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Abstract— Inspired by the behavior law of human social
groups, a new swarm intelligence algorithm named the
dual-population social group optimization (DPSGO) algorithm is
proposed in this article. Based on the primitive social group opti-
mization (SGO) algorithm, dual-population grouping technology,
reverse learning technology, immigration migration technology,
and Gaussian mutation are introduced to further simulate the
behavior law of actual human social groups. Experimental results
and performance comparison show that the DPSGO algorithm
has a better searchability and convergence rate. In addition,
aiming at the socially hot issue of aviation safety, the simulation
and experimental results show that the temperature measurement
error can be reduced to less than 7.5 ◦C by using the DPSGO
algorithm combined with reflected radiation correction to process
the aeroengine multispectral radiation temperature measurement
data. This article is of great significance to the design and
optimization of swarm intelligence algorithms by using the
behavior law of human social groups and provides valuable
guidance for enhancing the safety monitoring of aeroengines.
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I. INTRODUCTION

THE intelligence algorithm is a new optimization method
of abstracting mathematical models from laws and coop-

erative behaviors existing in nature or biological groups in
order to obtain powerful problem-solving abilities. In nature,
many organisms complete complex tasks together through
group collaboration and the simple behaviors of individu-
als in a group display intelligence due to the interaction
between individuals. The existing swarm intelligence algo-
rithms are mostly abstracted and extended by simulating group
behaviors of animals, such as social insects, animals, and
birds [1], [2]. Typical optimization algorithms include ants [3],
fireflies [4], and bats [5]. Swarm intelligence algorithms have
a wide range of practical applications. The reliability-based
design optimization (RBDO) is an effective method for struc-
tural optimization due to its capability of consideration of
uncertainties in design variables [6]. Meng et al. [7] made
a comprehensive comparison of recent metaheuristics algo-
rithms for the application of RBDO through five mechanical
design problems: automobile side impact problem, bolted
rim, spur speed reducer, welded beam, and stiffened shell.
Dhiman et al. [8] proposed an evolutionary multiobjec-
tive seagull optimization algorithm (EMoSOA) and used
the proposed EMoSOA algorithm to verify four engineer-
ing design problems, including welded beam design and
pressure vessel design. Aiming at the design problem of
unmanned aerial vehicles, Champasak et al. [9] proposed
a new self-adaptive metaheuristic based on decomposition.
Dhiman et al. [10] proposed a novel bioinspired optimization
algorithm called rat swarm optimizer (RSO) and applied
it to six real-life constrained engineering design problems.
Abd Elaziz et al. [11] used swarm intelligence algorithms
for medical image processing. However, as humans have
the highest level of intelligence among biological groups,
the evolution process of human social intelligence has good
reference significance. Human beings are social creatures,
and their social systems are composed of many people with
dynamic and adaptive behaviors. People interact through the
establishment of relationships [12]. According to the research
and verification of scholars, the complex behavior of social
group systems can be modeled and simulated by computer.
Inspired by the evolution process of human intelligence
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and the social learning theory [13], Liu et al. [14] pro-
posed a new swarm intelligence algorithm paradigm named
the social learning optimization (SLO) algorithm. Based on
human intelligence with the social cognitive theory (SCT),
Xie et al. [15] proposed social cognitive optimization
(SCO) for solving nonlinear programming problems (NLP).
Sun et al. [16] proposed a novel hybrid SCO algo-
rithm based on quantum behavior (QSCO) to improve the
global convergence speed of the classical SCO algorithm.
Gong et al. [17] developed a social learning algorithm (SLA)
by imitating the social learning process of humans in society.
Based on social ties, Lin et al. [18] constructed a social
effect-based incentive mechanism and a social graph model
with social ties. Cao et al. [19] made full use of the location
and semantic information of social networks to propose a
review-based local expert discovery mechanism. At present,
research into a swarm intelligence algorithm model based on
the evolution process of human swarm intelligence is still in
its infancy.

