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ABSTRACT To solve the problem that the fractional-order system is difficult to implement on FPGA, the
chaotic behavior of a single fractional-order Chen system is realized on the FPGA platform in this article
by using Laplace transform and Bode-domain approximation to transform the fractional-order operator.
Then the System Generator model of two different fractional-order systems is studied, and FTS/PTS
(fixed/predefined time synchronization) algorithms are designed to realize the FTS/PTS of the FOTD
(fractional-order time-delay) chaotic systems on FPGA. By changing the initial conditions and parameters
of the FOTD chaotic systems, several groups of experiments are carried out on FPGA. The experimental
results show that the FTS/PTS controllers of two different FOTD chaotic systems are feasible on FPGA.

INDEX TERMS FPGA, fixed time synchronization, fractional-order time-delay chaotic system, predefined
time synchronization.

I. INTRODUCTION
Fractional-order chaotic system, as the product of the com-
bination of chaos and fractional calculus, can establish math-
ematical models closer to the actual situation and describe
various models more accurately, such as weather phe-
nomena, financial research, wind power generation, neural
networks, etc. [1], [2], [3]. Many ways of synchroniza-
tion are found, such as complete synchronization, anti-
phase synchronization, finite time synchronization, FTS,
etc. [4], [5], [6], [7], [8]. Due to the strong stability and
robustness of FTS/PTS methods, the related research has
attracted the attention of many scholars in recent years [6].
FTS makes the system reach stable in a given time under ini-
tial conditions unknown. Ni et al. [9] proposed a non-singular
terminal sliding mode control method for fractional-order
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chaotic systems with uncertain disturbances to make the
fractional-order Liu system reaching a stable state in a fixed
time. To solve the problem that the settling time of fixed
time stability is difficult to adjust according to actual needs,
a special fixed time stability, namely predefined time stability,
was introduced in [10]. Predefined time stability allows the
system to reach stable within a settling time, which depends
only on predefined parameters [11], [12], [13], [14]. The
predefined time synchronization is not only independent of
the initial conditions of the system, but also independent
of parameters of the system. Anguiano-Gijón et al. [15]
designed a PTS controller based on Lyapunov function sta-
bility method, and applied it in Rossler system and Lorenz
system to make them reach the PTS. Lin et al. [14] proposed a
new trajectory tracking predefined time controller combined
with sliding mode method for nonholonomic mobile robots.
At present, the implementation of different synchroniza-
tion methods is mainly verified by simulation, and rarely
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implemented on FPGA. The main difficulty lies in the com-
plexity of discretization of control methods and the complex-
ity of program.

Fractional-order chaotic systems contain complex factors
such as the nonlinear part and the fractional derivative. Ana-
log implementations suffer from low sensitivity of analog
components, while digital implementations suffer from accu-
racy problems caused by the small number of bits to per-
form arithmetic operations. The emergence of FPGA opens
the way to solve these problems. FPGA is a programmable
electronic device composed of various logic gate circuits,
which consists of programmable independent logic modules,
I/O modules and hardware circuits, etc.. The resources are
combined in different ways to build a variety of hardware
logic circuits [16], [17], such as multipliers, registers, etc..
Commonly used FPGA chips are also equipped with other
hardware components. Various modules are optimized and
embedded into the hardware devices of the chip and devel-
opment board to facilitate the implementation of specific
functions, such as graphics processing, digital signal pro-
cessing, state machine, etc.. FPGA has higher flexibility and
can meet more design requirements and actual scene needs.
Shen et al. [18] realized the chaotic behavior of multi-
stable fourth-order autonomous Chua system on FPGA
based on embedded engineering application development
and floating-point format numerical algorithm. Malik and
Mir [19] used the fractional-order operator Laplace transform
method to realize the conversion of fractional-order neurons
on FPGA, and successfully operated. Abdelaty et al. [20]
proposed an FPGA realization of the fractional order operator
based on the product integration rules with a modification in
the PI rules. Mohamed et al. [21] proposed FPGA realization
of an IP core for generic fractional-order derivative based on
Grünwald-Letnikov approximation. Monir et al. [22] imple-
mented the fractional order differentiator and integrator of
Grünwald Letnikov definition on FPGA for different frac-
tional orders. Clemente-Lopez et al. [23] explored three types
of the embedded and non-embedded implementation of a
3D fractional order chaotic system and the elaboration of
a chaos based true random number generator. From above
analysis, most of the current scholars’ research is to realize
the chaotic behavior characteristics of nonlinear systems on
FPGA [18], [19], [20], [21], [22]. The time delay in fractional
order chaotic systems is also not considered. How to solve
the problem of uncertain initial values in FTS of FOTD,
and how to solve the problem of adjustable settling time in
synchronization of FOTD? Therefore, this article will focus
on the problem of the implementation of synchronization of
FOTD chaotic system on FPGA. This study has the following
contributions:

