
DEFINING DEVS MODELS WITH THE CD++ TOOLKIT
Gabriel Wainer

Dept. of Systems and Computer Engineering
Carleton University

4456 Mackenzie Building
1125 Colonel By Drive

Ottawa, ON. K1S 5B6. Canada.

Gastón Christen Alejandro Dobniewski

Departamento de Computación
FCEN – Universidad de Buenos Aires

Planta Baja. Pabellón I.
Ciudad Universitaria (1428)

Buenos Aires. Argentina.

E-mail: gwainer@sce.carleton.ca

KEYWORDS

Discrete Event modelling and simulation; Modelling meth-
odologies; Modelling and Simulation tools.

ABSTRACT

We introduce the features of a toolkit for modeling and
simulation based on the DEVS formalism. It is built as a set
of independent software pieces running in different plat-
forms. We show the main features of the environment and
how to use it through application examples for a variety of
problems. Many models can be defined in an automated
fashion, simplifying the construction of new models, and
easing the verification of structural models. The use of this
formal approach allowed developing safe and cost-effective
simulations, reducing significantly the development times.

INTRODUCTION

In recent years, several efforts have been devoted to define
modelling paradigms, allowing improving the analysis of
complex dynamic systems through simulation of these mod-
els. DEVS (Discrete Event systems Specification) allows
modular description of models that can be integrated using a
hierarchical approach (Zeigler et al. 2000).

We have built a toolkit with the goal of develop models and
simulate them based on the DEVS and Cell-DEVS para-
digms. The core of the toolkit is the CD++ environment
(Wainer et al. 2001), which implements the DEVS and
Cell-DEVS theory. The toolkit has been built as a set of
independent software pieces, each of them independent of
the operating environment chosen. There are versions run-
ning under Windows 95/NT, Linux, AIX, IRIX, HP-UX
and Solaris. Graphical interfaces are built as independent
front-ends. This approach lets the user, for instance, to de-
bug the models in a workstation, execute them in a high
performance environment, and visualize the results in a per-
sonal computer (locally or remotely).

The goal of this article is to analyze the characteristics of
the toolkit, and its use to develop simulation models based
on the DEVS paradigm. We focus in the development proc-
ess of simulated models using a graphical interface that al-
lows defining DEVS models.

THE DEVS FORMALISM.

DEVS was originally defined in the '70s as a discrete-event
modelling specification mechanism. It is a systems theoreti-
cal approach that allows the definitions of hierarchical
modular models that can be easily reused (Zeigler et al.
2000). A real system modeled with DEVS is described as a
composite of submodels, each of them being behavioral
(atomic) or structural (coupled). A DEVS atomic model is
formally described by:

M = < X, S, Y, δint, δext, λ, D >

where X is the input events set; S is the state set; Y is the
output events set; δδint is the internal transition function; δδext

is the external transition function; λλ is the output function;
and D is the duration function.

A DEVS coupled model is composed of several atomic or
coupled submodels. They are formally defined as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij} >

where X is the set of input events; Y is the set of output
events; D is an index for the components of the coupled
model, and ∀ i ∈ D, Mi is a basic DEVS (that is, an atomic
or coupled model), Ii is the set of influencees of model i
(that is, the models that can be influenced by outputs of
model i), and ∀ j ∈ Ii, Zij is the i to j translation function.
We can see that coupled models are defined as a set of basic
components (atomic or coupled) interconnected through the
model's interfaces. The translation function is in charge of
converting the outputs of a model into inputs for the others.
To do so, an index of influencees is created for each model
(Ii). This index defines that the outputs of the model Mi are
connected to inputs in the model Mj, where j is an element
of Ii.

DEVS MODEL DEFINITION IN CD++

CD++ implements the DEVS theory. It allows defining
models according to the specifications introduced in the
previous section (Wainer et al. 2001, Rodríguez and Wainer
1999). A set of independent applications related with the
tool allows the user to have a complete toolkit to be applied
in the development of simulation models.

The tool is built as a hierarchy of models, each of them re-
lated with a simulation entity. Atomic models can be pro-
grammed and incorporated onto a basic class hierarchy pro-
grammed in C++. A specification language allows defining
the model's coupling, including the initial values and exter-
nal events.

Model definition in C++ allow the user great flexibility to
define behavior. Nevertheless, a non-experienced user can
have difficulties in defining models using this approach.
The provision of graphical notations can provide the mod-
eler with a powerful tool to define models. Graph-based
notations have the advantage of allowing the user to think
about the problem in a more abstract way. Therefore, we
have used an extended graphical notation to allow the user
define atomic models behavior (Zeigler et al. 1996). Each
graph defines the state changes according to internal and
external transition functions, and each is translated into an
analytical definition.

A unique identifier that will be used subsequently defines a
DEVS model. Each model can include a graph-based speci-
fication representing state changes for an atomic model.