The social group optimization (SGO) algorithm is a new
type of optimization algorithm based on the human behav-
ior of learning and solving complex problems. The process
of SGO is divided into two parts. The first part consists
of the “improving phase”; the second part consists of the
“acquiring phase.” In the “improving phase,” individuals in
the population take the current optimal solution of the group
as the learning guide. In the “acquiring phase,” individuals
in the population learn under the guidance of a random
individual in the population and the optimal solution of the
current population. The SGO algorithm has a fast convergence
speed and strong effectiveness [20]. It has effective research
applications in many fields, such as medical image process-
ing [21]–[23], resource allocation task scheduling [24], and
information processing communication technology [25]–[27].
With advancing research on the laws of human social group
behavior, it has been found that the SGO algorithm can be
optimized and achieve better results when combined with
actual human group social behavior. Studies have demon-
strated that people in geographically similar areas in human
social groups often showed behavioral similarities. Compared
to individuals who were further away, people were found to be
more inclined to contact individuals with closer geographical
locations [28], [29]. With the widespread dissemination of
mobile Internet technologies that include mobile phones, smart
terminals, and wearable devices, as well as the popularization
of Facebook, Twitter, Microblogging, and other online social
networks, the restrictions of traditional social networks on
individual time and space have been removed [30]–[32].
Therefore, we introduce the dual-population grouping oper-
ation and optimize the update mode of the algorithm to
simulate this social group phenomenon. At the same time,
considering that individuals in actual human social groups still
have deliberative and autonomous learning behaviors, reverse
learning technology is introduced. In addition, the migration
operation between populations is used to simulate the flow of
people in different social groups, and the Gaussian mutation
operation is employed to simulate the strong self-learning
ability of excellent individuals. We present the dual-population

social group optimization (DPSGO) algorithm in this work,
which is based on the above factors.

Due to economic and social progresses, and particularly in
the context of globalization, countries are becoming integrated,
including in the economic and cultural spheres [33]. In addi-
tion, while aviation technology has been widely adopted,
aviation safety continues to be a culturally significant concern.
Turbine blades are one of the key components of aeroengines.
Accurately measuring the temperature of turbine blades is
of great importance for ensuring the safe operation of aero-
engines. Turbine blade radiation temperature measurement
experiences the problems of reflection radiation interference
between blades and insufficient accuracy and stability of
the multispectral temperature measurement data processing
algorithm. In response to these specific problems, we conduct
simulation analysis and experimental verification on the effec-
tiveness of the DPSGO algorithm for processing multispectral
radiation temperature measurement data of aeroengines. The
experimental results and performance comparison show that
the DPSGO algorithm is both effective and efficient. The use
of temperature to monitor the operational safety of aeroengines
can also reduce aviation safety concerns.

II. BASIC PRINCIPLE OF SGO ALGORITHM

Many behavioral traits, such as honesty, courage, tolerance,
or respectfulness, lie dormant in human beings, which must
be harnessed and channelized in the appropriate direction
to solve complex tasks. A phenomenon of mutual influence
on the emotions or abilities of others in the process of
interpersonal communication also exists in social groups [34].
It has been observed that human beings are great imitators
or followers when solving tasks. Group solving capability is
now recognized as more effective than individual capability
due to the exploiting and exploring of different traits of each
individual in a group to solve a given problem. A new opti-
mization technique has been proposed based on this concept,
named SGO [35]. In the SGO algorithm, everyone can acquire
knowledge and has a certain degree of problem-solving ability.
The optimal individual can determine the best solutions and
will attempt to spread knowledge among all individuals, which
will improve the knowledge level of all team members.

The SGO algorithm is an optimization algorithm based on
social group learning. Similar to particle swarm algorithms,
it mimics social behavior, such as adaptation based on inter-
action with others to reduce differences and the ability to use
historical knowledge in present behaviors and decisions [36].
After the social group is initialized, the individual optimization
process is divided into the “improving phase” and the “acquir-
ing phase.” In the “improving phase,” the knowledge level of
each person in the group is improved under the influence of
the outstanding people in the group. In the “acquisition phase,”
each person enhances their knowledge by communicating with
other people in the group and the best people in the group.
The algorithm is described as follows.

Step 1: The population initialization operation is given as
follows:

Xi, j = xmin + r × (1, D) × (xmin − xmax) (1)

Authorized licensed use limited to: Carleton University. Downloaded on July 26,2022 at 17:47:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: DPSGO ALGORITHM BASED ON HUMAN SOCIAL GROUP BEHAVIOR LAW 3

where i = 1, 2, 3, . . . , N , j = 1, 2, 3, . . . , D, N is the size of
the population, D is the dimensionality of individual variables,
and r is a random number of between 0 and 1. xmax and xmin

are the upper and lower limits of variables, respectively; Xi, j

is the feature number of the j th dimension of individual i .
Step 2: The improving phase is given as follows:

Xnewi, j = c × Xoldi, j + r × (gbest j − Xoldi, j ) (2)

where c is known as the self-introspection parameter and
its value can be set from 0 to 1. r is a random number
of 0–1, gbest j is the j th dimension feature number of the
optimal individual of the current generation, and Xoldi, j and
Xnewi, j are the j th dimension feature numbers before and after
the update of individual i , respectively.

