖 by
the transition of 𝑒𝑖, and for any pair of events 𝑒𝑖, 𝑒𝑖+1, the timestamp of 𝑒𝑖 is
smaller or equal to that of 𝑒𝑖+1. A simulation run is generated by a simulator
which typically consists of a model state, an event queue, and a clock. An ex-
ample of an event queue and model state is depicted in Figure 2.2. The event

14



queue contains all the scheduled events, sorted in timestamp order. The clock
represents the simulated time, often denoted virtual time, and is given by the
timestamp of the last processed event. The simulator proceeds by repeatedly
(i) removing the earliest event from the event queue,
(ii) processing the selected event, i.e., update the model state as prescribed

by the event, and setting the clock to the timestamp of the event, and
(iii) scheduling new events (if any) and reschedule existing events if affected

by the model state changes in (ii).
The simulator stops when the virtual time reaches some predefined end time,

or when the event queue is empty. Processing events in timestamp order guar-
antees that no event with a greater timestampwill affect an event with a smaller
timestamp. The ordering of events, also known as the causality constraint, cor-
responds to our intuition about time: the future will not affect the past.
The causality constraint lies at the heart of what makes parallelization of

DES. In the next chapter, we will give an overview of some of the main syn-
chronization protocols employed when parallelizing DES.

15



3
Parallel Discrete Event Simulation

Distributing thework of a sequential DES can bemade in several ways; herewe
focus on parallelization by data decomposition, also known as space-parallel
simulation, in which the model state is partitioned and distributed among pro-
cessors, each of which is responsible for simulating its part of the state. Paral-
lelization of DES by data decomposition is also the technique having received
the most attention. However, before continuing, some other approaches de-
serve mentioning, following [47].
replicated trials Multiple independent instances of the same sequential DES

are run in parallel, which can be used in, e.g., stochastic simulation, ei-
ther for variance reduction [34] or for parameter space exploration. Each
independent instancemust be initializedwith an independently generated
seed for the pseudorandom number generator. Although not truly PDES,
it is a useful technique with near optimal weak scaling, i.e., proportion-
ally increasing the problem size and the number of processors does not
increase the execution time. Replicated trials as a technique is orthogo-
nal to the other techniques described here (which fall into the category
of strong scaling, i.e., shorter execution time with more processors), and
can be used in conjunction with them.

functional decomposition Different functions of a sequential DES are located
on different processors, e.g., random number generation or (in case of
computationally heavy events), different parts of the event processing.
The amount of parallelism available using functional decomposition is
rather limited.

temporal decomposition In some exceptional cases, it is possible to partition
the simulation time and let processors simulate different intervals of it

16



in parallel. For each interval, the initial state has to be known, which
limits the utility of this method in general. Time-parallel simulation has
successfully been used for, e.g., trace-driven cache simulations [35, 54].
There, the time intervals can be simulated without knowing the initial
state of the cache, since the simulation model is a program. The begin-
ning of each simulated time interval is then later re-simulated, to correct
the result of the simulation. Time partitioning works due to the usually
time-limited “memory” effects of caches. The assumption is that most
cache lines are replaced within a short enough period, bounding the part
of a time interval that needs to be re-simulated.

In this chapter, we outline the structure of PDES by using data decomposition
and present three synchronization strategies. In the following, when using the
term PDES, we explicitly refer to PDES by data decomposition, if not explic-
itly stated otherwise.

3.1 Overview of Synchronization Protocols
In this section, we introduce twomain synchronization protocols for PDES and
one emerging synchronization protocol. First, some general properties of the
protocols are discussed.
The first two synchronization protocols described below share the same fun-

damental building stones. In them, the model state is partitioned onto multiple
logical processes (LPs), so that each LP independently models its part of the
system. Each LP maintains an event queue, containing all scheduled events
originating from its part of the model state, and its local virtual time (LVT).
Each LP advances the simulation and processes events according to its local
timeline, using the same DES procedure as described in Chapter 2. Commu-
nication between LPs is done via the exchange of messages. When an event is
processed that also modifies some state controlled by a neighboring LP, a mes-
sage containing the event is sent to that LP. The receiving LP then schedules
the received event in their event queue, and process it when due.
The fundamental principle of DES is the causality constraint: the future

must not affect the past. In sequential DES, this translates to processing events
in timestamp order. In PDES, the causality constraint is central to what makes
parallelization hard; when processing multiple events in parallel, it is difficult
to maintain a strict ordering on the processed events. Existing approaches to
prevent violations of the causality constraint can be divided into two broad
classes. Conservative methods prevent LPs from processing an event unless
it is guaranteed that it will not lead to a violation of the causality constraint.
In optimistic methods, LPs process events optimistically, assuming that the
causality constraint has not been violated, but provide a method to detect and
roll back the simulation state when this occurs. With the advent of multicore
andmanycore processors, a new PDES technique, share-everything PDES, has

17



emerged and gained some interest. In share-everything PDES, the complete
model state is shared by all threads, and synchronization (with respect to time)
is handled implicitly by the central event queue.

3.1.1 Conservative PDES
In conservative PDES, an LP may not process an event until it is safe, i.e.,
until it is guaranteed that processing of the event will not violate the causality
principle. The conservative parallel synchronization algorithm was first pro-
posed by Chandy, Misra [11], and Bryant [6] (CMB). In their setting, an LP
has an incoming FIFO message channel for each LP that may send it a mes-
sage. Messages must be inserted in non-decreasing timestamp order into the
channels. Each channel has a clock associated with it, whose time is defined
to be either the timestamp of the earliest message in the channel or, if it is
empty, the time of the last received message from the channel. Simulation
proceeds by repeatedly taking the first event from the channel with the earliest
clock value. An LP blocks if the queue is empty. A local event is processed
if its timestamp is smaller than any clock. Since events are processed in non-
decreasing timestamp order, the causality principle is not violated. However,
multiple simultaneously empty channels may result in a deadlock: a circular
chain of LPs may block on each others’ empty channels, unable to proceed.
The solution that CMB provides is to let LPs send so-called null messages,
empty messages which only contain the LVT of the sender. A null message
can be seen as a promise of the sender not to send any message with a times-
tamp earlier than that of the null message. At the receipt of a null message,
the timestamp of the corresponding channel is updated, allowing the receiving
LP to progress. To achieve good performance, conservative approaches are
heavily dependent on a lower bound on the minimum time between any two
consecutive events, called lookahead [24]. The lookahead is usually known
beforehand, and can thus be used during simulation to say how far ahead it
is safe for an LP to simulate, without synchronizing with neighbors. Hence, a
simulationwith greater lookahead requires less synchronization, and the looka-
head is a sign of more available parallelism. Lookahead can be found in, e.g.,
simulations of memory-systems, and network simulations, where actions and
communication typically have a fixed or minimum duration. Such guarantees,
however, do not exist for a wide array of models, e.g., stochastic models with
exponentially distributed inter-event times.

3.1.2 Optimistic PDES
The most well known and influential PDES synchronization protocol is Jeffer-
son’s time warp [42] algorithm, in which the LPs optimistically assume that

18



no causality error will occur, and speculatively simulate along their local time-
axis. In Figure 3.1, a possible organization of the LPs in time warp is shown.

𝑒4 𝑒3 𝑒2 -𝑒1

𝑠0 𝑠1 𝑠2

(a) (c)

(d)

(b)

LP1

-𝑒4 -𝑒5𝑒8 𝑒7 𝑒6

𝑠5 𝑠4 𝑠3

LP0
𝑒5

Figure 3.1. A possible organization of the LPs in time warp. An event queue (a) of
scheduled events, a model state (b), an output queue (c) with copies of messages sent,
and a history (d) of past states or events. LP0 sends a message 𝑒5 to LP1, and puts a
negative antimessage -𝑒5 in its output queue.

The main idea in the time warp protocol is to allow events that arrive too
late, i.e., whose timestamp is smaller than the LVT of the receiving LP, so-
called stragglers. As a consequence, LPs may process events even if it is not
safe to do so, and instead, a mechanism to roll back the model state is pro-
vided. When a straggler is received, an LP rolls back its state to a point in
time preceding the straggler, by undoing the state changes of each succeeding
event. Events causally dependent on events that were rolled back have to be
canceled. Thus, if an event that is rolled back has caused the transmission of
an event to another LP, the effects of that event must be undone as well. This
is done via so-called anti-messages. For each transmitted event 𝑒 that has to be
undone, a corresponding anti-message 𝑎𝑒 is sent. Upon receipt of such an anti-
message 𝑎𝑒, an LP must undo (often denoted annihilate) the original message
𝑒, and consequently roll back all processed events that are causally dependent
on 𝑒. After the completion of a rollback and the transmission of anti-messages,
simulation continues from the point in time just preceding the straggler. The
straggler can now be correctly interleaved in the local timeline.
Anti-messages are typically created at the transmission of a message to an-

other LP, and then stored in an LP’s output queue, sorted in timestamp order.
When a straggler is received at an LP, anti-messages with a later timestamp
are removed from the output queue and sent to the respective receivers of the
original messages.
To restore a previous state of the model, some historical data has to be

recorded. Thus, in addition to the event queue and the model state, each LP
maintains a history, which can be used to reconstruct past model states. The
original time warp algorithm proposes saving successive states of the LP in
such a history periodically, also called checkpointing. To be able to restore
a historic state 𝑠 of an LP using checkpointing, one can restore some check-

19



pointed state 𝑠′ in the history, such that 𝑠′ precedes 𝑠, and continue forward
simulation until 𝑠 is reached. 𝑠 is guaranteed to be reached since the simu-
lation is deterministic. Several improvements to restore a previous state have
been proposed. Incremental state-saving [5] is a straightforward refinement of
checkpointing: instead of saving the whole state, incremental deltas of the state
are saved instead, saving expensive memory space. As an alternative, the re-
verse computation technique [8] stores the processed events instead. For each
event, a backward computation is defined (hence the name reverse computa-
tion). Given the last event that was processed, the previous state (before the
event was processed) can be reconstructed from the current model state, by cal-
culating the reverse computation of the event. Thus, when doing a rollback, the
event history is traversed backward. The reverse computation technique may
reduce the amount of space necessary to store the event history, in comparison
to the incremental state saving technique. If the event that needs to be stored
in the history is smaller than the state delta changed by the event, less memory
is consumed by the history. On the other hand, reversing the model state may
have a higher computational requirement than incremental state-saving. The
choice of state-saving technique is, in this case, a trade-off between memory
consumption and computation time. An analysis of the trade-off on a type of
shared-memory computer can be found in [9].
An example of the trade-off above is the handling of pseudorandom num-

ber generators (PRNGs) in stochastic simulations (a similar example also ap-
pear in [8]). PRNGs generate deterministic sequences of numbers that take on
the role of random numbers in many scientific applications. In models where
sampling of pseudorandom numbers is used, the state of the PRNG has to be
reverted during a rollback. If not, the simulation will suffer from a sampling
bias: certain sampled pseudorandom values tend to cause causality errors more
often, and hence they are rolled back more often. If the state of the PRNG is
not rolled back together with the model state, these sampled values will actu-
ally occur less often in the simulation trajectories. Using an incremental state-
saving technique, the seed (state) of the PRNG would have to be saved with
each partial state saving. A seed can be anything from 6 bytes (drand48 in
the POSIX standard) to around 2.5kB (the Mersenne twister algorithm [50]).
Both the algorithms are reversible, i.e., the sequence of deterministic numbers
can be generated forward as well as backward, and the cost of both calcula-
tions are approximately the same. Hence, if using theMersenne twister PRNG,
rollback using reverse computation would clearly be more efficient than incre-
mental state saving, while for the drand48 PRNG, it is less obvious.
As a simulation progresses, the state history grows continuously, even though

we hope not to restore arbitrarily old states. Intuitively, it should be possible to
discard “old enough” at some point during the simulation. It is desirable to pe-
riodically reclaim the memory of these discardable states, from a performance
point of view; this is usually called fossil collection in the simulation context.
A suitable definition for an “old enough” historic state would be to say that it

20



cannot be reached by a rollback. The earliest virtual time to which a simula-
tion can be rolled back is defined by the timestamp of the earliest event in the
simulator. This time is denoted global virtual time (GVT). Since the simula-
tion never is rolled back to a time before GVT, it is safe to reclaim memory
used by the history preceding GVT. When an event’s timestamp is smaller
than GVT, then it is said to be committed, since it no longer can change. Much
research has focused on improving GVT calculations since it is often a costly
calculation. Two examples of algorithms for GVT calculations are by Mattern
[51], in a message-passing programming model, and by Fujimoto and Hybi-
nette [25], for shared-memory systems. The GVT calculation is much harder
in a distributed environment compared to in a shared-memory environment,
since it amounts to taking a global snapshot, which is a non-trivial problem.

