
Emulation as a Service (EaaS): A Plug-n-Play
Framework for Benchmarking Network Analytics

Garima Mishra, Hemant Kumar Rath, Shameemraj M Nadaf

TCS Research & Innovation, India.

Email:{garima.mishra2, hemant.rath sm.nadaf}@tcs.com

Abstract—Real-time data generation and collection to analyse
the network performance is difficult for large-scale networks hav-
ing limited accessibility. In this paper we propose a framework
which can provide realistic si/e-mulations, and generate synthetic
data closer to real-time data that replaces the traditionally used
deterministic and probabilistic models. This framework uses an
emulation based platform to replicate real network scenarios.
The emulator acts as a base layer with necessary APIs to
enable customized inclusion of analytics services in a plug-and-
play manner through the framework. This framework can be
used to acquire data required for different Machine Learning
(ML) models in order to reduce costly and time-consuming data
collection effort in network analytics.

I. INTRODUCTION

Simulation and Emulation are two crucial techniques used

extensively today to imitate the real world operations. These

techniques are used to understand the would be scenarios,

conduct performance analysis, demonstrate capabilities and

design new policies/methods which can be used in the real

world. Network si/e-mulation is a proven technique which

is being used today by both academia and industries for

various purposes. While simulated networks are scalable and

do not involve deployment cost, they are not suitable for

any real-time analysis. Testbeds in other hand are used to

evaluate any system in real-time, but are quite expensive

and time consuming. Therefore, emulation has emerged as

a hybrid solution of simulation and testbeds. In an emulated

network, real devices are integrated with the simulated network

and analysis is performed in real-time. Though emulation

has become a critical method for verification and validation,

achieving interoperability between emulators and ensuring

credibility of results currently require significant efforts.

Traditional emulation paradigm is highly dependent on the

industry partners as majority of the industries host vendor

dependent devices and emulators. They require a significant in-

vestment on CAPEX and OPEX. However with the emergence

of a wide range of Cloud services, Software Defined solutions

and Virtualization, end-users can now interact remotely with

the devices and emulators using (web-)clients or services. The

web service access offers a chance to combine both remote

emulation and cloud services into an integrated system. It

allows users to connect to different emulators on a need

basis and create services. The service based approach allows

users to experiment on composable emulation environments

which can be deployed and executed on demand basis. Further,

emulation capabilities can be exposed as Application Program

Interfaces (APIs) to the users for remote utilization. However

the interoperability between the existing set of network de-

vices and different emulators is a challenging task. Today,

there is not a single framework available (to the best of

our knowledge) which provides a common interface between

users and different emulators. Hence, there is a need for an

interface which operates independent of integrated emulators

and network devices.

Keeping this in mind we propose an “Emulation as a Service

(EaaS)” framework, that aims to provide remote users with

discoverable services that are readily available on demand.

This increases its operational benefits and supports integration

of multiple simulated and real systems into a single unified

emulation framework. The EaaS framework offers an agnostic

interface which operates independent of integrated emulators

and network devices. The proposed EaaS framework follows

Service Oriented Architecture (SOA) [1], integrates reconfig-

urable modular components, viz., user interface layer, parsers,

emulators, data collectors etc. The SOA based framework

provides a layered abstraction for discovery, composition and

execution of various services. The SOA approach is model-

driven and can adapt reusable developments to emphasize

on collaborative processes. The proposed framework provides

plug-and-play services to a user. The emulator acts as a base

layer with necessary APIs to enable customized inclusion of

analytics module. The framework is used to automate the

complete end-to-end emulation process.

The proposed framework helps a user to create a scenario

specific simulation script, generates data imitating a real

network and collects data in a specific format. It dynamically

creates the necessary data flow paths to allow distributed data

collection and storage in the database. The key contributions

of this work are as follows:

1) The proposed EaaS framework is based on the SOA-

Reference Architecture (SOA-RA). It introduces emu-

lation functionality by adding a new layer called Em-

ulation Environment layer at the bottom. This layer

interfaces between real devices and the system software

to exchange real-time data to-and-from the emulation

environment.