Step 3: The acquiring phase is given as follows:
if f (xi) is better than f (xk)

Xnewi, j = Xoldi, j + r1 × (Xi, j − Xk, j ) + r2 × (gbest j − Xi, j )

else

Xnewi, j = Xoldi, j + r1 × (Xk, j − Xi, j ) + r2 × (gbest j − Xi, j )

(3)

where both r1 and r2 are random numbers between 0 and 1,
Xk is an individual randomly selected from the population
as the learning object, gbest j is the j th dimension feature
number of the optimal individual of the current generation, and
f (x) is the individual fitness evaluation function, which is
used to evaluate the level of knowledge and ability.

Step 4: Termination criterion.
Stop the simulation if the maximum generation number is

achieved; otherwise, repeat steps 2–3.

III. BASIC PRINCIPLE OF DPSGO ALGORITHM

While the original SGO algorithm shows the effectiveness
and rapid convergence in some applications, it still has some
shortcomings. In the two stages of the original SGO algorithm,
individuals are updated under the guidance of the best indi-
viduals of the contemporary population. Practice shows that
guiding evolution with the optimal individual can accelerate
the convergence speed of the algorithm, but it is not conducive
to maintaining the diversity of the population. Employing
a single algorithm learning method can also easily lead to
premature convergence. Therefore, in response to the above
problems and combined with the actual human social group
behavior law, a DPSGO algorithm is proposed in this work.
The improvement points and analysis of the DPSGO algorithm
are given as follows.

Improvement 1: First, in a social group, individuals with
high similarity tend to gather together to form a niche envi-
ronment, and people form a complex network through various
connections. Second, considering the limitations of individual
learning ability, the difficulty of acquiring knowledge, and
the diversity of learning methods, when an individual cannot
solve complex problems alone, it is easier for individuals to
obtain the required knowledge from their nearest neighbors to
improve their ability to solve problems. Thus, after weighing
the performance and complexity of the algorithm, the dual-
population evolutionary algorithm is the best as it enables the

two populations to improve their performance through mutual
knowledge and talent exchange. The diversified evolution of
the two populations ensures diversity, while the exchange
of excellent individuals among subpopulations ensures the
convergence speed of feasible solutions, realizes complemen-
tary advantages, and then improves the performance of the
algorithm in solving various complex optimization problems.
At the beginning of the DPSGO algorithm, the initial popula-
tion is randomly divided into population 1 and population 2.
In the subsequent evolution process, the two populations use
different evolution methods and have information interaction
capabilities. Population 2 can enhance the search range of
the population by introducing Gaussian mutation and reverse
learning. In order to reduce the problem of falling into the local
optimum, the evolution strategy adopted by population 2 is
to increase the possibility of finding the optimum value by
increasing the search range and increasing the diversity of the
population. The population evolution method of population 1
is greatly affected by the optimal value within the population,
so the local range of contemporary optimal values can be
fully searched, which also inherits the characteristics of the
original SGO algorithm’s strong local searchability. We also
realize the information interaction between population 1 and
population 2 through the migration operation and the improved
“acquiring phase” to prevent population 1 from falling into
a local minimum. We will further compare and analyze the
search capabilities of the algorithms from the perspectives
of accuracy, convergence, and population diversity through
simulation experiments in Section IV. Using different evolution
strategies can effectively improve the performance of the algo-
rithm, especially if the subpopulation adopts a complementary
evolution strategy.

In the improving phase of the DPSGO algorithm, individu-
als improve their intelligence level by observing the behavior
of the optimal individual and learning the advantages of the
optimal individual. This evolutionary process comprehensively
takes into account human habitual and imitation behaviors.
That is, individuals tend to be satisfied with their current
behavior or have certain inertia when learning. Thus, while
learning and simulating from excellent individuals, individ-
uals will retain some of their own knowledge. We include
self-introspection parameters to simulate this behavior. The
individual update mode within each group is given as follows:

Xnewi, j = c × Xoldi, j + r × (agbest j − Xoldi, j ) (4)

where c is the self-introspection parameter. Its value can be
set from 0 to 1, where r is a random number of 0–1, and
agbest j is the j th dimension feature number of the current
generation optimal individual in the population where the
updated individual is located. Xoldi, j and Xnewi, j are the j th
dimension feature numbers before and after the update of
individual i , respectively.