3.1.3 Share-Everything PDES
Multicore processors have opened up for new approaches, thanks to low core-
to-core communication latency and high bandwidth. Such approaches include
parallelizing a DES workload using a number of worker threads having access
to the whole model state and which are allowed to update the whole state.
Instead of synchronizing via messages, synchronization is done by temporarily
reserving the state which should be updated. Work is distributed to the worker
threads using a central timestamp sorted queue [32, 33, 49]. The benefits of
such an approach are that it is cheaper in terms of time and complexity to
maintain the causality constraint and that the work is always evenly balanced
between cores. At least two problems can be identified with a share-everything
approach, viz., shared access to a single event queue, and interleaved memory
access to the model state.
The first problem is that all threads want to remove the earliest element

from the event queue, thereby creating a hot spot. This problem is inherent to
having shared access to a single central event queue, regardless of the underly-
ing data structure chosen. To ensure correctness (e.g., only one worker thread
succeeds in removing the earliest element), the remove operation has to be
protected in some way. Common constructs include locks, lock- and wait-free
methods, and transactional memory, which may differ in speed and implemen-
tation (some of these constructs are discussed in Chapter 5). However, in all
cases, only one thread can succeed in removing the smallest element, and other
threads that simultaneously have tried to remove the same element, must fail;
the (wasted) time they have spent on trying to complete the remove operation
is called contention. With an increasing number of worker threads, contention
increases. Thus, even if the events in the queue exhibit concurrency and effi-
ciently could be carried out in parallel, the contention of the event queue may
decrease the efficiency.

21



The second problem has to do with memory accesses. Multicore processors
and multiprocessor machines are structured so that accesses to memory (and
caches) are non-uniform in the time it takes to access a memory location, de-
pending on where it is located in relation to the processor core accessing it.
In particular, accessing memory that another processor core modified previ-
ously is more expensive than accessing memory that the same processor core
previously accessed. Thus, from this point of view, letting all worker threads
have interleaved accesses to the whole model state may lead to a performance
penalty.

3.2 Adaptive Optimism Protocols
Both conservative and optimistic approaches incur a synchronization cost. Con-
servative methods may be slow due to excessive synchronization; optimistic
methods may suffer from large amounts of rollbacks. To mitigate these prob-
lems, many intermediate techniques have been proposed, where the optimistic
speculation is regulated by some mechanism; we refer to such techniques as
adaptive protocols or optimism control [12]. The purpose of such intermediate
techniques is to be able to do optimistic simulation, while reducing the prob-
lems related to it, e.g., rollback explosions. Additionally, there might be an
advantage of spending time not doing forward simulation (e.g., by blocking
local simulation due to too much speculation). There is a double cost associ-
ated with a rollback: first, the cost of actually simulating an interval of time,
and second, the cost of rolling back the same interval. Figure 3.2 displays the
trade-off between the cost of rollbacks and the cost of the optimism control.
The core idea behind the optimism control protocols is to make the LPs ad-

vance their local simulation at approximately the same speed, typically leading
to a reduced risk of rollbacks and anti-messages. Jafer et al. [41] introduces the
term event temporal locality, to describe a small maximum distance of times-
tamps of events being processed in parallel. Due to the strong connotation of
the term temporal locality with a small memory location reuse distance, we
introduce the term event synchronicity, to denote the same situation.
The optimism control protocols have different approaches to improve the

event synchronicity. Early methods include the Moving time window [65] al-
gorithm, which defines a limit on how far an LP may be ahead of other LPs,
by defining a time window 𝑤, such that only events with a timestamp smaller
than GVT + 𝑤 are processed. Risk-free [53] protocols only allow sending a
message between LPs, if it is guaranteed that the message will not be rolled
back. Breathing time buckets [67] is a risk-free protocol, which avoids roll-
backs of messages by splitting the simulation into cycles defined by the event
horizon: the timestamp of the earliest message generated from processing lo-
cal events. Events may be processed until the event horizon (if events with
timestamps greater than the event horizon have been processed, they are rolled

22



lost opportunity
cost

rollback
cost

total cost

optimism restriction

co
st

Figure 3.2. The trade-off between optimism and the lost opportunity cost caused by
blocking. The x-axis describes the amount of optimism control exerted on the simu-
lation. Initially, when restricting the optimism, the cost of rollbacks reduces. As the
restriction on optimism gradually increases, the lost opportunity cost, e.g., when an LP
blocks even though not strictly necessary, increases, reducing the improvement of the
optimism control protocol. Adapted from [66].

back). Breathing time warp [68] is a combination of the breathing time buckets
protocol and optimistic simulation. Another class of optimism control uses lo-
cal history to control the optimism. In, e.g., [22], message arrival patterns are
observed by LPs, and based on these observations estimates coming arrivals.
The local estimates are used to throttle the LP’s simulation speed, if necessary.
Problems with the techniques mentioned above are due to that they limit opti-
mism either based on predetermined parameters (e.g., the window size), local
history, or some aspect of the technique is synchronous. Instead, Srinivasan
and Reynolds [66] recognize two key parameters for a successful optimism
control protocol: it should be adaptive and use feedback from the simulation,
which could be incorporated by techniques disseminating and using (near) per-
fect state information. They define the elastic time algorithm (ETA) that at
least partially fulfills these properties. The algorithm is designed with two as-
pects in mind: which state information should be disseminated, and how can
the information be used to control the optimism. In the ETA, the minimum of
each LPs current time and the minimum timestamp of sent messages that have
not yet been received is disseminated. From this value, the authors define an
LP’s error potential as its distance (in virtual time) to the slowest LP. The
error potential is acted upon so that the simulation speed of an LP gradually
decreases with increasing error potential. Their method assumes the global
availability of (near) exact information from the LPs state.

23



3.3 LP Aggregation
Various techniques for sharing structures between LPs, LP aggregation, have
been proposed to reduce various sources of overhead in optimistic PDES. For
example, when events in LPs are computationally small, it may be preferen-
tial to share structures, such as event queues, state queues and message buffers
between a group of LPs, to reduce, e.g., the memory footprint of the simula-
tion [3, 14, 15, 63]. A typical example of simulations where the computational
load of an event is small is integrated circuit simulation. LP aggregation may
also be a good choice when executing the simulation on processors which are
optimized for consecutive memory accesses, which is the case for most pro-
cessors are today. On such processors, it is beneficent for performance to keep
objects close together in memory that are expected to be accessed at approxi-
mately the same time. E.g., it might be significantly more efficient to traverse
a (long aggregated) single queue of saved states during a rollback, than to visit
multiple (short) queues.
One aggregation technique is clustering of LPs [3, 58]. Avril and Tropper

[3] propose that multiple LPs are clustered together. A sequential algorithm is
used within a cluster, and between clusters, time warp is used. When an LP
sends a message to an LP in the same cluster, the message can be put directly
into the receivers input queue. Thus, LPs do not need to maintain individual
output queues. Instead, a single cluster output queue is provided. Each LP’s
event and state queues are still maintained separately.
Schlagenhaft et al. [63] note that in many models, each “basic element” of

a process or system is modeled as a single LP. A basic element can, e.g., be a
logic gate in an integrated circuit simulation. Instead, they propose that a single
LP may represent multiple basic elements. This is the approach taken in [14,
63]. It is similar to the clustering approach taken in [3], but more structures are
shared when multiple basic elements are represented by a single LP. In [63],
the event queue and the state queue are shared, while in [14], only the event
queue is shared.
The drawback of having a single common state queue for a partition is that

a straggler causes a rollback of the whole partition located on an LP. Two
different solutions are proposed:
Schlagenhaft et al. [63] propose clustering of LPs: they assign multiple

smaller LPs controlling many basic elements to each processor, instead of a
single LP. When such a smaller LP receives a straggler, only a single partition
consisting of many basic elements needs to be rolled back, thereby reducing
the rollback overhead.
Deelman and Szymanski [13] propose to only rollback causally dependent

events upon the receipt of a straggler. The idea is that the number of causally
dependent events are a fraction of all events that otherwise have to be rolled
back. Tracing the causally dependent events is possible when either incremen-
tal state saving or reverse computation is used. Then there is a one-to-one

24



mapping between past events and historical state. The technique relies on that
the local virtual time of each basic element is known. (In [13], each basic el-
ement also has a processed events list, but this is not strictly necessary.) At
the receipt of a straggler, dependencies between basic elements formed by his-
torical events are traced, and each basic element that has a dependent event is
rolled back.

3.4 Load Balancing
The purpose of load balancing is to distribute work to the available computing
resources optimally, to maximize throughput. In PDES, load balancing has the
aim to improve event synchronicity. We note that the slowest LP determines
the speed of the simulation: if some LP advances its LVT faster than its neigh-
bors, then it is forced to roll back its state as soon as it receives a message from
any of the slower neighbors. In the case of using optimism control, the faster
LP is forced to wait for some of its neighbors. Therefore, accurate load bal-
ancing minimizes the total amount of wall-clock time necessary to complete a
simulation. Load balancing can be static, where the model is analyzed and par-
titioned accordingly initially, or dynamic, where the model load is re-balanced
among processors during the simulation. In the case of dynamic load balanc-
ing, there are usually three aspects considered; a load metric, a load balancing
algorithm and a migration protocol for moving the load, e.g., LPs or parts of
an LP’s model state.

Load Metric
The goal of the load metric is to define howmuch work a processor or LP is do-
ing per time unit. Such a metric is then used for deciding how the load should
be (re-)distributed, with the goal of giving each processor the same amount of
load according to the load metric. For load balancing in PDES, and in time
warp based simulators, the processor load is not a good indicator of the load;
a processor may have full processor load and still not advance its simulation
time, instead spending time on processing rollbacks [59]. Reiher and Jeffer-
son [59] introduced a metric, effective utilization, defined as the proportion of
an LPs work that is not rolled back. Given the difficulty of knowing such a
metric, since the state of events is unknown until they have been committed,
the authors define an approximate estimator. In [7], the LVT is used as an (in-
verse) load metric. The slowest LP is moved to the processor where the LVT
has advanced the most. The purpose of the load balancing can then be inter-
preted as reducing the difference in virtual time between LPs, which optimally
would lead to a reduced number of rollbacks. In [31], the rate at which LVT
is advanced is used as an inverse load metric. Other factors that may be taken
into account is communication [4, 73].

25



Load Balancing Algorithm
The load balancing algorithm should, given a list of a subset of the LPs and
their respective loadmetrics, calculate a re-distribution of LPs/load, which typ-
ically reduces the difference in load and communication over the processors.
It is common in the literature that load is only transferred between the LPs
with the least and the most work, respectively. In some cases, the problem
has been formulated as a minimax optimization problem, where the maximum
difference in the load metric should be minimized [14]. In [31], a bin-packing
algorithm is used to redistribute the work. Typically, a load-balancing algo-
rithm tries to avoid thrashing, i.e., unnecessary movement of load between
processors. This has been done by thresholds [14] and delaying subsequent
load-balancing operations [4, 63].