2) The EaaS framework is agnostic to the choice of em-

ulator; provides an interface layer to integrate different978–1–6654–5136–9/22/$31.00 © 2022 IEEE

2022 National Conference on Communications (NCC)

978-1-6654-5136-9/22/$31.00 ©2022 IEEE 64

20
22

 N
at

io
na

l C
on

fe
re

nc
e

on
 C

om
m

un
ic

at
io

ns
 (N

CC
) |

 9
78

-1
-6

65
4-

51
36

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
N

CC
55

59
3.

20
22

.9
80

67
21

Authorized licensed use limited to: Carleton University. Downloaded on July 08,2022 at 16:18:16 UTC from IEEE Xplore. Restrictions apply.

si/e-mulators with the real hardware devices.

3) It supports plug-and-play services to a user; emulator

acts as a base layer with necessary APIs to enable

customized inclusion of analytics modules and to bench-

mark analytics performance.

4) The emulation results obtained for a smaller network can

be extrapolated by the scalability module along with the

data received from the trained Machine Learning (ML)

model to predict the performance of a larger network.

The rest of the paper is organized as follows: Section II

presents the related work and motivation behind this contri-

bution. Section III presents the system model. The framework

implementation detail is presented in Section IV-B. We con-

clude the paper in Section VI.

II. LITERATURE SURVEY

Modeling and Simulation as a Service (MSaaS) has attracted

many researchers recently [2]. The definition of MSaaS, its

architecture and deployment strategies are surveyed in [3].

Other service types such as, Network as a Service (NaaS) [4]

and [5], Trust as a Service (TaaS) [6] and Authorization as a

Service [7], etc., are also introduced in literature. These are

derivations of Platform as a Service (PaaS) and Software as

a Service (SaaS) in various combinations and forms. MSaaS

can also be perceived as one of these derivatives.

The MSaaS framework proposed by North Atlantic Treaty

Organization-Modeling and Simulation Group (NATO MSG)-

136 [8] is a permanent service and cloud based Modeling

and Simulation (M&S) ecosystem. A reference architecture

is presented in [9] and [10]. The structure of the reference

architecture is influenced by the open group SOA-RA where as

the building blocks and patterns of the architecture are backed

by the NATO C3 Taxonomy.

The Open Cloud Ecosystem Application (OCEAN) project

[11] is a MSaaS platform which is developed under a technical

agreement with the NATO Modeling and Simulation Center

of Excellence (M&S CoE). The main objective of this project

is to provide an experimentation environment for the cloud

based technology, where it is possible to consume the available

MSaaS services and/or deploy new M&S services.

A cloud based Simulation-as-a Service to address the chal-

lenges faced in cloud based computing is presented in [12],

[13]. Authors of [12] demonstrate how lightweight solutions

using Linux containers (e.g., Docker) are better suited to

support such services instead of heavyweight hypervisor based

solutions. Empirical results validating their claims are pre-

sented in the context of few case studies. The paper [13]

proposes a Software as a Service (SaaS) model that provides

access to applications hosted in a cloud environment, allowing

users to use services at low cost and scale them as needed.

TotalSim [14] provides simulation as a service in aerospace,

automotive and manufacturing domains. SIMULIA [15] of

Dassault Systems helps in evaluating the performance of the

products before developing the final prototypes. The Santa

Clara based Ciespace adopts and delivers a SaaS based

Computer-Aided Engineering (CAE) platform for advanced

mechanical engineering design and analysis.

Defence and manufacturing industry have been extensively

using the M&S approach and their applications have always

been at the cutting edge of computing and networking. To

the best of our knowledge, none of the previous works have

addressed the problem of providing a single platform for

emulation as a service in the network and communication

domain - to analyse critical failures that can be identified

and corrected before the physical prototype. Prior arts also do

not address the interoperability between different emulatiors;

some of them rather just propose an architecture to interact

and provide bidirectional data feeds for data mining tools

for actionable analysis. Our proposed EaaS framework is not

a logical extension of the prior art. It provides a common

Interface Layer between a user and an emulation tool, and

automates the complete end-to-end emulation process through

a single user request. In the following section, we explain

a reference architecture for accommodating hardware devices

and define a suitable framework for exposing emulation capa-

bilities as services.