States are represented by bubbles including an identifier and
the state lifetime. This specification allows to define the pair
(state, duration) associated with internal transition func-
tions. When the lifetime is consumed, the model will change
of state by executing an internal transition function. For
instance, the Figure 1 shows a state called "Start", whose
duration is 15 time units.

Figure 1: State Graphical Notation: Identifier, Time Length

The syntax for the state analytical specification is:

state : stateId …
stateId : lifetime

As explained earlier, each model includes an interface with
input/output ports. Ports are described by including their
name and a type, based on the formal specification for
DEVS models. They are specified as:

in : portId:type portId:type …
out : portId:type portId:type …

Internal transition functions are represented by arrows con-
necting two states. Each of them can be associated to pairs
of ports with values (p,v) corresponding to the output func-
tion. The syntax for the output function values is p!v. For
instance, this figure represents that the model will change
from state A to state B after 2 time units. First, the output
function will send the value 8 through the port q1; 4 through
the port q2, and 12 through the port q3.

Figure 2: Definition of an Internal Transition Function

The syntax for the internal transition function construction
is the following:

int : startState endState [outPort!value]+

Here we indicate the origin and destination states, and a
port list with the corresponding values. For instance, the
model in the previous figure can be described as:

int : A B q1!8 q2!4 q3!12

External transition functions are represented graphically by
a dashed arrow connecting two states. The notation used to
represent ports and expected values is similar to the one
used for external transition, but replacing the exclamation
mark by a question mark: p?v [ti..tf]. Here, ti...tf repre-
sent the initial and final expected simulated times for the
external transitions. These values allow to validate the tim-
ing of the models, rising an error if an external transition
comes out of time. The syntax for this construction is the
following:

ext : startState endState inPort value timeRange

It describes the origin and destination states, an input port
and a time range counted since the instant arriving to the
start state.

All these constructions can be combined to define the be-
havior of atomic models. For instance, the following figure
represents a simple model using all the constructions:

Figure 3: Definition of an Atomic Model

The tool is provided with a GUI entitling the definition of
these constructions. The previous graphical specifications
are used to generate an analytical specification, which is
used by CD++. We can see the definition of this example in
Figure 4. This model can be formally specified as:

Simple_Proc = < I, X, S, Y, δint, δext, λ, D >

I = <PX, PY> where PX = { ("in", integer) }; PY = { ("out",
integer) };

X = Y = ΖΖ ;
S = { Start, Process, Finish };

δext(s,e,x):
case port (in) {

4: if (e < 1 or e > 3) error();
phase = Process;
σ = 10;

2: if (e < 2 or e > 5) error();
 if (phase != finish)

phase = Process;
σ = 10; }

λ(s):
case (phase) {

Finish: send(out, 6);
Process: send(out, 1); }

δint(s):
case (phase):

Finish: passivate();
Process: hold_in(Finish, 7);

Figure 4: Graphical Specification of the Example

This description is translated into the following analytical
form, which is equivalent to the previous specification:

[exampleGG]
in: in
out: out
state: Start Process Finish
int: Process Finish out!1
int: Finish Start out!6
ext: Start Process in 10
ext: Finish Process in 2
Start:0
Process:10
Finish:7

Figure 5: Analytical Definition of the Example

COUPLED MODELS DEFINITION

After each atomic model is defined, they can be combined
into a multicomponent model. Coupled models are defined

using a specification language specially defined with this
purpose. The language was built following the formal defi-
nitions for DEVS coupled models. Therefore, each of the
components defined in section 2 for coupled models can be
included. Optionally, configuration values for the atomic
models can be included.

The [top] model always defines the coupled model at the
top level. As showed in formal specifications presented in
section 2, four properties must be configured: components,
output ports, input ports and links between models. The
following syntax is used:

• Components: it describes the models integrating a cou-
pled model. The syntax is: model_name@class_name, al-
lowing more than one instance of the same model using
different names. The class name reference to either atomic
or coupled models (which should be defined in the same
configuration file).
• Out: it defines the names of output ports.
• In: it defines the names of input ports.
• Link: it describes the internal and external coupling
scheme. The syntax is: source_port[@model] destina-

tion_port[@model]. The name of the model is optional
and, if it is not indicated, the coupled model being defined
is used.

[top]
components: DeparturesQ@StoppableQueue Track@Track
LandingQ@StoppableQueue ControlTower@ControlTower
Hangar
in : In
out : Out
link : out@DeparturesQ In_d@ControlTower
link : out@LandingQ In_a@ControlTower
link : In in@LandingQ
link : Out_a@Track In@Hangar
link : Out_d@Track Out
link : Done_a@ControlTower in@LandingQ
link : Stop_a@ControlTower stop@LandingQ
link : Departing@ControlTower Departing@Track
link : Landing@ControlTower Landing@Track
link : Done_d@ControlTower in@DeparturesQ
link : Stop_d@ControlTower stop@DeparturesQ
link : Out@Hangar in@DeparturesQ