Load Migration Protocol
The load migration protocol is responsible for transferring load between pro-
cessors, while maintaining correctness of the simulation. In some cases, a
protocol is not even necessary, e.g., when a global synchronization is used
for rebalancing. Then, simulation is paused globally, work is redistributed,
and the simulation is continued. In the case where the simulator has multiple
processes per processor, migration consists of moving one or more processes
between processors.

3.5 Challenges
The focus of this thesis is to improve the parallel performance of applications of
spatial stochastic simulation in systems biology. Themodels that we have stud-
ied are in essence spatially extended Markovian processes. Hence, the time in-
tervals between successive events are exponentially distributed (the exponen-
tial distribution is the only continuous distribution with the Markov property),
and consequently they are highly variable and without lower bound. High vari-
ability and no lower bound of inter-event times mean there is no lookahead. No
lookahead suggests spatial stochastic simulation is challenging to parallelize,
with potentially high synchronization costs. The models that we have studied
are also characterized by having computationally light events; the state change
of an event merely consists of one or a few additions and subtractions, while
computing a new timestamp for the next event is slightly more expensive. Fi-
nally, in, e.g., systems biology, the phenomena of interest that typically are
being modeled, are often non-homogeneous and dynamic in behavior. The
effect is that the distribution of the load on the processing elements tends to
become unbalanced.
The lack of lookahead suggests that optimistic PDES should be used for par-

allelization of spatial stochastic simulation. In optimistic PDES, one of the cen-
tral challenges for good performance is to achieve good event synchronicity,

26



e.g., by using an optimism control protocol. The properties of spatial stochas-
tic simulation make it reasonable to believe that several local or synchronous
methods for optimism control described in Section 3.2 will not be successful.
One point of view on optimism control is that, optimally each LP would ad-
vance its local simulation as far as possible without encountering a straggler.
To do this, an LP needs knowledge of future incoming messages and their
causal dependencies. In Paper II, we develop an optimism control technique
where accurate estimates of future inter-LP events are obtained and dissemi-
nated to neighboring LPs.
Another way to achieve good event synchronicity is through load balancing.

The non-homogeneous and dynamic character of spatial stochastic simulations
in, e.g., systems biology, suggests that dynamic load balancing is required for
good parallel performance. In Paper IV, we develop a dynamic local load bal-
ancing mechanism for PDES.

27



4
Event-Based Modeling

In this thesis, the focus of the discrete-event simulation has been applications to
systems biology. In this chapter, this type of application is described in greater
detail.

4.1 Mesoscopic Event-Based Modeling
We have considered event-based modeling of a particular class of systems,
namely chemical reaction systems, which concerns the temporal evolution of
a composition of molecules or entities, reacting with each other and thereby
changing the overall composition. For this kind of systems, there exist a num-
ber of modeling techniques, each developed for a different level of abstraction.
At the microscopic level, each reactant is modeled individually, including its
velocity and position. At a macroscopic level, the amount of each type of re-
actant is treated as a concentration, e.g., a continuous quantity, and their time
evolution is described by differential equations.
Macroscopic frameworks are adequate when the populations of reactants are

big enough. Unfortunately, for systems with smaller populations, macroscopic
frameworks disregard some of their important properties: when expressing
populations as concentrations, the fact that populations are discrete counts of
molecules and the very stochastic nature of these systems is ignored. Several
phenomena actually only manifest themselves because of stochastic behavior,
due to the small population, and other phenomena manifest themselves only
because of the discreteness of the system. On the other hand, microscopic
frameworks are intractable for more than a few number of reactants due to the

28



high modeling complexity. Mesoscopic frameworks have been designed for
modeling systems between the macroscopic and microscopic levels, to cap-
ture behavior that is ignored at the macroscopic level, and with a large enough
number of reactants that would make it intractable for a microscopic frame-
work.

4.2 Stochastic Simulation of Chemical Kinetics
Stochastic chemical kinetics describes the time evolution of chemical reaction
systems at a mesoscopic level, and take into account that molecules exist in
discrete quantities. Stochastic chemical kinetics is of special interest in mod-
eling of cellular systems in biology, where interesting phenomena depend on
stochastic effects due to low population counts, e.g., the placement of the sep-
tum (the dividing wall) in cells during cell division, whose position is decided
by the oscillation of a number of proteins in some bacteria [21]. We start by
looking at a model of chemical systems without spatial effects in the next sec-
tion and then continue to systems with spatial effects.

The Chemical Master Equation
The chemical master equation (CME) [26] is a well-established formalism for
describing the dynamics of a chemical system. (It is also known as the com-
binatorial master equation since it is well suited for describing any system
whose state is discrete and where changes occur in discrete steps.) Such a
system consists of a set of entities, e.g., molecules or proteins, of 𝑛 species
𝑠1, … , 𝑠𝑛, moving freely in some volume. Molecules may react with each other
when in proximity, through a number of reactions 𝑟1, … , 𝑟𝑚. It is assumed that
the modeled volume is spatially homogeneous, and in thermal equilibrium; if
that is the case the system is said to be well-stirred. The assumptions about
the microscopic conditions greatly simplify the modeling. It entails that the
probability of a reaction 𝑟 occurring within an infinitesimal interval, the re-
action’s propensity 𝜔𝑟 , only depends on some constant, 𝑘𝑟 , and, the possible
combinations of the reactants, ignoring its position and velocity [29]. Hence,
the state of the system at time 𝑡 is described solely by the population vector
𝒙 = (𝑥1, … , 𝑥𝑛), where 𝑥𝑖 is the population of species 𝑠𝑖. Thus, the system
constitutes a Markov chain 𝑋(𝑡), with transition rate 𝜔𝑟 for each reaction 𝑟.
As an example demonstrating the kind of systems governed by CME, we

use the Lotka-Volterra predator-prey model [48, 71]. The predator-prey model
describes how two species, a predator species 𝑋 and a prey species 𝑌 , interact
through predation and how their populations change over time. At a macro-
scopic level, the respective populations, in a bounded area, are described by a

29



0

100

200

300

time

(a)

0

100

200

300

time

(b)
Figure 4.1. The predator-prey system. The population (y-axis) of predators (pink)
and prey (green) is plotted over time. (a) The solution of the deterministic ODEs.
(b) One trajectory from a simulation with Gillespie’s SSA. The resemblance to the
deterministic solution is evident. In the enlarged window, the discrete steps of the
process can be seen.

system of ODEs,

𝑑𝑋
𝑑𝑡 = 𝑘𝑏𝑌 − 𝑘𝑝𝑋𝑌
𝑑𝑌
𝑑𝑡 = 𝑘𝑝𝑋𝑌 − 𝑘𝑑𝑋,

where 𝑘𝑏 is the rate of birth of prey, 𝑘𝑝 is the rate at which the predators prey,
and 𝑘𝑑 is the rate of death of predators. The description is continuous and thus
does not take into account that living species usually come in discrete numbers.
The description is also deterministic. The solution of the ODE system for one
set of parameters is shown in Figure 4.1(a). The interaction described in the
figure is how the predator species prey on the prey species, leading to a growth
of predators. At some point the population of prey becomes so small that it
is unable to sustain the population of predators, leading to a decline in the
predator population. This leads in turn to an increase in the population of prey.
Expressed using the CME, we describe the system as a set of reactions instead:

∅ 𝑘𝑏−−→ 𝑋, (𝑟1)

𝑋 + 𝑌
𝑘𝑝−−→ 2𝑋, (𝑟2)

𝑌 𝑘𝑑−−→ ∅. (𝑟3)

Thus, for the first reaction, we have a spontaneous generation of prey out of
nothing, which merely means that we don’t model the source of food of the

30



prey. The second reaction describes that one predator and one prey in proximity
(here captured by a probability of reaction) “react” (i.e., are consumed) and
results in two predators. The last reaction describes the death of predators.
In general, the macroscopic reaction-rate constants are not the same as the
stochastic reaction constants above. However, for this example, they are the
same, assuming that the reactions take place in a unit volume.

Algorithm 1 Gillespie’s Direct Method for a model with 𝑚 reactions.
Input:

1 𝒙 state, 𝑡 virtual time
2 𝜔𝑟 propensity functions for each reaction 𝑟
3 𝒔 stoichiometry matrix, where row 𝒔𝑟 has the discrete population changes of reaction 𝑟
4 while 𝑡 less than end time do
5 sample 𝜏 ∼ Exp (∑𝑚

𝑖=1 𝜔𝑟(𝒙)) //Time to next reaction
6 sample next reaction 𝑟 ∼ Disc(𝜆0, … , 𝜆𝑚)
7 𝑡 ≔ 𝑡 + 𝜏, 𝒙 ≔ 𝒙 + 𝒔𝒓 //Update state and time

The traditional way to describe the time evolution of a chemical system is
to solve a “master” equation of the system, which completely characterizes the
system, in this case, the CME. However, the CME is prohibitively difficult to
solve analytically, and even numerically, except for systems with a small num-
ber of species and reactions [30]. Therefore, various Monte Carlo simulation
methods have been developed. A famous method to sample exact trajecto-
ries of such systems is Gillespie’s Direct Method (sometimes just called the
stochastic simulation algorithm (SSA), which arguably is too general) [29].
The algorithm is outlined in Algorithm 1. We use the notation Disc(𝜆0, … , 𝜆𝑛)
to denote a discrete probability distribution of a set of variables 0, … , 𝑛 with
probabilities𝜆0, … , 𝜆𝑛, where P(𝜆𝑘) = 𝜆𝑘/ ∑𝑛

𝑖=0 𝜆𝑖, and Exp(𝜆) to denote an
exponential distribution with rate parameter 𝜆. The key point of the algorithm
is that a common rate for all reactions is calculated, from which the time of
the next reaction is sampled (line 5). The latter works, since for 𝑋0, … , 𝑋𝑛 in-
dependent exponential random variables with parameters 𝜆0, … , 𝜆𝑛, we have
min{𝑋0, … , 𝑋𝑛} ∼ Exp(𝜆0 + ⋯ + 𝜆𝑛). It is first when the reaction event is
processed that it is decided which reaction occurs, by a random draw. Hence,
the method only requires sampling of two random numbers per event.
Gillespie’s SSA can be used to sample a trajectory from the system described

by the reactions (𝑟1) to (𝑟3), an example is shown in Figure 4.1(b). Similarly
to the deterministic solution in Figure 4.1(a), we see how the population of
the predators trail after the preys, but here we also have random population
increases and decreases, and slight variations in relations to the deterministic
solution can be seen, with respect to, e.g., the maximum population attained.
We note that only a single trajectory is displayed in Figure 4.1(b), and each
sampled trajectory will look different. The deterministic continuous solution
fails to describe several scenarios, such as extinction, caused by the stochastic
and discrete nature of the process, shown in Figure 4.2. If one wants to know

31



0

1,000

2,000

time

Figure 4.2. The Predator-Prey system. A trajectory of Gillespie’s SSA where one
species becomes extinct, followed by the extinction of the other species as a conse-
quence. The extinction occurs due to the discrete nature of the system.

the mean extinction time, it is necessary to use a model that is both stochastic
and discrete. Other stochastic phenomena not captured by macroscopic frame-
works is random switching between steady states [20], as shown in Figure 4.3.
Random switching occurs in, e.g., gene regulatory networks [27]. To find the
mean switching time between the steady states, it is necessary to use stochastic
methods.

time

po
pu
la
tio
n

Figure 4.3. A system exhibiting random switching. The ODEs describing the system
has multiple steady states. The solution (pink line) converges to one of the steady
states dependent on the initial condition. A sampled trajectory of Gillespie’s SSA
(green line). We see that the solution initially is similar to the deterministic solution.
However, the stochastic fluctuations sometimes are so strong that it pushes the systems
to another steady state. The switching occurs due to the stochastic nature of the system.