III. EAAS: ARCHITECTURE

The EaaS framework is modeled by following the key

features of layered Open Group SOA-RA [1]. The main design

and deployment features of this framework are (i) Generic:

It is a generic solution agnostic to different emulators and

hardware devices, (ii) Modular: It comprises of modular

building blocks which can be separated and recombined and

(iii) Scalable: It allows users to extend the capabilities of a

specific module or addition of blocks with other attributes.

A. The Architecture Concepts

As illustrated in Fig. 1, the EaaS framework is decom-

posed into multiple layers with different functional capabil-

ities. Some of the layers are cross-cutting and have common

functionalities that spans across the layers. The horizontal

layers support the base functionalities of the architecture. In

an emulator, along with the simulated nodes, one or more

emulated nodes are to be created which can help real devices

such as sensors, access points and stations etc., to participate

in simulation and to send/ receive packets over the network in

real-time. However the current SOA architecture does not have

any support for this kind of dynamic device configuration and

integration. Therefore we have added two new layers- namely

an Emulation Environment Layer and an Orchestration

Layer in the above mentioned SOA architecture. The Emula-

tion Environment Layer in particular provides ability to create

and configure all virtual interfaces, bridges and routes that

are needed to connect real devices with the simulated nodes.

The Orchestration Layer takes care of emulator/ container

orchestration.

The proposed EaaS framework is agnostic to emulators.

Hence there is a need to coordinate among multiple emulators

through a central entity or a mediator. The EaaS framework

also follows a modular architecture and needs collaboration

2022 National Conference on Communications (NCC)

65
Authorized licensed use limited to: Carleton University. Downloaded on July 08,2022 at 16:18:16 UTC from IEEE Xplore. Restrictions apply.

among different modules. The Orchestration Layer takes care

of deployment, maintenance and synchronization activities

for different emulators. It also arranges multiple tasks in

different modules to optimize a workflow. The capabilities

and the functionalities of each layer are described in Table I.

It provides a summary on how the capabilities of each layer

(listed in Column 2) are achieved through different functional

implementation and deployment approaches.

Fig. 1: EaaS Architecture Layers

TABLE I: Layers and architecture building blocks

Layers Capabilities EaaS Building Blocks

Emulation Envi-
ronment Layer

Interactions between the
hardware and the system
software to exchange the
real-time packets

Interface between the
Emulated network nodes
and the Simulated
network nodes.

Operational Sys-
tems Layer

Supports the capabilities
needed for running/exe-
cuting all software

EaaS service configura-
tion and Emulation server
configuration.

Service Compo-
nents Layer

Provides the implementa-
tion or the realization for
services and their opera-
tions

Emulation Client layer
and interface layer
implementation.

Services Layer Contains the service de-
scriptions for business ca-
pabilities

Emulation specific ser-
vices (separate APIs for
start, stop, update, delete,
execute).

Business Process
+ Consumer
Layer

Covers process represen-
tation and composition to
aggregate services as a se-
quencing process aligned
with business goals

Executing different sce-
narios, Database genera-
tion.

Orchestration
Layer

Supports collaboration be-
tween processes

Marathon can be used to
orchestrate different types
of Emulation services.

Integration Layer Provides the capability to
transport service requests
from the service requester

Passing list of operational
and configuration param-
eters, Socket based com-
munication between emu-
lation client and server.