1) Fractional-order nonlinear system is decomposed by
Laplace transform and Bode-domain approximation,
and the chaotic behavior of fractional-order chaotic
system is realized on FPGA.

2) Clemente-Lopez et al. [23], [24] realized frac-
tional order chaotic system through IP Bolcks on

a Xilinx Zynq-7000 XC7Z020 SoC. This article studies
the system generator model of two different FOTD
chaotic systems, and combines MATLAB with FPGA
to achieve the combination of simulation results and
implementation hardware.

3) Considering time delay in chaotic system, the FTS of
two different FOTD chaotic systems are implemented
on FPGA. On this basis, considering adjustable param-
eter of the settling time, the PTS of two different
FOTDs is realized on FPGA, which broadens the appli-
cation of chaotic systems synchronization in practical
scenarios.

II. PRELIMINARIES

Consider the system

ẋ = g(t, x), x(0) = x0, (1)

where x ∈ Rn denotes the state vector and g : R+×Rn
→ Rn

represents a smooth nonlinear function.
Definition 1: [25] If system (1) is globally finite time

stable and the settling time is bounded, i.e. ∃Tmax > 0:
∀x0 ∈ Rn, T (x0) ≤ Tmax . Then system (1) is globally fixed
time stable.
Lemma 1: [26] A positive definite and continuous radi-

ally function V (x) : Rn → R for system (1) satisfies
α, β, γ, η > 0, γ η > 1 for any V (x) > 0, such that

V̇ (x) ≤ −(αV (x)γ + β)η, x(t) ∈ Rn\{0}. (2)

Then system (1) is stable in fixed time and the settling time
is T 1

max , which is described as

T (x0) ≤ T 1
max ,

1
βη

(
β

α
)
1
γ (1+

1
γ η − 1

). (3)

Definition 2: [12] If system (1) is globally fixed time
stable and the settling time T (x0) is

T (x0) ≤ Tc,∀x0 ∈ Rn,

where Tc is a adjustable parameter called a predefined time.
Then system (1) is predefined time stable.
Lemma 2: [26] A positive definite and continuous radi-

ally function V (x) : Rn → R for system (1) satisfies
α, β, γ, η > 0, γ η > 1 for any V (x) > 0, such that

V̇ ≤ −
T 2
max

Tc
(αV γ + β)η (4)

with

T (x0) ≤ T 2
max =

β
1
γ
−η

α
1
γ γ

B(
1
γ
, η −

1
γ
), (5)

where B(σ, θ) is the complete beta function. Then system (1)
is stable in predefined time and the predefined time is Tc.

Common simulation methods in fractional order sys-
tems include Caputo method, G-L (Grunwald-Letnikov)
method, Adams Bashforth Coulton method, R-L (Riemman-
Liouville) method, etc.. In addition, under certain conditions,
the dynamic analysis required for fractional order chaotic
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systems can be evaluated by system entropy, Lyapunov expo-
nent, Kaplan–York dimension, etc. [27]. It is found that the
G-L definition and the Caputo definition are equivalent under
certain conditions, and the R-L definition and the Caputo
definition can replace each other in the same period of time.
Caputo’s Derivative Operator can be applied not only to frac-
tional order chaotic systems, such as Lorenz-Stenflo chaotic
systems and Colpitts oscillator [28], but also to the analysis
of fractional order models in economics [29]. Therefore this
article uses Caputo derivative definition.
Definition 3: [30] The definition of Caputo derivative for

h(t) is given as following

C
t0D

β
t h(t) =


1

0(n− β)

∫ t

t0

h(n)(s)
(t − s)β−n+1

ds,

n− 1 < β < n,
dnh(t)
dtn

, β = n,

where β > 0 is the order of derivative; t0 is the initial time
and t ≥ t0; n is integer and n− 1 < β ≤ n.
Lemma 3: Laplace transform of fractional order

operators

Dαf (t) =
∫
∞

0
e−st0Dαt f (t)dt = sαF(s)

where α is the order of the system; s = σ + jω is the complex
variable; F(s) is the corresponding complex function.