Numerous refinements to Gillespie’s original SSA have been proposed, and
one notable efficient version is the next reaction method (NRM) by Gibson and
Bruck [28]. Instead of sampling from a discrete distribution to select the next
reaction as in the direct method, all the reactions are stored in a priority queue.

32



Whenever a reactions propensity is changed, the priority queue is updated to
reflect the change. They observe that a reaction, when processed, only modify
the populations of the reactants’ species, while other species’ populations are
left unchanged. A dependency graph is constructed so that for each reaction,
only the reaction rates of dependent species are updated. A second enhance-
ment of the NRM is that only events that actually are processed need a new
random number for the calculation of their new scheduled time, whereas for
other dependent reactions’ event times it suffices to perform a scaling accord-
ing to the change in population. The effect is that the algorithm only needs one
random number per iteration instead of two, as in Gillespie’s SSA, which may
have a sizeable impact on performance.

4.2.1 The Reaction-Diffusion Master Equation
When describing intracellular systems, the principles of the CME still hold,
but they have to be adjusted according to the fact that molecules no longer
move freely, but in some solvent inside an enclosed vessel. The molecules
collide frequently with other molecules, constantly changing direction, lead-
ing to a chaotic movement. Hence, the movement of molecules, diffusion, is
much slower than in, e.g., reactive systems consisting of a gas. The assump-
tion of spatial homogeneity from the CME can also be considered as a relation
between the movement of molecules and the rate of chemical reactions; the
movement has to occur at a faster rate than the reactions so that molecules
have time to “search through” the volume between reactions. Since the diffu-
sion is slower in liquid compared to the free flight in a gas, the assumption is
only valid for a small volume [18]. The solution is to subdivide the volume
into subvolumes and apply the assumption of spatial homogeneity within each
subvolume, and postulate that only reactants within the same subvolume can
react.
The reaction-diffusion master equation (RDME) [26] is the spatial exten-

sion of the CME and is used for modeling in these cases. In addition to the
reactions, it describes how an entity may diffuse in the volume being modeled,
by defining actions of movement between the subvolumes. When discretizing
the volume, some physical considerations of the model has to be taken into
account. These physical considerations also form the basis of the assumption
of the CME. The subvolumes have to be big enough to properly localize the
entities, e.g., the modeled entities should fit into the space of the subvolume,
and the subvolumes must be small enough to be considered well-stirred.
As an example, we take a spatial extension of the Lotka-Volterra predator-

prey model [62]. Instead of assuming spatial homogeneity within the area that
is modeled, the area is represented by a two-dimensional grid. The species may
move (diffuse) between adjacent grid cells. Only when a predator and a prey
occupy the same subvolume, predation may occur according to reaction (𝑟2).

33



Predators die off according to reaction (𝑟3) if they occupy a subvolume where
there is no prey. The birth reaction (𝑟1) of prey is slightly modified, to account
for the fact that birth may only occur in subvolumes occupied by prey,

𝑋 + 𝑍 𝑘𝑏−−→ 2𝑋 + 𝑍.

Here we’ve added a third species 𝑍 , that can be considered to act as food for
the prey species. The movement of the species is controlled by two diffusion
rate constants, 𝑑𝑋 and 𝑑𝑌 .

Algorithm 2 Outline of the NSM for a model with 𝑚 reactions and 𝑛
species. Exp(𝜆) denotes the exponential distribution with intensity 𝜆, and
Disc(𝜆𝑒0 , … , 𝜆𝑒𝑘 ) denotes the discrete distribution of the values 𝑒0, … , 𝑒𝑘 with
probabilities 𝜆𝑒0 , … , 𝜆𝑒𝑘 .
Input: In addition to the state of Gillspie’s SSA, NSM defines:

1 eventqueue of voxel-timestamp pairs ⟨𝑣, 𝑡𝑣⟩
2 𝐷 diffusion matrix of diffusion rates between subvolumes
3 procedure Initialize
4 for all subvolumes 𝑣 do
5 𝜆𝑟

𝑣 ← ∑𝑚
𝑖=0 𝜆𝑟𝑖𝑣 , 𝜆𝑑

𝑣 ← ∑𝑛
𝑖=0 𝜆𝑑𝑖𝑣 //reaction and diffusion rate in 𝑣

6 𝜆𝑣 ← 𝜆𝑟
𝑣 + 𝜆𝑑

𝑣 //total rate of voxel 𝑣
7 sample 𝑡𝑣 ∼ E(𝜆𝑣) //initial event timestamp for 𝑣
8 Insert(eventqueue, ⟨𝑣, 𝑡𝑣⟩)
9 procedure Simulation Loop
10 ⟨𝑣, 𝑡𝑣⟩ ←DeleteMin(eventqueue)
11 sample event type ∼ Disc(𝜆𝑟

𝑣, 𝜆𝑑
𝑣 ) //reaction or diffusion?

12 if event type = reaction then
13 sample 𝑒 ∼ Disc(𝜆𝑣

𝑟0 , … , 𝜆𝑣
𝑟𝑚 ) //which reaction

14 else //diffusion
15 sample 𝑒 ∼ Disc(𝜆𝑣

𝑑0
, … , 𝜆𝑣

𝑑𝑛 ) //which diffusion (i.e., which species)
16 sample diff. direction 𝑣′ according to 𝒙 and𝐷 //diffuse to subvolume 𝑣′

17 for all reactions 𝑟𝑖 dependent on 𝑒 according to 𝐺 do
18 update propensities 𝜆𝑟𝑖𝑣 , and 𝜆𝑟𝑖

𝑣′ if 𝑒 is a diffusion
19 update 𝜆𝑑

𝑣 , and 𝜆𝑑
𝑣′ if 𝑒 diffusion, according to 𝒙 and 𝐷

20 𝜆𝑟
𝑣 ← ∑𝑠

𝑖=0 𝜆𝑟𝑖𝑣
21 𝜆𝑣 ← 𝜆𝑑

𝑣 + 𝜆𝑟
𝑣

22 if 𝑒 diffusion then //update timestamp for 𝑣′

23 𝜆old
𝑣′ ← 𝜆𝑣′ , 𝜆𝑣′ ← 𝜆𝑟

𝑣′ + 𝜆𝑟
𝑣′ //update total rate 𝜆 for 𝑣′

24 𝑡𝑣′ ← 𝑡 + (𝑡𝑣′ − 𝑡)(𝜆old
𝑣′ /𝜆𝑣′ ) //rescale timestamp for 𝑣′

25 update eventqueue with modified event ⟨𝑣′, 𝑡𝑣′ ⟩
26 sample new time 𝜏 ∼ 𝐸(𝜆𝑣) for voxel 𝑣, set 𝑡𝑣 ≔ 𝑡 + 𝜏
27 𝑡 ≔ 𝑡𝑣, 𝒙 ≔ 𝒙 + 𝒔𝑒 //update state and time
28 Insert(eventqueue, ⟨𝑣, 𝑡𝑣⟩)

Stochastic simulation in the vein of the SSA may be used for efficiently
sampling trajectories of the population in the subvolumes. One such method
is the NSM [17], shown in Algorithm 2. It is essentially a combination of

34



Gillespie’s original SSA and the NRM, but there is in addition to the reaction
events, also diffusion events. A diffusion event represents the movement of a
single reactant, from one subvolume to another. For each subvolume, the total
rate, i.e., the sum of the rate of all reactions and the rate of all diffusions out
of the subvolume, is calculated and used to sample the time of the next event
of the subvolume (line 26). The next event time of each subvolume is stored
in a priority queue. In the main loop of the simulation, the earliest event in the
priority queue is extracted, which also decides in which subvolume the next
event occurs (line 10). Then it is decided if it is a reaction or a diffusion, and
which reaction or diffusion it is (lines 11, 13 and 15). In case it is a diffusion,
it is also decided to which subvolume the event diffuses (line 16). After the
event has been processed, affected reactions and diffusions are re-scaled, and
the priority queue is updated.
In practice, all random variables are sampled using a uniform PRNG, to-

gether with a suitable technique to generate the required distribution, such as
inverse transform sampling. Therefore, in some cases the pseudorandom vari-
ables may be reused more than once, e.g., for line 11 and line 15, it suffices to
use a single variable.
The original NSMassumed a Cartesian structuredmesh, and hence the prob-

ability of each diffusion direction is simply 1/𝑘 for 𝑘 neighbors at line 16. Eng-
blom et al. [19] has extended the NSM for unstructured meshes, which permits
easier modeling of, e.g., curved boundaries of the modeled volume. There, the
probability of a diffusion direction is given by the diffusion matrix 𝐷 together
with the population. The methods are implemented in the URDME frame-
work [16], which this thesis has been based on.
The NSM has been used to study, e.g., protein fluctuations taking part in

cell division [21], regulatory processes relevant for differentiation of stem
cells [69], and the polarization of yeast cells [45].

4.3 Parallel NSM
Simulation of the NSM is computationally heavy and time-consuming, moti-
vating a parallel approach. To parallelize the NSM, typically the subvolumes
are distributed over the LPs, either one-to-one, or by letting each LP control a
partition of the model. Diffusion events between subvolumes on different LPs
are exchanged as messages.
Parallel simulation of RDME models using the NSM has previously been

addressed by [15, 43, 46, 72]. Only optimistic protocols have been considered,
due to the inherent lack of lookahead in RDME models, or any Markov model
in general. Each LP represents a subvolume [46, 72] or a subdomain [15,
43]. The models are implemented using MPI [15, 46, 72], where LPs are
mapped to MPI processes [15, 72]. Optimism control has been implemented
by a static time window based on GVT [43] or by Breathing Time Warp [72].

35



Jeschke et al. [44] explored how a parallel NSM simulation can be run in the
background on desktop computers. They note that the general challenges of
the NSM which exhibits fine-grained event computations and zero lookahead,
combinedwith a grid-computation approach, causes the overheads to outweigh
any gains from the distribution of the work onto multiple computers.

4.4 Challenges
The key to the performance of the sequential NSM is the compact representa-
tion of its event queue. Events are aggregated, so that there is a single event
per subvolume, instead of one separate event per reaction and per voxel neigh-
bor. The type of transition of an aggregated event and its direction (if it is a
diffusion) is generated when it is processed.
Parallelizing NSM is challenging due to the properties described in Sec-

tion 3.5. One approach to achieve an efficient parallelization might be to use
a suitable optimism control technique. Hence, we want to apply the dynamic
local time window estimates (DLTWE) technique, which was developed and
successfully applied in Paper II, to NSM. DLTWE requires each LP to com-
municate accurate estimates of the timestamps of the next outgoing inter-LP
events to its neighboring LPs, but in order to do that, the timestamps of fu-
ture events must be known beforehand. Thus, it would be necessary to modify
the core NSM algorithm to expose timestamps of future inter-LP events. To
do that, inter-LP events cannot be aggregated, resulting in a bigger memory
footprint of the simulator, thereby deteriorating its performance. In exchange,
more information is available.
In Paper III, we study how to make the NSM expose timestamps of future

events, and investigate if the cost of maintaining the timestamps up to date is
worth the performance gain allowed by the information.