Information
Layer

Store and retrieve data in
a uniform format

parameter translators and
parsers

Security Layer Processes policy defini-
tion, management and ser-
vice lifecycle

Authentication and autho-
rization of different cate-
gory of users

B. EaaS Deployment Model

Emulation services are made accessible to the remote users

via APIs which are implemented as RESTful web services. As

per the user service request, resources such as multiple service

instances or data storage are provisioned automatically. The

block diagram as shown in Fig. 2 illustrates the deployment

architecture of our proposed framework; major modules of the

same are described as follows:

Fig. 2: Block Diagram for EaaS Framework

User Interface: Receives the user service requests and

configuration parameters of a network on this interface. It

authenticates the user, forwards the requests to the framework

core, and provides a prescriptive report back to the user to

enhance the network performance. In our current deployment

user requests are provided in JavaScript Object Notation

(JSON) format; other formats can also be used in practice.

Emulator: It is configured to execute the emulation script to

get emulated nodes. Based on the inputs provided by the user,

the simulated network environment is created. Along with the

simulated nodes, one or more emulated nodes are also created

to integrate real devices into the emulation, and allow them to

send and receive packets over the network in real-time.

Core: It is an intelligent network orchestration module;

interacts with the user layer through various web services

provided by the Web Interface Layer. These services are used

for remote accessing of EaaS functionalities and to exchange

data between EaaS web portal and other core modules. The

core module has the following building blocks:

1) Parsing Module: It parses the received user request

to define a network topology with the received con-

figuration and to set up the network environment with

the simulation parameters. In this work, we emulate a

WiFi network with configuration parameters related to

wireless mode, radio mode, desired channel frequencies,

and simulation environment parameters such as: indoor/

outdoor scenario, path-loss model, mobility models etc.

2) Code Generator: It is configured to generate an emula-

tion script based on the defined network topology. In this

work, an emulation script is generated in C++, which is

well understood by the integrated emulator.

3) Data Collection Module: It is configured to collect

emulation logs in a predefined format. In this work, the

collected logs are in a time series output and these are

added in a Comma-Separated Value (CSV) file format.

Any delimited file can also be used that has a field

separator to separate each data point.

4) Data Model Mapper Module: It takes the CSV logs

from the Data Collection Module, translates it into a

2022 National Conference on Communications (NCC)

66
Authorized licensed use limited to: Carleton University. Downloaded on July 08,2022 at 16:18:16 UTC from IEEE Xplore. Restrictions apply.

unified format, generates network performance report

and stores it in the database.

5) Machine Learning (ML) Module: The historical data

retrieved from the database are passed over the ML

module for training. Data analysis and learning based al-

gorithms are used to predict network health by utilizing

important network Key Performance Indicators (KPIs)

as key features for these ML models.

6) Scalability Module: The emulation results obtained for

a smaller network can be extrapolated by the scalability

module along with the information received from the

trained ML model. The system further configures vir-

tual interfaces, bridges, and routes for connecting real

devices to the emulator and finally integrates emulated

nodes with real hardware devices.

Next section provides the implementation details of the

proposed EaaS framework.

IV. EAAS FRAMEWORK DEVELOPMENT

We consider Network Simulator-3 (NS3) [16], an open

source discrete event simulator to demonstrate the EaaS frame-

work capabilities for network monitoring, performance anal-

ysis and optimum policy building. Since emulation services

can be invoked remotely and executed on demand, a user

needs to first configure the emulation server to establish the

connection. Post that, users can upload the desired configu-

ration parameters for creating a simulation environment and

integrating emulated nodes with the real devices. We use

OSGi service platform for dynamic reconfiguration of the

distributed environment. OSGi is a Java Framework which

allows to develop and deploy modularised software program

and libraries. The run-time dynamics and service-oriented con-

cepts of OSGi enable plug-and-play capabilities for distributed

simulation. A modular software component in OSGi is called

bundle or plug-in, that can be deployed in a container and

has an independent lifecycle, i.e., it can be started, stopped

and removed independently. We describe the summary of an

application lifecycle as follows:

A. Application Lifecycle

To execute an application and its services in an OSGi

environment we build an OSGi bundle, define the application

entry point and construct the service object. Once the bundle

is started, the service is registered on the platform. The class

diagram of the NS3 service implementation is shown in Fig. 3.

