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Abstract

This Master’s Thesis discusses the different trade-offs a programmer needs to
consider when constructing image processing systems. First, an overview of the
different alternatives available is given followed by a focus on systems based on
general hardware. General, in this case, means mass-market with a low price-
performance-ratio. The software environment is focused on UNIX, sometimes
restricted to Linux, together with C, C++ and ANSI-standardized APIs.
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Chapter 1

Overview

As long as Moore’s Law continues to double the transistor density in computers
approximately every 18 months, more advanced operations can be performed
on larger data sets in shorter amounts of time. In the field of image processing
this means that more complex features of digital images can be extracted within
time limits small enough to be used in situations where the computing devices
have limitations in size, weight and power consumption.

But these speedups are often theoretical and in practise they do not come au-
tomatically. This means that developers, who want to make efficient use of new
computer systems, first have to spend a lot of time learning new development
tools and understanding these systems’ possibilities and limitations.

Because the image processing algorithms used are normally already known
and implemented in some high-level language, the implementation instead be-
comes a code conversion. As this often is a very time consuming and, for most
users, uninteresting process, it is important to develop tools that can automate
as many steps in this process as possible.

The purpose of this Thesis can followingly be divided into these main parts:

• Overview the hardware and software choices we have when implementing
image processing operations on systems with high performance demands
and restrictions mainly in power consumption and response time.

• When automatic code conversion is possible briefly discuss it and look at
the tools available.

• In more detail investigate the possiblities of using general desktop PC
hardware together with open software to design a real-time video process-
ing system.

The following description overviews the chapters of this Thesis:

Chapter 2 briefly describes the different paradigms of parallel computing.

Chapter 3 overviews different types of computer architectures.

Chapter 4 then applies these concepts which results in a guideline on how to
construct an image processing systems that automatically takes advantage
of locality and scalability. At the end of the chapter, the key steps of this
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guideline are then experimentally exemplified. The Sobel operation follows
through the guideline and gives the reader examples of how theoretical
concepts are applied.

Chapter 5 explains how I add a video source to the system, described in Chap-
ter 4, by plugging in a non-expensive PCI TV-card. Here I also try to
answer the question of how complicated image processing there is time for
on the video stream grabbed from the TV-card.

Chapter 6 discusses additional system restrictions associated with power con-
sumption and choice of Operating System (OS).

Chapter 7 finally summarizes all the previous chapters and draws related con-
clusions.

Performance of the algorithms are measured on the following test systems (TS):

Abbreviation CPU RAM
TS 1 AMD K6-2 300MHz 192 MB
TS 2 2 × Intel Pentium Xeon 300 MHz 2 GB
TS 3 Sun UltraSPARC-IIi 440-MHz 256 MB
TS 4 4 × Sun UltraSPARC-II 400MHz 4 GB



Chapter 2

Parallel Processing

Parallel Processing refers to the concept of reducing the execution time of a
calculation by dividing the problem into multiple parts. By making these parts
execute indepently and simultaneously, we can draw advantage of the different
multiprocessor architectures that are becoming more and more popular today.

Before designing or using such a system there are some things we have to
take into consideration and the following sections will try to categorize and
describe these. It is important to understand that, in practise, the hardware
and the software developer must work together to optimally utilize the ideas of
parallel processing.

2.1 Sequential, Parallel, Concurrent Execution

Most programs are today designed to execute in a sequential order, i.e. a pre-
vious part of the program has to complete its execution before the subsequent
part can begin its execution. This approach works fine on uni processors (UP)
systems (systems with one processor) but when it comes to making good use
of multi processor (MP) systems (systems with more than one processor) the
execution models become more complicated, and some parts of the program has
to be rewritten to enable parallelism in execution.

As good as every modern computer is using an operation system (OS) that
supports multitasking. These are examples of systems in which the programs in
the system execute concurrently. In this case this means that multiple processes
or multiple parts of a program (threads) share the processing in the computer
over time eventhough there may be only one processor installed at the time. This
is also called “timeslice-sharing” of processing. The sharing and scheduling of
these are, as said above, hidden in the OS and to the application programmer
the tasks “appear” to execute in parallel.

2.2 Task and Data Parallelism

There are basically two main approaches we can use when adding parallelism
to an algorithm.

The first one, referred to as task parallelism or functional decomposition
tries to exploit independencies between different parts of the program in order

6



2.3. ARCHITECTURE INDEPENDENT APIS 7

to reschedule these to execute in parallel. As an example, Figure 2.1 illustrates
two different functions F1 and F2 that operate in parallel on their arguments
in1, out1, in2 and out2.

in1
// GFED@ABCF1

// out1

in2
// GFED@ABCF2

// out2

Figure 2.1: Task Parallelism

The second one, referred to as data parallelism or domain decomposition
searches for a way to divide the data being processed into parts that can be
operated on independently of each other. As an example, Figure 2.2 illustrates
two instances of the same function F being applied in parallel on two separate
parts of the data sets in and out. D and C represent the domain decomposition
and composition stages respectively.
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Figure 2.2: Data Parallelism

2.3 Architecture Independent APIs

When it comes to the real implementation stage of parallel algorithms there
are several different tools or APIs to use, each suitable for different classes of
problems. In this section we will summarize some Application Programming
Interfaces, or APIs, that can be regarded as general and independent of the
computer architecture on which the compiled code is supposed to execute.

2.3.1 Parallel languages

The first and perhaps the most simple way to make use of MP-systems is to
use a programming language in which you can specify parallelism. Examples
of these are Compositional C++ (CC++), pC++, Fortran M (FM) and High
Performance Fortran (HPF). These languages give the programmer a high level
interface with which he can express his parallel thoughts. The disadvantage is
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limited platform support because they are bound to a special set of hardware
architectures.

CC++ 1 is a small set of extensions to C++ which as of today are targeted
for task parallelism. These extensions give the programmer control over
locality, concurrency, communication and mapping. In the future focus
will be on the High Performance C++ (HPC++) which is a joint project
between the CC++ group and the data parallel pC++ project. The goal
is to offer both data- and task parallelism.

FM 2 is a small set of extensions, that add support for tasks and channels
in Fortran (Formula translation). A special feature of FM is that it can
guarantee programs to be deterministic, which means that two executions
with the same input will give the same output.

HPF 3 extends Fortran 90 to provide access to high-performance architecture
features while maintaining portability across platforms.

2.3.2 Threads

A more general and portable but also lower-level way of expressing both task
and data parallelism in a computer program is to use threads. On UP-systems its
main purpose is to enable concurrent execution of different parts of a process.
On some MP-systems (systems with more than one processor) these threads
are automatically distributed over all processors. Threading is also useful in
client-server communication and in GUIs where several tasks need to respond
to requests simultaneously.

One can think of threads as “mini-processes” inside a process that, in con-
trast to the process which has sole possession of its resources, all share the same
resources, such as file descriptors and allocated memory. In practise, threads
are used by calling a set of threading-functions from a library. These functions
control the construction, communication, synchronization, and destruction of
the threads.

There exists several different threading APIs — all with their own interfaces.
When portability is of great concert, the standardized and widely used “POSIX
Threads API” (P1003.1c) should be used.

2.3.3 Message Sending Interfaces

When it comes to making use of clustered computers, i.e. computers connected
to each other through a high-speed network, another technique is used to explore
parallelism. Because of the high communication latencies and the relatively low
bandwidth of the systems one often wants to minimize the data sent between
each process. Therefore the programmer explicitly specifies the messages that
are sent between the different processing elements. The most commonly used
APIs for this purpose are MPI (Message Passing Interface) and PVM (Parallel
Virtual Machine).

1http://www.compbio.caltech.edu/ccpp/
2http://www.netlib.org/fortran-m/index.html
3http://www.crpc.rice.edu/HPFF/home.html
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If the programmer needs to go down to a lower level of the network com-
munication it is common to make use of a Socket API, e.g. BSD Sockets on
an UNIX environment, and Winsock on a Windows based machine. Here, the
programmer can specify exactly how the network communication should take
place and thus avoid all unnecessery overhead that might occur if we only need
a small set of functionality in our communication.

See Table 2.1 for a summary of the APIs mentioned above. The Center for
Research on Parallel Computation (CRPC)4, could also be of interest.

Parallelism
API Task Data
CC++ Yes No
pC++ No Yes
HPC++ Yes Yes
FM Yes Yes
HPF Yes Yes
Threads Yes Yes
MPI, PVM Yes Yes

Table 2.1: Parallel Processing APIs.

4http://www.crpc.rice.edu/CRPC/



Chapter 3

Computer Architectures

3.1 Flynn’s Taxonomy

The usual method for categorizing different kinds of computer architectures on
a higher and more theoretical level is to use Flynn’s Taxonomy. It describes the
parallelism in terms of a data stream and an instruction stream as follows.

SISD or Single Instruction Single Data (SISD), represents the conventional
way of looking at a computer as a serial processor—one single stream of
instructions processes one single stream of data.

SIMD or Single Instruction Multiple Data (SIMD), is the most commonly
explored parallelism in the microprocessors for todays desktop PCs. This
approach reduces both hardware and software complexity compared to
MIMD but is suitable only for special kinds of problems which contain
much regularity, such as, image processing, multimedia, signal processing
and certain numerical calculations.

As the first two of these are popular in today’s mass-market consumer
applications, it is therefore profitable to use SIMD-techniques in processors
of these systems. The well-known extension MMX, 3DNow! and AltiVec
are all examples of the special SIMD technique SWAR, which will be
further discussed in Section 3.8.

For industrial applications digital signal processors, or DSPs, are popular
architectures for analyzing digitized analog signals. These are also based
on the SIMD idea.

MISD or Multiple Instruction Single Data (MISD), does not really occur as
a real-world example of an architecture but is rather here in order to
complete the taxonomy. The idea of executing a series of instructions
on the same set of data is not totally alien though. One could say that
instruction pipelining, belongs to this category. This however occurs at
the sub-assembly level in the processor and is not something that the
programmer has to care about, not even the assembly programmer.

MIMD or Multiple Instruction Multiple Data (MIMD), is the most general
architecture of the above mentioned. In this we have the ability to explore

10



3.2. MEMORY HIERARCHIES 11

both task and data parallelism at the same time. In most OSs the task
parallelism is automatically used when executing different processes all
with their own private resources. But there is also the possibility of using
task parallelism inside of a process, using threads which we discussed in
Section 2.3. Examples of MIMD-machines are the MP-systems often used
in large LAN and web servers. Sometimes we impose a restriction on the
MIMD idea by making all processors run the same program, and we say
that such a system belongs to category of Single Program Multiple Data
(SPMD) systems. Opposite to SIMD, each processor can in this case take
a different execution path through the program. Programs parallelized
through MPI or PVM execute in this way.

Architectures of today do not necesessary fit distinctively into one of these
categories but instead more often makes use of some or all of them. Therefore the
purpose of the taxonomy is rather to provide developers with a set of theoretical
concepts with which they can express their thoughts and ideas.

3.2 Memory Hierarchies

Probably the most important and fundamental architectural principle around
which computer systems have been built and are being built is often called the
“90–10 Rule”. This rule states that on average

90 % of the operations are performed in 10 % of the code.