36



5
Skiplist-based Priority Queues

Priority queues are fundamental to many applications such as event queues in
DES, various graph algorithms [23], huffman encoding [39]. Skiplists [56, 57]
has been shown to be suitable for implementing parallel priority queues [64]
and has been used to implement, e.g., garbage collection [52].
In this chapter, we give a short background to skiplists, priority queues and

their usability for parallel applications. We also introduce a correctness condi-
tion and a common progress characterization of parallel algorithms.
A skiplist is a search data structure, akin to a binary search tree, with a

probabilistic guarantee of being balanced. It is built up as a collection of hi-
erarchically arranged linked lists, where higher level lists act as shortcuts into
the lowest level list. The lowest level list is a regular sorted linked list, con-
taining all elements, or nodes, stored in the structure. Each higher level list
visits fewer nodes than its lower-ranking lists. Thus, a search procedure for
finding a node can start by traversing the top level list, quickly homing in on
the neighborhood of the key, and then gradually descend level by level, to find

h 1 2 3 5 9 t

Figure 5.1. A skiplist with three levels. The skiplist contains 7 nodes, including head
sentinel h and tail sentinel t. The dotted line depicts the search path for the node with
key 5.

37



h

9

t

t

t

9

9

h

1

3

3

5

1

2

h

Figure 5.2. The same skiplist as in Figure 5.1, viewed as a binary search tree.

the correct node holding the key. The set of levels in which a node participates
is determined at node creation: nodes are randomly assigned a height, and par-
ticipates in levels up to that height. For convenience, a skiplist typically has
a head sentinel node and a tail sentinel node, at the start and the end of the
list, respectively. Both sentinel nodes are assigned the maximal height, and
initially, all forward pointers of the head node point to the tail node. The keys
of the head and tail nodes are defined as being smaller respectively greater than
all other keys.
In Figure 5.1, a skiplist with a maximum level of three is depicted. The list

consists of five elements, and the head and tail nodes. In the figure, the highest
level list only consists of the head, the element 9, and the tail node. Skiplists
were conceived as an alternative to balanced search trees, such as red-black
trees and AVL trees. From that perspective, one can view the same skiplist as
a binary search tree, as depicted in Figure 5.2.
The procedure for locating a key 𝑘 in a skiplist is as follows: Starting at the

head node, the highest level list is searched, and as soon as a key greater than 𝑘
is encountered, the search continues on the next lower level. Finally when the
lowest level is reached, either the node with key 𝑘 is found, or there is no key
𝑘 in the skip list. The search is depicted in Figure 5.1. The efficiency of the
search depends on the distribution of the heights of the nodes. The heights of
the nodes are randomly generated, typically according to a geometric distribu-

38



h 1 2 3 5 9 t

Figure 5.3. A skiplist not complying with the skiplist invariant. The third level list (the
highest level) is not a subset of the second level list, since the top (level two) pointer
of node 3 points directly to the tail sentinel node, and not to node 9.

tion (i.e., independent coin tosses). Hence the number of nodes at each level
decreases exponentially, which results in that the expected maximum length of
the search path to any node is 𝑂(log(𝑛)), for a skiplist with 𝑛 nodes [57]. This
property is also enjoyed by any balanced binary search tree, such as AVL trees
or red-black trees, but they may need rebalancing to achieve that bound in the
general case. They may not need rebalancing if the input is suitably distributed
(e.g., random). In contrast, skiplists provide the same guarantee independent
of input.1
Skiplist algorithms tend to be simpler than corresponding balanced search

tree operations, while maintaining their properties of 𝑂(log(𝑛)) search length,
making them an appealing option. For insertion and deletion, only pointers
of the predecessor at each level has to be modified. Since the height of the
tree is maintained by the randomly assigned heights of the nodes, there is no
need for complex rebalancing procedures. Due to the locality of the insertion
and deletion operations, skiplists have therefore been considered suitable for
parallel applications, and in particular as a replacement for parallel search trees,
that tend to be very complex to design [56].

The skiplist invariant states that, in a skiplist, the nodes at each level of
the list is a subset of the nodes of the list below it [37]. Skiplists are almost
always described and depicted as if the skiplist invariant holds, which is true
for all existing sequential skiplist algorithms. However, the skiplist invariant
is difficult to maintain in the concurrent case, and not all algorithms do that
since it is not necessary for the algorithm to work correctly. Such situations
may occur when, e.g., Insert and Remove operations simultaneously modify
the skiplist. In Figure 5.3, an example of a state that most concurrent skiplist
algorithm can reach is shown. In the figure, the third level (the highest level)
list is not a subset of the second level list, but apart from appearing differently
than expected there is no effect on correctness. For correctness, it is however
assumed in most cases, that all higher level lists are subsets of the lowest level
list. Herlihy et al. [37] argues that such loose constraints on the structure of
skiplists makes it harder to reason about their correctness, and designs a skiplist
algorithm where the skiplist invariant is maintained.

1Skewed removals, where only higher level nodes are removed, may cause the structure of the
skiplist to degenerate, resulting in a worse search time.

39



5.1 Lock-freedom and Correctness for Concurrent Data
Structures

Concurrent data structures are accessed bymultiple threads concurrently, which
communicate by modifying the state of the data structure, stored in shared-
memory. The threads’ interactions with the data structure may be interleaved
in many ways, making their behavior less straightforward to reason about. To
better understand concurrent algorithms, they are often classified depending on
which type of progress they guarantee. In concurrent algorithms, it is also not
evident what it means for parallel modifications of a concurrent data structures
to be correct. Below, we first introduce a type of progress guarantee, followed
by maybe the most common correctness criterion.
Concurrent data structures are often broadly categorized as either blocking,

where the operation of one thread may block that of another thread; and non-
blocking, where this is not the case. The most commonly used non-blocking
progress guarantee is arguably lock-freedom. An algorithm is lock-free if there
always is some thread making progress within a finite number of steps of the
execution of a concurrent algorithm, independent of the behavior of a (adver-
sarial) scheduler. As a consequence, algorithms that uses some kind of mutual
exclusion are not lock-free: if the thread currently holding a lock is suspended,
then eventually all other threads may wait for the lock to be released, prevent-
ing any thread from making progress.

Linearizability [36] is a correctness criterion for concurrent algorithms. A
concurrent algorithm is said to be linearizable, if, for any parallel execution of
its operations,

• for each invocation of an operation, it appears as if the operation takes ef-
fect instantaneously somewhere between its invocation and its response,
and

• the total ordering of these instantaneous operations corresponds to a valid
sequential execution.

Most lock-free data structures rely on a specific hardware instruction called
compare and swap (CAS) for performing their operations. The CAS operation
writes to a memory location, but only on the condition that the contents of
the memory location contains the expected value. The operation is atomic,
i.e., the test condition and the write are performed uninterrupted in hardware,
such that the memory contents cannot be modified after the test condition but
before the write. The complexity of the instruction makes it expensive to use,
compared to other instructions. However, not using some kind of hardware
primitive is not an option; Attiya et al. [2] has shown that it is impossible
to actually implement concurrent data structures without the support of some
(expensive) synchronizing hardware primitive. Also, multiple threads trying to
modify the same memory locations with CAS instructions may lead to severe
contention. Therefore, to improve performance of concurrent data structures,
the goal should be to minimize the usage of CAS.

40



5.2 Priority Queues
A priority queue is an abstract data type that defines at least two operations,
DeleteMin and Insert. The DeleteMin operation returns the element with
the smallest key in the queue. The Insert(k,v) operation inserts a value 𝑣 asso-
ciated with a key 𝑘, also called the priority of the value. A priority queue can be
implemented efficiently by, e.g., heap or tree data structures, and by skiplists.
Due to skiplists having shown to be suitable for parallelization, a number of
skiplist-based priority queue algorithms have been proposed for parallel use,
of which the first one was proposed by Shavit and Lotan [64]. They note that
intricate parallel synchronization schemes have been developed for heap-like
structures, the most prominent being the one of Hunt et al. [40], but that such
structures nonetheless do not scale beyond 10 to 20 processors. They provide
a skiplist-based priority queue with superior scalability when evaluated on a
simulated 256 processor computer. The key technique in the paper is a sep-
aration of logical and physical deletion: a node is considered to be deleted
when it is marked, e.g., by a flag, but the actual unlinking of the node from the
data structure can proceed in several steps. The first lock-free skiplist-based
priority queue was presented by Sundell and Tsigas [70]. That algorithm also
distinguishes between logical and physical deletion, but limits the number of
simultaneously allowed logically deleted nodes to one, to achieve linearizabil-
ity. Hence, when an operation observes a logically deleted node, it helps to
complete the physical removal of it. However, this leads to increased con-
tention, since multiple threads try to modify the same memory operations with
some synchronizing hardware primitive, e.g., CAS.
More recently, focus has shifted to priority queues with relaxed semantics

of the DeleteMin operation: Instead of returning the element with the small-
est key, an element with a “small” key (where small is not necessarily well-
defined or bounded) is returned [1, 61, 74]. Notably, Rihani et al. [60] intro-
duces multi-queues, where each processor core is assigned a sequential priority
queue. Insert operations are randomly distributed over all the priority queues.
For DeleteMin operations, the minimum element of two queues is selected.
Interestingly, this point of view can be applied to space-parallel PDES. Re-
moval of the earliest event from an LP’s local event queue can effectively be
seen as the DeleteMin on a global event queue with relaxed semantics.

5.3 Challenges
In the share-everything approach to PDES introduced in Chapter 3, the perfor-
mance of the event queue is crucial to achieve good scalability. One type of
data structure that can be used as an event queue is a priority queue. Due to
the intrinsic bottleneck of priority queues being the DeleteMin operation, the
challenge is to minimize the contention of DeleteMin operation. In Paper I,
we introduce a priority queue with minimal memory contention.

41



6
Summary of Papers

I A Skiplist-Based Concurrent Priority Queue with
Minimal Memory Contention

Priority queues are fundamental to many multiprocessor applications, such as
scheduling, graph algorithms, and discrete event simulation. For concurrent
priority queues, the DeleteMin operation is an inherent bottleneck.
In Paper I, a linearizable lock-free skiplist-based priority queue is presented.

The new data structure improves upon earlier skiplist-based priority queues by
minimizing the contention suffered by the DeleteMin operation. The amor-
tized number of CAS instructions perDeleteMin operation is reduced to close
to one. Earlier lock-free skiplist-based priority queues have used a technique
where on average 4 CAS operations are needed per node deletion [70], as-
suming geometrically distributed heights of the nodes with a parameter of 0.5
(which is the typical case). The high number of CAS operations, and the way
the operations are performed, lead to a higher risk that an operation suffers
from contention.
Our new priority queue is evaluated on a synthetic benchmark with typi-

cal insertion and deletion patterns, and a parallel simulation benchmark. In
comparison with other skiplist-based priority queue algorithms, the algorithm
improves performance by 30–80%.
We argue for the correctness of the algorithm and its linearizability, by prov-

ing a number of invariants on the structure of the skiplist. Additionally, we pro-
vide amodel of the priority queue to be used with the SPINmodel checker [38].
The model has been used to verify the linearizability of the algorithm by ex-
tensive state-space exploration. In short, a sequential priority queue is evalu-

42



ated simultaneously with the parallel priority queue: every time a linearization
point is reached in the parallel model implementation, the same operation is
performed on the sequential priority queue, at which point the states of the
parallel and sequential priority queue are compared.