III. IMPLEMENTATION OF FRACTIONAL-ORDER CHAOTIC
SYSTEM ON FPGA
A. FRACTIONAL-ORDER CHEN CHAOTIC SYSTEM
The fractional-order Chen chaotic system is

Dα1x1 = a(x1 − x2)
Dα2x2 = −x1x3 + cx2 + (c− a)x1
Dα3x3 = −bx3 + x1x2

(6)

where a, b, c are the system parameters, with values of
a = 35, b = 3, c = 28 respectively. Order is α1=
α2=α3=α= 0.9, and initial value is X (0) = [x1(0), x2(0),
x3(0)] = [2, 1, 3]T . To solve the problem of fractional
operator transformation, according to the Baud domain
approximation method, Ahmad and Sprott [31] obtained the
approximate expression of the transfer function in the fre-
quency domain after a lot of calculations: H (s) = H (0)

/
sα .

When α = 0.9, 1
/
sα can be approximately estimated as:

H (s) =
1
s0.9
=

2.2675(s+ 215.4)(s+ 1.292)
(s+ 2.145)(s+ 359.4)(s+ 0.01292)

, (7)

where the step size is 0.1 and the maximum error is 2dB.
By substituting the parameters into the system (6), and per-
forming Laplace transform on the system (6), one can obtain
that 

s0.9x1(s) = 35x2(s)− 35x1(s)
s0.9x2(s) = −u(s)− 7x1(s)+ 28x2(s)
s0.9x3(s) = w(s)− 3x3(s)

(8)

where u(s)=ζ [x1(s), x3(s)], w(s)=ζ [x1(s), x2(s)]. In [32], the
embedded hardware implementation of a fractional order
switching system is realized by approximating fractional
order chaotic systems to integer order chaotic systems
through time-frequency-time and Forward-Euler method.
The implementation of fractional order continuous time
chaotic systems on FPGA and embedded systems is reviewed
in [24], especially in the calculation and algorithm of solution
methods. To reduce the computation, this article adopts the
Bode-domain approximation method. The left and right sides
of system (8) are simultaneously multiplied by 1

/
s0.9, and

the system (8) can be fitted to a nine-dimensional first-order
differential system by the Bode-domain approximation and
formula (7).

ẋ1 = x2
ẋ2 = x3
ẋ3 = −(35gl + p)x1 − (35gk + n)x2
−(35g+ m)x3+35g(lx4 + kx5 + x6)
ẋ4 = x5
ẋ5 = x6
ẋ6 = −g(x3x7+x1x9 + 2x2x8+lx1x7
+k(x2x7 + x1x8))+ (28gl − p)x4
+ (28gk − n)x5 + (28g− m)x6
−7g(lx1 + kx2 + x3)
ẋ7 = ẋ8
ẋ8 = ẋ9
ẋ9 = g(x1x6+x3x4 + 2x2x5+lx1x4
+k(x1x5 + x2x4))− (3gl + p)x7
− (3gk + n)x8 − (3g+ m)x9

(9)

where g = 2.2675, k = 216.692, l = 278.2968, m =
361.567, n = 778.819 and p = 10. The Forward Euler
Method is selected as the discrete formula

yn+1 = f (yn, tn) · dt + yn, y(t0) = y0 (10)