To take advantage of this assumption, we should try to organize the memory
as a hierarchy. On the highest level we have the smallest sized but also the
fastest memory and vice versa. At all levels except the lowest the data being
kept in the memory is actually only a mirror of the memory kept in the lowest.
When a program is repeatedly using a small part of the data at some level, it
first copies it to the highest suitable memory level before the processing of it
starts. Of course when the processor changes data that is not placed in lowest
level the original copy has to be updated. Therefore

A write operation is on average more time-consuming than a read operation.

A typical modern PC usually has a memory hierarchy that consists of at
least five levels. At the first level usually lies the interal registers accessible
without any delay at all. Then comes the L1 Cache, which is usually placed
right besides the logic gates on the microprocessor. Often the first half of it is
used for instructions and the second half for their data. The third level, normally
referred to as the L2 Cache, normally sits on top of the microprocessor and has
an access latency of a couple of clock cycles. In some CPUs, such as the Alpha
processors, a L3 Cache is also present. See Table 3.1 for details.

Next we have the primary memory. Here, accesses are limited by the external
bus speed. Today the most dominating bus type on PCs is the 32-bit PCI bus
(Peripheral Component Interface) running at 33 MHz, thus providing a peak-
bandwith of 4 · 33 = 132 Megabytes per second. The PCI bus is optimized
for burst-reads of data and its peak bandwidth is only achieved in applications
where a large degree of data parallelism, as in image processing, is present. In
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Memory Type Access Latency
Register 2ns
L1 on-chip cache 4ns
L2 on-chip cache 15ns
L3 off-chip cache 30ns
Main Memory 220ns

Table 3.1: Memory hierarchy in a 500MHz DEC 21164 Alpha.

cases of individual reads and writes of 32-bit integers that bandwidth is normally
decreased to around a fourth of its peak bandwidth.

The next level normally called secondary memory and is often a harddisk.
The last level would in most consumer applications not be regarded as a

memory but rather a communication level. But in the cases of networked work-
stations connected to a centralized file server or clustered computers with local
harddisks it indeed belongs to the memory hiearchy and is used as a such.

3.3 Data Locality

Memory hierarchies are present in all modern computer systems and the number
of levels and their relative differencies in bandwidth and access latency are
constantly increasing. As an example, the external bandwidth of the PCI-bus
has not changed at all during the last six years compared to the L1 cache today
operating at the internal CPU frequency which double approximately every 18
months.

Adapting our code so that it makes use of this property is therefore a long-
term and platform indepedent way of optimizing our algorithm. Such an imple-
mentation is said to use locality.

Traditionally, the definition of locality can be formulated like

For each memory reference, perform as many operations as possible.

This rule is, however, out of date, as it assumes only two memory levels—the
primary memory and the CPU registers. A more up to date definition would
instead be formulated like

For each new reference of an element at a specific memory level, reuse the
element in operations at higher memory levels as much as possible.

3.4 Instruction Locality

The same rules of locality also apply to the organization and execution of the
program code.

• When the code is compiled into CPU instructions, reuse of functions gives
good locality.

• The same goes for interpreted code, but here the interpreter can be pro-
vided with extra functionality that enables run-time restructuring of the
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code according to historical information about which parts of the code
that is most commonly used. A good example of this, is the constant
advances being made in the Java interpreters.

As good as all OSes provide shared libraries, that contain common functions
used by many application. If performance has the highest priority, it can be a
good idea to include these functions in the executable, which instead prioritizes
instruction locality and performance before memory usage.

3.5 Shared and Distributed Memory

There are basically two main branches of MIMD memory architectures; Shared
Memory Architectures and Distributed Memory Architectures.

Traditionally the difference lay in the organization of the memory. If all
processors shared a common memory we had a shared memory architecture
with a high interconnection bandwidth. If we, on the other hand, preferred
high local bandwidth we instead chose a distributed memory architecture.

As the number of stages in memory hierarchies are constantly increasing, the
separation into shared and distributed memory systems is no longer distinct.
For example, all MP-systems for the Pentium Processor and later have a shared
primary memory together with separate L1 and sometimes L2 caches. See Figure
3.1 for an illustration.

GFED@ABCP1
OO

��

GFED@ABCP2
OO

��
L11OO

��

L12OO

��
L21 hh

((RRRRRRRRRRRRRR L2266

vvllllllllllllll

L3 : Primary Memory

Figure 3.1: Memory hierarchy in an MP-system with two processors P1 and P2,
each having separate L1 and L2 caches together with a shared primary memory.

This design is another result of the “90–10 Rule” defined in Section 3.2.
Because the bottleneck in such MP-systems is the bandwidth of the primary
memory, locality in this case becomes crucial to performance. Briefly stated
this means that

The scalability in shared memory MP-systems increases with the locality.

3.6 Pipelining

Pipelining is the concept of dividing a complex operation into several consecutive
less complex operations that operates on a stream of data which contains a high



14 CHAPTER 3. COMPUTER ARCHITECTURES

degree of data parallelism. Just as the maximum throughput of oil in a pipeline
is directly related to its thinnest part, the maximum throughput of such a
computational pipeline is linearly dependent on the throughput of the slowest
stage in the pipeline.

Therefore, if we want to make efficient use of the hardware on which we are
to implement our algorithm, it is important to carefully examine which stages in
the pipeline that take the longest time to finish. Once we have this knowledge
we can focus our optimization efforts on these stages.

Pipelining is extensively used in the construction of arithmetic units of mi-
croprocessors but we can also, in conjuction with ideas of memory hierarchies
and cache memories, make use of it in the design of software, especially image
processing software. See Figure 3.2.

in // GFED@ABCS1
// GFED@ABCS2

// GFED@ABCS3
// out

Figure 3.2: Computational pipeline with 3 stages S1, S2 and S3.

3.7 Clustered Computing

Clustered Computing is a new trend in the construction of large parallel com-
puter systems. It uses ordinary home PCs together with a high speed network
to construct a parallel machine. For special kinds of applications its largest
advantage, in comparison with other architectures such as SMP systems, is its
very low price-performance ratio. This is because it uses standard PC worksta-
tions as its building blocks, often called Mass-Market Commercial Off The Shelf
(M2COTS) hardware.

Its largest disadvantange is its inter-communication bottleneck. Therefore
clustered computers are only competitive when doing computations that are not
dependent on low communication latencies and high bandwidths. Typical areas
that fit these restrictions are physical simulations and ray tracing.

It is very popular to use Linux as the OS on a clustered system since it is
free, has excellent networking hardware and protocol support, and has an open
source. The Beowulf Project is an example of this and it uses only Linux when
developing its cluster software platform BPROC.

Other popular APIs in the area are the traditional PVM and the newer
MPI upon which much cluster software has been built. If one is interested in
more optimized network communication, that is controlling individual network
packets, one has to go down one level to the socket layer, described in Section
2.3.

Another important factor is how the individual processing nodes are con-
nected to each other, the network topology of the cluster. BPROC has tried out
different topologies with the experience that the linear switched network, with
its general high performance, is to prefer. Otherwise, the programmers tend to
make the software too specialized.

From an image processing point of view these technologies could come in
handy in the future as the access latencies decreases and bandwidths keep on
growing. In fact, disregarding the access latencies and the non-deterministic
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transmission time of Ethernet, the peak bandwidth of Gigabit Ethernet is ac-
tually sufficient to make clusters useful in image processing.

3.8 SWAR

SWAR1, which stands for “SIMD Within A Register”, is a general name for the
concept of treating an m-bit (m is normally 64 or 128) processor register as a
set of n (typically 2, 4, 8, ...) smaller m/n-sized registers. Operations are then
performed in parallel on these m-bit wide sub-fields.

Some SWAR operations can be performed trivially using ordinary m-bit
integer operations, without concern for the fact that the operation is really
intended to operate independently in parallel on n sub-fields. Such a SWAR
operation is said to be polymorphic, since the function is unaffected by the
field types (sizes). Testing if any field is non-zero is polymorphic, as are all
bitwise logic operations. Most other operations are not polymorphic though,
and special hardware is often constructed when high performance of operations
with sub-field precision is wanted.

Many high-end microprocessors have, within the recent 5 years, added spe-
cialized machine instructions that increase the performance of SIMD-operations.
The most well-known example of this is the MultiMedia eXtension set (MMX)
which first appered in the Intel Pentium MMX processor. This instruction set is
now a standard component in all of Intel’s 32-bit architectures (IA-32) compat-
ible with the Pentium processor. Other vendors, specifically Cyrix and AMD,
have also chosen to implement MMX in their microprocessors, thus providing
total compatibility with the Pentium MMX processor, an important issue in the
consumer mass-market for Windows compatible CPUs.

3.8.1 SWARC and Scc

Table 3.2 lists other architectures with SWAR extensions in their instruction
sets. Aside from the three vendors Intel, AMD and Cyrix who have agreed
on MMX, all of these instruction set extensions are roughly comparable, but
mutually incompatible.

Architecture Extension
Intel Pentium MMX MMX
Intel Pentium III KNI/SSE
AMD K6-2 3DNow!
AMD Athlon 3DNow! 2
Sun SPARC V9 VIS
Motorola PowerPC G4 AltiVec
Digital Alpha MAX
HP PA-RISC MAX
MIPS MDMX

Table 3.2: Architectures with SWAR extensions.

1Named “Sub-Word Parallelism” (SWP) in signal processing.
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If we want to take advantage of these instructions sets this incompatibil-
ity makes it virtually impossible to write platform independent code by hand.
And adapting a specific algorithm to a specific platform by hand is very time-
consuming. These leads to us to the question:

Can we automate this process?

I have only found one project, “The SWAR Homepage at Purdue Univer-
sity”2, which addresses this problem. They are developing a compiler (Scc)
that inputs code in the form of the platform independent SWAR-extended C
language “SWARC” and outputs code containing C language together with plat-
form dependent macros and inline assembly. The output together with some
include files3 is, in turn, compiled to machine code using a C compiler and an
assembler.

The project is aiming at supporting all of the platforms in Table 3.2 effi-
ciently. All of these instruction sets are however mutually incompatible and
some or many of the operations are not supported on some or any of the data
types. Much of the effort is thus focused on the code conversion problem: how
one can implement these missing operations using existing SWAR instructions
or even conventional 32-bit integer functions. An efficient construction of such
a general SWAR-compiler is therefore a very tricky task.

Scc can currently output SWAR-optimized code using either MMX, 3DNow!,
generic IA-32 code or a combination of these. In the case of IA-32 code the
compiler tries to use ordinary 32-bit integer functions when operating on sets of
smaller sized integers. The compiler also supports parallel operations on inte-
gers with arbitrary bit precision (smaller than integer precision, though). The
precision syntax is similar to C’s bitfield syntax. As an example, the following
piece of SWARC code

void add_8xS16(int:16 [8] z, int:16 [8] x, int:16 [8] y)
{

z = x + y;
}

specifies a function with three arguments. These are vectors of signed 16-bit
integers each of length 8. We see that vector operations are easily expressed
using the normal C operators such as +, -, *, / etc. For further details, see
SWARC’s grammar which can be found in [2].