II Efficient Inter-Process Synchronization for Parallel
Discrete Event Simulation on Multicores

In optimistic PDES, one challenge is to make LPs advance their local simu-
lation at approximately the same rate. To achieve a common simulation rate
for all LPs, optimism control techniques have been proposed, that blocks or
pauses LPs that tend to be over-optimistic. One problem with optimism con-
trol techniques is to choose which information should be used for throttling the
optimism, and how that information should be used. Earlier work (e.g., [66])
observe that many optimism control techniques suffer from acting on non-
exact information, retrieved from, e.g., local history, or by applying global
synchronization.
In Paper II, an optimism control technique suitable for spatial stochastic sim-

ulation is introduced. The technique, called DLTWE, finds and disseminates
accurate estimates of the timestamps of future messages to neighboring LPs.
Neighboring LPs can then use these estimates as bounds for local simulation,
reducing the risk of rollbacks. The technique is targeting stochastic simula-
tion, without lower bound on inter-arrival times of messages. The technique is
applied to the all events method (AEM), an algorithm for parameter sensitivity
estimation of RDME models. The AEM stores all scheduled events explic-
itly in memory. The basic idea is to scan a limited prefix of the event queue
at periodic intervals, and if any inter-LP diffusions are found, timestamps are
disseminated to the corresponding receiving LPs.
An additional improvement is the selective rollback technique. It is similar

to the breadth-first search proposed by Deelman and Szymanski [13]. How-
ever, since in our case there is a single event history for the whole subdomain
of an LP, we don’t need to store the processed diffusion event twice, as de-
scribed in [13]. The reduced memory footprint results in a noticeable speed
improvement.
The DLTWE algorithm is evaluated on a set of synthetic and real-world

benchmarks, in different sizes, shapes and with different kind of reactions,
representing some typical loads that can be expected in systems biology ap-
plications. The algorithm displays a parallel efficiency of 25–81% on larger
benchmarks compared to sequential AEM. On smaller benchmarks, the corre-
sponding figure is 8–42%.
The algorithm was also compared to another optimism control technique,

the probabilistic adaptive direct optimism control (PADOC), proposed by Fer-
scha [22]. The technique was chosen as a representative of the group of opti-

43



mism control techniques based on local history. The technique relies on mes-
sage arrival statistics, from which estimates of future incoming messages are
calculated. PADOC is compared with the DLTWE technique on a subset of
the benchmark set, where the DLTWE technique is shown to outperform the
PADOC technique.

III Exposing Inter-Process Information for Efficient
PDES of Spatial Stochastic Systems

The NSM is one of the more popular methods for stochastic simulation of
chemical systems, e.g., in cellular biology. The efficiency of NSM relies on
an aggregated representation of events, thus requiring less memory. However,
since events are aggregated, there is less information available that can be used
to predict the future behavior of the simulation. In the previous paper, Paper II,
the problemwas the opposite. We had an abundance of information to act upon,
but maintaining the extra information caused the algorithm to be slower.
In Paper III, we propose a refined representation for the NSM, which al-

though slightly more expensive to maintain due to more information that has
to be maintained, scales better than the direct parallel implementation of the
NSM. The refinement consists of representing key parts of the simulation state
explicitly while keeping the lion’s share of the state in aggregated form. Thus,
the refined algorithm is slightly more expensive to maintain, computation and
memory-wise. However, the extra non-aggregated information enables the use
of the DLTWE technique first proposed in Paper II. The refined algorithm is
called refined parallel NSM (PNSM).
To evaluate the refined parallel NSM algorithm, we design a straightfor-

ward parallelization of the NSM, called direct PNSM. The core NSM algo-
rithm in the direct parallelization is more efficient than the core NSM algo-
rithm in the refined PNSM since all events are aggregated. However, due to
the lack of accurate information, the implementation of an optimism control is
less straightforward. We provide a best-effort optimism control for the direct
PNSM, where future message times are estimated based on diffusion inten-
sities and subvolume populations. The estimated message times are dissemi-
nated between LPs.
In the paper, we compare the refined and the direct PNSM algorithms on a

set of synthetic benchmarks of different sizes and shapes, representing topolo-
gies that can be expected to be found in real simulations. In the evaluation,
we show that not using any optimism control does not scale. Then we look
at the performance of the two algorithms, direct and refined PNSM. In gen-
eral, the refined PNSM achieves an average speedup of 17 when executed on
32 cores. Compared to the direct PNSM algorithm, the refined algorithm dis-
plays a superior parallel efficiency by 42%, on a reduced benchmark set (due
to problems with some of the more advanced benchmarks). Compared to par-

44



allel NSM algorithms from other works, the refined PNSM show a superior
parallel efficiency by a margin of 65%.

IV Fine-Grained Local Dynamic Load Balancing in
PDES

There are numerous optimism control methods to improve the performance in
PDES. However, perhaps the most important prerequisite for achieving high
performance is an evenly distributed load among processors. Phenomena of
interest in, e.g., cellular biology, are often non-homogeneous and migrate over
the simulated domain. Cell division regulation and the transmission of nerve
impulses are examples of such processes. Hence, the distribution of work (over
the model) vary over time, although it is desirable that each processing element
has a constant partition of the total work attributed to it.
In Paper IV, we provide a protocol for fine-grained dynamic load migration

in PDES, developed with spatial stochastic simulation in mind, where the basic
elements of computation (in this case, voxels) are rather small. In the protocol,
individual voxels are migrated between LPs. The protocol is combined with a
fine-grained local load balancing algorithm, which optimizes both for load and
inter-LP communication. The load balancing algorithm is local, meaning that
only the direct neighbors to a voxel are involved, in contrary to many other
load balancing algorithms, where load balancing is done based on each LP’s
load metric in relation to a global calculation of the load. The load balancing
in our algorithm is based on local load and communication metrics. Our metric
is based on the observation that there would be few rollbacks if the simulation
load were well balanced. From that point of view, rollbacks caused by strag-
glers are arguably a good local measure of load imbalance. Thus, we use the
number of locally incurred rollbacks caused by stragglers as a load metric.
The PNSM algorithm to which we apply the load balancing algorithm uses

a technique for aggregating anti-messages between LPs, to reduce the amount
of communication (and thereby improve performance). The simultaneous us-
age of aggregated anti-messages and a load migration protocol leads to several
complex interactions between anti-messages andmigrations of voxels, because
of how the aggregated anti-messages change in meaning when a voxel is mi-
grated between LPs. Therefore, we provide a proof of correctness of the mi-
gration protocol, where we establish a number of invariants on the states of
voxels’ event histories and the states of the inter-LP communication channels.
The load balancing protocol and the load balancing algorithm are evaluated

on some benchmarks taken from systems biology. The load migration protocol
is shown to have a low overhead, and substantially reduces the total number of
rollbacks during a simulation run.

45



7
Summary and Conclusions

In this thesis, new techniques for improving parallel efficiency by reducing
synchronization costs in PDES were developed. This thesis shows that it is
possible to achieve good parallel efficiency for optimistic PDES of spatial
stochastic simulation methods such as the NSM. We have managed to im-
prove the scalability of a parallelization of the NSM in comparison to previous
work in the same field. We have observed that there is a lack of realistic bench-
marks that could serve as a means for comparison between different simulator
implementations.
Paper I introduced a skiplist-based priority queue, to be used, e.g., as a

central event queue in share-everything PDES. The possibility of further re-
ducing the contention of the DeleteMin operation seems limited. A micro-
benchmark in the paper indicates that the performance of the priority queue is
essentially limited by the DeleteMin operation. In the paper, approximately
one CAS instruction per DeleteMin operation is necessary, amortized over
time. Recent research results indicate that it is not possible to design a lin-
earizable priority queue without using at least one expensive synchronizing
hardware primitive per operation [2].
Papers II and III introduced optimism control protocols, where accurate es-

timates of timestamps of future inter-LP events, called DLTWEs, are dissemi-
nated between LPs The estimates are used by LPs to throttle their local simu-
lation, which reduces expensive rollbacks.
In Paper II, the estimates are produced by scanning a prefix of an LP’s event

queue. The new optimism control technique is compared to an optimism con-
trol technique where estimates are based on an LP’s local history of processed
events. The results indicate that the accuracy of DLTWEs over the estimates

46



based on local history has a notable impact on the parallel efficiency of space-
parallel PDES.
In Paper III, the DLTWE estimates are produced by refining the simula-

tion algorithm in a way which makes more precise information about future
inter-LP events available. The approach, called refined PNSM, is compared
to a straightforward parallelization of NSM, where best-effort estimates are
produced from the available non-refined information. The results suggest that
for many threads, the parallel efficiency achieved by using precise inter-LP
event information outweighs the cost of the increased overhead of the refined
simulation algorithm.
The results from Paper III suggest that load imbalance, both dynamic and

static, sets an upper limit on the parallel efficiency that can be achieved. Hence,
to improve scalability, it is necessary to balance the load dynamically, an ap-
proach that is pursued in Paper IV. In the paper, a fine-grained local dynamic
load balancing protocol is proposed. In its evaluation, it is observed that the
number of rollbacks during several benchmarks are substantially reduced by
using load balancing. However, the speedup did not increase by the same de-
gree. The approach from Paper III still shows significantly better parallel effi-
ciency, even when the load is dynamically changing.

Future Work
In Paper III, we saw evidence indicating that the dynamic load imbalance lim-
ited the achievable parallel efficiency in our parallelization of the NSM, for
models that were not well-balanced. Hence, to improve parallel efficiency
further, load balance must be improved. Thus, a good dynamic load balancing
technique is needed. In addition to the migration protocol, which was the focus
of Paper IV, one also needs good strategies for selecting which load to move.
Not much work has been done on local load balancing algorithms, which could
result in some interesting outcomes. Load balancing is also highly relevant for
simulation in systems biology, since the phenomena that are studied are often
non-homogeneous and dynamic— that is what makes them interesting and the
reason stochastic methods are applied in the first place.
The performance results from Paper I suggest that priority queues with ex-

act semantics should preferably be used on a single multicore or manycore
processor for best performance, as the scalability deteriorates when more than
one processor is used, due to the limited capacity of the bus between proces-
sors. Thus, it could be suitable to use for a hybrid PDES approach, where
share-everything PDES is used internally on each multicore processor, and
optimistic PDES is used between processors.
Even though initially, we discarded share-everything PDES for NSM as

inefficient, it would be interesting to evaluate it more thoroughly. We note
that would be suitable for share-everything PDES: In NSM, there is exactly
one event per subvolume in the event queue. Hence, when a thread retrieves
an event from the event queue, it implicitly “locks” access to the subvolume

47



state, since there is no other event for the same subvolume in the event queue.
However, Diffusion events modify two subvolumes, and could hence cause a
causality error, unless carefully orchestrated.