In the acquiring phase of the DPSGO algorithm, the
interaction of information between subgroups can provide
more information for individual learning. The information
exchange mechanism between two populations can give indi-
viduals a greater chance to jump out of the local extreme
in learning, so as to avoid premature algorithm convergence.
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The individual update mode within each group is given as
follows:
if f (xi) is better than f (xk)

Xnewi, j = Xoldi, j +r1 × (Xi, j −Xk, j ) + r2 × (bgbest j − Xi, j )

+r3 × (agbest j − Xi, j )

else

Xnewi, j = Xoldi, j + r1 × (Xk, j − Xi, j )+r2 × (bgbest j −Xi, j)

+r3 × (agbest j − Xi, j ) (5)

where r1, r2, and r3 are random numbers between 0 and 1,
and Xk is an individual randomly selected from the population
where the updated individual is located as the learning object.
agbest j is the j th dimension feature number of the current
generation optimal individual in the population where the
updated individual is located, bgbest j is the j th dimension
feature number of the optimal individual among all individuals
in the two populations of the current generation, and f (x) is
the individual fitness evaluation function.

Improvement 2: Considering the deliberative and
autonomous learning behaviors of people in actual social
groups, especially in collective living, when there is a
large difference in the knowledge level among individuals,
the inferior individuals will become unsatisfied with their
current learning behavior and will consider choosing other
learning behaviors. They will make decisions independently
according to their own state and perceived information. For
example, “self-driven learning” is carried out to explore new
knowledge to improve ability levels and narrow the gap with
other individuals. We introduce reverse learning technology
to simulate this behavior.

Aiming at the weakness of the SGO algorithm in global
searchability and its tendency to fall into a local optimal
solution, reverse learning technology is introduced to individ-
uals with poor fitness in population 2 to enhance their global
searchability. The basic idea is to compare the current solution
and the reverse solution. If the reverse solution is better
than the current solution, the reverse solution will replace
the current solution. Reverse learning technology can quickly
expand the search space, enrich the population’s diversity, has
a better ability to explore unknown solutions, and increase the
possibility of finding the global optimal solution and jumping
out of the local optimal solution. It has been reported that
the reverse solution is closer to the optimal solution than the
current solution, and the probability is almost 50% using this
technique [37]. Suppose that X = [x1, x2, . . . , xD] is a point
in D-dimensional space, where xi ∈ [ai , bi ], i = 1, 2, . . . , D.
The reverse solution of X is X∗ = [x∗

1 , x∗
2 , . . . , x∗

D], and the
calculation formula of the reverse solution is given as follows:

x∗
i = ai + bi − xi . (6)

Improvement 3: The migration behavior existing in real
human social groups, even under significant geographical
constraints, can realize the exchange of individuals and infor-
mation via the rapidly developing transportation and commu-
nication networks. To account for this migration operation
between elite individuals, we introduce the elite mechanism of

survival of the fittest for the receiving population. Migration
operation is the basic operator in the biogeographic optimiza-
tion algorithm, where a migration operator realizes the transfer
of information and knowledge between different solutions.
Through migration operation, individuals with poor knowledge
levels can obtain the characteristics of better individuals and
improve their knowledge level. We introduce an immigration
operation between the two populations, where population 2 has
strong global searchability, and population 1 has strong local
searchability. The optimal individuals in population 2 immi-
grate into population 1, and the individuals with the highest
survival of the fittest mechanisms are adopted to replace
the individuals with the worst fitness in population 1. This
increases the diversity of individuals within population 1 to
prevent it from falling into the local optimal solution.

Improvement 4: In actual human social groups, excellent
individuals have stronger knowledge reserve and self-learning
abilities. However, in the standard SGO algorithm, the optimal
individuals in the population lack self-learning and improve-
ment. Using the Gaussian mutation operation on the optimal
individual enhances their ability to explore a better solution,
ensuring that the optimal individual of the population retains
a better solution every time it performs Gaussian mutation.
This operation simulates the behavior of the optimal individual
self-learning and improving ability. In order to solve the
problem of falling into local optimal solution, the Gaussian
mutation operator is introduced. Compared with other muta-
tion operators, the Gaussian mutation operator has the highest
probability of mutation near the mean value, which makes
the development of the algorithm more effective. Population 2
produces a large number of Gaussian mutation individuals near
the current optimal value, which are replaced according to the
fitness value. By introducing Gaussian variation, the search
range of the optimal value is increased, and the searchability
is improved. The Gaussian mutation operation is given as
follows:

XG, j = Xi, j + c j × N(0, 1) (7)

where XG, j is the j th dimensional value of the Gaussian
variant individual, Xi, j is the j th dimensional value of the
contemporary optimal individual, and N(0, 1) is a normal
Gaussian distributed random variable with a mean of 0 and
a variance of 1. c j is the variation step size of the j th
dimensional, and j = 1, 2, . . . , D. The flowchart of the
DPSGO algorithm is shown in Fig. 1.