I tested the performance of the code generated by Scc compared to ordinary
scalar C code. Three test operations, namely addition zi = xi + yi, absolute
value xi = |yi| and l1-norm zi = |xi| + |yi| were applied to 16 elements long
vectors of different sized signed integers. In order to make the execution times
measurable each operation were run 220 times. The benchmarks can be seen in
Table 3.3.

It is apparent that Scc generates fast code for simple operations that are
easily expressible with target instructions, in this case MMX. But when it comes
to implementing functions that are not e.g. 16-bit absolute value, the code gen-
erated is actually slower than the scalar C code. Consequently, Scc is currently
only useful when optimizing simple vector operations for the Intel platform.

2http://shay.ecn.purdue.edu/~swar/
3Currently swartypes.h plus either Scc 3dnow.h, Scc athlon.h, Scc max.h, Scc sse.h,

Scc altivec.h, Scc ia32.h, Scc mmx.h or Scc xmmx.h
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Operation Precision C MMX
Addition 8-bit 108ms 45ms
Addition 16-bit 147ms 56ms
Addition 32-bit 91ms 98ms

Absolute value 16-bit 269ms 315ms
l1-norm 16-bit 521ms 727ms

Table 3.3: Performance difference between scalar C code and Scc-generated
MMX-optimized code run on TS 1.

Scc’s source code is available online as public domain in a testable alpha
state. It is however not necessary to download Scc in order to use it because
SWARC’s website contains a test page4 in which the visitor, through a HTML-
form, can use the compiler. The output together with the appropriate include
files can then be compiled using gcc. For the more interested reader, the webpage
also links indepth articles that discuss the design of a the SWARC language [2]
and its compiler Scc [3].

3.8.2 SWAR in gcc

Not all operations are hard to hand-code using SWAR-operations, especially
not if the GNU C Compiler gcc together with the GNU Assembler as are
available on our target system. Here we can express assembler instructions with
arguments specified as C expressions. This has several advantages:

• All the code belonging to an algorithm is placed together in the source
code in an intuitive manner. No separate assembler files are needed.

• The programmer can concentrate on the relevant matters—which SWAR-
instructions that should be used, instead of bothering about how to set
up the local function stack, push and pop registers, and other low-level
assembler matters. This makes the overhead of programming in assembler
minimal.

As an example, consider the two-dimensional affine transform

x = A · x + b

where

x =
(

x1

x2

)
, A =

(
a11 a12

a21 a22

)
, b =

(
b1

b2

)

This calculation can be implemented with 32-bits floating precision using 3DNow!
instructions as follows

void f32_xAxb(f32_t *x, f32_t *A, f32_t *b)
{

asm("movq (%0), %%mm0 \n\t" /* x[0,1] => mm0 */
"movq (%1), %%mm1 \n\t" /* A[0,1] => mm1 */

4http://shay.ecn.purdue.edu/~swar/SccTest.html
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"movq 8(%1), %%mm2 \n\t" /* A[2,3] => mm2 */
"movq (%2), %%mm3 \n\t" /* b[0,1] => mm3 */

"pfmul %%mm0, %%mm1 \n\t"
"pfacc %%mm1, %%mm1 \n\t" /* first dot => mm1 */
"pfmul %%mm0, %%mm2 \n\t"
"pfacc %%mm2, %%mm2 \n\t" /* second dot => mm2 */

"punpckldq %%mm2, %%mm1 \n\t" /* A*x => mm1 */
"pfadd %%mm3, %%mm1 \n\t" /* A*x+b => mm1 */
"movq %%mm1, (%0) \n\t" /* mm1 => x */

"femms \n\t" /* cleaup mmx state */
: /* out args to C */
: "r"(x), "r"(A), "r"(b) ); /* in args from C */

}

I compared this algorithm at the highest level of locality with a scalar version
written in C. On TS 1 this gave a speedup factor of approx. 4.6.

For more information see the info pages on gcc. Currently the GNU Assem-
bler supports the SIMD-instruction sets MMX, 3DNow! and 3DNow! 2.

3.8.3 Trend

The current trend of PC processors is to add more SWAR-versions of the tra-
ditional scalar machine instructions addition, subtraction, multiplication and
division. This means that gaps in the SWAR instructions sets are filled in
which should make it easier to construct compilers that output efficient code.
This is because less special cases, involving code conversion, need to be handled.

As an example, both the new PowerPC G4 and the next 64-bit Intel archi-
tecture (IA-645) will contain the very general permutation operation6. This will
significantly speed up data conversion and other structure operations often used
in signal and image processing and its implementation will be simple and easy
to automate.

This trend of packing more instructions into processors is expected to con-
tinue. The main reason for this is that the transistor packing density in CPUs
grows faster than their clock frequency. Assuming large data streams and par-
allel operations, a duplication of the instruction decoders theoretically doubles
the performance of these SIMD-operations.

Viewed from a large perspective, this SWAR-trend actually means that RISC
processors and DSPs are converging towards a single CPU. The most apparent
example of this is the PowerPC G4.

3.9 Reconfigurable Computing

A totally different kind of computing category, which in the long run probably
will become the optimal solution to the code conversion problem, is reconfig-

5Currently code named “Itanium”
6On the G4, this operation is capable of arbitrarily selecting data with the granularity of

one byte from two 16-byte source registers into a single 16-byte destination register.
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urable computing. These hardware technologies can, analogously with the learn-
ing process of the human brain, be adapted according to what operations that
are to be performed. Because these reconfigurable hardwares are so general, the
code conversion process only has to be solved once for each programming lan-
guage. The software programmer, on the other hand, has to take more factors,
such as minimal chip area and bit-level operations, into consideration during
the design and optimization stages. This is outweighed by the fact that the
code is very generic and long-lasting.

The basic technology consists of a silicon chip with a set of logical units
that can be reprogrammed (reconfigured) each time a new set of functions is
needed in the application, something that is called a Field-Programmable Device
(FPD). The three main catogories of FPDs are delineated:

• Simple PLDs (SPLDs)

• Complex PLDs (CPLDs) and

• Field-Programmable Gate Arrays (FPGAs).

Of these, the FPGA has the highest capacity (measured in number of 2-
input NAND-gates) and is therefore the most commonly used when mapping
more complex applications onto these kinds of logic. Under the right circum-
stances these circuits have a speed performance of two orders of magnitudes
relative to that of CPUs [10]. They do not offer the same performance as Appli-
cation Specific Integrated Circuits (ASICs) which, on the other hand, lack the
possibility to be reprogrammed.

3.9.1 Reconfigurable Applications

Image processing involves the analysis of very large amounts of data, with a
high degree of parallelization possibilities in the algorithm and with a relatively
low number of bits required per data element. Most arithmetic units on CPUs
today are built for processing data with a precision of 32 or 64 bits. Because
16 bits precision often is enough when performing image processing, a lot of
unneccessary processing is done on bits never used when using these CPUs.

When using FPGAs, on the other hand, both these two factors can be taken
into consideration and utilized very effectively. For example, arithmetic opera-
tions can be specified on arbitrarily sized integers and several processing units
of the same type can be configured to make use of the data parallelism.

One big disadvantage with this idea is that it means a lot of work for the
programmer who has to redesign the algorithms for the operations to suit these
further restrictions, especially the data precision issue. Therefore a high level
programming environment which supports modular programming and reuse of
code become important issues. Furthermore the FPGA-field is a relatively new
and unexploited area in comparison to CPUs and their code development tools
there are few libraries available to use. For further information see [10].

Programmable logic has also been successfully used in the development
stages of new microelectronics and in some mixed computer architectures that
make use of its unique benefits together with traditional microprocessors and
random access memories. Most of the code on such a system is run on the
traditional hardware except for the most time consuming parts that are small
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enough to fit onto the reconfigurable logic part, in this way using the best of
both worlds. Also in this case we use the concept of locality to optimally fit
hardware and software together. In these cases, the programmable circuits be-
ing used are often called FPGA-coprocessors. An example of such a system is
the MATCH project, which will be covered next.

3.9.2 Mixed Architectures

MATCH

The MATCH (“Matlab compiler for heterogeneous computing systems”) project
is addressing the code conversion problem by trying to build a development envi-
ronment that can overcome the barriers between low-level languages, especially
C and VHDL (a hardware description language often used to describe FPGA de-
signs), and the widely used high-level language Matlab, suitable for the testing
of numerical algorithms. As the word “heterogeneous” in the name implies, the
target architectures consists of several different computing technologies, specif-
ically a general-purpose CPU, a DSP and a FPGA board. The different parts
are all good at different things and it is not apparent how the processing should
be divided between the parts. The solution to this problem can be summarized
in the following steps:

1. Parse the Matlab code into a control and data flow graph (CDFG).

2. Partitioning this graph into sub-graphs that can be invidiually mapped
to different computer architectures in the target system. This step also
involves the administration of buffer layouts and communication.

3. Finally generate the code for the different components and, in turn, use
their respective compilers to produce the final object code that they un-
derstand.

The following list shows the project’s eight main tasks in more detail together
with their predicted efforts (in parenthesis).

1. Development of a hardware testbed (10%).

2. Implementation of Matlab to C and VHDL compiler. (30%)

3. Automatic parallelism and mapping on heterogeneous resources while op-
timizing performance under resource constraints or vice versa. (15%)

4. Development of Matlab compiler directives that specify type, shape, pre-
cision, data distribution and alignment, task mapping, resource and time
constraints. (10%)

5. Evaluation of adaptive applications. (10%)

6. Development of basic primitives such as FFT, FIR/IIR filtering, matrix
addition and multiplication operations. (15%)

7. Development of interactive tools for function composition and logic syn-
thesis. (5%)
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8. Development of faster algorithms for compilation, such as parallel or dis-
tributed algorithms for logic synthesis. (5%)

The MATCH project was initiated on Jun. 30, 1998 and is sponsored by NASA
in order to be used in their upcoming space shuttles for earth observing systems.
According to its planned milestones the project should, at the time of this
writing, be finished and a demonstration is planned at the end of the first
quarter 2001.



Chapter 4

Implementation Aspects

In this chapter we will discuss the different aspects we have to take into ac-
count when we turn from the ideal theoretical description of an algorithm to
the description that is optimal in an environment with a specific programming
language and computer architecture.

The focus is on general computer architectures, such as PC-systems, together
with C or C++ as the software environment. On the MP-systems POSIX
Threads are used to parallelize image processing operations.

4.1 Programming Languages

4.1.1 Matlab

Matlab is, at an early stage in image processing research, a very handy lan-
guage that enables quick implementation and testing of ideas. The machine
precision of 64-bit floating point number is enough to cover most of the de-
mands in our field. It is also quite fast if we can express our algorithms as
matrix operations. But as Matlab is an interpretive language, more complex
operations involving lot of nested loops tend to run very slow. Another problem
with Matlab is its unpredictability in execution time because of its garbage
collector. This also means that we have no explicit control of matrix buffers
which in most cases is crucial for performance. The ability of Matlab to ex-
press matrix operations in a high level notation is very convenient and it can
also automatically generate C code or assembler code for different kinds of em-
beddable processors especially DSPs. But the test platform itself is best suitable
for research, and not for running code in embedded systems.

4.1.2 C and C++

My main approach is to implement image processing algorithms in different
ways and then investigate the differences in performance and memory usage
between these implementations. My target architecture are desktop computers
because of their availability. Therefore C is a natural choice for me because of
its great portability, performance possibilities to investigate low-level aspects of
operations.