FIGURE 1. State trajectories.
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where f (yn, tn) = y′n represents the first derivative of the
function, and dt = tn−1 − tn represents the interval step
between discrete points. Discretizing the system by the Euler
method, one can obtain that

x1(t + 1) = x2(t) · dt + x1(t)
x2(t + 1) = x3(t) · dt + x2(t)
x3(t + 1) = (−(35gl + p)x1(t)− (35gk + n)x2(t)
− (35g+ m)x3(t)+35g(lx4(t)+ kx5(t)
+ x6(t))) · dt + x3(t)
x4(t + 1) = x5(t) · dt + x4(t)
x5(t + 1)x6(t) · dt + x5(t)
x6(t + 1) = ((28gl − p)x4(t)+ (28gk − n)x5(t)
+ (28g− m)x6(t)− 7g(lx1(t)+ kx2(t)
+ x3(t))− g(x3(t)x7(t)+x1(t)x9(t)
+ 2x2(t)x8(t)+lx1(t)x7(t)+ k(x2(t)·
x7(t)+ x1(t)x8(t)))) · dt + x6(t)
x7(t + 1) = x8(t) · dt + x7(t)
x8(t + 1) = x9(t) · dt + x8(t)
x9(t + 1) = (g(x1(t)x6(t)+x3(t)x4(t)+ 2x2(t)x5(t)
+lx1(t)x4(t)+ k(x1(t)x5(t)+ x2(t)x4(t)))
− (3gl + p)x7(t)− (3gk + n)x8(t)
− (3g+ m)x9(t)) · dt + x9(t)

(11)

The initial value of system (11) is X (0) = [0, 0, 2, 0, 0, 1,
0, 0, 3]T . After a series of processing, the fractional-order
Chen chaotic system has been transformed into a system that
can be directly processed by FPGA.

B. SYSTEM GENERATOR MODEL BUILDING
To improve the utilization of FPGA hardware, the coordinate
translation of system variables is carried out without chang-
ing the dynamic characteristics of the system. According to
system (11), the fractional-order Chen chaotic system model
is constructed with the help of System Generator. To simplify
the program, the floating point arithmetic mode is used for
programming. The discrete formulas in (11) are built with
nine subsystems and connected according to the relationship
between variables. Finally the complete system model is
established. Then the state variables of the fractional-order
Chen chaotic system are output. The simulation results
of the model are shown in FIGURE 1 and FIGURE 2.
FIGURE 1 is the trajectories of the fractional-order Chen
chaotic system (11). FIGURE 2 is the x1 − x2 and x2 − x3
phase diagrams. The basic building blocks of the IP core
for fractional-order derivative based on system genera-
tor are applied to achieve the reconfigurability of the
fractional-order chaotic systems using the steps illustrated in
the flowchart in FIGURE 3. The experimental process of real-
izing fractional-order chaotic system and its synchronization
based on FPGA is mainly divided into three steps. Firstly,
according to the system formula, the SystemGenerator model
is established and designed by using Matlab/Simulink, and

FIGURE 2. State variables phase diagram.

the simulation test is carried out. Secondly, the built model
is transformed into a project file, and the integrated design
is completed on Vivado, then the bitstream file is generated.
Finally, the hardware experiment is completed on the FPGA
development board.

C. IMPLEMENTATION OF FRACTIONAL-ORDER CHEN
CHAOTIC SYSTEM ON FPGA
In engineering, the wider the bit width of the data captured
by the ILA, the greater the sampling depth. Themore accurate
the captured data trace, the closer it is to the actual value, but
the more hardware resources are required. It is particularly
important to select appropriate bit width and sampling depth.
In order to realize chaotic behavior of the fractional-order
Chen chaotic system on FPGA, three probes are set in the
project. Set the sampling depth of each probe to 8192 and
the sampling bit width to [0, 11]. The results of the imple-
mentation of the fractional-order Chen chaotic system on
the FPGA are shown in FIGURE 4. The three-dimensional
trajectory diagram of the fractional Chen chaotic system (11)
is shown in FIGURE 5. According to the relationship between
state variables, the output variables still have obvious chaotic
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FIGURE 3. Flowchart of the IP core for fractional-order derivative based
on system generator with a chaotic system application.

FIGURE 4. Implemented on FPGA.

behavior, which is the same as the chaotic attractor of the orig-
inal system before transformation. The experimental results
in FIGURE 5 show that the proposed method is suitable

FIGURE 5. Three dimensional trajectory diagram.

for the implementation of fractional-order chaotic system
on FPGA.