We have created a dynamic collaborative emulator service

model (Ns3Model) which is integrated with the OSGi life

cycle. This service model is a Java object which is registered

under different Java interfaces (AnalysisNs3Service) with the

service registry. The OSGi bundle takes care of registering the

emulator services and retrieving them while discovery.

1) Bundle Entry Point: We implement an Activator class

which provides entry points for a bundle. A bundle

is started and stopped by invoking the start() and

stop() methods respectively by the OSGi platform.

2) Building a Bundle: We then leverage the maven-bundle-

plugin to package the NS3Service class as an OSGi

bundle with complete application.

3) Service Registration: The Container specification de-

fines a dependency inclusion framework for OSGi. It

is designed to deal with the dynamic nature of OSGi,

where services can become available and unavailable

at any time. The XML files that define and describe

various components of an application are key to the

programming model. We declare the NS3Service using

Blueprint XML (AnalysisNS3Service.xml).

4) Emulation Service: We implement a service interface

and different services are interfaced to upload config-

uration files (uploadFileData), to retrieve all the

active NS3 simulation instances (getAllNs3Config)

and to get NS3 configuration details by its instance id

(getNs3ConfigById).

5) Emulation Client: We develop an emulation client

(NS3Client) which communicates with the NS3 server

(emulator) identified based on the received NS3 socket

address (Server IP address and Port number) and trans-

fers the received configuration file to the remote NS3

server using Socket communication.

B. Web Services

The proposed framework provides various plug-and-play

services to a user. The emulator acts as a base layer with

necessary APIs to enable customized inclusion of analytics

modules. It creates a network environment specific simulation

script; generates data imitating real network; translates/maps

the data in a specific format; and finally stores it in a database.

It creates the necessary data flow paths to allow distributed

data collection and storage by the individual nodes. It ad-

dresses the problem of scarcity of training data and inability

to test the analytics algorithms due to lack of testbed. The

current deployment of this framework offers the following web

services: (i) Generation of user specific network simulation

scripts, (ii) Customizable data collection points, (iii) Insertion

of the data analysis modules based on user specific needs

and (iv) Creation of the run-time feedback loop to the base

framework from analytics function. In the following section

our aim is to provide the benchmarking service of EaaS.
V. EAAS: BENCHMARKING

The EaaS framework offers many advantages including

stand-alone and remote access to emulators; a large number

of users can access emulation services from anywhere and

anytime at a reduced cost. Therefore, benchmarking of the

proposed framework is very important. This section explains

the procedure of benchmarking the emulation data by evalu-

ating the accuracy of the collected data and then modeling of

the learning based algorithms.

A. Accuracy of the Emulation Results

The emulation result accuracy depends on the calibration of

emulation models, which is achieved by tuning some of the

simulation environment parameters. The sensitivity analysis

2022 National Conference on Communications (NCC)

67
Authorized licensed use limited to: Carleton University. Downloaded on July 08,2022 at 16:18:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Class diagram of NS3 Service Architecture

is applied over the estimated simulation results in order to

specify more accurate values for those input parameters that

have greater impact on the output. A user needs to define

affecting parameters and set default values for the variables

which have no or the least impact on the output. Calibration

of the simulation model is to minimize the difference between

the predicted and the measured simulation results. It is imple-

mented as part of the data collection process to minimize the

error between real and emulated results.

The sensitivity analysis technique is used to estimate the

error in the simulation as a consequence of input uncertainties.

Fig. 4 explains the process of analysing simulation outcome

and re-calculating the parameters which are the source of

uncertainty in the input. The extent to which a variable’s input

affects the output is the sensitivity of the output to that input.

By taking the sample of the model at multiple points of the

input space X , it becomes possible to fit a much simpler

emulator model η(X), such that η(X) ≈ f(X); where f(X)
is the testbed output. The emulator is modeled such that the

approximation remains within an acceptable error margin (ε).

During this process, the emulator parameters are adjusted until

they resemble the testbed.