22
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For more complex projects, higher level languages such as C++ or Java
would be to prefer. As these are based on C, porting the code should not be a
big effort. If needed, it is also possible to call functions in C-coded object files
from either C++ or Java.

Because of its free and open development environment and because of my
earlier experince with Linux, I chose to develop all the code on a PC Linux
system using the C and the C++ compiler in the GNU Compiler Collection,
also known as GCC1 This compiler is well-known for its high performance and
large target support2. All code was compiled with the switch -O6, which certifies
maximum speed optimization in current and upcoming versions of GCC.

4.2 Matrix Storage Techniques

4.2.1 Matrix Elements

Computers are designed to efficiently operate on rectangular regions and most
images are digitized using a regular sampling grid. Thus, the storage techniques
I will discuss are all based on the assumption that the elements together form
a rectangular region of data. A row and a column is regarded as a special case
of such a rectangle.

To accompany the textual explanations I have added a graphical explanation
for each technique that is discussed. These can be viewed in the Figures 4.1,
4.2, 4.3 and 4.4. In these a curly arrow shows a pointer dereference and its
direction. The straight arrows, on the other hand, indicate in what order the
matrix elements, drawn as boxes, are stored in memory. The actual matrix
position of such an element is expressed using double indexing (x, y), starting
at (1, 1).

Dense

The simplest and most straightforward way of storing a matrix in memory is to
allocate one whole continuos memory block containing all the elements of the
matrix. Such a matrix is said to be dense. A densly stored matrix is illustrated
in Figure 4.1. In image processing the elements are normally stored like we
read a text—row-major, left-to-right, starting with the first row. This is also
called lexicographic order. In the following we assume that all dense matrices
are stored in this order.

Row-Indexed Dense

When we access a matrix element with index (x, y) in a densly stored matrix,
having the width w and height h, we perform the calculation i = x + y · w to

1GCC also contains front-ends for, Objective C, Chill, Fortran, and Java (GCJ) giving us
great possibilities to mix different languages in the same project. Note that GCJ compiles
Java source code to machine code, and is not a Java virtual machine.. For more information
see http://gcc.gnu.org/

2Currently GCC supports alpha-dec-linux, alpha-dec-osf, DOS, hppa-hp-hpux, hppa-hp-
hpux9, hppa-hp-hpux10, hppa-hp-hpux11, i386-linux, i386-sco3.2v5, i386-solaris, i386-udk,
i386-ibm-aix, m68k-nextstep, m68k-sun-sunos4.1.1, mips-sgi-irix, mips-sgi-irix6, powerpc-
linux-gnu, powerpc-solaris, sparc-sun-solaris, sparc-sun-solaris2.7, sparc-sun-sunos, GCC with
Windows or OS/2.
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M ///o/o/o (1, 1) // (1, 2)

{{xxxxxxxx

(2, 1) // (2, 2)

Figure 4.1: Dense storage of a 2 × 2-matrix.

get the linear index. By using this index together with the start address of the
matrix we can then reach our element.

Sometimes the multiplication y · w can be costly and in these situations we
allocate an additional vector containing the memory addresses to the starts of
the rows in the matrix. This adds an extra pointer dereference for each new row
that is to be read but on the other hand eliminates an integer multiplication. I
will call these matrices row-indexed dense matrices (RID-matrices). An example
of such a matrix is illustrated in Figure 4.2.

M ///o/o/o r1

��

///o/o/o (1, 1) // (1, 2)

{{xxxxxxxx

r2 ///o/o/o (2, 1) // (2, 2)

Figure 4.2: Dense storage of a 2 × 2 using row-indexes.

Tiled Dense

Some applications, such as geographical databases and image manipulation pro-
grams, operate on very large amounts of two-dimensional data. Here locality
is more likely to occur in square-like rectangles of the pictures rather than in
individual lines. Then tiled dense storage is used, which can be though of as a
generalization of the normal dense storage. Scan-lines are simply tiles with a
height of one pixel. See Figure 4.3.

In performance demanding applications, however, this technique is not use-
ful because it complicates the algorithms and decreases their performance, es-
pecially when performing neighbourhood operations on the boundary of a tile.

Sparse

Sometimes only a smaller fraction of the elements stored in the matrix are
non-zero. To reduce the memory consumption, we then store the data as a
sparse matrix. Such as matrix contains an array of data-triplets, where each
triplet contains the (x, y) indices together with the value of the matrix at the
corresponding position. Figure 4.4 illustrates this.

4.2.2 Element Components

An element in a matrix is in some cases a structure itself. A complex variable
has a real and an imaginary part and elements in color pictures normally consists
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M ///o/o/o (1, 1) // (1, 2)

{{xxxxxxxx
(1, 3) // (1, 4)

{{xxxxxxxx

(2, 1) // (2, 2)

;;xxxxxxxx
(2, 3) // (2, 4)

ssggggggggggggggggggggggggggg

(3, 1) // (3, 2)

{{xxxxxxxx
(3, 3) // (3, 4)

{{xxxxxxxx

(4, 1) // (4, 2)

;;xxxxxxxx
(4, 3) // (4, 4)

Figure 4.3: Tiled dense storage of a 4 × 4-matrix with a tile size of 2 × 2.

M ///o/o/o 1 // 1 // (1, 1)

wwoooooooooooooo

2 // 1 // (1, 2)

wwoooooooooooooo

1 // 2 // (2, 1)

wwoooooooooooooo

2 // 2 // (2, 2)

M=

(
0 17
0 0

)
−−−−−−−−−→ M ///o/o/o 2 // 1 // 17

Figure 4.4: Sparse storage of a 2x2-matrix with one non-zero element.
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of individual color components. The optimal storage structure of such a matrix
is not obvious.

• The most intuitive way would be to store the elements interleaved so that
their components lie next to each other. A true color picture P , where
each pixel pi consists of a red (ri), a green (gi) and a blue (bi) component,
would then be stored like

P ///o/o/o r0 // g0 // b0
// r1 // g1 // b1

// .

As an example, this suits the way monitors display the contents of the
video memory.

• In other cases the reverse can be more comfortable, i.e. storing the element
components separately in a planar order. Our picture would then be
stored like

P ///o/o/o r0 // r1 // g0 // g1 // b1
// b1

//

instead. If we want to process each component independently of the other
this representation is more handy. Assume, for example, that we have a
function fgrey operating on a grey scale picture. Then we can simply reuse
fgrey on the color components of a true color picture if they are represented
with the same data type as the grey values. The same principle also applies
to complex valued numbers.

If the access times of an individual element’s components in these two al-
ternatives are similar the latter is to prefer because of its general potential to
provide reuse of functions.

4.2.3 Matrix Storage in C

During this work, I have designed a C matrix library with functions operating
on a matrix structure defined as

typedef struct {
uint w, h; /* width and height */
uint type;
union {

u8_t *u8;
s8_t *s8;
...

} data; /* dense */
union {

u8_t **u8;
s8_t **s8;
...

} rows; /* row indexed dense */
} M_t;
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As seen, instances of the same structure type can contain different data types
and all functions, except allocators such as M create(), checks for this auto-
matically using switch. To clarify the actual precision of the C types, I use the
alternative names

1. int and uint are used when variables, such as loop counters, should adapt
to the default signed and unsigned integer precision of the target CPU.

2. u8 t, s8 t, u16 t, s16 t, u32 t, s32 t, u64 t and s64 t represent un-
signed (u) and signed integers (s), with a bit-precision indicated by the
suffix. These are used when it is important that a type has a specific
precision.

3. f32 t and f64 t represent 32-bit and 64-bit floating point numbers, re-
spectively.

The structure M t is designed to enable operations on both dense matrices and
RID-matrices.

• In the dense case the i:th (indexing starts at zero in C) element with type
u8 t of a matrix m is accessed by writing m->data.u8[i]. These dense
matrices are assumed to be stored linearly in memory, in row-wise order
starting with the first top row.

• By adding an additional data member rows to M t, we can also implement
operations on RID-matrices.

The type member in M t together with a switch(type) statement in the func-
tions give us automatic type checking with a low performance cost. To increase
readability I will, instead of using pseudo code, sometimes strip away details
unimportant for the understanding of the algorithm and, when needed, replace
it with a descriptive comment in plain english.

4.2.4 Regions Of Interest in C

When performing image processing, it is often desirable to be able to specify
sub-regions on our images and let our operations work on these. Such a region is
often referred to as a Region Of Interest or ROI for short. I will be representing
such ROIs using sub-rectangles which are specified by four integers, where the
first two specify the upper left coordinates and the last two the dimensions of
the ROI. In C this can be done according to

typedef struct
{

int x, y, w, h;
} roi_t;

4.2.5 Access Techniques in C

In C we have the choice of storing and accessing a matrix in different ways.
Different choices result in different implementations and performance within an
architecture and between architectures. These differences will be illustrated by
the implementation of a simple function that sets its elements to the value of the



28 CHAPTER 4. IMPLEMENTATION ASPECTS

innerloop variable. The following local stack variables are assumed to already
be defined:

int i, x, y;
const int w = m->w, h = m->h;

Dense When no ROIs are needed, the most straighforward way is to use a
dense storage, which gives us the following solutions:

for (i = 0; i < w * h; i++) /* 1a */
m->data.f32[i] = i;

for (y = 0; y < h; y++) /* 1b */
for (x = 0; x < w; x++)

m->data.f32[x + y * w] = x;

for (y = 0; y < h; y++) /* 1c */
for (i = y * w; i < (y + 1) * w; i++)

m->data.f32[i] = i;

for (y = 0; y < h; y++) /* 1d */
for (x = 0; x < w; x++)

m->data.f32[x + y * m->w] = x;

Dense with ROI When, on the other hand, ROIs are needed we include the
ROI structure defined in Subsection 4.2.4 in the matrix structure M t and
get:

for (y = m->roi.y; y < m->roi.h; y++)
for (x = m->roi.x; x < m->roi.w; x++) /* 2a */

m->data.f32[x + y * w] = x;

RID If we use row indexes in our matrix structure we replace the multiplication
with an extra memory dereference and get

for (y = 0; y < h; y++) /* 3a */
for (x = 0; x < w; x++)

m->rows.f32[y][x] = x;

RID with ROI When RID-matrices are used, ROIs are automatically imple-
mented because moving the ROI simply involves changing the row indexes.
However, if the ROIs are moved around a lot, expressing ROIs with the
four integers can yield higher performance:

for (y = m->roi.y; y < m->roi.h; y++) /* 4a */
for (x = m->roi.x; x < m->roi.w; x++)

m->rows.f32[y][x] = x;

These implementations were then benchmarked and listed in the Tables 4.1 and
4.2. Note that the optimal matrix storage technique on a specific hardware



4.2. MATRIX STORAGE TECHNIQUES 29

Code TS 1 TS 2 TS 3 TS 4
1a 25 24 21 15
1b 33 49 63 48
1c 28 50 197 162
1d 57 63 178 154
2a 26 37 45 33
3a 27 50 35 27
4a 30 58 51 37

Table 4.1: Execution times in µs of different accessing techniques when matrix
size is 64 × 32.