IV. VALIDATION OF DPSGO ALGORITHM FOR

PROCESSING MULTISPECTRAL TEMPERATURE

MEASUREMENT DATA

This section will study the root causes of the social hot
issue of aviation safety. Through theoretical simulation and
experiments, it will verify the effectiveness of using the
DPSGO algorithm to process the multispectral temperature
measurement data of aeroengine turbine blades and use the
temperature to monitor the operation safety of aeroengine,
so as to reduce people’s concerns about aviation safety. Avi-
ation, like a spanning activity and process of human society
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Fig. 1. Flowchart of the DPSGO algorithm.

to social space, plays a positive role in national and regional
economic development, but, at the same time, some people are
worried about aviation safety, and it has become a social hot
issue. Although the development trend of aviation accidents
is decreasing and the probability of accident occurrence is
small, the death rate of aircraft accidents is quite high. Every
“point hair” air crash around the world will bring great harm
to many families [38], [39]. The aeroengine is the aircraft’s
power plant, where the turbine is the main hot end component
of the engine. Turbine blades are prone to failure when
working in a high-temperature and high-pressure environment
for a long time. Accurately measuring the temperature of the
turbine blades can monitor and evaluate the working status of
the blades, which is of great significance to ensure the safe
operation of the engine. The engine turbine stage profile and
rotor blade model are shown in Fig. 2.

A. Basic Principle of Multispectral Radiation Thermometry

Planck’s law is the basic law of thermal radiation.
It describes the relationship between blackbody radiation
and temperature and wavelength, which can be expressed as
follows:

M(λ, T ) = c1λ
−5(ec2/λT − 1)−1 (8)

where c1 = 3.7418 × 10−16 W · m is the first Planck
coefficient and c2 = 1.4388 ×10−2 m ·K is the second Planck

coefficient. λ is the measured wavelength, and M(λ, T ) is the
radiation emissivity when the target temperature is T and the
wavelength is λ.

Due to the reflected radiation in the high-temperature back-
ground environment and the emissivity on the surface of the
object to be measured, the radiation received by the radiation
pyrometer can be expressed as follows:

M(λ, T ) = ελM(λ, Tb) + (1 − ελ)M(λ, Tr) (9)

where T is the measurement temperature of the radiation
pyrometer, Tb is the target blackbody temperature, Tr is the
ambient temperature, M(λ, T ) is the total radiation emission
received by the detector, M(λ, Tb) is the radiation emissivity
of the blackbody of the target, and M(λ, Tr) is the amount of
radiation from the high-temperature environment to the surface
of the measured object. ελ is the emissivity of the measured
object surface, and the value of (1−ελ) is equal to the surface
reflectivity of an opaque object.

The emissivity is the ratio of the heat energy radiated by
the object at a certain temperature to the radiation energy of
the blackbody at the same temperature. The emissivity value
is related to the temperature, wavelength, surface state, and
other factors of the object. Several commonly used emissivity
models are given as follows:

ε(λ, T ) = a + bλ (10)

ε(λ, T ) = ea+bλ (11)

ε(λ, T ) = 1

2
+ 1

2
sin(aλ + b) (12)

ε(λ, T ) = aλ2 + bλ + c. (13)

For the multiwavelength pyrometer with n channels, the
radiation received by each channel is given as follows:

⎧⎨⎨⎨⎨⎨⎨⎨⎨
⎨⎨⎨⎨⎨⎨⎨⎩

M(λ1, Tb) = M(λ1, Tm) − (1 − ε1)M(λ1, Tr)

ε1

M(λ2, Tb) = M(λ2, Tm) − (1 − ε2)M(λ2, Tr)

ε2

· · ·
M(λn, Tb) = M(λn, Tm) − (1 − εn)M(λn, Tr)

εn
.

(14)

Equation (14) is the implicit function equation group
between the emissivity coefficient and the target true temper-
ature. However, as it is difficult to solve (14) directly, it can
be transformed into an optimization problem to solve emis-
sivity model coefficients and real temperature. The objective
equation is given as follows:⎧⎨⎨⎨⎨⎨⎨⎨

⎨⎨⎨⎨⎨⎨⎩

� = min
n�

i=1

�
M(λi , Tm) − (1 − ελi )M(λi , Tr)

−ελi M(λi , T )
�2

ελi = f (λ, T )

0 ≤ ελi ≤ 1

(15)

where ελi is the emissivity calculated by the emissivity model
at the wavelength of the i th channel, f (λ, T ) is the selected
emissivity model, T is the true surface temperature of an
unknown object, and Tr is the temperature of the object around
which there is reflected radiation.
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Fig. 2. Engine turbine stage profile and rotor blade model.