To assess emulator accuracy, we compare the results of the

emulation with those of a small laboratory-based testbed. For

this, we set-up a simple WiFi based network environment. We

consider a lab-based testbed with a single Access Point (AP)

connected with two mobile users (STAs). An emulation setup

that uses NS3 is also created. The configuration parameters

(transmission power, operating channel, radio mode, etc.,) of

the WiFi devices are kept same for both the emulation and the

testbed. The indoor path loss model [17] is used to design a

accurate indoor communication network. The results presented

in Fig.5 and Fig.6 demonstrate the comparison between em-

ulation and testbed output. From these figures, we observe

that in both, emulation and the testbed, the mean Received

Signal Strength Indicator (RSSI) for a moving object is around

−40 dBm. To bring the emulation results closer to the testbed

results, we calibrate the emulation model by tuning the indoor

propagation model (ns3::PropagationLossModel) pa-

rameters used in the simulator. Due to the real-time testbed

limitations, we have only demonstrated accuracy check and

data collection of RSSI but the framework is not only limited

to the signal strength rather it can be utilized for other

parameters like, throughput, latency, bandwidth utilization, etc.

Fig. 4: Block Diagram: Error Estimation and Model calibration

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−80

−70

−60

−50

−40

−30

−20

Simulation time (sec)

R
S
S
I

(
d
B
m
)

Instantaneous Simulation RSSI

Moving average RSSI

Fig. 5: RSSI Variations for a Moving Object- Emulation

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−90

−80

−70

−60

−50

−40

−30

−20

Experimentation Time (sec)

R
S
S
I

(
d
B
m
)

Instantaneous RSSI from testbed

Moving average RSSI

Fig. 6: RSSI Variations for a Moving Object- Testbed

B. Benchmarking of Network Analytics with Si/E-mulation

In practice the scarcity of real-time network data hinders

benchmarking of various Machine Learning (ML) models to

2022 National Conference on Communications (NCC)

68
Authorized licensed use limited to: Carleton University. Downloaded on July 08,2022 at 16:18:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Prediction Accuracy

be used for network provisioning and management. This chal-

lenge is handled by the proposed EAAS framework. Further,

this framework not only provides use-case specific network

simulations, but also allows network analytics services such as

predictions, anomaly detection etc., to be used as plug-n-play

services. This framework helps in generating synthetic data

(log traces) mimicking a real network or a testbed; synthetic

data is further used for network analytics algorithms. The

emulation model parameters are tuned to generate synthetic

data close to the testbed data for higher prediction accuracy.

The ML models can be trained over both the historical data

stored in a database as well as the synthetic data generated in

real-time. These trained models respond to new data, which

are used for data predictions, prescriptive report generation and

new policy creation. The generated reports are used to provi-

sion the network resources and to improve its performance.

For verification and testing of these ML models, real-time or

testbed data, if any, are used. In this deployment, we use EaaS

generated synthetic data to train the ML models and testbed

data to verify and test the ML models.

In this paper, we predict the quality of a wireless link

by estimating its Received Signal Strength (RSSI) values.

For this prediction process, we propose to use the synthetic

data set to train the ML model and the testing process is

performed over the testbed data. Training is performed with

sliding window based supervised learning. We plot both, the

observed RSSI data of the testbed and the predicted RSSI data

in Fig. 7. Through this figure, we demonstrate the possible use

of synthetic data generated by a huge number of simulations

to train ML models and use it with testbed data for online

verification and testing. The performance of ML models are

restricted by both amount and quality of training data. Hence,

the emulation model parameters are pre-tuned to generate

synthetic data which is close to the real-time data for achieving

higher prediction accuracy. We observe from the results that

model predicts the RSSI of the wireless link with small mean

square error of 0.64.

VI. CONCLUSION

There is an increasing demand of emulators which replace

costly or impractical testbed. The ‘Emulation as a Service’

is a plug-n-play framework to benchmark network analytics

algorithms. In order to provide a wide range of remote emula-

tion services, the distributed architecture of EaaS framework

is helpful to deploy and execute emulation environment on-

demand basis. It provides a support to integrate multiple

simulation tools and real devices over a common emulation

framework. It further offers an agnostic interface which oper-

ates independent of integrated emulators and network devices.