Code TS 1 TS 2 TS 3 TS 4
1a 12 8 7 2
1b 12 8 8 5
1c 12 8 25 20
1d 13 8 24 20
2a 12 8 7 4
3a 12 8 7 3
4a 12 8 8 5

Table 4.2: Execution times in ms of different accessing techniques when matrix
size is 512 × 512.

may depend on what operations we perform. For example, the addressing tech-
nique in 1b, involving integer multiplication may be optimal when we perform
floating point operations on the matrix elements. In other cases, involving in-
teger arithmetic on elements, other storage techniques, such as 3a, may instead
be optimal.

The first choice of storage size makes the entire matrix fit in the L1 cache on
all test systems which leads to greater differences between the implementations,
than in the other case. Thus, the storage technique becomes more important if
it makes use of locality in our algorithms.

Another thing to notice is the dramatical performance drop in 1d compared
to 1b. The reason for this is not clear, but my guess is that the optimization
rules in GCC somehow do not allow the expression m->w to be stored in a
temporary register. The somewhat complicated syntax for accessing elements
motivates the use of C macros, that in the RID-case looks like

#define f32(m, x, y) (m->rows.f32[y][x])

and could be used without any difference in performance.

#define f32(m, x, y) (m->data.f32[x + y * m->w])

on the other, results in really bad performance. If we write our code explicitly in
C this means that all our storage techniques can be efficiently implememented
in C, but not always together with a comfortable and general syntax. Thus, a
general change of the underlying storage technique cannot be done without a
tedious and uninteresting recoding of most functions.
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One solution to this problem would be to construct a code converter, but
writing such a converter is out of range of this Thesis. Instead, the next Section
investigates if C++ can provide hiding of the storage and accessing technique
together with a higher performance.

4.2.6 C++ Implementation

I constructed a class TestMatrix which includes a pointer to its data and to its
row indexes together together with element accessing member functions3, using
Dense and RID accessing:

class TestMatrix
{
public:

TestMatrix (int w = 1, int h=1) :
width (w), height (h), rx (0), ry(0), rw (w), rh (h) {
data = new f32_t [width * height];
rows = new f32_t* [height];
for (int r = 0; r < height; r++)

rows [r] = & data [r * width];
};

~TestMatrix() { delete [] data; delete [] rows; }

f32_t & f32_dense (int i) { return data [i]; };

f32_t & f32_dense (int x, int y) { return data [x + y * width]; };

f32_t & f32_rid (int x, int y) { return rows [y][x]; };

protected:

private:

int width, height;
int rx, ry, rw, rh; // ROI
f32_t * data;
f32_t ** rows;

};

All the functions shown in Subsection 4.2.3, except 1d were then implemented
as member functions of TestMatrix, benchmarked and listed in the Tables 4.3
and 4.4.

The RID-storage performs best on all platforms, but when comparing with
the C versions in Subsection 4.2.5, C++ produces slower code in all cases but
the last two, where performance is comparable. Thus, in this case C++ gives
only a slightly more intuitive syntax with type checking when accessing matrix
elements.

3To avoid an unneccessary loss in performance these functions should be declared with the
attribute inline.
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Code TS 1 TS 2 TS 3 TS 4
1a 138 21 89 67
1b 92 20 191 161
1c 79 11 250 188
2a 133 11 200 150
3a 41 12 50 37
4a 41 20 50 37

Table 4.3: Execution times in µs of different accessing techniques when matrix
size is 64 × 32.

Code TS 1 TS 2 TS 3 TS 4
1a 21 6 13 9
1b 16 5 26 20
1c 15 5 34 26
2a 20 5 27 20
3a 11 5 8 5
4a 11 5 8 5

Table 4.4: Execution times in ms of different accessing techniques when matrix
size is 512 × 512.

4.3 FIR-filtering

Because FIR-filtering is such a common operation in image processing we here
discuss its implementation in more detail. The following variables are present
in an implementation using C as well as most other compilable languages.

The loop order affects the total number of loop enterings and the locality of
the convolution.

Loop unrolling means reducing the number of times a loop is executed with n,
together with an n duplication of the loop contents. This gives speedups
on most CPUs because it reduces the execution branches.

With the first two of these descriptions in mind, I wrote five different C
implementations of a two-dimensional filtering with 3 × 3 filter kernel. These
functions were all called in the same way:

int f(M_t* out, const M_t* in, const M_t* filter)

The dimension of the out argument is w× h and the filter dimension is fw× fh.

f1 Making the kernel loops the outermost loops minimizes the number of loop
enterings but, on the other hand, makes bad use data locality:

M_zeros(out);
for (j = 0; j < fh j++)

for (i = 0; i < fw i++)
for (y = 0; y < h; y++)
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for (x = 0; x < w; x++)
f32(out,x,y) +=

f32(in,x + i,y + j) * f32(filter,i,j);

f2 Here we instead make the kernel loops the innermost loops.

for (y = 0; y < h; y++)
for (x = 0; x < w; x++)
{

f32(out,x,y) = 0;
for (j = 0; j < fh; j++)

for (i = 0; i < fw; i++)
f32(out,x,y) +=

f32(in,x + i,y + j) * f32(filter,i,j);
}

f3 Next we increase locality further, by making the accumulations in a local
variable sum, thus minimizing the number of times we write to the out
matrix.

for (y = 0; y < h; y++)
for (x = 0; x < w; x++)
{

sum = 0;
for (j = 0; j < fh; j++)

for (i = 0; i < fw; i++)
sum +=

f32(in,x + i,y + j) * f32(filter,i,j);
f32(out,x,y) = sum;

}

f4 If the kernel is small and of a specific size we can remove the kernel loop
and inline all the operations explicitly in the code.

for (y=0; y<h; y++)
for (x=0; x<w; x++)

f32(out,x,y) = (f32(in,x+0,y+0) * f32(filter,0,0) +
f32(in,x+1,y+0) * f32(filter,1,0) +
f32(in,x+2,y+0) * f32(filter,2,0) +
f32(in,x+0,y+1) * f32(filter,0,1) +
f32(in,x+1,y+1) * f32(filter,1,1) +
f32(in,x+2,y+1) * f32(filter,2,1) +
f32(in,x+0,y+2) * f32(filter,0,2) +
f32(in,x+1,y+2) * f32(filter,1,2) +
f32(in,x+2,y+2) * f32(filter,2,2));

f5 The last example (not shown here) is equivalent to f4 except that a local
copy of the kernel data is put on the stack and used in the loop, which
should increase locality to a maximum.
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Code TS 1 TS 2 TS 3 TS 4
f1 1870 1357 1143 835
f2 1896 1383 1148 892
f3 1148 633 634 575
f4 519 307 312 233
f5 519 247 256 195

Table 4.5: Execution times in µs of different FIR-filter implementations when
the matrix size is 64 × 32.

Code TS 1 TS 2 TS 3 TS 4
f1 350 245 357 122
f2 317 180 250 123
f3 199 81 92 77
f4 118 39 49 32
f5 118 31 39 26

Table 4.6: Execution times in ms of different FIR-filter implementations when
the matrix size is 512 × 512.

The performance of these alternatives can be viewed in the Tables 4.5 and 4.6.
We see that locality helps us a bit but that the largest perfomance improve-

ment is caused by the reduction of the kernel loops in f4. However, this step
specializes the function to be used only with 3×3 kernels and we loose generality.
Another kernel size requires the writing of another function.

4.4 Performance Tricks Summary

To sum up here is a collection of performance improving techniques applicable
to image processing related operations when the implementation is done in a
compilable language.

1. To reduce cache misses, reference as few global variables and call as few
global functions as possible in time critical parts of the code. Instead use
local variables and assign to them values of the global variables and results
of the function calls.

2. Avoid multiplications (y * w), when indexing vectors in the innermost
loop.

3. Loop unrolling is useful in many cases, especially in filtering functions
with large kernels of predefined sizes.

4. As explained in Section 3.2, memory reads are less expensive than memory
writes. When implementing structure operations this knowledge can be
useful. When, for example, implementing a matrix transposition, I have
noticed a significant speedup when reversing the relative order of the row-
and column-loop in the algorithm so that the writes to the out matrix
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is accessed in row-major (linear memory access) and the in matrix in
column-major order.

The performance of these alternatives can be viewed in the Tables 4.7 and
4.8. All test systems but TS 4 show speedups on both stages of locality.

Approach TS 1 TS 2 TS 3 TS 4
Linear reads 72 54 322 212
Linear writes 70 52 278 229

Table 4.7: Execution times in µs of two different implementations of matrix
transposition when the matrix size is 64 × 32.

Approach TS 1 TS 2 TS 3 TS 4
Linear reads 112 37 120 37
Linear writes 49 6 93 42

Table 4.8: Execution times in ms of two different implementations of matrix
transposition when the matrix size is 512 × 512.

4.5 Measuring Data Locality

It is not always easy to make good use of locality in our algorithms. As a re-
sult, the performance of those functions that perform few operations per matrix
element become limited by the bandwidth of a specific level in the memory hi-
erarchy. If several such functions then are consecutively applied on the same
data, we do not get maximum throughput of arithmetic instructions in the CPU
and peak performance cannot be reached.

This leads us to designing a benchmark function M test locality() (not
shown) that measures the execution times at different levels of locality of a
specific test operation, taken as argument. With this function we can examine
if an operation is “complex enough” to be used efficiently together with other
similar functions in our stream model. If this is the case the difference in
execution time between the highest and the lowest level should be insignificant.
To utilize locality and reduce influence of other competing processes on the test
systems each operation is run about 60 times at each level. The current matrix
size is then divided by the minimum execution time and the result is used as a
measure of the performance of the operation at a specific level of locality.

4.5.1 Measuring Memory Bandwidth

The “least complex” pointwise operation is the copy operation and can be
used as a measurement of the bandwidth at a specific memory level. I ap-
plied M copy() to M test locality() and then listed the results in Table 4.9.
On TS 1, we see that the bandwidth decreases dramatically when the matrix
data no longer fit in the L1 cache, which happens when locality is 16 kB (see
Table 4.10). The bandwidths of TS 1, were also plotted in Figure 4.5. TS 3 and
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Locality TS 1 TS 2 TS 3 TS 4
2 kB 1167 1848 178 278
4 kB 1415 2232 150 280
8 kB 1603 2496 156 326
16 kB 306 2004 145 295
32 kB 125 579 145 329
64 kB 124 573 141 295
128 kB 120 568 142 314
256 kB 120 568 141 296
512 kB 119 570 140 301
1 MB 115 458 140 291
2 MB 57 257 139 298
4 MB 57 225 139 264
8 MB 57 225 139 259

Table 4.9: Bandwidths of M copy() in MB/s at different levels of locality.

Processor L1 Cache L2 Cache
Intel Pentium II 32 (16+16) 512
Intel Xeon 32 (16+16) 512 to 1024
AMD K6-2 (3DNow!) 64 (32+32) External
AMD Athlon (K7) 128 (64+64)
Motorola PowerPC 750 (G3) 64
Sun UltraSPARC IIi 32 (16+16) 256 to 2048
Sun UltraSPARC III 96 (64+32)

Table 4.10: Cache sizes of modern microprocessors in units of 1024 bytes. The
+-sign indicates the separate sizes of the data and instruction cache.
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Figure 4.5: Bandwidth of M copy() at different levels of locality on TS 1.
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TS 4, on the other hand, show hardly any differences at all. The reason for this
is not clear but my guess is that more concurrent processes are disturbing and
interfering with the L1 Cache which has to be reloaded more often. I drew this
conclusion after noticing that the bandwidths on TS 1 decreased significantly
when I had Netscape running concurrently with the tests. Consequently it is
important to remove as many unneccessary processes as possible, when making
benchmark comparisons between architectures.