48



8
Summary in Swedish – Synkronisering i
parallell diskret händelsestyrd simulering

Datorsimulering är modellering av ett system, reellt eller imaginärt, över tid.
Datorsimulering återfinns som verktyg inom en mängd skilda vetenskaper, bå-
de inom naturvetenskap och samhällsvetenskap. Systembiologi, epidemilogi
och mikroprocessordesign är några av många användningsområden för simu-
lering. Simulering används för att utvärdera system, när det till exempel när
för kostsamt eller för riskabelt att utvärdera systemet i verkligheten. Det kan
användas för att utvärdera egenskaper hos en design i ett tidigt skede, innan
tillverkning har påbörjats, för att säkerställa att designen fungerar som förvän-
tat.
Diskret händelsestyrd simulering är en typ av simuleringsmetod där “hän-

delser” driver simuleringen av en modell framåt. En händelse är en diskret
förändring av ett tillstånd. En händelse kan till exempel vara att en individ in-
om en population blir smittad av en sjukdom. Antagandes att modelltillståndet
består av antalet friska samt smittade individer, så består den diskreta föränd-
ringen i att antalet friska individer minskas med en individ, och antalet smit-
tade individer ökas med en individ. En händelse antas alltid ske vid en viss
tidpunkt, och antas ske ögonblickligen. En diskret händelsestyrd simulering
är en kronologisk sekvens av sådana händelser, det vill säga ett händelseför-
lopp. Ett händelseförlopp genereras av en simulator. En simulator består oftast
av en händelsekö, som innehåller samtliga framtida händelser sorterade i kro-
nologisk ordning, en klocka som beskriver tiden i simuleringen, och ett mo-
delltillstånd. I simulatorn förknippas varje händelse med en tidsstämpel, dess
tidpunkt. Simulatorn går till väga enligt följande: (i) den tidigaste händelsen

49



i händelsekön plockas ut ur kön, (ii) modelltillståndet uppdateras i enlighet
med händelsen, (iii) klockan sätts till händelsens tidsstämpel, och (iv) eventu-
ellt nya händelser, orsakade av den utvalda händelsen, schemaläggs och sätts
in i händelsekön. Dessa fyra steg repeteras fram tills att klockan når en förbe-
stämd sluttid. I kontrast till diskret händelsestyrd simulering återfinns tidsstyrd
simulering, där ett diskret tidssteg görs i varje steg av simuleringen. Vid varje
tidssteg beräknas hela modellens tillstånd på nytt.
Utveckling av allt komplexare system inom områden såsommikroarkitektur

har skapat ett behov av att kunna simulera allt större system. Detta har lett till
ett stort intresse för parallell simulering i allmänhet, då sekvensiell simulering,
det vill säga simulering som exekveras på en enda processor, är för långsam. I
parallell simulering fördelas arbetet av en simulator över flera processorer, för
att på så sätt kunna slutföra simuleringen snabbare, då varje processor endast
har en mindre del av simuleringen att genomföra.
Inom parallell diskret händelsestyrd simulering finns det flera sätt att fördela

arbetet på flera processorer. Denna avhandlingen har fokuserat på två metoder,
som båda beskrivs nedan.
Den mest utbredda metoden för parallellisering av diskret händelsestyrd si-

mulering delar upp arbetet medelst data-dekomposition, så kallad dataparallell
simulering: simuleringsmodellen partitioneras och dessa fördelas över så kal-
lade logiska processer, som i sin tur fördelas över ett antal processorer. Varje
logisk process ansvarar för att driva simuleringen för en del avmodellen framåt
längs en lokal tidslinje, oberoende av de andra logiska processerna. De logiska
processerna måste kontinuerligt kommunicera med varandra, då en händelse
som härrör från en delsimulering mycket väl kan påverka en annan delsimu-
lering som utförs av annan processor. Det är ofta önskvärt att den parallella
simuleringen ger ett resultat som exakt överensstämmer med den sekvensi-
ella simuleringen. För att åstadkomma ett sådant resultat måste en mottagen
händelse införlivas på korrekt position i den lokala tidslinjen, sändande och
mottagande logisk process måste synkroniseras. Den lokala kausalitetsprin-
cipen stipulerar att en händelse vars tidsstämpel föregår en annan händelse
måste behandlas först, för att ett korrekt resultat ska erhållas. Då varje delmo-
dell simuleras oberoende av andra delmodeller, kan det vid mottagande av ett
meddelande uppstå kausalitetsfel: en händelse emottas för sent, och skulle vid
införlivandet i den lokala tidslinjen leda till att en senare händelse påverkar
en tidigare händelse. Vid detektion av ett kausalitetsfel initieras en korrektion
av den lokala tidslinjen, och andra påverkade logiska processer informeras via
meddelanden. Korrektionsprocedurerna är tidsmässigt kostsamma och det är
önskvärt att i största möjliga grad undvika dem. Ju större diskrepansen är mel-
lan två logiska processers tidslinjer, desto större sannolikhet är det att deras
tidslinjer kommer att behöva korrigeras vid kommunikation. En av de centra-
la utmaningarna i parallell diskret händelsestyrd simulering är att få samtliga
logiska processer att driva sina lokala simuleringar framåt med ungefär sam-
ma hastighet, för att reducera tidsskillnaden mellan logiska processers lokala

50



tidslinjer. På så sätt reduceras tiden som behöver läggas på korrektion av tids-
linjerna, och simulatorns skalbarhet maximeras.
En annan metod att parallellisera diskret händelsestyrd simulering är att lå-

ta samtliga processorer samverka genom en central händelsekö. Detta gör att
synkroniseringenmellan processorer förenklas avsevärt, då den regleras av den
centrala händelsekön. Å andra sidan så leder det till att händelsekön kan bli en
flaskhals, då flera processorer samtidigt vill extrahera den tidigaste händelsen.
Denna avhandling utvecklar metoder för att reducera synkroniseringkost-

nader inom parallell diskret händelsestyrd simulering, med målet att förbättra
prestanda. Tre områden studeras i avhandlingen.
Vid parallell diskret händelsestyrd simuleringmedelst en central händelsekö

är det viktigt att minimera synkroniseringskostnaderna för de procedurer som
modifierar händelsekön, då den är en trolig flaskhals i simuleringen. Ett av
resultaten i denna avhandling är en ny algoritm som minimerar synkronise-
ringskostnaderna för en viss typ av händelsekö.
I dataparallell diskret händelsestyrd simulering är en vanlig teknik för att

reducera synkroniseringskostnader att göra så att samtliga logiska processer
driver sin lokala simulering framåt med ungefär samma hastighet. Ett sätt att
åstadkomma en uniform lokal simuleringshastighet är att blockera logiska pro-
cesser vars lokala simuleringstid är väsentligt större än andra logiska proces-
sers. I avhandlingen har metoder utvecklats för att exponera och kommuni-
cera framtida händelsers tid mellan logiska processer, med fokus på spatiala
och stokastiska simuleringsmodeller. Resultaten visar att metoderna bidrar till
ökad skalbarhet vid simulering av den sortens modeller.
I dataparallell diskret händelsestyrd simulering är en ojämn fördelning av

simuleringsarbetet en vanlig orsak till höga synkroniseringskostnader. Ojämn
fördelning av arbetet kan uppstå dynamiskt under pågående simulering på grund
av egenskaper hos simuleringsmodellen. Genom att omfördela arbetet kontinu-
erligt under en pågående simulering kan en jämn arbetsfördelning bibehållas.
I avhandlingen har en metod utvecklats för att dynamiskt omfördela arbetet
under en pågående simulering. Resultaten visar att antalet nödvändiga korrek-
tioner av de logiska processernas tidslinjer reduceras substantiellt.

51



Acknowledgements

First and foremost, I would like to thank my supervisor Bengt Jonsson, without
whom this work would never have seen the light of the day. I am truly thankful
for your patience, for all your hard work, and for always having had some
encouraging words at the right moments. I would also like to thank my co-
supervisor Yi Wang for being positive and encouraging to my work. Second,
I would like to thank my co-authors Pavol Bauer, Xiaoyue Pan and Stefan
Engblom. Thank you for your collaboration and interesting ideas, I learned a
lot together with you.
I would like to thank the people and colleagues of the embedded systems/real

time systems group, past and current, in no particular order, for contributing to
a nice work environment: Jakaria Abdullah, Peter Backeman, Gaoyang Dai,
Pontus Ekberg, Jonas Flodin, NanGuan, Kai Lampka, Xiuming Liu, Mingsong
Lv, Morteza Mohaqeqi, Edith Ngai, Xiaoyue Pan, Philipp Rümmer, Martin
Stigge, Wang Yi and Aleksandar Zeljić.
Many thanks go to Peter Backeman, Aleksandar Zeljić, and Stefan Eng-

blom, who in addition to my supervisors gave me valuable feedback on this
thesis.
I would also like to thank all the Ph.D. students that in some way or another

have crossed my path during my time at the university and made it a better
place. Special mentions go to Nikos Nikoleris, Mikael Laaksoharju and David
Eklöv for giving me a great start and introducing me to what it means to be a
PhD.
I would like to thank my parents for their support. This work owes to you,

thank you for helping out when two people is not enough. I would also like to
thank my brother for being my brother. Thank you.
Last, but not least, I would like to thank my family for making life magic.

Thank you Anne, for all the wonderful journeys we have done and are doing
and will do together. Thank you for being there, supporting me. Thank you
Finn, for writing small books, just like your parents, and for which you need
the scissors. Thank you Matilda for expressing everything with your few but
wonderful words.

This work was supported in part by the Swedish Foundation for Strategic
Research through the project CoDeR-MP and the Swedish Research Council
within the UPMARC Linnaeus centre of Excellence.

52



References

[1] D. Alistarh, J. Kopinsky, J. Li, and N. Shavit. The SprayList: A Scalable
Relaxed Priority Queue. ACM SIGPLAN Not., 50(8):11–20, 2015.

[2] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. M. Michael, and
M. Vechev. Laws of Order: Expensive Synchronization in Concurrent
Algorithms Cannot Be Eliminated. ACM SIGPLAN Not., 46(1):487–498, 2011.

[3] H. Avril and C. Tropper. Clustered Time Warp and Logic Simulation. ACM
SIGSIM Simul. Dig., 25(1):112–119, 1995.

[4] H. Avril and C. Tropper. The Dynamic Load Balancing of Clustered Time Warp
for Logic Simulation. ACM SIGSIM Simul. Dig., 26(1):20–27, 1996.

[5] H. Bauer and C. Sporrer. Reducing Rollback Overhead In Time-warp Based
Distributed Simulation With Optimized Incremental State Saving. In Proc. 26th
Annual Simulation Symposium, pages 12–20, 1993.

[6] R. E. Bryant. Simulation of Packet Communication Architecture Computer
Systems. Tech. Rep. MIT-LCS-TR-188, Massachusetts Institute of Technology,
1977.

[7] C. Burdorf and J. Marti. Load Balancing Strategies for Time Warp on
Multi-User Workstations. Comput. J., 36(2):168–176, 1993.

[8] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto. Efficient optimistic
parallel simulations using reverse computation. ACM Trans. Model. Comput.
Simul., 9(3):224–253, 1999.

[9] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto. The effect of state-saving
in optimistic simulation on a cache-coherent non-uniform memory access
architecture. In Proc. 31st Conference on Winter Simulation. ACM, 1999.

[10] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.
Springer, 2nd edition, 2008.

[11] K. M. Chandy and J. Misra. Distributed Simulation: A Case Study in Design
and Verification of Distributed Programs. IEEE Trans. Softw. Eng., SE-5(5):
440–452, 1979.

[12] S. R. Das. Adaptive protocols for parallel discrete event simulation. J. Oper.
Res. Soc., 51(4):385–394, 2000.

[13] E. Deelman and B. K. Szymanski. Breadth-first Rollback in Spatially Explicit
Simulations. ACM SIGSIM Simul. Dig., 27(1):124–131, 1997.

[14] E. Deelman and B. K. Szymanski. Dynamic Load Balancing in Parallel Discrete
Event Simulation for Spatially Explicit Problems. ACM SIGSIM Simul. Dig., 28
(1):46–53, 1998.

[15] L. Dematté and T. Mazza. On parallel stochastic simulation of diffusive
systems. In M. Heiner and A. M. Uhrmacher, editors, Computational Methods
in Systems Biology, number 5307 in LNCS, page 191–210. Springer, 2008.

53



[16] B. Drawert, S. Engblom, and A. Hellander. URDME: A modular framework for
stochastic simulation of reaction-transport processes in complex geometries.
BMC Syst. Biol., 6(76):1–17, 2012.

[17] J. Elf and M. Ehrenberg. Spontaneous separation of bi-stable biochemical
systems into spatial domains of opposite phases. Syst. Biol., 1(2):230–236,
2004.

[18] S. Engblom. Numerical Solution Methods in Stochastic Chemical Kinetics. PhD
Thesis, Uppsala University, 2008.

[19] S. Engblom, L. Ferm, A. Hellander, and P. Lötstedt. Simulation of Stochastic
Reaction-Diffusion Processes on Unstructured Meshes. SIAM J. Sci. Comput.,
31(3):1774–1797, 2009.

[20] R. Erban, J. Chapman, and P. Maini. A practical guide to stochastic simulations
of reaction-diffusion processes. ArXiv07041908 Phys. Q-Bio, 2007.