IV. IMPLEMENTATION OF FTS ON FPGA
The FPGA experimental environment is shown in FIGURE 6,
using XC7Z020− 2CLG400I chip. The drive FOTD chaotic
system is described as [26]

Dαx1 = −σ1x1(t)+ 0.1 tanh(x1(t − τ ))
+a(x2(t)− x1(t))
Dαx2 = −σ2x2(t)+ 0.1 tanh(x2(t − τ ))
+bx1(t)− dx1(t)x3(t)+ x4(t)
Dαx3 = −σ3x3(t)+ 0.1 tanh(x3(t − τ ))
+h(x1(t))2 − cx3(t)+ x4(t)
Dαx4 = 0.1 tanh(x4(t − τ ))− σ4x4(t)− rx2(t)

(12)

where 0 < α < 1 is the order of drive system; i = 1, 2, 3, 4,
σi represents the self-inhibition of drive system and σi > 0;
xi(t) represents the state variates of drive system; τ > 0 rep-
resents the time-delay term. The response system is described
as 

Dαy1 = −σ1y1(t)+ a1(y2(t)− y1(t))
+ y4(t)+ 0.1 tanh(y1(t − τ ))+ u1(t)
Dαy2 = −σ2y2(t)+ b1y1(t)− y2(t)− y1(t)·
y3(t)+ 0.1 tanh(y2(t − τ ))+ u2(t)
Dαy3 = −σ3y3(t)+ y1(t)y2(t)− c1y3(t)
+ 0.1 tanh(y3(t − τ ))+ u3(t)
Dαy4 = −σ4y4(t)− y2(t)y3(t)− r1y4(t)
+ 0.1 tanh(y4(t − τ ))+ u4(t)

(13)

where yi(t) represents the state variates of response system.
The FTS controller for the drive FOTD system (12) and the
response FOTD system (13) is designed as:

ui(t) = σiei(t)− hi(ei(t))− sign(ei(t))L

−Dα−1(
2k−1

N 1−qk · α1sign(ei(t)) · |ei(t)|
qk

+2k−1λ1sign(ei(t))) (14)
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FIGURE 6. FPGA experimental equipment.

where α1, λ1, q, k are positive constants and qk > 1,
L satisfies the Assumption 1 in [26]. The response FOTD
chaotic system (13) after adding the controller (14) is:

Dαy1 = a(x2(t)− x1(t))− Dα−1(
2k−1

N 1−qk α1·

sign(e1(t))|e1(t)|qk + 2k−1λ1sign(e1(t)))

− sign(e1(t))L + 0.1 tanh(y1(t − τ ))

Dαy2 = bx1(t)− dx1(t)x3(t)+ x4(t)− sign(e2(t))L

− Dα−1(
2k−1

N 1−qk α1sign(e2(t))|e2(t)|
qk

+ 2k−1λ1sign(e2(t)))+ 0.1 tanh(y2(t − τ ))

Dαy3 = h(x1(t))2 − cx3(t)+ x4(t)− Dα−1(
2k−1

N 1−qk ·

α1sign(e3(t))|e3(t)|qk + 2k−1λ1sign(e3(t)))

− sign(e3(t))L + 0.1 tanh(y3(t − τ ))

Dαy4 = −rx2(t)− Dα−1(
2k−1

N 1−qk α1sign(e4(t))·

|e4(t)|qk + 2k−1λ1sign(e4(t)))

−sign(e4(t))L + 0.1 tanh(y4(t − τ ))

(15)

The parameters of the controller are chosen as α = 0.9,
q = 0.9, k = 2.9, N = 4, L = 0.2, σi = 0.1(i = 1, 2, 3, 4),
λ1 = 0.003, α1 = 0.007. Using the same method mentioned
above, formula (15) can be converted into 9 formulas and
implemented with FPGA. Due to the fast operation speed
of FPGA and the short time required for system synchro-
nization, it is necessary to add a trigger signal to control
the initial condition of system operation. Setting the trigger
as external input, FPGA starts to enter the operation state
when trigger = 0. The initial condition of drive FOTD
system (12) is X (0) = [1.67, 3, 0.5,−0.54]T . The initial
condition of response system (14) with FTS controller (14)
is Y (0) = [5.51,−2,−2.5, 1.46]T and dt=0.0005. The FTS
errors of FOTD chaotic systems are shown in FIGURE 7 and

FIGURE 8. The trajectory of e1(t) is shown in FIGURE 7.
The specific value of e1(t) is shown in the form of analog
quantity and the specific change of each bit after expansion
is shown in the form of digital quantity. The trajectories of
e1, e2 and e3, from initial values to stabilization, are shown
in FFIGURE 8, where the errors exist in the form of ana-
log quantity and trigger[1 : 0] is the trigger signal. From
FIGURE 7 and FIGURE 8, in the process of system errors
tending to zero, the convergence speed is faster at the initial
stage and slows down at the later stage, then converges to near
zero within a certain period of time.