4.6 Using Locality

Most algorithms in image processing can be expressed in a modular way. By
identifying the basic building blocks, such as complex arithmetic multiplies, FIR
filter evaluations and FFT/DFT, we can then express more complex operations
in terms of these.

If we have identified and implemented such basic functions and want to
use these in an implementation of a higher level operation, we have two main
approaches:

1. Explicitly copy the code of the basic operations into the new function and
optimize, for example by merging common loops.

2. Reuse the functions by calling them from the new function.

The first alternative gives the highest performance but is, in the long run, very
inflexible and contradicts against our modular thinking. The second, on the
other hand, does not make good use of locality because it loops over the whole
data each time we reuse a function. Generally, an extra intermediate storage
buffer is also needed for each extra function that is called.

4.7 The Sobel Operator

An illustrating example is edge detection using the Sobel operator, which nor-
mally is implemented in the following steps:

1. Allocate one buffer of size w × h, containing the in image Min, and three
buffers all of size (w − 2) × (h − 2), containing the intermediate images
Mx, My and the out image Mout.

2. Filter Min with the kernels

Fx =


−1 0 1
−2 0 2
−1 0 1


 and Fy =


−1 −2 −1

0 0 0
1 2 1


 ,

which produces Mx = Sx(Min) = Fx ∗Min and My = Sy(Min) = Fy ∗Min

3. Finally, calculate the resulting pointwise edge strength

Mout = Sabs(Mx,My) =
√

M2
x + M2

y .
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The entire matrices Min, Mx and My have to be revisited twice during the
operation, which leads to bad use of locality. It would be better if we somehow
could perform these operations more locally in a stream-like manner, thus re-
ducing the execution time and the memory required to store the intermediate
buffers Mx and My. Before we discuss the solution to this problem we first define
a model often used when organizing and execution subsequent image processing
operations.

4.8 Graph Representation

I will illustrate image processing algorithms by the use of a graph-model, which
contains the following objects.

• A set of input and output buffers (drawn as solid-line rectangles) together
with intermediate buffers (drawn as dashed-line rectangles).

• A set of nodes (drawns as circles) that perform operations on these buffers.

• A set of arrows that indicate which nodes operate on which buffers and
the direction of the data dependencies, that is in what direction data flows
through the graph.

Our calculation of the magnitude of the Sobel operation can then be displayed
graphically like in Figure 4.6.
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Figure 4.6: Graph representation of the Sobel operator.

4.9 Graph Implementation

The graph is also a useful model when implementing image processing opera-
tions, especially those that are modularized. This Section contains guidelines
for such an implementation. The ideas are based on thoughts from the people
at the Computer Vision Laboratory at Linköping University together with own
additional ideas concerning memory consumption, performance (locality) and
scalability.
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4.9.1 Graph Objects

We begin our discussion by listing the objects that a graph is built up of.

Buffers are encapsulated into a structure containing a reference to its memory
block of data together with information about its interpretation in terms
of dimensions and type.

ROIs have the same interface as buffers, enabling us to call a function with
buffers and/or ROIs as arguments. ROIs can be in a defined or undefined
state. From now on an argument will mean either a buffer or a ROI.

Nodes have a general interface, containing functions that connect/disconnect
buffers, set their ROIs, execute the node operation, etc. The actual rep-
resentation and operation of a node is thus hidden from the programmer,
who wishes to reuse the nodes in other objects. Several nodes can be
added to the graph in any order. Nodes are then connected to each other
with ports and these determine in which order data flows.

Ports function as communication channel between two nodes and has a ROI
associated with it.

4.9.2 Node Methods

ROI Propagation Rules

In order to determine how the ROIs of a node’s arguments depend on each
other, we define a set of ROI Propagation Rules, or ROIPRs for short. Given
the dimensions of a ROI a node operates on, its ROIPR can then be used to
calculate what dimensions the other ROIs of its other arguments must have.

As specific parts of the results are of what we are most interested in, back-
ward ROIPRs (from out to in-buffers) are more relevant. However, forward
dependencies could be useful in some situations and for generality we therefore
treat all ROIs, associated with either input or output buffers, in the same way.

Assuming that a specific node operates on u undefined ROIs Ui and d defined
ROIs Dj , we then let the node’s ROIPRs be defined by a set of functions fi

where

Ui = fi(D1,D2, . . . ,Dd), 1 ≤ i ≤ u

and

Ui = (xi, yi, wi, hi) and Dj = (xj , yj , wj , hj).

Note that the ROIPRs of many functions are similar and need not to be
rewritten for each new function. For example, all nodes with one in ROI and
one out ROI performing a pointwise operation, have the rules

U1 = D1

As another example, the rule for a general 2D-convolution, that reads its
indata from Uin, convolves it with a filter kernel specified by Dk and writes to
Dout can then be expressed as

(xin, yin) = (xout, yout) − (xk, yk)
(win, hin) = (wout, hout) + (wk, hk) − (1, 1)
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where (xk, yk) is normally (wk/2, hk/2).
The backward ROIPRs for Sx or Sy in Section 4.7, can then be defined by

the additional statement

(xk, yk) = (1, 1)
(wk, hk) = (3, 3)

ROI Compatibility Rules

If we allow ROIs in several different ports to be entered by the user, we want to
check the compatibility of these specifications. This check can done by marking
a defined ROI as undefined and calculating its value using the ROIPRs. If the
result is the same as the result entered by the user the ROIs are compatible.

ROI Union Rules

Some graphs may contain buffers being connected through different outports to
several nodes, as Min in Figure 4.6. The nodes may use different parts of the
buffer and it becomes relevant to define how these ROIs are united. A simple
solution is to use the smallest bounding box. Assuming that the connected nodes
together have d ROIs Di = (xi, yi, wi, hi), all referring to the same buffer, we
then define the united ROI U = (x, y, w, h) to be

x = min
i

(xi)

y = min
i

(yi)

w = max
i

(xi + wi) − min
i

(xi)

h = max
i

(yi + hi) − min
i

(yi)

4.9.3 Graph Methods

A graph should contain functions with an interface similar to the nodes’, which
enables us to treat a graph as a single object, that can be allocated and executed.

Sorting

Before we can implement automatic allocation and execution of graphs we need
a method that performs a topological sort on the graph’s nodes. This function
steps through the graph, starting with a root node taken as argument and sets
up a table with node references indicating in what order the nodes should be
executed in order for the data dependencies in each node to be fulfilled. This
results is an ordered list of nodes with all data dependencies pointing in the same
direction. A node’s data dependencies are fulfilled when all its in arguments have
been defined (calculated).

Note that this requires the graph to be acyclic, which means that the recur-
sive backward propagation from an arbitrary node in the graph must lead to
nodes having no data dependencies.
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Propagation

After this sorting function has been applied to the graph, we can then propagate
its ROIs using the ROIPRs in the correct order. In Figure 4.6 it is enough to
specify the ROI associated with Mout.

Allocation and Execution

Normally we would finally allocate all in, intermediate and out buffers according
to the sizes of their ROIs and then execute the nodes in the order given by our
list of sorted nodes. As mentioned in Section 4.7 this uses much memory and
makes bad use of locality, especially if we have many intermediate buffers, which
motivates the following alternative approach.

Local Execution

If we restrict the graphs to contain nothing but neighbourhood operations, such
as in Figure 4.6 we can use an alternative execution technique I will refer to as
local execution.

1. Assume one out buffer Mout in the graph, having a ROI R = (x, y, w, h)
associated with it.

2. Define a local ROI L = (xl, yl, wl, hl) where

xl = x

yl = y

wl = w/dw, 1 ≤ dw ≤ w

hl = h/dh, 1 ≤ dh ≤ h

The operator / represents integer divison. The dividers dw and dh are
both integers and define the locality in each dimension. A higher value
leads to higher locality.

Also calculate the integer remainders

wr = w mod dw

hr = h mod dh

3. Propagate L to all other ROIs in the graph.

4. Execute the graph.

5. Move the in and out ROIS to next adjacent position (row-major order) by
either placing it one step to the right of the previous through

xl = xl + wl

or by stepping to the next line through

xl = x

yl = yl + hl
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and execute the graph again. Do this until the part (x, y, dwwl, dhhl), of
Mout have been processed.

If there are remaining blocks at the end of each line scan, that is if wr = 0,
we move backwards through

xl = xl − (wl − wr)

and execute the graph once more, overwriting some parts of Mout together
with filling in the remaining blocks.

When the final line has been processed in this manner we perform the
analogous calculation

yl = yl − (hl − hr)

if hr = 0 and fill in the rest blocks at the “bottom” of Mout.

Note that the locality specified by dw and dh can be automatically adjusted
during execution to fit the memory hierarchy for each target architecture.

Parallel Execution

We also want to add functionality in the allocation and execution functions,
that draws advantage of MP-systems automatically. This can be done in several
ways:

Functional Decomposition We could associate each node with a specific
thread and let the OS automatically share the threads among the dif-
ferent processors. But this is an unnecessary complex solution, requiring
node level communication synchronizations, which often lead to bad load-
balancing and unneccessary large usage of the bus bandwidth on shared
memory MP-systems.

Node Level Domain Decomposition Instead we could add a general node
function that executes a node’s operation in parallel according. This func-
tion must involve the construction and destruction of threads which, as
seen in Table 4.11, is time-consuming operation. In local execution the

TS 1 TS 2 TS 3 TS 4
200 135 100 30

Table 4.11: Latency in µs for creating and destroying a thread.

execution times of the operation itself may well be smaller than this over-
head, and as a result adding local execution to these parallel versions can
instead decrease the performance of the graph execution.

Graph Level Domain Decomposition An alternative approach can be re-
alized with the following steps

1. Decompose the out ROI R into n parts Ri.

2. Create n separate graphs Gi, each having Ri as its out ROI.
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3. Propagate all Gi in parallel.

4. Execute all Gi in parallel.

5. Recompose all Ri back into R.

This technique requires more memory than the previous, because each tree
must have its own local intermediate buffers. On the other hand, local
execution in each sub tree can easily be reused without any changes in the
code. Except from the signalling of execution completion, it is also free
from any synchronizations. If all functions operate on ROIs we eliminate
any dynamic memory allocation and deallocation in decomposition and
recompositioning stages. As a result, a continuos image processing only
involves consecutive executions of the graph.

4.9.4 Testing Concepts

As said before, implementing a programming interface with these properties is
a big effort, out of range of this work. Instead I will “prove” that the crucial
statements about local and parallel execution hold for our sample graph in
Figure 4.6.