B. Performance Test of DPSGO Algorithm

To test the performance of the DPSGO and SGO algorithms
in processing multispectral temperature measurement data,
simulation experiments were set as follows. The temperature
to be measured was assumed to be 600 ◦C, the background
temperature was assumed to be 800 ◦C, and the simulated
wavelengths were selected to be 1.3, 1.5, 1.5, 1.6, 1.7, and
1.8 μm, respectively. The emissivity model was assumed to be
ε(λ, T ) = 0.5 + 0.5 sin(0.7λ− 0.7), as shown in (12). Under
this condition, the search range of the two parameters of the
emissivity model was set to 0.3 ≤ a ≤ 1.1, −1.1 ≤ b ≤ −0.3,
and the temperature search range was set to 550 ◦C ≤ T ≤
650 ◦C. The initial population and iteration times of the two
algorithms were the same, where the population size of the
two algorithms was 100 and the maximum iteration time
was 100. The self-introspection parameters of population 1 and
population 2 of the DPSGO algorithm were set as 0.2 and 0.15,
respectively, the Gaussian variable step size was c1 = c2 =
0.1, c3 = 5, and the reverse learning ratio was 0.2. The
self-introspection parameter of the SGO algorithm was 0.2.
The DPSGO algorithm and the SGO algorithm were used to
repeat the calculation 100 times, respectively. The temperature
calculation results are shown in Fig. 3, which reflects the
accuracy and stability of the two algorithms. The lowest tem-
perature calculated by the DPSGO algorithm is 599.7749 ◦C,
the highest temperature is 600.1171 ◦C, the maximum error is
0.1171 ◦C, and the average temperature error is 0.0358 ◦C.
The lowest temperature calculated by the SGO algorithm
is 599.2304 ◦C, the highest temperature is 601.105 ◦C, the
maximum error is 1.105 ◦C, and the average temperature error
is 0.1775 ◦C. From the perspective of stability, the mean square
deviation of the DPSGO algorithm for the single temperature
solution is 0.0014, and the mean square deviation of the
SGO algorithm for the single temperature solution is 0.0446.
Therefore, DPSGO has better accuracy and stability than the
SGO algorithm.

The iterative curves of the two algorithms are shown in
Fig. 4, which illustrates that, under the same conditions, the
DPSGO algorithm tends to converge after 30 iterations, while

the SGO algorithm tends to converge after 50 iterations.
Fig. 4(a) shows that the fitness of the DPSGO algorithm
converges faster, and Fig. 4(b) shows that, after the algorithm
converges, the temperature iteration curve will no longer
produce fluctuations to reach a stable value. Combined with
the accuracy, it can be determined that the convergence of
DPSGO is better than the SGO algorithm.

In order to measure the diversity of the population, the
normalized average distance between different individuals in
the population is introduced as a measurement index. The
calculation method is shown in the following equations:

D(Xm, Xn) =
	

�

D�
j=1

(Xmj − Xnj )2 (16)

D∗(Xm, Xn) = D(Xm , Xn)

max(D(Xm , Xn))
(17)

D = 2
�N−1

m=1

�N
n=m+1 D∗(Xm, Xn)

N(N − 1)
(18)

where m = 1, 2, . . . , N − 1, n = m + 1, . . . , N , N is the
number of populations, m and n represent different individuals,
and j = 1, 2, . . . , D represents the characteristic dimen-
sion. D(Xm , Xn) is the distance between different individuals,
D∗(Xm, Xn) is the normalized distance between different
individuals, and D is the normalized average distance of all
individuals in the population.

The comparison of population diversity between the two
algorithms is shown in Fig. 5. Fig. 5(a) shows the comparison
of the population diversity of all individuals of the two
algorithms. It can be seen that the population diversity of
the SGO algorithm decreases rapidly and is low. Due to
the single evolutionary form, the SGO algorithm is easy to
falls into local optimal value. However, the DPSGO algorithm
uses a variety of improved evolution methods, so the overall
population diversity is higher than the SGO algorithm, which
means that it has the opportunity to comprehensively search for
a wider space. Fig. 5(b) shows the comparison of population
diversity between population 1 and population 2 of the DPSGO
algorithm. It can be seen that, because population 2 adopts a
variety of evolution methods, the population diversity has been
maintained at a high level in the early stage and declined
slowly, and the search range is also wider. By continuously
receiving the best immigrant individuals from population 2 and
adopting optimized evolution strategies, although the popula-
tion diversity of population 1 is lower than that of population 2,
it still produces greater volatility. The greater the population
diversity, the more scattered the individuals of the population,
which is more conducive to the global search of the algorithm.
Conversely, the more concentrated the population individuals
are, the more conducive to the local search and convergence
of the algorithm. The population diversity of the DPSGO
algorithm decreases slowly in the early stage and has a larger
vibration frequency and amplitude, so a better balance can be
found in the global search and the local search. Comprehensive
calculation accuracy, convergence, and population diversity
prove that the DPSGO algorithm is more effective and efficient
than the SGO algorithm.