FIGURE 7. Data of e1.

FIGURE 8. Error variation trajectories.

By varying the initial conditions of the FOTD drive-
response systems to X (0) = [−0.4, 3, 5.3,−1]T , X (0) =
[−0.7,−0.8,−3.5,−1]T , Y (0) = [1.8, 3,−0.5,−2]T and
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Y (0) = [0.5, 5, 7,−5]T , multiple groups of experiments are
set up to obtain the FTS error trajectories under different
conditions. The results are shown in FIGURE 9. Under the
condition of three different initial values, the synchroniza-
tion error converges to zero with the increasing of time.
Due to the accuracy problem between the binary conversion,
it can be considered that the drive-response FOTD systems
have achieving synchronization in fixed time. According
to Definition 1, the drive-response FOTD chaotic systems
have reached fixed time stable. According to the estimation
formula (2) of the upper bound of the stabilization time
in Lemma 1, the upper bound of the settling time is esti-
mated to be T (x0) = 0.231, which is obviously larger than
the convergence time T = 0.18. In other words, the FTS
of the drive response FOTD systems on FPGA has been
achieved.

V. IMPLEMENTATION OF PTS ON FPGA
A. HARDWARE RESOURCE ANALYSIS
According to the drive FOTD system (12), the response
FOTD system (13) and Lemma 2, the PTS controller is
designed as:

ui(t) = −hi(ei(t))+ σiei(t)− sign(ei(t))L − Dα−1(
Cv
Tc
·

(α2sign(ei(t))|ei(t)|qk + λ2sign(ei(t)))) (16)

where α2, λ2, q , k are positive constants and qk > 1. The
response FOTD system with the PTS controller (16) is as
follows:

Dαy1 = a(x2(t)− x1(t))− Dα−1(
Cv
Tc
· (µsign(e1(t))·

|e1(t)|qk + ωsign(e1(t))))− sign(e1(t))L

+ 0.1 tanh(y1(t − τ ))

Dαy2 = bx1(t)− kx1(t)x3(t)+ x4(t)− Dα−1(
Cv
Tc
·

(µsign(e2(t))|e2(t)|qk

+ωsign(e2(t))))

− sign(e2(t))L + 0.1 tanh(y2(t − τ ))

Dαy3 = h(x1(t))2 − cx3(t)+ x4(t)− Dα−1(
Cv
Tc
·

(µsign(e3(t))|e3(t)|qk

+ωsign(e3(t))))

− sign(e3(t))L + 0.1 tanh(y3(t − τ ))

Dαy4 = −rx2(t)− Dα−1(
Cv
Tc

(µsign(e4(t)) · |e4(t)|qk

+ ωsign(e4(t))))− sign(e4(t))L

+ 0.1 tanh(y4(t − τ ))

(17)

where the controller parameters are chosen as q = 0.5,
k = 5.2, β2 = 12.9, λ2 = 11, L = 0.2, σi = 0.1

FIGURE 9. Synchronization error trajectories.

TABLE 1. Hardware resource allocation.