Local Execution

To show the advantage of local execution the nodes Sx and Sy were separated
into four nodes according to
−1 0 1
−2 0 2
−1 0 1


 =

(−1 0 1
)⊗


1

2
1


 =

(
1 1
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)
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and |x| + |y| was instead used in Sabs. The precision used was 16-bit signed
integer and the size of Mout is 512 × 512. The results can be viewed in Table
4.12. TS 1 and TS 2 uses MMX-optimized versions of the sum and difference
filters, which results in larger differences between different levels of locality. We
also see that the optimal locality varies across different platforms.

Parallel Execution

I also tested the scalability at different levels of locality. On TS 4, only different
processes can be distributed on different processors, so my techniques are not
applicable here. On the Linux system TS 2, on the other hand, it is possible.
Therefore I implemented a parallel version of our sobel operation, that uses the
graph level domain decomposition technique described Subsection 4.9.3. The
implementation uses four threads, each operating on 512 × 128 size ROI asso-
ciated with Mout. The benchmarks can be viewed in 4.13. In this case, we can
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dw dh TS 1 TS 2 TS 3 TS 4
1 1 144 54 86 47
1 128 37 21 64 46
1 256 27 19 64 45
1 512 25 18 70 49
2 512 26 19 70 50
4 512 30 22 76 56
8 512 39 26 92 68

Table 4.12: Execution time in ms of Sobel operation at different levels of locality
specified by dw and dh.

dw dh T1 Tp S1p

1 1 80 63 1.26
1 32 32 17 1.91
1 64 31 15 2.00
1 128 32 15 2.14
2 128 28 15 1.81
4 128 27 17 1.53
8 128 28 21 1.44

Table 4.13: Execution time in ms of scalar (T1) and parallel (Tp) versions of
Sobel operation. The levels of locality are, as before, specified by dw and dh.
The scalability S1p is measured as T1/Tp.

verify that scalability really increases with locality, a conclusion of the theoret-
ical discussion in Section 3.5. It also proves that the concept of parallel and
local execution is really useful and can lead to very high performance increases,
especially on MP-systems with shared primary.

Also note that the optimal parallel performance is reached at a higher locality
than the optimal scalar performance does, which can be explained by the fact
that TS 2 is a shared memory architecture.

Memory Consumption

The memory consumption of different implementations at different levels of
locality is an even more convincing motivation of using local evaluation. See
Table 4.14 for specific details concerning the memory consumption of the buffers
in our two different implementations.
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dw dh Cs Cp

1 1 18.8 18.8
1 32 0.9 1.3
1 64 0.8 1.1
1 128 0.8 0.9
2 128 0.8 0.8
4 128 0.8 0.8
8 128 0.8 0.8

Table 4.14: Total memory consumption C of all buffers (in MB) of scalar (s)
and 4-way parallel (p) versions of Sobel operation. The levels of locality are, as
before, specified by dw and dh.



Chapter 5

Adding video input

Finally I investigated the possiblity of adding a standard PC TV-card to the
Linux systems TS 1 and TS 2 and using it as a video source for doing image
processing. Questions I asked myself before I began was:

• How much does such an add-on have to cost?

• How big is the effort of getting it to work under Linux?

• Is it possible to grab full-screen color video using this TV-card?

• How much bandwidth and processor time will there be left for real time
image processing on this video stream?

First, I started looking at what kind of video input devices that had Linux
support. More specifically, this means a kernel driver and some kind of API
that communicates with the kernel driver. After some research on the Internet
and considerations I decided on getting a PCI-based TV-card1, based on the
bt8x8-chipset. It was very cheap (around 700 SEK), available “off-the-shelf”
and a lot of people were involved in developing drivers and APIs supporting the
card. I also read an advice on using it specifically as a real time image grabbing
device.

There exist many video APIs for Linux. The best developed with the largest
hardware support is Video For Linux, originally abbreviated V4L. After having
received the TV-card, I started to experiment with Linux and V4L. However
this API was very buggy and I had a hard time getting it to work on the test
system. The API lacked much desired functionality. Everything was also very
badly documented so often I had to read other code examples in order to figure
out how it worked. Another problem was the lack of structure information on
the Internet that summarized the different APIs available. All sites had some
part that was out of date.

As of now, there exists a newer version of this API called Video For Linux
22, or V4L2 for short. After a while I found a good site containing sources to
the V4L2 drivers and API. I downloaded them and after some effort, involving

1More specifically “Hauppauge WinTV Primio GO”
2For more information on the net see http://bttv-v4l2.sourceforge.net/ and

http://www.thedirks.org/v4l2/.

45
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recompilation and restarting of the kernel and its modules, I finally managed
to grab a picture from it. V4L2 turned out to be quite intuitive and contain
more functionality than I had expected. As an example, V4L adds support for
DMA-based (Direct Memory Access) streamed grabbing.

The standard procedure of using V4L2 can be summarized into the following
steps:

• Open the video device ("/dev/video" on my system) by making the sys-
tem call open() and assign it to a descriptor device:

device = open("/dev/video", O RDONLY)

• Get information about the capabilities of the opened device using the
system call ioctl() as follows:

ioctl(device, VIDIOC QUERYCAP, capabilities)

• Read current format using

ioctl(device, VIDIOC G FMT, format)

• and modify it using

ioctl(device, VIDIOC S FMT, format)

• Start video streaming, by configuring video stream buffers, allocate buffers
and map them to a device, by calling a set of functions not described here
because of the intricate details.

• Perform operations continually on the buffers being grabbed in stream-like
manner.

• Stop video streaming.

• Finally delete the connection to the device by calling

close(device);

I then investigated the performance of streamed grabbing. We first notice
that a the capturing of full-screen (768x576) 24-bit RGB-video 25 times/s re-
quires a bandwidth 33.2 MB/s. This is currently too large be streamed to an
ordinary harddisk. With the increasing bandwidth of harddisks this will soon
be possible, but as of now we first have to perform some kind of reduction of
information. In real time image processing, the information reduction is large
and the memory bus becomes the bandwidth bottle-neck.

Considering only the grabbing part, the PCI bus with its standard band-
width of 132 Megabytes/s should suffice quite nicely. To test if this was the
case I measured the number of frames dropped during a longer grabbing period.
With approximately 2500 test frames I got the results shown in Table 5.1.
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Video Depth Buffers Frames Dropped
24-bit 2 0.79%
16-bit 2 0.75%
8-bit 2 0.91%
8-bit 3 0.28%
8-bit 4 0.00%

Table 5.1: Frame dropped in the grabbing process.

All percentages are below one percent and the dropping of the frames is
probably due to disturbances from other processes rather than bandwidth limit,
and so there seems to be room for more operations.

I also measured the CPU load to be less than 2 % in all cases, which shows
the CPU-usage is minimal when we allow DMA.

Finally, I combined my test routines from Subsection 4.9.4 with my grabbing
functions to check at what resolutions it is possible to perform a Sobel filtering on
a video stream. To minimize the PCI bus consumption, I changed the grabbing
format to 8-bit greyscale and added a conversion node to the beginning of the
sobel graph. 10000 frames were processed and the number of buffers dropped
were counted. The results can be viewed in Table 5.2.

n Resolution TS 1 TS 2
1 768 × 576 0 0
2 768 × 576 0 0
4 768 × 576 6 0

Table 5.2: Buffers dropped when performing a Sobel operation on a stream of
10000 buffers n threads.

We can happily conclude that real time image processing of a full resolution
video stream at 25 frames per second is possible, at least when the grabbing
precision is 8-bit greyscale and the operation is a simple sobel operation.
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System Restrictions

When designing desktop or server systems, we often strive for maximum per-
formance at a given cost. But there are other cases where more factors, such
as size, power consumption and response time, are equally important or even
crucial for its operation. Typical examples are lab equipment, such as sampling
sensors, and embedded systems, found in cars and handheld devices.

6.1 Power Consumption

An upper limit on the power consumption, reduces the number of alternatives
we can use. Usually the CPU is the most power consuming component. Most
desktop CPUs, like the latest Pentiums and PowerPC, today also comes in a
low-power consuming flavour, usually called a mobile version, mainly used in
laptop PCs. These consume 5–20 W. For even smaller devices, with even larger
restrictions on power consumption, companies such as ARM and Hitachi provide
RISC-processsors consuming around 0.5 W. Se Table 6.1 for details.

As a general rule, less power consumption implies less computational per-
formance, at least when two processors of the same family are compared.

Processor Performance Consumption
Mobile Pentium III 750 MHz 875 MIPS 20 W
PowerPC 266 MHz 488 MIPS 5.7 W
PowerPC 400 MHz 733 MIPS 5.8 W
ARM 133 MHz 150 MIPS 0.2 W
ARM 206 MHz 255 MIPS 0.4 W
Hitachi-SH5 133 MHz 240 MIPS 0.2 W
Hitachi-SH5 167 MHz 300 MIPS 0.4 W

Table 6.1: Power consumption of modern CPUs.

6.2 Response Time

An image processing system can often be modelled as a data stream that flows
from a source s, such as a framegrabber through a set of n stages si, to a

48



6.2. RESPONSE TIME 49

destination d, such as a steering instrument. Given an input at a starting time
ts, we often want to be sure that this results in an output response at a time
no later than td = ts + tr, where tr is the resonse time.

Guaranteeing this is equivalent to assuring that the sum of the maximum
response times at all stages is smaller than tr. Calculating the maximum re-
sponse time at all si should be straightforward because most image processing
algorithms have a deterministic execution. But s and d depend on the behaviour
of the external hardware and the internal design of the OS we are using. As
a result, the choice of OS finally decides if we can guarantee a minimal tr or
not. Depending on how important it is to meet these timelines, we then choose
either a soft or a hard real time system (RTS).

Before we discuss these two categories we need to explain the difference
between a monolithic kernel and a microkernel.

Monolithic kernel The traditional monolithic kernel runs the whole kernel,
including all device drivers and services, in the same address space, making
it much more vulnerable to bugs, especially in the development stage of
the kernel. Linux, BSD variants and Solaris are all examples of monolithic
kernels.

Microkernel The microkernel, on the other hand, eliminates the risk of a
system lockup by providing only a small set of core services within the
kernel memory space. The rest of the kernel and its device drivers run
as separate processes in user space. Therefore the development of a new
device driver is a no bigger effort than the development of an ordinary
user application, since a potential bug in a single device drivers never
provides a threat to the stability of the whole system. Drivers can easily
take advantage of multithreading on MP-systems, thus making them very
scalable. The portability and maintainability of applications and driver
also improves.

Microkernels further offer light-weight processes, fast context switches and
interprocess communication (IPC). As microkernels are very small (around
10 kB), it is easier to calculate worst-case timing parameters, such as
interrupt latency, making microkernels suitable for use in hard-RTSes.
This, on the other hand, places heavy load on system calls. Well-known
examples of microkernels are Windows NT, BeOS and QNX Neutrino,
VxWorks.

The following citation found on page 8 in [12] nicely summarizes the differ-
ence: “Although some argue that changes of protection level, context switches,
and message passing can be implemented very efficiently and that the possibil-
ity of multithreading device drivers outweighs system call latencies, it is mostly
because of the absence MP-systems in desktop PCs and the low performance
of microkernels running on UP-systems, that monolithic kernels are still more
prospering.”