The EaaS framework addresses the problem of scarcity of

training data for different networking domains and inability

to test the analytics algorithms due to lack of test bench.

ACKNOWLEDGMENT

We thank Dr. Samar Shailendra for his valuable suggestions

during the planning and development phase of this work.

REFERENCES

[1] “The Open Group, SOA Reference Architecture Technical Standard, doc.
no. C119 (2011),” Tech. Rep.

[2] E. Cayirci and Chunming Rong, “Intercloud for simulation federations,”
in International Conference on High Performance Computing Simula-

tion, July 2011, pp. 397–404.

[3] E. Cayirci, “Modeling and simulation as a cloud service: A survey,” in
Winter Simulations Conference (WSC), Dec 2013, pp. 389–400.

[4] Q. Duan, “Network-as-a-Service in Software-Defined Networks for end-
to-end QoS provisioning,” in 23rd Wireless and Optical Communication

Conference (WOCC), 2014, pp. 1–5.

[5] R. Pries, H.-J. Morper, N. Galambosi, and M. Jarschel, “Network as
a Service - A Demo on 5G Network Slicing,” in 28th International

Teletraffic Congress (ITC 28), vol. 01, 2016, pp. 209–211.

[6] N. T.H. and S. Q.Z, Trust as a Service: A Framework for Trust

Management in Cloud Environments. Lecture Notes in Computer
Science, Springer, 2011, vol. 6997, pp. 314–321.

[7] A. Alsubaih, A. Hafez, and K. Alghathbar, “Authorization as a Service in
Cloud Environments,” in International Conference on Cloud and Green

Computing, 2013, pp. 487–493.

[8] S. Wang and G. Wainer, “Modeling and Simulation as a Service Archi-
tecture for Deploying Resources in the Cloud,” International Journal of

Modeling, Simulation, and Scientific Computing, vol. 7, 01 2016.

[9] D. Procházka and J. Hodický, “Modelling and simulation as a service
and concept development and experimentation,” in International Con-

ference on Military Technologies (ICMT), May 2017, pp. 721–727.

[10] J. Hannay and T. van den Berg, “The NATO MSG-136 Reference
Architecture for M&S as a Service,” 10 2017.

[11] M.-M. Neag, L. Ispas, and C. Grindeanu, “The Comprehensive Ap-
proach Concept in Multinational Operations,” Land Forces Academy

Review, vol. 22, 12 2017.

[12] S. Shekhar, H. Abdel-Aziz, M. Walker, F. Çağlar, A. Gokhale, and
X. Koutsoukos, “A simulation as a service cloud middleware,” Annals

of Telecommunications, vol. 71, pp. 93–108, 01 2016.

[13] T. Bitterman, P. Calyam, A. Berryman, D. Hudak, L. Li, A. Chalker,
S. Gordon, D. Zhang, D. Cai, C. Lee, and R. Ramnath, “Simulation as
a service (SMaaS): a cloud-based framework to support the educational
use of scientific software,” Int. J. of Cloud Computing, vol. 3, pp. 177–
190, 01 2014.

[14] “Advanced CFD Technology Expertly Applied to Solve Real-World
Problems,” https://www.totalsim.us, accessed: 2020-10-28.

[15] “Discover SIMULIA,” https://www.3ds.com/products-services/simulia/,
accessed: 2020-10-28.

[16] The ns-3 network simulaton, http://www.nsnam.org/.

[17] H. K. Rath, S. Timmadasari, B. Panigrahi, and A. Simha, “Realistic
indoor path loss modeling for regular WiFi operations in India,” in
Twenty-third National Conference on Communications (NCC), March
2017, pp. 1–6.

2022 National Conference on Communications (NCC)

69
Authorized licensed use limited to: Carleton University. Downloaded on July 08,2022 at 16:18:16 UTC from IEEE Xplore. Restrictions apply.