Authorized licensed use limited to: Carleton University. Downloaded on July 26,2022 at 17:47:37 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: DPSGO ALGORITHM BASED ON HUMAN SOCIAL GROUP BEHAVIOR LAW 7

Fig. 3. Temperature calculation results of the two algorithms: (a) DPSGO algorithm temperature calculation results and (b) SGO algorithm temperature
calculation results.

C. Theoretical Simulation Verification of DPSGO Algorithm
Processing Multispectral Radiation Temperature
Measurement Data

Before processing the multispectral radiation temperature
measurement data, the discrete model of turbine blades is
established to obtain the relevant information of reflected
radiation. The analysis process of the reflected radiation model
mainly includes the following steps. First, the discrete model
of the turbine blades is established, and the points of the rotor
blade to be measured are selected. The front stage guide vanes
and front stage rotor blades facets are “visualized” to select
the facets that may transfer heat radiation to the points to be
measured without considering the mutual occlusion. Second,
the occlusion between the blades is judged, and the blades
with mutual occlusion are deleted. Finally, the radiation from
the surrounding environment to the point to be measured can
be obtained by calculating the angle coefficient combined with
the blade temperature distribution, and the reflected radiation
from the surface of the point to be measured can be obtained
when the emissivity is known. An example of the analysis
process of the reflected radiation model is shown in Fig. 6.

The temperature distribution of guide vanes and rotor blades
was set according to the proposed analysis model of reflected
radiation. The temperature error caused by the reflected radi-
ation was calculated when the blade span heights were 25%,
50%, and 75%, respectively, and the relative chord length
was 0–1. During the simulation analysis, the temperature
distribution of the guide vanes was set at 450 ◦C–980 ◦C,
and the temperature of the rotor blade is set at 560 ◦C.
The wavelengths are set to 1.3, 1.4, 1.5, 1.6, 1.7, and 1.8
μm, and the emissivity at each wavelength was selected
as 0.6, 0.62, 0.67, 0.7, 0.75, and 0.78, according to the
previous measured data. We employed the non-dominant
sorting genetic algorithm-II (NSGA-II) and improved non-
dominant sorting genetic algorithm-II (INSGA-II) algorithms
for simulation comparison, which are commonly used for
processing radiation temperature measurement data [40]. The
emissivity model was selected as a sinusoidal model. The
initial population size and search range of the four types of
algorithms were the same, where the population size was 100,

Fig. 4. Iteration curves of the DPSGO and SGO algorithms: (a) fitness
iteration curve and (b) temperature iteration curve.

and the number of iterations was 50. The selection of the
DPSGO and SGO parameters is the same as above. The
crossover rate of the NSGA-II and INSGA-II algorithms was
0.78, and the mutation rate was 0.15. The cluster number of
the INSGA-II algorithm was 12, and the individual proportion
of calculated symmetric solutions was 0.2. The three groups
of blade span height temperature errors caused by reflected
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Fig. 5. Comparison of population diversity between the DPSGO algorithm and SGO algorithm: (a) comparison of the population diversity of all individuals
of the two algorithms and (b) comparison of population diversity between population 1 and population 2 of the DPSGO algorithm.

Fig. 6. Diagram of reflected radiation analysis model process: (a) discrete model of turbine blades; (b) visualization judgment results; and (c) final result
after occlusion judgment.

radiation are obtained, as shown in Fig. 7(a). Fig. 7(b)
shows the temperature error after processing the multispectral
radiation temperature measurement data using the DPSGO
algorithm. The maximum temperature error is 3.0832 ◦C,
and the average temperature error is 1.1411 ◦C. Fig. 7(c)
shows the temperature error after processing the multispec-
tral radiation temperature measurement data using the SGO
algorithm. The maximum temperature error is 6.8992 ◦C,
and the average temperature error is 1.7952 ◦C. Fig. 7(d)
shows the temperature error after processing the multispectral
radiation temperature measurement data using the NSGA-II
algorithm. The maximum temperature error is 6.7642 ◦C, and
the average temperature error is 1.529 ◦C. Fig. 7(e) shows the
temperature error after processing the multispectral radiation
temperature measurement data using the INSGA-II algorithm.
The maximum temperature error is 5.18 ◦C, and the average
temperature error is 1.2756 ◦C. By comparing the calculation
results of the various algorithms, the effectiveness of using the

DPSGO algorithm to process multispectral radiation tempera-
ture measurement data is verified.