6.2.1 Soft real time

In a soft-RTS, timing requirements are subjective and statistically defined. An
example can be a video conferencing system where it is desirable that frames
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are not skipped, but it is acceptable if a frame or two is occasionally missed, as
long as an average or minimal framerate is produced. Most desktop OSes, such
as MS Windows, OS/2, Solaris, Linux, FreeBSD, NetBSD and OpenBSD, fulfil
these requirements, and can be used in a soft-RTS.

The last four of these have an open sources and are therefore very customiz-
able. If the timings are almost satisfactory but not quite, removing unnecessary
services can be a solution. As an example, Linux can boot into a primary mem-
ory using a RAM-disk1 instead of a harddisk, thus removing virtual memory,
a great source of undetermistic behaviour. Alternatively, disk caching of mem-
ory can be disabled by using the system command mlock2 on a specified part
of the primary memory. Many UNIXes also enable us to change the standard
time-sharing scheduler. An example of such a system is presented in [14].

Linux also has the advantage of having a large device driver and platform
support. All drivers are collected and very thoroughly tested before integrated
into the kernel distribution making the system much more stable than third
party driver in OSes such as Windows.

6.2.2 Hard real time

In hard-RTSes, where the deadlines must be guaranteed, we are forced to use
a special category of OSes, known as real time OSes or RTOSes. A RTOS
basically has two requirements:

A maximum interrupt latency This means that the time between the mo-
ment a hardware interrupt is detected by the processor and the moment
an interrupt handler starts to execute, has an upper limit.

A maximum timing latency This latency defines how exact we can schedule
programs that must be restarted periodically. A typical example is the
communication with a sampling device, such as a framegrabber.

Because of reasons described in [13] it is currently impossible to design an OS
that is optimized both for average performance, used in desktops and servers,
and at the same time fulfilling these two RTOS requirements. As a result
specific RTOSes has been constructed. Examples of these are QNX Neutrino
and VxWorks.

QNX Neutrino

QNX Neutrino is built around a microkernel architecture and the kernel itself
only implements four services: process scheduling, IPC, low-level network com-
munication and interrupt dispatcing. All other services, such as device drivers
and filesystems, are implemented as cooperating user processes and as a result
the kernel is very small (about 10 kilobytes of code) and fast.

Its great scalability and stability makes it very popular in embedded appli-
cations. The latest versions of the QNX Real Time Platform (RTP) has recently
been released to public for non-commercial use. QNX claims that this product
is unique in the sense that it is hybrid between a real time and a platform OS.
This makes it a very complete and comfortable developing environment both
for desktop and embedded applications.

1Read the file Documentation/ramdisk.txt in the Linux kernel source for a guideline.
2For more details consult the man pages.
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VxWorks

VxWorks3, is part of the run-time component of the Tornado II embedded de-
velopment platform and is the most widely adopted RTOS in the embedded
industry. Tornado II also includes a comprehensive suite of core and optional
cross-development tools and utilities and a full range of communications options
for the target connection to the host. VxWorks’ great advantage is its flexibility
and scalability, with more than 1800 APIs. Is has been used in mission-critical
applications ranging from anti-lock braking systems to inter-planetary explo-
ration.

Real time Linux and RTLinux

QNX and VxWorks are both commercial and expensive (QNX RTP commercial
development license currently costs $3,995 USD) and several universities are
therefore seeking alternative approaches. Real time Linux4 is a common name,
for several techniques of using the standard Linux kernel together with a real
time add-on.

The most developed add-on is RTLinux5, which is added to a Linux system
by compiling and inserting a set of modules that lie underneath the normal
Linux kernel and runs it as an ordinary process. This enables the programmer to
schedule processes with real time retrictions. This solution is easy to implement
and use but very limited since no ordinary Linux kernel calls can be made in
real time mode. If real time communication with external hardware is needed
the hardware device drivers have to be rewritten. Its biggest advantages is its
large platform support; IA32, PowerPC and Alpha with a MIPS-release coming
up shortly.

Kernel module operations

Finally, a more specialized solution, is to move time critical parts of our appli-
cation into a kernel module and call these from our application in user space.
Assuming that our time critical algorithms are thoroughly tested and that they
do not need any library calls, this is a very simple and fast solution. I tested
this idea by performing a typical time-consuming operation

u32_t sum3d (u32_t x_max, u32_t y_max, u32_t z_max)
{

u32_t x,y,z,sum;
sum = 0;
for (x = 0; x < x_max; x++)

for (y = 0; y < y_max; y++)
for (z = 0; z < z_max; z++)

sum += x + y + z;
return sum;

}

in three ways.
3http://www.wrs.com
4http://realtimelinux.org
5http://www.rtlinux.org
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1. I ran the function in an ordinary application.

2. I ran the function in a kernel module, without disabling interrupts during
the execution of the module.

3. I ran the function in a kernel module, with interrupts disable during the
execution of the module.

The execution time ti was benchmarked 32 times giving the time vector t =
(t1, t2, . . . , t32)′ and as a measurement of its non-determinism I used

d =
std(t)

mean(t)

The results can be viewed in the following table.

Case d on TS 1
1 0.0052
2 0.0038
3 0.0000061

It is apparent that we remove virtually all non-determinism in the operation by
using this technique.

As a sumup, we can say that Computer Science has not yet proven how
an ideal general OS should be designed or even if it exists. The hardware
technologies are constantly changing and with these the rules with which OSes
can be built. So, as of now, we will have to cope with the fact that some
applications are simply not suitable for some cases of OSes. For a comparable
summary of popular OSes see Table 6.2
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Name Type Platforms Notes
Linux Monolithic i386, alpha, sparc,

ultrasparc, pow-
erpc, strongarm

GPL Open Source,
RT Extendable

BeOS Microkernel i586, powerpc
QNX Neutrino Microkernel i386, powerpc, mips RT, Expensive
OpenBSD Monolithic alpha, amiga,

hp300, i386,
mac68k, mvme68k,
pmax, powerpc,
sparc, sun3

Open source

FreeBSD Monolithic i386, alpha, pc-98
architectures

Open source

NetBSD Monolithic alpha, arm, i386,
m68k, mips, ns32k,
powerpc, sh3, sparc
vaxi386

Open source

VxWorks Microkernel arm, i386, m68k,
mips, sparc

RT, Expensive

Windows NT Microkernel i386, alpha Large driver sup-
port, RT Extend-
able

Solaris Monolithic i386, sparc, ultra-
sparc

Table 6.2: OS Comparison
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Summary and Conclusions

Compared to the development environments, the implementation stage of image
processing operations involves many extra considerations, that are summarized
here.

By assuming that our operations can be organized as a set of graph nodes
together with rules on how they operate on their associated data buffers, a set
of guidelines for how such graphs should be implemented and processed can be
deduced so that some of these extra considerations get generalized and need not
to be implemented for each new graph node.

Through the technique of automatic local execution, the consideration of
memory consumption of intermediate data buffers is automated away from the
programmer. Assuming the input image is 512×512 with 8-bit integer precision
and the rest of the calculations are performed on 16-bit integer precision, a
sobel operation with fully separated filter kernels in this case results in a total
reduction of memory consumption of 24 times.

Automatic parallel execution additionally automates away the consideration
of maximizing locality and scalability in algorithms which results in high uti-
lization of all processors on MP-systems that enable threads in the same process
to be divided over several differnt processors. All this is possible because image
processing operations contain such high data regularity. Trough a long-term
perspective all this is achieved at a very reasonable programming effort and
once constructed the adding of further node operations is effortless. The same
implementation of the sobel operation on the same data size discussed above
here results in a change of scalabilty from 1.26 to 2.14 on a MP-system having
two 2 processors.

The more local the operations involved are, the better improvements we get
when using automatic local and parallel execution. By using the modular ap-
proach of combining these items, we can much easier express new operations, at a
small performance cost, compared to hand-recoded, possibly SWAR-optimized,
versions. The first two are based on the very general assumption of a memory
hierarchy and because the number of levels in the memory hierarchies and their
relative differences in bandwidths are constantly growing, this approach should
become even more important in the computer architectures of the future.

Image processing performance is improved several times when support for
SIMD-instruction sets, such as MMX, is added to existing C code. For simple
functions, with a semantic similar to the operations in the instructions set,

54



55

this can be done quite easily if we use GCC. For more complex operations a
modular approach is to prefer unless a SWAR compiler can do a good job.
As the SWAR instruction sets get more complete the cross-platform SWAR
compilers will become more popular in the future, and possible and hopefully
make hand-coding unnecessary. Currently such compilers can only output code
for very simple operations. As an example the SWAR compiler generates code
for vector addition of 16-bit integers which runs 2.6 times faster than scalar C
code.

With the help of different add-ons and extra system calls a Linux system can
be given soft-real time abilities. If we have higher demands on minimum time
response and scheduling latencies, real-time extension to Linux kernel are avail-
able. However, these extensions only provides real-time communication with
very basic devices such as serial and parallel ports and if this is an unacceptable
limitation one has to turn to commercial hard real-time operating systems, such
as QNX or VxWorks.

Open source operating systems, such as Linux, additionally opens up possi-
bilites of using hardware in other purposes than they were designed for—in our
case using a TV-card as a image processing source. DMA transfers from such a
TV-card to the primary memory can function as a video source and image pro-
cessing systems can thereby very well be constructed with non-expensive general
hardware. Grabbing of full resolution (768×576) 24-bit color frames is possible
with only a processor utilization of less than one % but leaves little room for
additional bus usage. The bus usage is mainly dependent on the total size of
the in and out buffers. If we choose 8-bit greyscale as the grabbing precision
both the testsystems TS 1 and TS 2 have sufficient CPU power to perform a
Sobel operation on the stream of video frames without loosing a single frame.
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Abbreviations

API Application Program Interface

CISC General Instruction Set Computer

COTS Commercial Off The Shelf

CPU Central Processing Unit

DSP Digital Signal Processor

DMA Direct Memory Access

DFT Discrete Fourier Transform

FIR Finite Impulse Response

FFT Fast Fourier Transform

FLOP Floating Point Operation

FLOPS Floating Point Operations per Second

FP Floating Point

FPGA Field Programmable Gate Array

FPLA Field Programmable Logic Array

GUI Graphical User Interface

IIR Infinite Impulse Response

IPC Interprocess Communication

IA32 Intel Architecture 32-bit

M2COTS Mass Market Commercial Off The Shelf

MFLOPS Mega FLOPS

GFLOPS Giga FLOPS
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MISD Multiple Instruction Single Data

MIMD Multiple Instruction Multiple Data

MP MultiProcessor

MPI Message Passing Interface

OS Operating System

PC Personal Computer

PCI Personal Computer Interface alt. Peripheral Component Interface

POSIX POSIX

pthreads POSIX threads

PVM Parallel Virtual Machine

RISC Reduced Instruction Set Computer

ROI Region Of Interest

ROIPR ROI Propagation Rule

RT Real Time

RTLinux Real Time Linux

RTOS Real Time Operating System

RPC Remote Procedure Call

SHARC Scalable Harward Architecture

SISD Single Instruction Single Data

SIMD Single Instruction Multiple Data

SMP Symmetric MultiProcessing

SPARC Scalable Processor Architecture

SuperSPARC is a newer architecture based on the SPARC processor.

SWAR SIMD Within A Register

UP UniProcessor
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