[21] D. Fange and J. Elf. Noise-Induced Min Phenotypes in E. coli. PLOS Comput.
Biol., 2(6):e80, 2006.

[22] A. Ferscha. Probabilistic Adaptive Direct Optimism control in Time Warp.
ACM SIGSIM Simul. Dig., 25(1):120–129, 1995.

[23] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan. The pairing
heap: A new form of self-adjusting heap. Algorithmica, 1(1-4):111–129, 1986.

[24] R. M. Fujimoto. Parallel Discrete Event Simulation. Commun. ACM, 33(10):
30–53, 1990.

[25] R. M. Fujimoto and M. Hybinette. Computing Global Virtual Time in
Shared-Memory Multiprocessors. ACM Trans. Model. Comput. Simul., 7(4):
425–446, 1997.

[26] C. W. Gardiner. Handbook of Stochastic Methods. Springer, 3rd edition, 2004.
[27] T. S. Gardner, C. R. Cantor, and J. J. Collins. Construction of a genetic toggle

switch in Escherichia coli. Nature, 403:339, 2000.
[28] M. A. Gibson and J. Bruck. Efficient Exact Stochastic Simulation of Chemical

Systems with Many Species and Many Channels. J. Phys. Chem. A, 104(9):
1876–1889, 2000.

[29] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J.
Phys. Chem., 81(25):2340–2361, 1977.

[30] D. T. Gillespie. Stochastic simulation of chemical kinetics. Annu. Rev. Phys.
Chem., 58:35–55, 2007.

[31] D. W. Glazer and C. Tropper. On Process Migration and Load Balancing in
Time Warp. IEEE Trans. Parallel Distrib. Syst., 4(3):318–327, 1993.

[32] S. Gupta and P. A. Wilsey. Lock-free Pending Event Set Management in Time
Warp. In Proc. 2nd ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation, pages 15–26. ACM, 2014.

[33] J. Hay and P. A. Wilsey. Experiments with Hardware-based Transactional
Memory in Parallel Simulation. In Proc. 3rd ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation, pages 75–86. ACM, 2015.

[34] P. Heidelberger. Statistical Analysis of Parallel Simulations. In Proc. 18th
Conference on Winter Simulation, pages 290–295. ACM, 1986.

[35] P. Heidelberger and H. S. Stone. Parallel trace-driven cache simulation by time
partitioning. In Proc. 22nd Conference on Winter Simulation, pages 734–737.
IEEE, 1990.

54



[36] M. Herlihy and J. M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[37] M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit. A simple optimistic skiplist
algorithm. In G. Prencipe and S. Zaks, editors, Structural Information and
Communication Complexity, number 4474 in LNCS, pages 124–138. Springer,
2007.

[38] G. J. Holzmann. The Model Checker SPIN. IEEE Trans. Softw. Eng., 23(5):
279–295, 1997.

[39] D. A. Huffman. A Method for the Construction of Minimum-Redundancy
Codes. Proc. IRE, 40(9):1098–1101, 1952.

[40] G. C. Hunt, M. M. Michael, S. Parthasarathy, and M. L. Scott. An Efficient
Algorithm for Concurrent Priority Queue Heaps. Inf. Process. Lett., 60(3):
151–157, 1996.

[41] S. Jafer, Q. Liu, and G. Wainer. Synchronization methods in parallel and
distributed discrete-event simulation. Simul. Model. Pract. Theory, 30:54–73,
2013.

[42] D. R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst., 7(3):404–425,
1985.

[43] M. Jeschke, R. Ewald, A. Park, R. M. Fujimoto, and A. M. Uhrmacher. A
parallel and distributed discrete event approach for spatial cell-biological
simulations. ACM SIGMETRICS Perform. Eval. Rev., 35(4):22–31, 2008.

[44] M. Jeschke, A. Park, R. Ewald, R. Fujimoto, and A. M. Uhrmacher. Parallel and
Distributed Spatial Simulation of Chemical Reactions. In 22nd Workshop on
Principles of Advanced and Distributed Simulation, pages 51–59. IEEE, 2008.

[45] M. J. Lawson, B. Drawert, M. Khammash, L. Petzold, and T.-M. Yi. Spatial
Stochastic Dynamics Enable Robust Cell Polarization. PLOS Comput. Biol., 9
(7):e1003139, 2013.

[46] Z. Lin, C. Tropper, M. N. I. Patoary, R. A. McDougal, W. W. Lytton, and M. L.
Hines. NTW-MT: A Multi-threaded Simulator for Reaction Diffusion
Simulations in NEURON. In Proc. 3rd ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation, pages 157–167. ACM, 2015.

[47] J. Liu. Parallel Discrete-Event Simulation. InWiley Encyclopedia of Operations
Research and Management Science. Wiley, 2010.

[48] A. J. Lotka. Elements of Physical Biology. Williams &Wilkins Company, 1925.
[49] R. Marotta, M. Ianni, A. Pellegrini, and F. Quaglia. A Conflict-Resilient

Lock-Free Calendar Queue for Scalable Share-Everything PDES Platforms. In
Proc. 2017 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation, pages 15–26. ACM, 2017.

[50] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally
Equidistributed Uniform Pseudo-random Number Generator. ACM Trans.
Model. Comput. Simul., 8(1):3–30, 1998.

[51] F. Mattern. Efficient Algorithms for Distributed Snapshots and Global Virtual
Time Approximation. J. Parallel Distrib. Comput., 18:423–434, 1993.

[52] N. Nguyen, P. Tsigas, and H. Sundell. ParMarkSplit: A Parallel Mark-Split
Garbage Collector Based on a Lock-Free Skip-List. In M. K. Aguilera,
L. Querzoni, and M. Shapiro, editors, Principles of Distributed Systems, number
8878 in LNCS, pages 372–387. Springer, 2014.

55



[53] D. M. Nicol and X. Liu. The Dark Side of Risk (What Your Mother Never Told
You About Time Warp). ACM SIGSIM Simul. Dig., 27(1):188–195, 1997.

[54] D. M. Nicol, A. G. Greenberg, and B. D. Lubachevsky. Massively parallel
algorithms for trace-driven cache simulations. IEEE Trans. Parallel Distrib.
Syst., 5(8):849–859, 1994.

[55] J. Nutaro. Discrete-Event Simulation of Continuous Systems. In P. A. Fishwick,
editor, Handbook of Dynamic Systems Modeling. Chapman & Hall/CRC, 2005.

[56] W. Pugh. Concurrent maintenance of skip lists. Tech. Rep.
UMIACS-TR-90-80, University of Maryland at College Park, 1990.

[57] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun.
ACM, 33(6):668–676, 1990.

[58] H. Rajaei, R. Ayani, and L.-E. Thorelli. The Local Time Warp Approach to
Parallel Simulation. ACM SIGSIM Simul. Dig., 23(1):119–126, 1993.

[59] P. L. Reiher and D. R. Jefferson. Virtual Time Based Dynamic Load
Management In The Time Warp Operating System. Trans. Soc. Comput. Simul.,
7(9):103–111, 1990.

[60] H. Rihani, P. Sanders, and R. Dementiev. Brief Announcement: MultiQueues:
Simple Relaxed Concurrent Priority Queues. In Proc. 27th ACM Symposium on
Parallelism in Algorithms and Architectures, pages 80–82. ACM, 2015.

[61] K. Sagonas and K. Winblad. The Contention Avoiding Concurrent Priority
Queue. In C. Ding, J. Criswell, and P. Wu, editors, Languages and Compilers
for Parallel Computing, number 10136 in LNCS, pages 314–330. Springer,
2017.

[62] R. B. Schinazi. Predator-Prey and Host-Parasite Spatial Stochastic Models.
Ann. Appl. Probab., 7(1):1–9, 1997.

[63] R. Schlagenhaft, M. Ruhwandl, C. Sporrer, and H. Bauer. Dynamic Load
Balancing of a Multi-cluster Simulator on a Network of Workstations. ACM
SIGSIM Simul. Dig., 25(1):175–180, 1995.

[64] N. Shavit and I. Lotan. Skiplist-based concurrent priority queues. In Proc. 14th
Int’l Parallel and Distributed Processing Symposium. IEEE, 2000.

[65] L. M. Sokol, D. P. Briscoe, and A. P. Wieland. MTW: A strategy for scheduling
discrete simulation events for concurrent execution. In Proc. 1988 SCS
Multiconference on Distributed Simulation, pages 34–42. IEEE, 1988.

[66] S. Srinivasan and P. F. Reynolds. Elastic time. ACM Trans. Model. Comput.
Simul., 8(2):103–139, 1998.

[67] J. S. Steinman. SPEEDES: Synchronous Parallel Environment for Emulation
and Discrete Event Simulation. Int. J. Comput. Simul., 2:251–286, 1992.

[68] J. S. Steinman. Breathing Time Warp. ACM SIGSIM Simul. Dig., 23(1):
109–118, 1993.

[69] M. Sturrock, A. Hellander, A. Matzavinos, and M. A. J. Chaplain. Spatial
stochastic modelling of the Hes1 gene regulatory network: Intrinsic noise can
explain heterogeneity in embryonic stem cell differentiation. J. R. Soc.
Interface, 10(80), 2013.

[70] H. Sundell and P. Tsigas. Fast and lock-free concurrent priority queues for
multi-thread systems. J. Parallel Distrib. Comput., 65(5):609–627, 2005.

[71] V. Volterra. Variazioni E Fluttuazioni Del Numero D’individui In Specie
Animali Conviventi. Mem. R. Accad. Naz. dei Lincei., 2:31–113, 1926.

56



[72] B. Wang, B. Hou, F. Xing, and Y. Yao. Abstract Next Subvolume Method: A
logical process-based approach for spatial stochastic simulation of chemical
reactions. Comput. Biol. Chem., 35(3):193–198, 2011.

[73] L. F. Wilson and W. Shen. Experiments in Load Migration and Dynamic Load
Balancing in SPEEDES. In Proc. 30th Conference on Winter Simulation, pages
483–490. IEEE, 1998.

[74] M. Wimmer, J. Gruber, J. L. Träff, and P. Tsigas. The Lock-free k-LSM Relaxed
Priority Queue. In Proc. 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 277–278. ACM, 2015.

57



Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1634

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-342270

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2018


	Abstract
	List of papers
	Comments on my Participation
	Other Publications
	Contents
	1 Introduction
	2 Discrete Event Simulation
	3 Parallel Discrete Event Simulation
	3.1 Overview of Synchronization Protocols
	3.1.1 Conservative PDES
	3.1.2 Optimistic PDES
	3.1.3 Share-Everything PDES

	3.2 Adaptive Optimism Protocols
	3.3 LP Aggregation
	3.4 Load Balancing
	3.5 Challenges

	4 Event-Based Modeling
	4.1 Mesoscopic Event-Based Modeling
	4.2 Stochastic Simulation of Chemical Kinetics
	4.2.1 The Reaction-Diffusion Master Equation

	4.3 Parallel NSM
	4.4 Challenges

	5 Skiplist-based Priority Queues
	5.1 Lock-freedom and Correctness for Concurrent Data Structures
	5.2 Priority Queues
	5.3 Challenges

	6 Summary of Papers
	I A Skiplist-Based Concurrent Priority Queue with Minimal Memory Contention
	II Efficient Inter-Process Synchronization for Parallel Discrete Event Simulation on Multicores
	III Exposing Inter-Process Information for Efficient PDES of Spatial Stochastic Systems
	IV Fine-Grained Local Dynamic Load Balancing in PDES

	7 Summary and Conclusions
	8 Summary in Swedish – Synkronisering iparallell diskret händelsestyrd simulering
	Acknowledgements
	References