D. Experimental Verification of DPSGO Algorithm for
Processing Actual Multispectral Radiation Temperature
Measurement Data

The sample to be tested was placed in a constant tem-
perature furnace, and its surface temperature was changed
by setting a cooling chamber and introducing cold air. The
total radiation on the surface of the sample was recorded
using a high-temperature radiometer. The radiation from the
high-temperature background to the sample to be tested was
known by previous analysis, and a thermocouple was used
to determine the real surface temperature of the sample.
The constant temperature of the constant temperature furnace
was 690 ◦C, and the data of 35 groups of samples were
collected. In this experiment, the multispectral radiation data
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Fig. 7. Temperature error: (a) temperature error caused by reflected radiation; (b) temperature error after DPSGO algorithm processing; (c) temperature error
after SGO algorithm processing; (d) temperature error after NSGA-II algorithm processing; and (e) temperature error after INSGA-II algorithm processing.

Fig. 8. Experimental results: (a) experimental results of DPSGO algorithm under linear emissivity model (increase); (b) experimental results of the
DPSGO algorithm under exponential emissivity model (increase); (c) experimental results of the DPSGO algorithm under sinusoidal emissivity model;
and (d) experimental results of the original SGO algorithm under sinusoidal emissivity model.
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selection is 1.3, 1.4, 1.5, 1.6, 1.7, and 1.8 μm, with a
bandwidth of 0.02 μm. Three types of emissivity models were
selected: the linear emissivity model (increase), exponential
emissivity model (increase), and sinusoidal emissivity model
[refer to (10)–(12)]. Finally, the temperature measurement
error was calculated according to the results of the algorithm
and the thermocouple indication. With the exception of the
population size and search range, the DPSGO and SGO
algorithm parameters were the same as the above simulation
parameters. The population size was 100, and the number
of iterations was 100. The search range of the two parame-
ters of the emissivity model was set to −0.1 ≤ a ≤ 0.9,
−0.1 ≤ b ≤ 0.9, and the temperature search range was set to
570 ◦C ≤ T ≤ 670 ◦C.

According to the above experimental settings, three com-
monly used emissivity models were selected for calcula-
tion, and the radiation temperature measurement data were
processed by using the DPSGO algorithm to obtain the mea-
surement temperature and its error. The experimental results
are shown in Fig. 8(a)–(c). By comparing the experimental
results of the three emissivity models, it can be concluded
that, under the condition of the sinusoidal emissivity model,
the DPSGO algorithm has the best results, and the sinusoidal
emissivity model is more suitable for the experimental data.
As shown in Fig. 8(c), the maximum temperature measurement
error is less than 7.5 ◦C, while the temperature measurement
errors of other emissivity models are larger, even reaching up
to 19.8 ◦C.

Under the same experimental conditions and emissivity
model, the temperature measurement results of the DPSGO
and the original SGO algorithms are then compared. The
temperature measurement results and errors of the DPSGO
algorithm are shown in Fig. 8(c), and the temperature mea-
surement results and errors of the original SGO algorithm
are shown in Fig. 8(d). The maximum temperature error
in the temperature measurement results calculated by the
DPSOG algorithm is 7.5 ◦C, and the average error temperature
is 2.9 ◦C. In the temperature measurement results calculated by
the SGO algorithm, the maximum temperature error is 11.1 ◦C,
and the average error temperature is 3.7 ◦C. Experimental
results show that it is effective to use the DPSGO algo-
rithm combined with reflected radiation correction to process
aeroengine multispectral radiation temperature measurement
data.

V. CONCLUSION

In this article, a DPSGO algorithm was proposed based
on the behavior law of the actual human social groups. The
performance of the DPSGO algorithm was compared with
a variety of swarm intelligence algorithms and simulation
experiments demonstrated that the algorithm has a better per-
formance. Aiming at the socially hot issue of aviation safety,
the effectiveness of using the DPSGO algorithm to process
aeroengine multispectral radiation temperature measurement
data was verified by theoretical simulation and experiments.
The simulation and experimental results demonstrated that
the use of the DPSGO algorithm combined with reflected

radiation correction to process aeroengine multispectral
radiation temperature measurement data could reduce the
temperature measurement error to within 7.5 ◦C. This article is
of great significance to the design and optimization of swarm
intelligence algorithms by using the behavior law of human
social groups and provides valuable guidance for enhancing
the safety monitoring of aeroengines.
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