(i = 1, 2, 3, 4). In this case, according to [26],Cv = 0.0534 is
obtained. Compared with the FTS controller (14), the PTS
controller (16) adds a tuning parameter, which makes the
synchronization process faster and easier to adjust. At this
time, there is also more demand for hardware consumption.
Its consumption needs to be analyzed to ensure the effec-
tive implementation of PTS of two different FOTD chaotic
systems on FPGA. After comprehensive analysis, the total
on-chip power is 0.3W and the thermal margin is 4.7W from
the netlist analysis. At this point, the allocation of FPGA
hardware resources and power consumption are shown in
TABLE 1, FIGURE 10 and FIGURE 11. The location allo-
cation of hardware resources required in the development
board is shown in FIGURE 10. At the same time, the occu-
pied power and proportion of each part obtained from the
constraint, simulation and vector free analysis, are shown in
FIGURE 11. From FIGURE 10 and FIGURE 11, the hard-
ware resources in the FPGA development board are divided
into six regions according to the location. The resources
occupied include most regions of X1Y0, X1Y1, and X0Y0
and a small part of X0Y1. The hardware resources occupied
are about half of the total resources. In the total on-chip
power, the static power of the device is 0.109W, account-
ing for 36% of the total power; dynamic power is 0.191W,
accounting for 64% of the total power. The power occupied
by dynamic equipment includes 0.005W for clocks, 0.059W
for signals, 0.055W for logic operations, 0.001W for BRAM,
0.019W for digital signal processing (DSP), and 0.052W
for input/output ports (I/O). On the whole, the resources

VOLUME 10, 2022 133669



L. Lin et al.: FPGA Realization of Two Different Fractional-Order Time-Delay Chaotic System

FIGURE 10. Hardware resource allocation.

FIGURE 11. Power consumption and distribution.

required for the predefined time synchronization of two dif-
ferent FOTD chaotic systems are more, but the FPGA device
of XC7Z020-2CLG400I chip has more hardware resources,
which is enough to realize the experiments related to the
predefined time synchronization of fractional order chaotic
systems.

B. PREDEFINED TIME SYNCHRONIZATION
When the initial values of the drive FOTD chaotic sys-
tem are X (0) = [1.67, 3, 0.5,−0.54]T , X (0) = [−0.7,
−0.8,−3.5,−1]T and X (0) = [−0.4, 3, 5.3,−1]T , and
the initial values of the response FOTD chaotic sys-
tem are Y (0) = [5.51,−2,−2.5, 1.46]T , Y (0) =

[1.8, 3,−0.5,−2]T and Y (0) = [0.5, 5, 7,−5]T , keeping
other parameters unchanged and changing the value of the
tuning parameters Tc, we observe the synchronization process
of the drive-response FOTD systems and whether Tc can
control the upper bound of the system synchronization
time. The simulation results are shown in FIGURE 12 and
FIGURE 13. FIGURE 12 is the synchronization error trajec-
tories with Tc = 1.0. FIGURE 13 is the synchronization error

FIGURE 12. Predefined time synchronization error trajectories
with Tc = 1.

FIGURE 13. Predefined time synchronization error trajectories
with Tc = 1.5.

trajectories with Tc = 1.5. When the predefined time Tc = 1,
the convergence time of the system T = 0.4974 is less
than Tc. When the predefined time Tc = 1.5, the convergence
time of the system T = 0.7102 < 1.5. That is, under the con-
ditions of different initial values of the system and different
tuning parameters, FOTD chaotic systems (12) and (13) reach
a stable within predefined time. Combined with the experi-
mental results, the PTS process of FOTD chaotic system can
be realized on FPGA by the above method.

VI. CONCLUSION
Based on the FPGA hardware experimental platform, the
FTS/PTS of two different FOTD chaotic systems have been
studied in this article. The fractional-order Chen chaotic
system is transformed by the Bode-domain approximation
method and the forward Euler method, and its chaotic behav-
ior has been realized on FPGA. The system generator models
of the drive system is constructed. The proposed synchro-
nization method for two different FOTD chaotic systems
is verified by experiments with multiple sets of initial val-
ues. The experimental results show that the driving-response
systems errors under the FTS/PTS controllers converges
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rapidly in the initial stage and then slows down slightly in
the later stage, but it can still converge to zero within the
predefined time. In future research, we will make efforts in
the following aspects

1) More attention will be paid to the computational and
algorithmic aspects of the solution method of the frac-
tional differential equation.

2) The above solutions are applied to the synchronization
of two different fractional order systems, and the power
consumption, clock freq, throughput, Bit rate, and hard-
ware resource utilization of different synchronization
methods will be studied.

3) We will make full use of the advantages of fuzzy
control in solving model uncertainty and consider the
combination of predefined time stability and fractional-
order multiple-Model Type-3 Fuzzy control [33]. It is
hoped that it can be applied to real objects, such as
autonomous vehicles [34].
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