[Hangar]
components : selector@selector deposit1@queue
deposit4@queue deposit3@queue deposit2@queue
Chosen@DeMux
in : In
out : Out
link : out1@selector in@deposit1
link : out2@selector in@deposit2
link : out3@selector in@deposit3
link : out4@selector in@deposit4
link : out@deposit1 in1@Chosen
link : out@deposit4 in4@Chosen
link : out@deposit3 in3@Chosen
link : out@deposit2 in2@Chosen
link : In in@selector
link : out@Chosen Out

Figure 6: Coupled Model Definition

Let us consider the specification in the previous figure,
which represents a small Airport. The control tower is con-
nected to two queues: one for departures, and the other for
arrivals. These queues are used to model the time employed
by planes to enter or leave the airport area. The control
tower is also connected to a model representing the track.
Every time a plane is authorized to depart or land, the track

model is activated. Finally, all landed planes go to a Hangar
for maintenance. A plane can only leave after service. The
hangar can be defined as an another atomic model, or as a
coupled model with different service stations for the planes.
Figure 7 in the Appendix shows the definition of this formal
description using the coupling specification language of the
tool. The tool uses this information to generate instances of
previously defined atomic models, or creates new instances
of coupled models that can be later reused to form other
multicomponent models. The analytical specification for the
example is described following:

SIMULATING MODELS

Once a model has been generated and its description is in-
cluded in the modelling hierarchy, it can be simulated. As
explained earlier, the model interaction is carried out
through message passing. The ultimate goal of each model
is to receive inputs through the input ports, and generate
outputs in the output ports according to the definitions of
the transition functions. The tool provides a way of regis-
tering every input and output of individual models. Never-
theless, fully detailed interaction between the models can be
registered by analyzing a log output file. The values in the
log file can be used to provide a generic graphical output.
The following figure shows its use when executing the
Control Tower model presented in an earlier section (at
present, a prototype – all the state variable values have been
added by hand to make clearer the description of the model
execution).

In Figure 8 we show the execution of the control tower
when three different requests are demanded. The model is
initially in a passive state (with no scheduled internal
events, that is, sigma = infinite). In simulated time 3, an
input request arrives through the port in_d. Checking the
model specification, we see that the flight information is
stored, and an internal event is scheduled. In this case, we
need a preparation time of 7 time units. During this time,
the model remains in the prep_landing phase. When the
time is consumed (sigma = 0), an internal function is exe-
cuted. The output function executes first, sending the STOP
signal to other models (represented by a short arrow in the
figure). Then, the internal transition function is executed,
queuing the plane, choosing it (as there is no other plane
queued), and putting the model in the landing state during 7
time units. When this time is consumed, the GO signal is
sent to the output ports, and the flight #1 is sent through the
corresponding port (in this case, departing). A second plane
arrives, and the procedure is repeated. When 3 time units
have been consumed, a new external event occurs, indicat-
ing an emergency plane (#4). Then, the emergency signal is

sent to the landing port, the previous plane is dequeued,
letting flight #4 to land. When it finishes landing, flight #2
is authorized to use the track, and lands (the values related
with this flight are kept in the control tower queue).

CONCLUSION

We have introduced several features CD++, a toolkit for
DEVS modelling and simulation. The tool was built using
the DEVS formal modelling paradigm, improving the safety
and development times of the simulations. The tool exe-
cutes in a stand-alone mode, or as a simulation server that
can be executed remotely. It executes in different platforms,
from low priced personal computers up to high performance
multiprocessors or distributed systems (keeping the seman-
tics for predefined models).

The tool was used to develop several kinds of application
examples, which allowed us to show the flexibility of the
toolkit. Several types of models can be integrated in an effi-
cient fashion, allowing multiple points of view to be ana-
lyzed using the same model. The formalism allows improv-
ing the security and cost in the development of the simula-
tions. Experimental results of application showed improve-
ments for expert developers. The main gains have been re-
ported in the testing and maintenance phases, the more ex-
pensive for these systems (Wainer and Giambiasi 2001).
The tools are public domain and can be obtained at
"http://www.sce.carleton.ca/faculty/wainer/celldevs". The
developed models are available, and will be incorporated to
a web-based environment that can be applied to the devel-
opment of DEVS models.

REFERENCES

Rodríguez, D.; Wainer, G. "New Extensions to the CD++
tool". In Proceedings of SCS Summer Computer Simu-
lation Conference. Chicago, IL. U.S.A. 1999.

Wainer, G.; Barylko, A.; Beyoglonián, J. "Experiences with
DEVS modelling and simulation". In IASTED Journal
on Modelling and Simulation. March 2001.

Wainer, G.; Giambiasi, N. "Application of the Cell-DEVS
paradigm for cell spaces modelling and simulation.".
Simulation. January 2000.

Zeigler, B.; Kim, T.; Praehofer, H. Theory of Modeling and
Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems. Academic Press. 2000.

APPENDIX

Figure 7: Graphical Specification for the Airport Coupled Model

Figure 8: Execution Results for the Airport Example

